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The mechanisms of vorticity concentration, reorientation, and stretching are investigated in a
simplified swirling jet model, consisting of a line vortex along the jet axis surrounded by a jet shear
layer with both azimuthal and streamwise vorticity. Inviscid three-dimensional vortex dynamics
simulations demonstrate the nonlinear interaction and competition between a centrifugal instability
and Kelvin–Helmholtz instabilities feeding on both components of the base flow vorticity. Under
axisymmetric flow conditions, it is found that the swirl leads to the emergence of counter-rotating
vortex rings, whose circulation, in the absence of viscosity, can grow without bounds. Scaling laws
are provided for the growth of these rings, which trigger a pinch-off mechanism resulting in a strong
decrease of the local jet diameter. In the presence of an azimuthal disturbance, the nonlinear
evolution of the flow depends strongly on the initial ratio of the azimuthal and axisymmetric
perturbation amplitudes. The long term dynamics of the jet can be dominated by counter-rotating
vortex rings connected by braid vortices, by like-signed rings and streamwise braid vortices, or by
wavy streamwise vortices alone. ©1996 American Institute of Physics.@S1070-6631~96!00507-7#

I. INTRODUCTION

Swirling jets represent one of a handful of paradigm
flows that, while of great practical significance, allow for the
fundamental study of complex but generic dynamical pro-
cesses and their interactions. They feature prominently in a
variety of applications in such fields as propulsion, combus-
tion, and mixing. At the same time, atmospheric conditions
can give rise to swirling flows in nature, with both wake- and
jet-like axial velocity profiles. Examples concern tornados,
dust devils, and water spouts. All of the above situations are
characterized by a complex interplay of a variety of compet-
ing dynamical mechanisms. The axial velocity profiles typi-
cally allow for shear-induced instabilities similar to those
encountered in nonswirling flows. However, the additional
presence of swirl can result in an unstable radial stratifica-
tion, thereby leading to centrifugal instabilities as well. Fur-
thermore, the swirl can give rise to standing or propagating
nonlinear inertial waves, similar to the internal waves ob-
served in flows with density stratification. Finally, under cer-
tain conditions swirling jets are known to produce vortex
breakdown events, an important generic phenomenon for
which a universally accepted explanation is still elusive. An
improved understanding of these mechanisms and their mu-
tual coupling is a prerequisite for the successful development
of active and passive control strategies employing sound,
nozzle geometry, and motion, or micromachines, with the
goal of tailoring the flow such as to generate the desired
operating conditions.

An introduction into the basic physics of swirling flows
is given by Guptaet al.,1 while some more advanced aspects

pertaining mostly to confined flows are reviewed by
Escudier.2 Early analytical investigations were mostly di-
rected at finding similarity solutions to simplified equations
and boundary conditions,3 and at determining the linear sta-
bility of various combinations of axial velocity profiles and
swirl.4–8 Experimental investigations of swirling jets for the
most part have addressed the issue of mean flow profiles and
averaged turbulent transport properties.9–12 Only recently
have researchers begun to pay attention to the dominant role
played by the underlying vortical flow structures and their
dynamical evolution, e.g. Panda and McLaughlin.13 These
authors point out the crucial role played by axisymmetric and
helical instability waves, emphasizing the importance of a
structure-basedunderstanding of the flow dynamics.

To our knowledge, no axisymmetric or three-
dimensional nonlinear computations aimed at elucidating the
fundamental dynamics of swirling jets are reported in the
literature. However, the recent axisymmetric computational
results obtained by Lopez,14 Brown and Lopez,15 and Lopez
and Perry16 for an internal swirling flow, and by Krause and
colleagues for the vortex breakdown phenomenon~reviewed
by Althauset al.17! suggest that such computations can pro-
vide some fundamental insight into the flow physics of swirl-
ing jets.

For the purpose of studying the nonlinear dynamical in-
teraction of shear and centrifugal instabilities in swirling jets,
we recently introduced a simplified model18 that is an exten-
sion to earlier ones proposed by Batchelor and Gill,19

Rotunno,20 and Caflisch, Li, and Shelley.21 It lends itself well
to analytical linear stability calculations, as well as to non-
linear Lagrangian vortex dynamics simulations. The model
consists of an axial centerline vortex, which is surrounded by
a nominally axisymmetric vortex sheet containing both
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streamwise and circumferential vorticity. While this model
has obvious limitations when it comes to reproducing the
detailed features of experimentally generated, and often
geometry-dependent velocity profiles, its simplicity offers
several advantages. First of all, it allows for some analytical
progress18 in terms of a straightforward linear stability analy-
sis, which illuminates the competition of centrifugal and
Kelvin–Helmholtz instability waves. In particular, the results
show that centrifugally stable flows can become destabilized
by sufficiently short Kelvin–Helmholtz waves. Second, the
model enables us to study the nonlinear interaction and com-
petition of the various instability mechanisms involved, by
means of fully nonlinear numerical calculations.

Some preliminary nonlinear simulations for axisymmet-
ric perturbations were reported by Martin and Meiburg,22

who showed that, under certain circumstances,counter-
rotatingvortex rings emerge in the braid regions between the
primary vortex rings generated by the Kelvin–Helmholtz in-
stability of the axisymmetric shear layer. These counter-
rotating vortex rings can trigger a dramatic decrease in the
local jet diameter. A further interesting observation shows
the circulation of the swirling vortex rings to be time depen-
dent, in contrast to the vortex rings found in nonswirling jets.
The dynamics of these swirling vortex rings represents an
interesting research area in its own right. While nonswirling
rings have been the subject of considerable theoretical, ex-
perimental, and computational research~Shariff and
Leonard,23 and references therein!, much less is known about
vortex rings with swirl, in part because of the considerable
difficulties one encounters when trying to generate them ex-
perimentally. On the other hand, several recent theoretical
investigations addressing the form and stability of isolated
swirling vortex rings24–27 can be expected to stimulate fur-
ther efforts in this direction.

After a brief discussion of the flow model in Sec. II, we
will investigate the nonlinear axisymmetric evolution of the
above swirling jet model in more detail in Sec. III. In par-
ticular, the formation of recirculation regions will be ana-
lyzed in detail, and scaling laws for the time-dependent
growth of the vortex ring circulations will be derived. In Sec.
IV, we will extend the numerical investigation to fully three-
dimensionally evolving swirling jets, by imposing azimuthal
perturbations in addition to the axisymmetric ones. The azi-
muthal perturbations can trigger additional instabilities of the
rings or the braid regions. The simulations to be discussed
will then allow us to investigate the nonlinear interplay of
the competing instabilities for various values of the govern-
ing dimensionless parameters.

II. FLOW MODEL AND NUMERICAL TECHNIQUE

The present flow model of an axial line vortex sur-
rounded by a nominally axisymmetric cylindrical shear layer
containing streamwise and circumferential vorticity repre-
sents an extension of earlier ones investigated by several
researchers, dating back to the analyses by Batchelor and
Gill 19 as well a Rotunno20 of the stability of an axisymmetric
layer of circular or helical vortex lines. More recently, Caf-
lisch, Li, and Shelley21 introduced the effect of swirl by plac-
ing the additional line vortex at the center of the axisymmet-

ric layer. However, their unperturbed vortex sheet had an
axial vorticity component only, so that a jet-like velocity
component was absent. In the present investigation, we em-
ploy a slightly more complicated model~Fig. 1!, consisting
of a line vortex of strengthGc at radiusr50, surrounded by
a cylindrical vortex sheet atr5R. The unperturbed axisym-
metric vortex sheet contains both azimuthal vorticity~corre-
sponding to a jumpDUx in the axial velocity! and stream-
wise vorticity ~representing a jump DUu in the
circumferential velocity!. The strength of the vortex sheet is
taken to be equal and opposite to that of the line vortex. The
vortex lines in the sheet hence are of helical shape, with their
pitch anglec being

c5tan21S DUu

DUx
D . ~1!

These particular features of our model were chosen on
the basis of the following considerations. While an axisym-
metric cylindrical layer ofcircular vortex lines represents a
unidirectional flow with a top-hat-like profile shape,helical
vortex lines result in an additional azimuthal velocity com-
ponent, which jumps at the location of the vortex layer. If
there is no streamwise circulation present at radii smaller
than that of the cylindrical layer, this azimuthal velocity
component vanishes inside the cylinder and exhibits a 1/r
dependence on the outside. Consequently, since the magni-
tude of the circulation increases across the vortical layer, this

FIG. 1. Simplified model of a swirling jet flow. The centerline vortex of
strengthGc is surrounded by a nominally axisymmetric jet shear layer con-
taining helical vortex lines of pitchc. The azimuthal vorticity component is
related to the top hat axial velocity profile, whereas the streamwise vorticity
component results in the centrifugally unstable stratification. Also shown are
the streamwise and azimuthal base flow velocity profiles.
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flow is centrifugally stable on the basis of Rayleigh’s circu-
lation theorem. However, if some streamwise circulation is
contained inside the cylinder, and if this circulation is of
opposite sign to the streamwise circulation of the layer itself,
then the magnitude of the circulation can decrease across the
vortical layer, so that we obtain a centrifugally unstable flow.
The line vortex at the center of the jet is introduced exactly
for this purpose. Its strength is taken to be equal and opposite
to that of the streamwise circulation contained in the vortical
layer, in order that the azimuthal velocity component of the
base flow vanishes outside the jet. In this way, our simplified
model mimicks a swirling jet entering fluid at rest. The fluid
velocity profile associated with our model is sketched in Fig.
1 as well.

By introducing both axial and azimuthal vorticity along
with the central line vortex, this model allows for the inves-
tigation of competing Kelvin–Helmholtz and centrifugal in-
stabilities, which can be expected to lead to interesting non-
linear dynamical behavior. For the nonswirling top hat jet
velocity profile it is known that axisymmetric and helical
perturbations will result in the formation of vortex rings or
helices, respectively, all of the same sign.28,29 For purely
swirling flow, on the other hand, Caflischet al.21 demon-
strated that axisymmetric perturbations lead to the emer-
gence of counter-rotating vortex rings. By superimposing a
top hat streamwise velocity profile upon the purely swirling
flow, we hence expect a breaking of the symmetry exhibited
by the purely swirling flow alone. Conversely, introducing
swirl into the nonswirling jet flow should lead to a tendency
to form azimuthal vorticity of a sign opposite to that of the
vortex rings that evolve as a result of the pure Kelvin–
Helmholtz instability. Additional azimuthal disturbances will
render the flow field fully three dimensional. Both the swirl-
ing vortex rings as well as the braid regions connecting them
may develop instabilities that can lead to the formation of
concentrated streamwise vorticity.

In order to compute the nonlinear evolution of the flow
in response to certain imposed perturbations, we employ a
vortex filament technique that is essentially identical to the
one used in earlier investigations of plane shear layers,
wakes, and jets.22,28–32It is based on the theorems of Kelvin
and Helmholtz and follows the general concepts reviewed by
Leonard33 and Meiburg.34 A detailed account of the tech-
nique is provided in these earlier references.

For the numerical simulations of the simple jet model,
we limit ourselves to the temporally growing problem, in
spite of the spatial growth exhibited by a typical experimen-
tal flow field. We face a tradeoff here, as the spatially grow-
ing simulation would require that we extend the control do-
main over several streamwise wavelengths, so that the
numerical resolution per streamwise wavelength would nec-
essarily suffer. In addition, the streamwise boundary condi-
tions pose a much more severe problem in spatially growing
flows. In the present investigation we opt for the temporally
growing approach, on the basis that previous experience con-
cerning the simulation of nonswirling and swirling jets jus-
tifies this approach, as it demonstrates that centrifugal and
shear instabilities represent the dominant mechanisms in the
evolution of the jet. These mechanisms are captured by the

temporally growing flow, so that we can expect to gain sig-
nificant insight into the dynamical evolution of these flows
on the basis of the temporal growth approach. Under this
assumption, we can concentrate the numerical resolution on
one streamwise wavelength, which allows us to take the cal-
culation further in time.

The wavelength in the axial direction, i.e., the length of
the control volume, is based on Michalke and Hermann’s35

stability analysis for the spatially evolving nonswirling jet.
By using Gaster’s36 transformation, we obtain the wave-
length of maximum growth for the temporally evolving flow
as approximately 2p. One cannot necessarily expect the lin-
early most unstable wavelength to dominate the nonlinear
regime as well. However, as our interest lies in simulating
the evolution of a slightly perturbed flow from the linear
regime all the way into the nonlinear one, starting with the
linearly most unstable wavelength represents the obvious ap-
proach. Whether or not this wavelength continues to domi-
nate the nonlinear regime, or if it changes due to pairing or
other nonlinear interaction mechanisms, can only be deter-
mined by extending the simulation farther into the nonlinear
regime, under explicitly imposed perturbations or random
roundoff errors.

One streamwise wavelength is typically discretized into
105 filaments. Each filament initially contains 123 segments
in the circumferential direction. These numbers emerged
from test calculations, in which we refined the discretization
until a further increase in resolution resulted in very small
changes. The Biot–Savart integration is carried out with
second-order accuracy both in space and in time by employ-
ing the predictor–corrector time-stepping scheme, in con-
junction with the trapezoidal rule for the spatial integration.
As the flow structure develops nonlinearly, the vortex fila-
ments undergo considerable stretching. To maintain an ad-
equate resolution, the cubic spline representation of the fila-
ments is used to introduce additional nodes, based on a
criterion involving distance and curvature.30 Furthermore,
the time step is repeatedly reduced as local acceleration ef-
fects increase. The filament core radiuss decreases as its
arclength increases, to conserve its total volume. In order to
assess the accuracy and convergence of the vortex filament
simulations, we presented in Martin and Meiburg28 a com-
parison of the numerical and analytical growth rates for the
axial Kelvin–Helmholtz instability of thenonswirling jet.
This comparison showed that the simulation overpredicts the
growth rate, which is due to the fact that the filament cross
sections do not deform under strain. In Fig. 2, a comparison
is shown for the growth rates of apurely swirlingflow. It can
be seen that the numerical growth rate reproduces the exact
one to a high degree of accuracy.

We take the streamwise velocity difference between the
centerline and infinity as the characteristic velocity. The
thickness of the axisymmetric shear layer serves as the char-
acteristic length scale, which results in the filament core ra-
dius s50.5. The nominal jet radiusR is taken to be 5, and
we obtain the ratio of jet radiusR and momentum thickness
u of the jet shear layer asR/u522.6. Hence, the ratioR/u@1,
and we are well within the range of validity of the filament
model.
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III. RESULTS

A. Axisymmetric case

As a first step, we discuss the nonlinear evolution of a
strictly axisymmetric configuration, for which some prelimi-
nary results were reported by Martin and Meiburg.22 The
swirling jet is centrifugally unstable under Rayleigh’s circu-
lation theorem, allowing us to investigate the competition
between the Kelvin–Helmholtz instability of the azimuthal
vorticity component and the centrifugal instability feeding on
the streamwise vorticity.

The initial axisymmetric perturbation displaces the vor-
tex filament centerlines in the radial direction, with an am-
plitude of five percent of the nominal jet radius. A typical
development of the flow field is shown in Fig. 3 for the
relatively large velocity ratio ofDUu/DUx58.2. This param-
eter value indicates that the jump in the azimuthal velocity
component across the jet shear layer is much larger than that
of the axial component, so that, for the unperturbed flow, the
vortex lines are predominantly oriented in the streamwise
direction. Figure 3~a! ~time50.039! shows a side view, i.e.,
those filament sections located aty.0, of an early configu-
ration of the vortex filaments, along with contours of the
azimuthal vorticity component@Fig. 3~b!#. For clarity, two
streamwise wavelengths are shown. Both graphs indicate
that the azimuthal vorticity component points in the same
direction everywhere in the vortex sheet, in a fashion similar
to the axisymmetric Kelvin–Helmholtz instability of non-
swirling jets. The contour plot reflects the early stages of ring
formation due to the Kelvin–Helmholtz instability of the azi-
muthal vorticity component. By time 0.801@Fig. 4~a!#, on
the other hand, a new phenomenon can be observed, namely
the reorientation of certain vortex filament segments in the
opposite azimuthal direction. Nearx5p andx53p, the rings
that were already emerging att50.039 continue to grow.
Their vorticity is of the same sign as that in a corresponding
nonswirling jet. Atx50 andx52p, however, the vortex fila-
ments reverse their direction, which causes them to form
regions of azimuthal vorticity of opposite sign. This reflects
the influence of the centrifugal Rayleigh instability and its
tendency to generate pairs of counter-rotating vortex rings,
as seen in the vorticity contours att50.801@Fig. 4~b!#. The

explanation lies in the fact that the swirl generates a strong
radial gradient of the azimuthal velocity component. As a
result, the azimuthal velocity component of a vortex line
varies strongly along its arclength. Thus, there are segments
of a vortex line that travel around the jet’s axis at a higher
angular velocity than neighboring segments of the same vor-
tex line. Since the overall dynamics is inviscid, the vortex
line has to stay connected, so that it necessarily has to fold
back and forth, thereby generating azimuthal vorticity com-
ponents of both signs. With increasing time, the emerging
counter-rotating ring becomes stronger~Fig. 5,t51.225!, un-
til two distinct counter-rotating rings of opposite sign have
emerged.

It should be pointed out that the circulation of each of
the counter-rotating rings, i.e., the integral over the positive
~negative! azimuthal vorticity within one streamwise wave-
length in the cross cut, is a function of time, as the vortex
filaments continue to wrap around the jet axis due to the

FIG. 2. Comparison of the numerical growth rates of the radial perturbation
amplitude obtained from the vortex filament simulation~solid line! and the
analytical growth rate~dotted line! for the case of a purely swirling flow.

FIG. 3. The evolution of a swirling jet withDUu/DUx58.2, subject to an
axisymmetric perturbation. Shown is a side view of the vortex filaments at
time t50.039 ~a!, along with isocontours of the azimuthal vorticity distri-
bution in a cross section containing the jet axis~b!. For clarity, two stream-
wise wavelengths are shown. Initially, the vortex lines are predominantly
oriented in the streamwise direction. At this early time, both graphs indicate
that the azimuthal vorticity component points in the same direction every-
where in the vortex sheet. This is a reflection of the early stages of corotat-
ing ring formation due to the Kelvin–Helmholtz instability of the azimuthal
vorticity component.
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differential azimuthal velocities experienced by different
segments of the same vortex line. However, the sum of the
circulations of two neighboring vortex rings of opposite sign
remains constant with time. It is equal to the integral over
one streamwise wavelength of the unperturbed initial azi-
muthal vorticity. In other words, while the circulations of the
individual vortex rings grow indefinitely as a function of
time, the sum of the circulation of apair of counter-rotating
vorticesdoes not depend on time. This is in contrast to the
nonswirling configuration, where the circulation of indi-
vidual vortex rings is independent of time.

In order to identify the formation, location, and size of
any recirculation regions, it is of interest to analyze the bi-
furcation sequence of the streamline pattern, as seen in a
reference frame moving with the velocity of the evolving jet
shear layer structures, i.e., half the velocity of the unper-
turbed jet ~Fig. 6!. After the initial perturbation has been
imposed, the streamlines show the familiar shape of the well-
known Kelvin cat’s eyes@t50.039, Fig. 6~a!#. With the
emergence of counter-rotating azimuthal vorticity, this topol-
ogy changes, and an ‘‘island’’ forms midway between the
Kelvin–Helmholtz vortices@t50.625, Fig. 6~b!#. This island

grows with time@t51.016, Fig. 6~c!#, until it extends all the
way to the jet centerline. Subsequently, a finite region of
upstream velocity on the jet axis forms@t51.436, Fig. 6~d!#,
indicating the existence of a closed recirculation bubble. The
different streamline pattern topologies are sketched in Fig. 7.

The time-dependent evolution of the streamline pattern
described above aids in the understanding of the transport of
fluid toward and away from the jet axis. Between the
counter-rotating vortex rings, alternating regions exist in
which the fluid velocity is directed toward larger and smaller
radii, respectively. In this way, a certain ‘‘pinch-off’’ effect
is created, i.e., locally the jet shear layer decreases dramati-
cally.

Figure 8 shows the instantaneous growth rate of the cir-
culation of the counter-rotating vortex ring as a function of
time, for different values of the dimensionless ratio
DUu/DUx . Increased values of this parameter result in more
rapid circulation growth, due to the increased role of the
centrifugal instability. The figure demonstrates that, as a re-
sult of the inviscid nature of the present vortex dynamics
calculations, the vortex ring circulation does not saturate.

The ways in which the Kelvin–Helmholtz instability in-
teracts with the centrifugal instability, and how that interac-

FIG. 4. Time 0.801: Counter-rotating rings form in the braid regions be-
tween the primary vortices, as a result of a centrifugal instability related to
the streamwise vorticity. The rings form as a result of the reorientation of
certain vortex filament segments into the opposite azimuthal direction near
x50 andx52p, respectively.

FIG. 5. Time 1.225: The counter-rotating rings increase in strength, leading
to the formation of alternating regions in which fluid is convected toward or
away from the jet axis, respectively.
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tion affects the strengthening of the counter-rotating vortex
ring, is illuminated by the following scaling argument. The
azimuthal velocity of a jet shear layer vortex line segment
can be approximated by the azimuthal velocity induced at its
location by the centerline vortex, and by the streamwise vor-
ticity contained in the layer itself. In this way, we obtain for
the azimuthal velocityvu1 of the widest shear layer cross
section, located at radiusR1 ~Fig. 9!,

vu1'
Gc

4pR1
, ~2!

whereGc is the circulation of the centerline vortex. A corre-
sponding expression follows for the azimuthal velocityvu2
of the narrowest shear layer cross section, located at radius
R2. The above shows that different segments of the jet shear
layer will rotate around the jet axis at different rotation rates.
However, if a segment of the jet shear layer rotates at a
different rate from a neighboring segment, the shear layer
vorticity becomes increasingly reoriented into the azimuthal
direction, thereby forming a vortex ring. The strength of this
evolving vortex ring depends on the accumulated difference
in the rotation between the neighboring segments. In particu-
lar, if one segment of a vortex line has rotated around the jet
axis one more time than a nearby segment, a vortex ring has
formed that has the circulation of the entire jet shear layer.
Since this strength of the jet shear layer is equal and opposite
to that of the centerline vortex, we have

2pR0 DUu52Gc . ~3!

It follows immediately that the strength of the primary vortex
ring, G2, increases at the same rate as that of the secondary,
counter-rotating vortex,G1, namely by the amountuGcu dur-
ing the time intervalDT that it takes for the narrowest cross
section to complete one more rotation than the widest cross
section. We obtain

duG1u
dt

5
duG2u
dt

'
Gc

DT
. ~4!

With the above estimates for the azimuthal velocities of the
cross sections, we then obtain the following estimates for the
rate at which the circulation of the vortices increases:

duG1u
dt

5
Gc
2

8p2 •
R1
22R2

2

R1
2R2

2 . ~5!

The temporal evolution ofR1 andR2, in turn, depends on the
growth of both the Kelvin–Helmholtz and the centrifugal
instabilities. This point clearly demonstrates the nonlinear
interaction between the two instability modes. The above
scaling law relationship is shown in Fig. 8, along with the
computational results. For short times, the counter-rotating
ring has not yet formed, so that the above arguments do not
yet apply. For long times, however, the agreement is quite
good, considering the rough estimates on which the scaling
law is based. It should be mentioned that, in the absence of

FIG. 6. The sequence of bifurcations of the streamline pattern as seen in the reference frame moving with half the nominal jet velocity. Islands form in the
initial cat’s eyes pattern. Subsequently, these islands grow in size, until they extend to the jet axis, where they create regions of upstream velocity. In all
frames, the dotted contour line has the same value as the jet centerline.
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viscous effects, the circulation of the counter-rotating rings
will grow without bounds, as a result of the continued inter-
action of the shear and centrifugal instabilities.

B. The effect of azimuthal perturbations

The axisymmetric nature of the above calculation per-
mits the evolution of concentrated vortical structures only in
ring-like form. However, it is well known that three-
dimensional perturbations to nominally
two-dimensional30,31,37,38 or axisymmetric28,29 shear flows
give rise to concentrated streamwise vortical structures that
are predominantly located in the braid region. In order to
investigate possible mechanisms for the generation of such
structures in swirling jets, we introduce an azimuthal pertur-
bation in addition to the axisymmetric one described above.
Just like the axisymmetric perturbation, the azimuthal distur-
bance displaces the vortex filament centerline radially from
its nominal location. In an experiment, this type of perturba-
tion can be imposed, for example, by means of a corrugated
nozzle.39 Due to the nonlinearity of the overall problem, the
initial perturbation amplitude ratio represents an important
parameter of the problem, as it can favor the rapid growth of
one instability over others in their mutual competition. In
particular, the early growth of one instability can affect the
base flow in such a way as to suppress or accelerate the
development of others. It should be pointed out that for this

fully three-dimensional case, a Kelvin–Helmholtz instability
of the streamwise vorticity can develop, in addition to the
Kelvin–Helmholtz instability of the azimuthal vorticity and
the centrifugal instability of the streamwise vorticity.

In the first one of the fully three-dimensional simula-
tions, the ratio of the azimuthal and axial velocity jumps
across the jet shear layer has the same valueDUu/DUx58.2
as in the previous axisymmetric calculation. The azimuthal
disturbance amplitude is relatively small ate250.04%, while
the axisymmetric perturbation amplitudee1 is held constant
at the level of five percent~the same as above!. The wave
number of the azimuthal perturbation is taken to be 5. As can
be seen from Fig. 10, the flow again develops two counter-
rotating vortex rings, as it did for the purely axisymmetric
case. However, already the side view att50.977 shows a
slight nonuniformity in the azimuthal direction. Byt51.187,
concentrated streamwise braid structures have begun to form,
as a result of a Kelvin–Helmholtz instability of the stream-
wise braid vorticity. It is interesting to note that these braid
vortices form only in the braid sectionupstreamof the pri-
mary rings, i.e., in the narrow part of the braid. In contrast,

FIG. 7. Sketch of the sequence of different streamline pattern topologies.

FIG. 8. Instantaneous growth rate of the circulation of the counter-rotating
vortex ring as a function of time. The dimensionless ratioDUu/DUx has the
following values:3:8.2, 1:5.0, s:3.0, h:1.8. Also plotted are the corre-
sponding time-dependent values obtained from the scaling law~dashed
lines!. For longer times, the agreement between the scaling law expressions
and the numerical values improves.

FIG. 9. Definitions of quantities used in the scaling arguments.

1923Phys. Fluids, Vol. 8, No. 7, July 1996 J. E. Martin and E. Meiburg

Downloaded¬22¬May¬2004¬to¬128.111.70.70.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright,¬see¬http://pof.aip.org/pof/copyright.jsp



the widening half of the braid region downstream of the pri-
mary rings does not exhibit any signs of concentrated
streamwise vortical structures. The explanation for this be-
havior can be found in the effective wavelength change of
the azimuthal Kelvin–Helmholtz instability due to the radial
velocity component. In those regions where the braid cir-
cumference grows, the growth of the Kelvin–Helmholtz in-
stability in the circumferential direction is slowed down as
its effective wavelength increases, whereas in the narrowing
braid sections the instability is accelerated due to the wave-
length reduction.

It is important to point out that the streamwise vortex
structures are all of the same sign, i.e., they are corotating.
The reason for this lies in the fact that the braid vorticity,
which forms the streamwise structures by a process of con-
centration as a result of a Kelvin–Helmholtz instability, is of
the same sign everywhere. In this aspect, the evolution of the
braid region resembles the situation encountered in a non-
swirling jet disturbed by a helical and an azimuthal wave.29

In contrast to the counter-rotating vortex rings, the circula-
tion of the streamwise braid vortices cannot grow without
bounds. Rather, it is limited by the fact that, within a
x5const cross section of the jet, the circulation of the jet

shear layer vorticity has to be equal and opposite to that of
the centerline vortex. Consequently, the maximum strength
of the streamwise braid vortices, achieved if all the jet shear
layer vorticity is contained in these concentrated structures,
is equal to the circulation of the centerline vortex divided by
the azimuthal wave number.

The above observations are confirmed by the isosurface
plot of the vorticity magnitude in Fig. 11 fort51.343. It
shows the counter-rotating vortex rings, connected in one-
half of the braid region by concentrated streamwise vortical
structures. A tendency of the braid vortices to wrap around
the vortex rings is visible as well.

Figure 12 shows the evolution of a flow if the azimuthal
perturbation amplitude is increased toe251%, while the axi-
symmetric disturbance amplitude is left unchanged at
e155%. This increase in the perturbation amplitude ratio is
expected to lead to an increased growth of the azimuthal
Kelvin–Helmholtz instability, and consequently to a more
rapid evolution of concentrated streamwise vortical struc-
tures. In addition, the ratio of the azimuthal and axial veloc-
ity jumps across the jet shear layer is reduced to
DUu/DUx53.0. In this way, the development of the cen-
trifugal instability, and with it the formation of the counter-

FIG. 10. Evolution of a swirling jet withDUu/DUx58.2 subject to an axisymmetric perturbation of amplitude 5%, and an azimuthal disturbance of amplitude
0.04%. Shown are side views at times 0.977, 1.187, and 1.343, along with an end view fort51.343. The formation of the primary and counter-rotating rings
proceeds similarly to the axisymmetric case displayed in Figs. 3–5. However, the azimuthal disturbance leads to the formation of additional concentrated
streamwise vortical structures in the narrow half of the braid region.
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rotating ring, is slowed down. As a result, at time 2.402 we
recognize concentrated primary vortex rings, connected by
strong streamwise braid vortices that now extend over the
entire length of the braid region. This early formation of
streamwise vortices has preempted any coherent directional
reversal of the vortex filament portions, so that counter-
rotating vortex rings have not formed in this flow. However,
the centrifugal instability still causes the braid vortices them-
selves to acquire a strong azimuthal component, thereby gen-
erating a staggered pattern, as can be seen att53.154. This
is confirmed by the three-dimensional isosurface plot, which
shows primary vortex rings connected by strong wavy
streamwise braid vortices.

This evolution of the flow fore250.01 is a typical result
of the above-mentioned competition between the various in-
stability mechanisms. Under these conditions, the growth of
the Kelvin–Helmholtz instability of the streamwise vorticity
is accelerated compared to that of the centrifugal instability,
so that nearly all of the braid vorticity between the primary
vortex rings becomes concentrated in streamwise vortices
before counter-rotating rings can form.

Figure 13 shows results forDUu/DUx53.0 and
e250.05, i.e., for an even higher azimuthal perturbation am-
plitude. As a result, the growth of the Kelvin–Helmholtz
instability in the azimuthal direction is further amplified, so
that now even the primary vortex rings develop only very
weakly. Already at t51.543, strong and slightly wavy
streamwise vortices have formed, and a weak tendency to-
ward the formation of the primary rings is visible. At
t53.105 we recognize that the wavy sections of the stream-
wise structures align themselves in such a way that, together,
they nearly form a ring-like structure at the locations where

FIG. 11. Isosurface plot of the vorticity magnitude for the flow shown in
Fig. 10 at t51.343. The dominant large-scale coherent vortical structures
have the form of primary and secondary vortex rings, with additional
streamwise vortices located in the narrow section of the braid region.

FIG. 12. Evolution of a swirling jet withDUu/DUx53 subject to an axi-
symmetric perturbation of amplitude 5%, and an azimuthal disturbance of
amplitude 1%. Shown are side views at times 2.402 and 3.154, along with a
vorticity magnitude isosurface plot for this later time. For these parameters,
the streamwise vortical structures develop more rapidly, and they prevent
the formation of the secondary counter-rotating vortex rings. The isosurface
plot shows the dominant large-scale structures to have the form of distorted
vortex rings, connected by wavy streamwise vortical structures.
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primary rings should develop, although they remain discon-
nected. Consequently, the three-dimensional isosurface plot
shows that for the present flow parameters the swirling jet is
dominated by wavy streamwise structures, while neither pri-
mary nor secondary counter-rotating vortex rings seem to
play an important role.

In the literature on swirling flows, it is common to quan-
tify the effect of swirl in terms of a swirl numberS ~e.g.,
Panda and McLaughlin13!, and to then characterize the be-
havior of the flow as a function of this parameter. The usual
definition ofS is

S5
Ġu

RĠx

, Ġu52pE
0

`

rUWr2 dr,

~6!

Ġx52pE
0

`

~rU21p!r dr ,

which gives the ratio of the axial flux of tangential momen-
tum Ġu to the product of the radiusR and the axial flux of

axial momentumĠx . For a vanishing jet shear layer thick-
ness, the above integration over our unperturbed initial ve-
locity profile can be carried out analytically. However, the
result depends on the selected reference frame. When com-
pared to the experimental situation of a swirling jet entering
a large body of fluid at rest, the proper computational refer-
ence frame is the one in which the jet fluid has unit velocity
in the streamwise direction, with the fluid outside the jet
being at rest. We then obtain

S5
Gc

2pR
. ~7!

However, it is clear from the above that this definition of the
swirl number is not very meaningful in characterizing the
effect of swirl in the present flow model, because it does not
take into account the presence of streamwise vorticity in the
axisymmetric shear layer, which is the cause for the centrifu-
gal instability. Consequently, the usual definition of the swirl

FIG. 13. Evolution of a swirling jet withDUu/DUx53 subject to an axisymmetric perturbation of amplitude 5%, and an azimuthal disturbance of amplitude
5%. Shown are side views at times 1.543 and 3.105, along with an end view and a vorticity magnitude isosurface plot for this later time. Here, the streamwise
vortical structures develop even more rapidly, thereby suppressing even the formation of strong primary vortex rings. Consequently, the isosurface plot shows
wavy streamwise vortices to dominate the large-scale features of the flow.
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number cannot be employed in a meaningful way to distin-
guish different flow regimes for the present flow model.

IV. SUMMARY AND CONCLUSIONS

The dynamical evolution of swirling jets is characterized
by the complex nonlinear interaction of several different
competing instability mechanisms. The axial, jet-like veloc-
ity profile gives rise to a Kelvin–Helmholtz instability of the
azimuthal vorticity component, thereby favoring the forma-
tion of like-signed vortex rings, as is well known from in-
vestigations of nonswirling jets. However, the additional azi-
muthal velocity component of the base flow introduces
streamwise vorticity as well, whose existence allows for fur-
ther instabilities to develop. First, there is the possibility for
a centrifugal instability to arise, which tends to promote the
evolution of counter-rotating vortex rings; i.e., rings of both
the same as well as of opposite sign compared to those found
in nonswirling jets. Second, if the streamwise vorticity is
mainly concentrated in a narrow shear layer surrounding the
jet axis, it can also be subject to a Kelvin–Helmholtz insta-
bility in the azimuthaldirection, which can lead to the evo-
lution of concentrated streamwise vortices.

In order to gain some insight into the nonlinear mecha-
nisms of interaction and competition between these various
potential instabilities, we performed nonlinear, inviscid,
three-dimensional vortex dynamics simulations for a simpli-
fied model of swirling jets. The nature of the model is such
that it allows for the easy identification of the various mecha-
nisms at work. By tracking the nonlinear evolution of vortex
lines, it enables us to investigate the effects of the centrifugal
instability, as well as of the Kelvin–Helmholtz instabilities
feeding on both the azimuthal and the streamwise vorticity,
onto processes of concentration, reorientation, and stretching
of vorticity. The drawback of the present model is that it
does not have easily adjustable parameters allowing for the
representation of the wide variety of experimentally gener-
ated, and often geometry-dependent, base flow profiles. In
particular, a study of the dynamics of very smooth,
Gaussian-like streamwise and azimuthal velocity profiles
will have to be based on the evolution of a more continuous
initial vorticity distribution, rather than the shear layer model
employed here. With this in mind, the current investigation
has to be seen as a first step, intended to provide qualitative
information on a variety of dynamical mechanisms and their
interactions, and to be followed by three-dimensional
Navier–Stokes or vortex particle simulations. Nevertheless,
the present model elucidates many of the key features ex-
pected to dominate the evolution of realistic swirling jets. In
particular, the formation of counter-rotating vortex rings,
whose strength increases with time as a result of the contin-
ued interaction between shear and centrifugal instabilities,
seems to represent a general phenomenon that one would
expect to observe qualitatively in a viscous flow as well. The
quantitative growth, however, and in particular the exact
form of the scaling law given by Eq.~7! would certainly be
a function of the prescribed initial streamwise and azimuthal
velocity profiles. In the same way, the exact perturbation
amplitudes resulting in more or less dominant streamwise
vortical structures will vary with these profiles as well. Even

for more general velocity profiles we do expect, however, to
observe different flow regimes dominated by different large-
scale vortical structures, along the lines described above.

A main goal lies in the investigation of the mechanisms
by which the introduction of swirl affects the dynamics ob-
served earlier for nonswirling jets.28,29Conversely, the ques-
tion arises as to how the purely swirling flow examined by
Caflisch, Li, and Shelley21 is modified by the addition of an
axial velocity component. We find that the main effect of the
added streamwise velocity lies in the breaking of the sym-
metry of the pure swirling flow. As a result, the counter-
rotating rings observed in the purely swirling flow are no
longer of equal strength, as one of them is amplified, and the
other one weakened, by the Kelvin–Helmholtz instability of
the axial flow. On the other hand, the introduction of swirl
drastically alters the dynamics of nonswirling jets, as it re-
sults in the formation of counter-rotating vortex rings, whose
circulations, in the absence of viscous effects, can grow in
time without bounds. These rings promote a pinch-off
mechanism leading to a dramatic decrease in the local jet
diameter.

While the above mechanisms can be observed in axi-
symmetric swirling jets, an additional azimuthal perturbation
leads to the formation of concentrated streamwise vortices as
a result of a Kelvin–Helmholtz instability feeding on the
streamwise jet shear layer vorticity. In contrast to nonswirl-
ing jets, the streamwise vortices in swirling jets are all of the
same sign. The nature of the large-scale vortical structures
dominating the long term dynamics of the jet depends
strongly on the ratio of the initial perturbation amplitudes in
the azimuthal and streamwise directions. If this ratio is small,
the centrifugal instability has enough time to form counter-
rotating vortex rings, before concentrated streamwise vorti-
ces can emerge in the braid regions between them. For a
somewhat larger perturbation amplitude ratio, streamwise
vortices grow more rapidly in the braid region between the
like-signed primary vortex rings. In this way, they suppress
the growth of the counter-rotating rings. However, the cen-
trifugal effects lead to a partial reorientation of the braid
vortices in the azimuthal direction. Finally, for even larger
initial azimuthal perturbation amplitudes, the streamwise
vortices grow fast enough to suppress the growth of even the
primary corotating vortex rings. In this case, the long term
dynamics of the swirling jet is dominated by wavy like-
signed axial vortical structures.

The above description is predominantly qualitative, and
a more detailed quantitative investigation of these effects is
clearly necessary. In particular, it will be of interest to study
the competition between the different instability mechanisms
as a function of the detailed shape of the base flow profile.
Furthermore, the effect of helical rather than axisymmetric
perturbations, and their interaction with azimuthal distur-
bances, needs to be addressed. Eventually, investigations of
simplified swirling jet models such as the present one are
expected to provide some guidance for carrying out and in-
terpreting three-dimensional spatially growing, fully viscous
simulations of swirling jets. It is hoped that an investigation
along those lines might also help to shed some light onto the
various forms of vortex breakdown observed in swirling jets.
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