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This paper presents detailed computational results for the dispersion of heavy particles in 
transitional mixing layers forced at both the fundamental and subharmonic frequencies. The 
results confirm earlier observations of particle streaks forming in the braid region between 
successive vortices. A scaling argument based on the idealization of the spatially periodic mixing 
layer as a row of point vortices shows that the formation of these concentrated particle streaks 
proceeds with optimum efficiency for St- 1. It thereby provides a quantitative basis for 
experimental and numerical observations of preferential particle dispersion at Stokes numbers of 
order unity. Both the model and full simulation furthermore exhibit oscillatory particle motion, 
as well as the formation of two bands of high particle concentrations, for larger Stokes numbers. 
The particle dispersion as a function of time and the Stokes number is quantified by means of 
two different integral scales. These show that the number of dispersed particles does not reach 
a maximum for intermediate Stokes number. However, when the distance is weighted, optimum 
dispersion is observed for Stokes numbers around unity. By tracing the dispersed particles 
backwards in time, they are found lo originate in inclined, narrow bands that initially stretch 
from the braid region into the seeded free stream. This suggests that particle dispersion can be 
optimized by phase coupling the injection device with the forcing signal for the continuous 
phase. In the presence of a subharmonic perturbation, enhanced particle dispersion is observed 
as a result of the motion of the vortices, whereby a larger part of the flow field is swept out. 

1. INTRODUCTION 

The transport of small solid particles or droplets rep- 
resents a characteristic feature of numerous fluid flows in 
both nature as well as technical applications. The latter 
category is exemplified by condensation phenomena in the 
final stages of large turbines and by spray combustion, 
which are issues that recently have been the focus of much 
attention. On the other hand, the convective transport and 
settling of a particulate or droplet phase in the atmosphere, 
or in lakes, rivers, and the oceans is of importance for 
understanding natural climatic processes and for assessing 
the impact of human activities on the environment. 

Much of the established knowledge base on the disper- 
sion of particles in fluid flows is due to classical analytical 
considerations. In recent years, the rapid advances in both 
experimental and computational capabilities have allowed 
us to gain deeper insight into the governing mechanisms 
and to arrive at a more detailed understanding of the im- 
portant phenomena. However, for problems involving 
many particles even today’s supercomputers do not yet 
permit the explicit computation of the detailed mass, mo- 
mentum, and energy exchanges between the two phases. 
Consequently, most numerical studies so far have focused 
on systems in which the mass and volume fractions of the 
particulate phase are small enough so that their effect on 
the fluid phase can safely be neglected. However, some 
progress has been made recently in taking into account the 
effect of the dispersed phase onto the continuous phase by 
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means of a force term in the Navier-Stokes equations, cf. 
Squires and Eaton.’ For dilute suspensions, computational 
investigations have provided considerable insight into the 
mechanisms that govern the evolution of the particle con- 
centration field. A most interesting ljnding was reported by 
Crowe, Gore, and Trot&t,” who analyzed the influence of 
the large scale structures in turbulent free shear flows on 
the dispersion of the particular phase. Their two- 
dimensional vortex dynamics simulations use a low-order 
time integration scheme to create numerical fluctuations 
that are supposed to mimic a turbulent velocity field. These 
calculations demonstrate the tendency of very small parti- 
cles to closely follow the fluid elements, as the dominant 
Stokes drag force dictates their dynamics. Very heavy par- 
ticles, on the other hand, possess large inertia, and their 
trajectories hardly change under the influence of the forces 
exerted upon them by the fluid. However, for intermediate 
particle sizes, the authors observe a fairly strong disper- 
sion, which can even exceed that of the fluid particles. Here 
the quantitative comparison between fluid element and 
particle dispersion is based on a definition of the dispersion 
function which depends on the initial particle location, so 
that it is somewhat difficult to extract information on the 
global dispersion of particles. However, the computations 
clearly identify as the driving mechanism for this strong 
dispersion the large scale coherent vertical structures,3s4 
which dominate the turbulent mixing layer and eject par- 
ticles into the free stream. This mechanism is most effective 
when the aerodynamic response time of the particles is of 
the same magnitude as the characteristic flow time associ- 
ated with the coherent structures. Chung and Troutt’ dem- 
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onstrated the same effect in axisymmetric jets, while Chein 
and Chung6 observed that vortex pairing events result in 
even higher lateral dispersion rates. A recent review of 
these and other results is given by Crowe, Chung, and 
Troutt.7 

The optimal dispersion of intermediate particle sizes is 
confirmed by the detailed experimental investigations of 
LBzaro and Lasheras,‘-” which provide a wealth of infor- 
mation regarding natural and forced plane turbulent mix- 
ing layers. Their measurements clearly demonstrate the 
selective dispersion of particles of different sizes. Further- 
more, both experiments and scaling arguments indicate 
that the maximum droplet size affected by the layer grows 
as the square root of the streamwise distance. For unforced 
flows (Lizaro and Lasheras ), the authors observe that all 
particle sizes disperse at a smaller rate than the fluid mo- 
mentum, whereas if they apply forcing at the first subhar- 
monic of the most unstable frequency (Lazaro and 
Lasheras”), the particle dispersion can exceed that of the 
streamwise momentum of the carrier gas. These authors 
quantify the particle dispersion in terms of a concentration 
level thickness. By scaling the flow-field coordinates appro- 
priately, they are able to show, for the unforced case, the 
existence of a universal dispersion law that is particle size 
independent. For the forced flow, such a general relation- 
ship does not exist. Kiger and Lasheras” observe that, in 
the presence of a vortex pairing event, the concentration 
and particle size distribution profiles are considerably more 
homogeneous across the mixing layer than for fundamental 
wave forcing only. 

Both the numerical simulations and the flow visualiza- 
tion experiments mentioned above demonstrate the impor- 
tance of large scale particle streaks, which were also ob- 
served in the experiments of Longmire and Eaton” as well 
as in the numerical and experimental investigation of Wen 
et al. I3 These streaks form in the braid region between con- 
secutive vortices and appear to dominate the cross-stream 
dispersion. 

Further insight into the dynamics of heavy particles in 
a plane mixing layer can be gained by numerically analyz- 
ing the motion of individual particles in idealized represen- 
tations of the flow field. This route was taken by Ga%n- 
Calvo and Lasheras, l4 who applied a nonlinear dynamical 
systems approach in studying the behavior of particles in a 
row of Stuart vortices’5 under gravity. The authors observe 
that if gravity is of moderate importance, the particles can 
stay suspended above the mixing layer. In this case, the 
particle trajectories can be periodic, quasiperiodic, or cha- 
otic. If gravity is more dominant, the particles sediment. 
The above investigation has been extended by Tio et al., l6 
who find suspension of heavy particles both above and 
below the mixing layer vortices. A more detailed under- 
standing of the relevant mechanisms can be obtained from 
the perturbation analyses of Tio et al. l7 and Tio and 
Lasheras. ‘* 

The present investigation aims at further elucidating 
the particle dispersion mechanisms in free-shear layers by 
means of detailed numerical simulations in the dilute re- 
gime. By dealing with nonturbulent flows, we will be able 

to study the relevant mechanisms for clean flow structures, 
without the superimposed fluctuations due to turbulence. 
This approach should be helpful in the development of a 
structure-based particle dispersion model. In particular, we 
will investigate the formation and evolution of the particle 
streaks, in .order to assess their overall importance. This 
will aid us in putting forward a quantitative argument for 
the optimum dispersion of intermediate size particles, 
based on an idealization of the two-dimensional mixing 
layer and in particular, the region near the free-stagnation 
points. We will furthermore focus on the role of subhar- 
monic perturbations for the dispersion of particles. In or- 
der to quantify the global dispersion efficiency of the var- 
ious flow fields, we will compare integral length scales that 
reflect both the number of dispersed particles as well as the 
distance over which they are dispersed. 

Similar to previous authors, we assume the dilute sus- 
pension limit, i.e., we study the dynamics of the particles 
under the influence of the fluid flow, without considering 
any feedback to the flow. The governing equations are 
stated in Sec. II. Section III presents results for mixing 
layers perturbed by a fundamental wave only, as well as by 
an additional subharmonic wave. Our findings will be sum- 
marized and some conclusions will be drawn in Sec. IV. 
The present study is the first part of a more comprehensive 
investigation, with Part II (Raju and Meiburglg) focusing 
on the effect of gravity and its nonlinear interaction with 
the mechanisms described here. 

II. NUMERICAL APPROACH 

A. Simulation of flow field 

Our goal is to study the spatio-temporal evolution of 
the particle concentration field in response to the forcing 
provided by the large scale structures of the growing shear 
layer. In this investigation, we limit ourselves to the dilute 
regime of particle concentration, in which the evolution of 
the continuous fluid phase is independent of the particle 
concentration field. Consequently, we are able to calculate 
the fluid velocities independently of the particle motion. 

Since the generation, growth, and merging of the large- 
scale mixing layer vortices is dominated by inviscid mech- 
anisms, we employ a two-dimensional vortex dynamics 
technique for the simulation of Euler’s equations. These 
methods, as reviewed by Leonard,20 are well established 
and offer an efficient and conceptually straightforward way 
to capture all of the large-scale features of evolving free- 
shear flows. A brief description of the particular variant 
employed in this study is given in the following. The rota- 
tional portion of the fluid is discretized into a row of N 
vortex blobs of radius u and circulation Ii (i= 1,N). The 
basic assumption that the flow field is inviscid then allows 
one to make use of the theorems of Kelvin and Helmholtz 
to advance the blobs as material elements according to the 
Biot-Savart law,“’ while maintaining their circulation Ii as 
being fixed. We consider the case of a streamwise periodic, 
temporally evolving mixing layer. This model captures all 
of the dominant features of a mixing layer, including the 
instability of the vorticity layer, the formation and subse- 

Phys. Fluids, Vol. 6, No. 3, March 1994 J. E. Martin and E. Meiburg 1117 

Downloaded 22 May 2004 to 128.111.70.70. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



quent pairing of the large scale spanwise vortices and the 
inherent strain field. Furthermore, the temporally evolving 
case is numerically more efficient and it avoids the problem 
of assigning inflow and outflow boundary conditions. We 
obtain a smooth vorticity field by employing an invariant 
vorticity distribution of the form 

W(T) =J?i/(Td)eXp( -3/C?) 
in which r is the radial distance from the blob center. For 
the calculation of the velocity field, the Biot-Savart law 
requires integration over the entire vorticity field. There- 
fore, the far-field effect of the streamwise periodic images 
of the blobs must also be taken into account. This can be 
evaluated analytically by treating the images of the vortex 
blobs as point vortices,22 so that the overall velocities in the 
streamwise and cross-stream directions, respectively, are 
given by 

N 

u(&Y) = jz, &‘T l?iiXp -$ I i ) 
ri shh[2r(y-yi)/L] 

-%osh[24y--y;)/l] -cos[27r(x--xi)/,51 ’ 1 
1 x--x! 

u(XSr)= zgl -GF l?ieXp -$ 
. 1 ( 1 

(1) 

ri Sifl[2T(X-Xi)/L] 

‘TZ cosh[2r(y--yi)/L] -cos[2p(x--xi)/L] 1 
in which (Xiai) represents the time dependent position of 
each blob and L is the streamwise dimension of the peri- 
odic control volume. 

We advance the flow field in time by calculating the 
velocity induced at the center of each blob u(xi,t> and by 
advancing the blobs’ positions Xi, according to the equa- 
tion 

dxj 
~=ubj,th (2) 

where summation in Eq. ( 1) now takes place for all i not 
equal to j. A fourth-order accurate Runge-Kutta scheme is 
used for the time integration of the blob positions. We take 
the velocity difference between the two streams AU as our 
characteristic velocity. The vorticity thickness 6 of the 
shear layer serves as the characteristic length scale result- 
ing in an initial blob core radius of P- 1’2. To determine the 
optimal spatial discretization, the number of blobs was in- 
creased until no further change in the maximum vorticity 
occurred during the evolution of the flow. Typically, this 
resulted in a discretization of 59 blobs per basic wave- 
length. 

In analogy to forcing the flow in an experiment, we 
initially impose a sinusoidal modification to the strength of 
the vortex blobs. This perturbation induces the instability 
and roll-up of the shear layer. It is given by 

ri=rfl( i +0.05 sin cry), 
where l?n is the vortex blob strength corresponding to the 
unperturbed flow. The wave number a of the fundamental 
perturbation in all cases is chosen based on the inviscid 
stability analysis of Michalke23 (a=2?r/L=0.8892). l&r 
cases involving pairing, an additional equal amplitude, sub- 
harmonic perturbation is imposed. The subharmonic per- 
turbation is of the same amplitude as the basic wave, while 
its phase is chosen such that the maximum occurs halfway 
between the evolving vortices. In this way, the subhar- 
monic wave will induce a vortex pairing process. 

B. Particle equation 

We consider particles whose density pP is much greater 
than that of the surrounding fluid. The particles, whose 
effect upon each other is neglected due to the assumption 
of a dilute suspension, are assumed to remain spherical 
throughout the evolution of the flow. For these conditions, 
the equation governing the velocity vP( t) of the particle in 
a nonuniform flow field u (x,t> was derived by Maxey and 
RileyZ4 

(d/d7) [vJd -u(w) 1 x,,(t) 1 
bv(t-Tvpfl”2 dr. 

In the above equation, we neglect the Faxen correction 
terms, which become significant only in the event of large 
curvature in the velocity profile. Here pf and p are the 
density and dynamical viscosity of the surrounding fluid, 
while dp, V, and x,(t) represent the diameter, volume, and 
position of the particle, respectively. The different terms of 
this equation represent in order, the force needed to accel- 
erate the particle, viscous Stokes drag, gravity, a pressure 
gradient force accounting for the acceleration of the dis- 

placed fluid and the virtual mass and Basset history terms. 
The order-of-magnitude estimates presented by Lazaro 

and Lasheras’ indicate that, for small heavy particles in the 
dilute regime, drag, and inertia effects dominate over those 
of the pressure field, the virtual mass, and the particle’s 
history. Consequently, within the present investigation, we 
retain only the terms describing inertia, drag, and gravity. 
In dimensionless form, the governing equation for the ev- 
olution of the particle’s velocity then becomes 
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dv, 1 x=st [u(w) Ix=p --v,(t) 1-G %3, 

where 

,t=$ - y, Fr=g, 
Gravity has the magnitude g and acts in the direction es, 
which can be parallel or perpendicular to the direction of 
the free stream. Within Part I of the present investigation, 
we do not consider the effect of gravity, i.e., Fr is infinitely 
large. Part II will present a detailed discussion of the effect 
of gravity. The Stokes number St expresses the relative 
importance of particle inertia to viscous drag. It can also be 
interpreted as the ratio of the particle’s aerodynamic re- 
sponse time to the characteristic flow time.2 Fr denotes the 
Froude number and indicates the relative importance of 
inertial forces and gravity. It should be mentioned that by 
applying Stokes’s drag law, we tacitly assume that the par- 
ticle Reynolds number 

Re,=p,l~--v,ld~~ 
is small. Equation (3) together with 

then govern the particle motion. We integrate in time by 
using the same fourth-order Runge-Kutta scheme as for 
the continuous phase. For particles of small Stokes num- 
ber, the time step is restricted so that At/St<ZO to avoid 
numerical instabilities in the calculation of the particle mo- 
tion. In order to establish initial conditions for the particle 
velocity, we assume the particle to be in equilibrium with 
the fluid. Consequently, we assign the particle a velocity 
equal to the fluid velocity at the particle’s position. 

C. Interpolation scheme 

Central to the particle acceleration equation (3) is the 
evaluation of the fluid velocity at the particle position, i.e., 
u[x=x,(t>,t]. For each particle at each time step, the di- 
rect summation of Eq. ( 1) over all vortex blobs must then 
be calculated. However, since it is necessary to include as 
many as lo6 particles in a calculation to obtain accurate 
statistics, this direct summation becomes prohibitively ex- 
pensive. A more economical approach is to use Pq. ( 1) to 
evaluate the fluid velocities on a fixed grid of points. The 
fluid velocities at the particle positions can then be ob- 
tained by interpolating the grid values. Furthermore, if 
deemed necessary to improve particle statistics, additional 
simulations for the same flow field can be then performed 
without the costly reevaluation of ( 1) . 

Different interpolation methods and their accuracies 
have been discussed in detail by Balachandar and Maxey”’ 
in the context of spectral simulations of turbulence. For 
heavy particles undergoing Stokes drag, Browand, Nassef, 
and Spalart26 employ interpolation methods in a turbulent 
boundary layer, as do Squires and Eaton’ in seeded isotro- 
pic turbulence. In general, the use of linear interpolation, 

although computationally fast, is inferior to other interpo- 
lation methods for use in Auid or particle tracking. La- 
grangian interpolation methods are superior in accuracy 
over other methods while suffering from very little addi- 
tional computational effort2’ 

In this study, we will use a fourth-order, two- 
dimensional Lagrangian interpolation scheme. Fluid veloc- 
ities on the 4X4 lattice of grid locations surrounding the 
particle are used in the evaluation of the velocity at the 
particle location. The interpolated particle velocity ur is 
then given by 

3 3 

uzb,.Y,t) = c c, WiYYj J> Lib) Lj(Y), 
i=O j=O 

where the xi and yj are the surrounding grid points. The 
basis function Li is given by 

3 w-?ic) 
-b(x)= kTI, G I- 

k+i 

and similarly for Lib). Thus, in each direction, uz is a 
polynomial of degree three which coincides identically 
with the value of the fluid velocity at each lattice point. As 
the maximum spacing h between grid points goes to zero, 
the error of this approximation decreases as 0( h4> .27 

To determine the error incurred with the use of inter- 
polation, we run one calculation in which the particle ve- 
locities are calculated by interpolation and compare with a 
calculation with identical initial conditions, where particle 
velocities are calculated explicitly. We compute the maxi- 
mum difference between the two locations calculated for 
each particle at time t=21.0, by which time the shear layer 
perturbation has grown well into the nonlinear regime. 
Figure 1 shows the results for Stokes numbers of lo2 and 
1.0 using both Lagrangian and linear interpolation. We 
recognize the fourth-order accuracy of the Lagrangian 
scheme, whereas the linear scheme is only second-order 
accurate in space. Furthermore, it is obvious that the error 
can be kept quite small even with a moderate number of 
grid points. We hence conclude that Lagrangian interpo- 
lation can provide significant savings with a minimal loss 
of accuracy. For each calculation, we use an interpolation 
grid with h~0.1414 resulting in a maximum error in par- 
ticle position at time t=21.0 of less than 10m2, 

Ill. RESULTS 

A. Physical effects governing particle dispersion in 
plane mixing layers without gravity 

Here we consider the evolution of the particle field in 
the absence of gravity. The mixing layer is perturbed by a 
fundamental wave only. We initially seed the upper stream 
of the mixing layer by randomly distributing 100 000 par- 
ticles over the streamwise wavelength between y=O and 
y=4. Once the initial conditions are set, the sole parameter 
governing the particles’ dynamics is the Stokes number. In 
the following, we will discuss a series of simulations per- 
formed for Stokes numbers between 10m2 and 102. 
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FIG. 1. Maximum error in particle position incurred by interpolating 
fluid velocities at particle positions, t=21.0: (a) St= lo*, (b) St 
= LO.---: Lagrangian interpolation; - - -: linear interpolation. 

Figure 2 shows the flow field at times t=l8 for a 
Stokes number lOA simulation. The locations for 4200 of 
the 100 000 particles are plotted, along with the vorticity 
contours at the corresponding times, which illustrate the 

(4 X dY)/C- (b) 

5! 
-7.07 0 7.07 

X dYl/C- 

FIG. 2. Vorticity contours with particle positions superimposed for 
St= IO-’ at time t= 18.0. Two streamwise waveIengths are displayed. On 
the right is the corresponding streamwise-averaged, particle concentration 
profile. Particle inertia is small, or alternatively viscous drag large, forcing 
particles to closely follow the motion of the fluid throughout the evolution 
of the flow. 

fluid phase evolution. The contour levels are at 10% incre- 
ments of the maximum vorticity occurring during the ev- 
olution of the flow up to time 30. To the right of each 
particle location plot, we include the corresponding 
streamwise-averaged particle concentration profile, c(y). 
We will later use these profiles to quantify the dispersion 
rates for the different particle Stokes numbers. To attain 
the particle concentration c(y), we divide the cross-stream 
distance into bins (height Ay=O.OS) which extend over 
the streamwise wavelength L. We then count particles re- 
siding within each bin to give us the value c(y) over the 
distance Ay. We nondimensionalize c(y) by a reference 
level c, , where c, is the uniform particle concentration in 
the free stream seeded with particles. During the initial 
growth of the Kelvin-Helmholtz instability, the averaged 
particle concentration profile c(y) maintains a steep gradi- 
ent across the interface. For this small Stokes number, 
viscous drag can be expected to dominate over inertia ef- 
fects. Consequently, the particle motion mirrors that of 
material fluid elements, and particles are convected around 
the emerging vortices, which are connected by braid re- 

FIG. 3. Vorticity contours with particle positions superimposed for St= 1.0 at times (a) t= 18.0 and (b) t~30.0. Two streamwise wavelengths are 
displayed. On the right is the corresponding streamwise-averaged particle concentration profile. Particles for St 0( 1) are centrifuged from the large-scale 
vortices (Crowe et al’). By time 18.0, streaks of particles cross far into the unseeded stream. Sharp spikes in the particle concentration profile indicate 
the particles’ strong preferential residence along the stagnation streamline of the flow field. 
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X 

FIG. 4. Streamlines, with particle positions superimposed, for St= 1.0 at 
time t=lS.O. The stagnation streamline approximately forms a lower 
border for the particle streaks at this time. 

gions that become depleted of vorticity. By time of t= 18, 
the flow field is dominated by the vortices. The particles 
now form a clear spiral within each vortex, and we observe 
the continuous growth of a plateau region in the concen- 
tration profile. 

For simulations with Stokes numbers between 10e2 
and lo-‘, the overall patterns of particle distribution re- 
main similar to those described above for the St= lo-’ 
case. However, as we approach Stokes numbers of order 
unity, qualitative changes occur. Figure 3 shows our re- 
sults for the case of St= 1.0 and t= 18. Most notable is the 
absence of particles from the regions of the flowfield occu- 
pied by the large scale vortices. This is due to the centrif- 
ugal effect of the vortices observed by Crowe, Gore, and 
Trout? as well as others numerically and by Lazaro and 
Lashera&” experimentally. It is also reflected in the av- 
eraged concentration profile, in which the plateau region is 
not as well defined as before. This profile is indicative of the 
increased lateral dispersion of particles which takes place 
for St=l.O. It contains many of the characteristics of the 
polydisperse particle concentration profiles of the experi- 
ments by Lazaro and Lasheras,” cf. their Fig. 8 (a). Our 
computed particle concentration is nearly constant in the 
seeded far field. However, at a cross-stream location just 
above the vortices, the particle concentration reaches a 
value in excess of the reference level. A similar trend is 
seen in the overall particle concentration results of the Laz- 
aro and Lasheras experiment. There, as one moves from 
the core of the spray toward the unseeded stream, a region 
exists where particle concentration exceeds the seeded, free 
stream value. A well-defined band of particles emerging 
from the braid region surrounds the lower perimeter of 
each vortex. By plotting the instantaneous streamlines 
along with the particle locations (Fig. 4), we recognize 
that the evolving streak is approximately aligned with the 
separating streamline emerging from the free-stagnation 
point. It hence appears that the deformation field associ- 
ated with the local neighborhood of the stagnation point is 
important for the formation of the particle streaks, a point 

-3.5; 
-7.07 0 7.07 

X 

FIG. 5. Overall particle concentration, as indicated by grey-scale shading 
for St=l.O at time t=18. Maximum particle accumulation occurs in a 
thin band extending through the stagnation point. The stretching of this 
band is responsible for the formation of the particle streaks and enhances 
particle dispersion at St of 0( 1). 

that will be discussed in more detail below. The lower spike 
in the concentration profile is due to the band of particles 
below the vortices. Although the profile gives only an av- 
erage over the streamwise wavelength, it indicates regions 
in the flow field of strong preferential particle location. By 
time t=30, the band of particles surrounding the vortices 
forms a closed loop. Near the free stagnation points, the 
particle bands tend to develop a slight waviness, which 
resembles the initial stages of lobe formation observed in 
the calculations of Rom-Kedar et al. ” and Meiburg et al. 29 
for passive particles in time-periodic flow fields. This indi- 
cates the potentially important role played by the unstable 
manifold even for the mixing of heavy particles. 

Lazaro and Lasheras” observe similar coherent 
tongue-shaped structures of the particle concentration 
field, which are located in the braid regions. Although their 
flow field is polydisperse, these streaks are composed 
mainly of larger droplets which correspond to the particles 
of increased Stokes number considered in the present 
study. The areas near the vortex centers, on the other 
hand, contain only droplets of very small diameter which 
correspond to the particles of very small Stokes number 
discussed above. Streaks of particles in the braid region 
were furthermore observed by Longmire and Eaton,” as 
well as by Wen et al. l3 The measurements by Lazaro and 
Lasheras furthermore indicate an overshoot in the concen- 
tration profile near the edge of the core, in a fashion similar 
to the spikes in our computational profiles discussed above. 

In order to obtain more detailed information about the 
accumulation of particles in certain regions, we examine 
the two-dimensional particle concentration field more 
closely. For this purpose, we divide our control volume 
into 114 by 112 rectangular bins and count the particles 
within each of these. In Fig. 5 we show the overall particle 
concentration at time t= 18 in the St = 1.0 simulation. The 
particle concentration is indicated by a grey-scale shading 
with black denoting an area of maximum particle concen- 
tration. Figure 5 exhibits heavy particle accumulation in a 
thin band extending through the stagnation point of the 
flow. This band is aligned with the extensional direction of 
the strain field, and the particles it contains are accelerated 
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FIG. 6. Backwards (in time) evolution of those particles which ultimately compose tongue-like particle streaks. These are superimposed upon the 
streamlines of the continuous phase at the corresponding times of (a) t~18.0, (b) i= 12.0, -(c) t=&O, and (d) r=O.O. 

away from  the free-stagnation point in this direction. In 
this way, large numbers of particles are propelled into the 
lower stream . The accumulation of the particles in this 
band, and its subsequent stretching into the lower stream , 
is the main mechanism responsible for the formation of the 
particle streaks. In Sec. III A  3, we will tiresent a scaling 
argument for why this process has optimum efficiency for 
St N 1, i.e., why particles of Stokes number O( 1) experi- 
ence maximum dispersion. 

device with the forcing signal for the continuous fluid 
phase. This result corresponds to the findings of Wang3’ 
for passive fluid particles. 

The above information confirms the observations of 
previous investigators about the crucial role played by the 
particle streaks for enhancing lateral dispersion. Since 
those particles that accumulate in the bands will be pref- 
erentially ejected into the opposite stream , information on 
where these particles originated will be helpful for design- 
ing optim ized injection strategies for maximum particle 
dispersion. In our numerical simulations, this information 
is of course easily accessible. In Fig. 6(a), we plot only 
those particles that have crossed the m ixing layer center- 
line by time t=18. The instantaneous stream lines of the 
flow at the corresponding time are superimposed. Figures 
6(b)-6(d) then show the locations of these particles at 
earlier times. We recognize that they originate in fairly 
thick and slightly curved bands that emanate from  the 
free-stagnation points and extend into the upper stream . It 
would then appear possible to enhance particle dispersion 
in an experiment by phase coupling the particle injection 

In Fig. 7 (a), we display the particle location plot and 
corresponding streamwise-averaged particle concentration 
profile for the intermediate time of t= 18 in a St = 10 sim - 
ulation. As pointed out by Crowe, Gore, and Troutt,’ in- 
creasing the Stokes number corresponds to an increase in 
the particle response time. By increasing the Stokes num- 
ber, the large-scale vortices have comparatively less time to 
influence the motion of the particles. The absence of par- 
ticles from  the area near the vortex centers at time t= 18 
thus becomes less pronounced in the St= 10 case, as the 
influence of the vortices on the particles is reduced. How- 
ever, a streak of particles still protrudes from  between suc- 
cessive vortices and extends well below the vortices. The 
particle concentration profile contains a clear spike above 
the vortices, indicating an accumulation of particles in this 
region. The cause of this spike becomes obvious from  a plot 
of the overall particle concentration Fig. 7 (b)]. A  narrow 
region of increased particle accumulation extends through 
the braid region of the flow. The inclination of this line 
with respect to the centerline of the m ixing layer is slightly 
less than for the St = 1.0 case. Again, the region of maxi- 
mum particle concentration begins above the periphery of 
a vortex, extends through the braid region, and finally, 
forms the tail of a streak of particles reaching below the 
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FIG. 7. (a) Vorticity contours with particle positions superimposed for 
St= 10.0, r= 18.0. On the right is the corresponding streamwise-averaged, 
particle concentration profile. As in the St=l.O simulation, a particle 
streak (of somewhat lesser extent than for St= 1.0) protrudes from the 
braid region. The preferential residence of particles in isolated regions of 
the flow field is indicated by the large spike in the particle concentration 
profile. (b) The overall particle concentration indicates a band of higher 
particle accumulation extending through the braid region. 

upstream successive vortex. The streak is much less curved 
at its tip. Eventually, however, by a time of t=30, the 
streak again forms a closed loop. 

We now consider the evolution of particles for the larg- 
est Stokes number of lo2 (Fig. 8). For this large Stokes 
number, the effect of the initial conditions for the particle 
velocities will be felt much longer than before. Depending 
on how the particles are seeded in an experiment, our ini- 
tial conditions, which set the particle velocities equal to the 
tluid velocities, may or may not mimic the experimental 
situation. The influence of the vortices is now markedly 
reduced. Particles pass nearly directly through the core of 
the large-scale vortices. Streaks of particles protruding into 
the unseeded stream exist only in rudimentary form. Again 
a band of accumulated particles extends through the braid 
region of the flow, leading to a large overshoot in the par- 
ticle concentration profile. The inclination of the band, in 
relation to the centerline of the shear layer, is further re- 
duced from its value observed at smaller Stokes numbers. 

In order to investigate the long-time effect of the initial 
conditions for the particle velocities, we carried out a set of 
simulations for St= 10’ in which we varied these initial 
conditions. Figure 9(a) shows the resulting distribution of 
particles when we set the initial particle velocity equal to 
the average velocity of the free streams, i.e., to zero in our 
moving reference frame. Assigning the particles initial ve- 
locities equal to the unperturbed velocity of the upper free 
stream markedly changes the resulting distribution of par- 

-3.5; 
-7.07 0 7.07 

W 
X 

FIG. 8. (a) Vorticity contours with particle positions superimposed for 
St= 100.0, t=lS.O. On the right is the corresponding streamwise- 
averaged, particle concentration profile. Influence of the vortices on the 
particles is markedly reduced for high St. The particle streaks observed in 
the St= 1.0 and St= 10.0 simulations are less evident. However, accumu- 
lation of particles is again indicated by the spike in the particle concen- 
tration profile and the thin band of higher particle concentration in the 
overall particle concentration field of (b). 

titles [Fig. 9(b)], which now appears to be largely unaf- 
fected by the presence of the vortices. These results are of 
interest for comparing different methods for seeding the 
flow with particles of large Stokes number. For instance, by 
adjusting the direction of particle seeding in the experimen- 
tal facility, either into the upstream or downstream direc- 
tion, different initial particle velocities can be produced and 
different resulting particle distributions can be realized. 
This leads to the next logical step in the present investiga- 
tion, namely the quantification of the particle dispersion 
for the above range of Stokes numbers. 

1. Quantification of particle dispersion 

Investigations have quantified the particle dispersion 
mechanisms using different approaches. Batchelor3’ ana- 
lyzed passive fluid particles in a self-developing turbulent 
shear flow. A particle dispersion function D,(t) was used, 
where 

[&(t) 12= [-ut) -m> I2 
and X(t) was the particle displacement. The dispersion 
function for a particle varied in time, proportional to the 
thickness of the shear layer at the mean position of the 
particle. Chein and Chung6232 in their numerical studies 
also used D,(t) . They investigated whether a similar inter- 
relation exists in the case of a mixing layer containing the 
large-scale vortices. The dispersion function was propor- 
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FIG. 9. Resulting variation in final particle location for different initial 
particle velocities in the moving reference frame, St=lO’, t=30.0: (a) 
u,(t=O) =O.O. As in Fig. 8, particles again accumulate in a band extend- 
ing through the braid region. However, the band requires more time to 
form and has greater inclination than in Fig. 8. (b) v,(t=O) equal to the 
free-stream velocity. Influence of the mixing layer upon the particles is 
markedly reduced. By changing the initial velocity of the seeded particles, 
the resulting distribution of particles can be varied significantly for very 
large St. 

tional to time for high Stokes numbers. The proportional- 
ity in time is similar to the expression given by Hinze33 for 
dispersion in a homogeneous turbulent flow, where the 
same dispersion function is equal to the product of time 
and particle turbulence intensity. Chein and Chung thus 
determined that particles of large Stokes number respond 
to the large-scale vortices as if they were simply homoge- 
neous turbulence. Using this measure of dispersion, they 
furthermore observed the dispersion of particles at inter- 
mediate Stokes number exceeding that of the surrounding 
fluid. In their investigation of axisymmetric jets, Chung 
and Trout? considered a similar mean-square dispersion 
function at different streamwise slices. The mean initial 
particle position was subtracted from the radial position of 
particles crossing the streamwise locations that were con- 
sidered. They weighted this with the number of particles 
crossing radial subdivisions of the flow field. Based on this 
measurement, increased particle dispersion for intermedi- 
ate Stokes number at different axial positions was demon- 
strated. 

In each of the above studies, quantification of particle 
dispersion was based upon marker particles initially re- 
leased from certain point sources. An alternative approach 
is to consider the instantaneous distribution of large num- 
bers of particles throughout the flow field. Particle concen- 
tration can be treated as a near continuum quantity and 
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FIG. 10. Evolution of the 0.9-0.1 particle concentration level thickness 
for various St. As found in the investigation of Lazaro and Lasheras,” IjL. 
shows the dispersion of intermediate size particles eventually exceeding 
the dispersion of the surrounding continuous phase. Particles with St of 
O( 1) ultimately achieve maximum dispersion according to this measure. 

information on the dispersion of particles throughout the 
flow field obtained. In their experimental investigation of 
particle dispersion in a forced turbulent mixing layer, LBz- 
aro and Lasheras” use a 0.9-0.1 level thickness to define 
the lateral spread of particles. The 0.9-O. 1 level thickness is 
the difference between the cross-stream locations at which 
the particle concentration reaches 90% and 10% of the 
reference value, respectively, 

sL=y[c(y)/c, =0.9] -y[c(y>/c, =O.l]. 
Liizaro and Lasheras examine the streamwise variation of 
SL for various particle size diameters. Using this measure, 
they determine that intermediate size particles eventually 
disperse more effectively than the fluid itself. The disper- 
sion of larger particles, however, remains below that of the 
passive fluid marker particles throughout the evolution of 
the flow. 

For our temporally evolving mixing layer, aL is a func- 
tion of time and Stokes number. The graph for the com- 
puted values of 6, as a function of time (Fig. lo), shows 
the same trends as in the Lazaro and Lasheras experi- 
ments, with the values for intermediate Stokes numbers 
eventually exceeding those of passive fluid marker parti- 
cles. 

In Fig. 11, we plot the computed value of the 0.9-O. 1 
level thickness as a function of the Stokes number for times 
f= 12 and 18. We include the value attained for passive 
fluid particles as a dotted line. At each time in the simu- 
lation, the value of aL asymptotically approaches that of 
passive marker particles as the Stokes number decreases 
and the particles closely follow the motion of the fluid. By 
time 12, no particle size has undergone stronger dispersion 
than the fluid itself. However, by time 18 there is a range of 
intermediate Stokes numbers, for which particles disperse 
more effectively than the lluid. The maximum value for aL 
occurs roughly at a Stokes number of 2.5. This result of 
enhanced dispersion for St of O(1) is in agreement with 
the earlier computations and measurements of other au- 
thors, as described above. From the above discussion of 
our results for St= 1.0 (Figs. 4 and 5), it is clear that the 
particle streaks play a major role in producing this en- 
hanced dispersion. 
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FIG. 11. 0.9-O. 1 particle concentration level thickness as a function of St. 
-: t= 12.0; - - -: t= 18.0. The value for passive fluid marker particles at 
each time is indicated by the dotted line. By time t= 18.0, particles with 
St of 0( 1) disperse more effectively than the surrounding fluid. 

For later times, the use of SL to quantify particle dis- 
persion becomes problematic, as the streamwise-averaged 
concentration profile begins to exhibit pronounced peaks 
and the 10% and 90% levels are crossed repeatedly. A 
more precise measure of the number of particles entering 
the unseeded stream is given by the particle displacement 
thickness ad, where 

I 
m 

s,(t) = 
c(y,t=O.O) -c(y,t) 0 

CC.2 
dy= 

s 
4YJ> 
- dy. 

0 -co C, 

Here, ad effectively measures the number of particles that 
have crossed the centerline by equating it to the thickness 
of a region with the reference particle concentration. It is 
depicted as a function of the Stokes number in Fig. 12 for 
times t=12, 18, and 30. We recognize that, for all times, 
the largest number of particles in the lower stream occurs 
for the smallest particle Stokes numbers. The slight in- 
crease in the value of ad for very large Stokes numbers is 
due to the initial conditions for the particle velocities. 
Hence, the number of particles that crosses the midplane 
does not reach a maximum for intermediate values of the 
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PIG. 12. Particle displacement thickness as a function of St. -: 
t= 12.0; - - -: t=18.0; ---: t=30.0. The value for passive fluid marker 
particles at each time is indicated by the dotted line. At each time, 
the number of particles reaching the unseeded stream is greatest for 
smallest St. 
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PIG. 13. Weighted particle displacement thickness as a function of St. 
-: t= 12.0; - - -: t= 18.0; - - -; t=30.0. The value for passive fluid 
marker particles at each time is indicated by the dotted line. The moment 
of particles about the centerline of the mixing layer is maximized for St of 
O(l). 

Stokes number. On the other hand, ad does not indicate 
how fur the particles move, and it is therefore an incom- 
plete indicator of dispersion. In many applications, it is 
most important that particles be dispersed a maximum dis- 
tance. It is undesirable for a large number of particles to 
merely cross the centerline but not achieve a large cross- 
stream distance. By weighting the integrand of the particle 
displacement thickness with the absolute cross-stream dis- 
tance from the centerline, we effectively compute the first 
moment of the particle concentration profile and obtain a 
quantity biased towards particles that have traveled greater 
distances into the unseeded stream. We call this quantity 
the weighted particle displacement thickness and denote it 
by S,, where 

6,W = s ’ ,y,ydy. 
--m m 

Notice that, although formally having the dimension of 
length squared, 6, effectively gives the product of the num- 
ber of particles that have crossed the centerline with the 
distance of their center of mass from the centerline. In Fig. 
13, 6, is shown as a function of the Stokes number for 
times t= 12, 18, and 30. This figure shows a clear maxi- 
mum of the dispersion for intermediate Stokes numbers. 
Comparing SL with SX at the later stages in the flow devel- 
opment, we see that the maximum in S, is attained for 
somewhat smaller Stokes numbers. A graph of 6, as a 
function of time for a variety of Stokes numbers (Fig. 141, 
again shows that particles with Stokes number of 0( 1) 
eventually are dispersed optimally. 

2. Particle ve/ocity field 

The particle concentration profiles, especially for St of 
0( 1) and greater, indicate the preference of particles to 
accumulate in narrow regions of the flow field. Both for 
St = 1 .O and St = 10.0 we noticed a tendency for particles to 
vacate regions of high vorticity and become more concen- 
trated in narrow bands extending through the braid region. 
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FIG. 14. Evolution of the weighted particle displacement thickness: A, 
St=l.O; 0, St=1.5; X, St=2.0; 0, St=lO.O; 0, St=100.0; +, passive 
fluid marker particles. The St= 1.0 results are the first to exceed that of 
the surrounding fluid. Ultimately, by time t=30.0, particles with St 
slightly greater than one become dispersed optimally according to this 
measure. 

The accumulation of these particles is significant because 
they eventually compose the particle streaks. 

In order to more closely investigate the accumulation 
process, we compute a particle velocity field. As with the 
overall particle concentration contours, we subdivide the 
flow field into a number of rectangular bins. The velocities 
of all particles within each bin are then added, and the sum 
is divided by the bin’s total number of particles. This gives 
us an average particle velocity for each bin. The particle 
velocity field need not be divergence free, i.e., particles may 
leave a region of the flow without the necessary simulta- 
neous reintroduction of other particles to that region. We 
use a total of 500 000 particles and 12 800 bins for the 
computation of the particle velocity field. 

Using the computed particle velocity fields, we deter- 
mine the divergence at different times. We exclude from 
consideration bins containing less than 10 particles. When 
possible, we use a second-order central differencing scheme 
for calculating the derivatives. Otherwise, we use a more 
compact first-order stencil. For Stokes numbers much 
smaller than one, there is little evidence of nonzero diver- 
gence in the particle velocity field. However, for Stokes 
numbers of 0( 11, we observe one region of strong negative 
divergence. Figure 15 contains contours of negative diver- 
gence (plotted at 10% increments of the maximum) for 
St= 1.5 (the Stokes number which ultimately shows the 
overall maximum 6,). We superimpose the contours over 
the corresponding particle concentration field at time 
t= 18. A single triangular region of strong negative diver- 
gence occurs in the stagnation point region of the flow. 
Elsewhere, positive divergence (not shown) is very weak. 
The contours of negative divergence surround the thin 
band of large particle accumulation extending through the 
braid region. Negative values of the divergence indicate 
convergence of particle velocity vectors. Particles in this 
region are directed into the band, resulting in the locally 
high particle concentration. 

For larger Stokes number, two regions of strong neg- 
ative divergence occur within the braid region. Figure 16 
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FIG. 15. Regions of negative divergence of the particle velocity field 
superimposed on the overall particle concentration at time t=18.0 for 
St= 1.5. Particles are directed into a single band of high particle accumu- 
lation which extends through the braid region, and forms much of the 
particle streaks. 

shows the contours of negative divergence for the Stokes 
number 10 simulation at the same time of t= 18. The two 
regions are nearly parallel, and each of them is more con- 
fined than for St = 1.5. These features of the particle veloc- 
ity divergence field near the free stagnation point confirm 
the tendency of the particles to concentrate in high strain 
regions, as observed by other investigators. In particular, 
situations of particle accumulation were observed by 
Maxey,34 as well as by Maxey and Corrsin35 in a cellular 
velocity field, and by Fernandez de la Mora and 
Riesco-Chueca36 for potential flow fields. Maxey34 re- 
marked upon the accumulation of particles by considering 
a similar particle “flow field.” He derived an analytical 
expression by using an approximation to the particle accel- 
eration equation, accurate to first order in the Stokes num- 
ber. Its divergence was found to be positive in regions of 
strong vorticity, or negative where the rate of strain is 
dominant. This suggested the accumulation of particles in 
regions of low vorticity or high strain. In the following, we 
will try to elucidate the particle accumulation mechanism 
in more detail by investigating a simple model of the flow 
field near the free-stagnation points. 
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FIG. 16. Regions of negative divergence of the particle velocity field 
superimposed on the overall particle concentration at time t= 18.0 for 
St= 10.0. Two regions of negative divergence indicate the strong accumu- 
lation of particles into two narrow bands. 
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3. Stagnation point flow 

The above discussion provides some insight into the 
formation and evolution of the streaks. Particles gather in 
the stagnation point region downstream of the vortex and 
then become stretched along the extensional streamline. 
We now focus our attention on this braid region where the 
particle velocity field was shown to have a negative diver- 
gence. In this region, the fluid velocity field can be modeled 
by the more simple stagnation point flow of the form 

u=ax, v= -ay, (5) 
with a being a positive constant. Morrison3’ has considered 
the collision of particles with an obstacle using the same 
stagnation point flow field as a model for flow near the 
obstacle’s surface. In (5)) x and y now represent a coordi- 
nate system whose axes are aligned with the directions of 
extensional and compressive strain. In full mixing layers, 
these directions change with time as the Kelvin-Helmholtz 
instability evolves. The particle acceleration in such a flow 
field is governed by the linear set of ordinary differential 
equations, 

du 1 
p=- (ax,-up), 
dt St 

dVP x=--k (av,+vJ, 
with solution given by 

xp”cleR.l’+c&‘, 

yp=c3d3’+c4d4: 

in which 

A*= 
-1+ Jm 

3 A2= 
-l- JW 

2 St 2st ’ 

As= 
-1+ Ji=XZ -1-J-- 

2 St , a4= 2st ’ 

(6) 

(7) 

and the coefficients cl through c4 are determined through 
initial conditions. The envelopes of particle trajectories de- 
cay exponentially with t, but for a St > l/4 particles exhibit 
a nonmonotonic behavior. The amplitude of this oscillation 
decreases for increasing t. Its wavelength increases with 
increasing Stokes number. 

The full mixing layer with large-scale vortices, can be 
modeled as a row of point vortices of strength K separated 
by the wavelength of the mixing layer L. The velocity field 
for this arrangement is given by38 

K sinh(2ny/L) 
‘=-%-it cosh(2m/L) -cos(27rx/L) ’ 

K sin(2?rx/L) 
‘=fiit cosh(2?ry/L) -cos(27rx/L) - 

By considering all the vorticity within each wavelength of 
the mixing layer as residing at the location of each point 
vortex, K takes the value L. The strain rate a at the braid 
stagnation point between successive point vortices is then 
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given by r/2L. The critical Stokes number for the oscilla- 
tions described above is W2r. Although our wavelength is 
slightly larger than 2~, we illustrate the situation for 
L=2rr. For the resulting a = l/4, we plot in Fig. 17 parti- 
cle trajectories in the stagnation point flow field given by 
Eq. (5) for St=O.l, 1.0, and 10.0. We release particles at 
-0.005<x<0.005 and y= 1.0. Initially, we assign the par- 
ticle velocity equal to the fluid velocity at the particle’s 
location. The dashed lines indicate the streamlines of the 
flow. For St=O. 1 [Fig. 18(a)], particles spread from the 
stagnation point as they follow the motion of the fluid. For 
St= 1.0, however, there is an optimal focusing of particles 
towards the stagnation point of the flow. The particles con- 
verge towards the dividing streamline at optimum speed. 
Consequently, there is a rapid buildup of particles along 
the stagnation streamline. This results in the single line of 
heavy particle accumulation which we observe in the full 
mixing layer at St O( 1). This focusing of particles along 
the stagnation streamline, furthermore accounts for the 
strong region of negative divergence in the particle velocity 
field at St 0( 1) (Fig. 15). 

The optimal buildup of particles at St O( 1) allows 
large numbers of particles to be, in turn, accelerated by the 
overall extensional strain field of the full mixing layer. This 
produces the high accumulation streaks which extend well 
into the slower stream, and it provides additional quanti- 
tative support for the preferential dispersion of particles at 
Stokes number near unity observed in previous investiga- 
tions. 

Figure 17(c) shows the trajectories of particles for a 
Stokes number of 10.0. For this Stokes number, oscillations 
of the particles about the stagnation streamline occur, Par- 
ticles have enough inertia to cross the stagnation stream- 
line, but are forced back across the streamline due to the 
opposing flow. As Eq. (7) shows, the amplitude of this 
oscillation will decrease with time and particles will even- 
tually converge to y=O for large times. Because the resi- 
dence time is large during particle reversal, one can antic- 
ipate the formation of two regions of high particle 
concentration near the dividing streamline, one occurring 
at the maximum and one at the minimum of the oscilla- 
tion. By releasing large numbers of particles into this flow 
field, two such regions of larger particle accumulation are 
observed [Fig. 17(d)]. As pointed out earlier, the wave- 
length of the oscillations in the yp trajectory solution in- 
creases with increasing Stokes number. Therefore, the pos- 
sibility for the formation of multiple, high density lines for 
Stokes numbers much greater than 10.0 becomes limited. 

In light of these findings, we return and examine the 
full mixing layer calculation for Stokes numbers 1.0 and 
10.0. In Fig. 18, we magnify the region surrounding the 
stagnation point at time t= 15.0 for each case, plotting 
every particle occurrence. For St= 1.0, large particle accu- 
mulation occurs in a single band delineated by the stagna- 
tion streamline. For the St= 10.0 case however, two lines 
of increased particle accumulation become evident. These 
two lines account for the two regions of negative particle 
divergence we observe in the particle velocity field for this 
Stokes number (Fig. 16). The lines of higher particle ac- 
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FIG. 17. Streamlines (. . . . ) and particle trajectories (----) in a simple stagnation point flow: (a) St=O.l, (b) St= 1.0, and (c) St=lO.O. For smaller 
values of St, the particles closely follow the streamlines, resulting in a weak accumulation of particles The rate of particle accumulation along the 
dividing streamline becomes optimal for St= 1.0. For higher value of St, the particle trajectory solution becomes underdamped; we observe an overshoot 
of the particles and subsequent oscillation, resulting in the formation of two bands of large particle accumulation. (d) Resulting particle locations for 
36 000 particles introduced into the stagnation point flow for St= 10.0. Two bands of large particle accumulation occur, at the peak and the trough of 
the particle oscillation. 

cumulation and  regions of negative divergence occur at the 
peak and trough of particle oscillation. F igure 19  shows the 
beginning oscillations in some of the trajectories, for par- 
ticles shown in F ig. 18  (b) . 

4. Effect of vortex pairing 
It is well known that subharmonic vortex pairing rep- 

resents the dominant mechanism for m ixing layer growth.” 
Hence, it is important to examine how the scenario for 
particle dispersion described above becomes mod ified in 
the presence of subharmonic perturbations that lead to 
vortex pairing. Chein and  Chung6 concluded from their 
investigation that particle dispersion is stronger during a  
vortex pairing event than before or afterwards. Kiger and  
Lasheras” found that the vortex pairing mechanism leads 
to a  more homogeneous distribution of their polydispersed 
particles. 

In the following, we will extend our detailed numerical 
simulations to flow fields containing both a  fundamental  
and  a  subharmonic perturbation. For this purpose, we dou- 
ble the length of our control volume. The  fundamental  
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wave is introduced in the same way and with the same 
amp litude as above. The  subharmonic wave, which initially 
is of the same amp litude as the basic wave, also affects the 
circulation of the blobs. Its phase is such that its amp litude 
reaches a  maximum m idway between the two evolving vor- 
tices. In this way, the two equally strong vortices will pro- 
ceed towards a  pairing event rather than a  tearing process. 
In the following, we focus on  the evolution of the flow field 
for the St = 1  case. F igure 20  contains the particle locations 
super imposed over the vorticity contours of the cont inuous 
phase. Plotted are 4725 of the 450  000 particles followed in 
the simulation. By time  t= 18, [Fig. 20(a)] near  circular 
vortices form in the cont inuous fluid phase. Due to the 
subharmonic perturbation, these vortices become displaced 
above and below the m ixing layer as they proceed towards 
pairing. The  deformation field between successive vortices 
again leads to the formation of particle streaks entering the 
unseeded stream. It is important to realize that the strain 
rate is stronger in the region between the pairing vortices 
than it is in the region between successive vortex pairs. 
Correspondingly, the streaks between pairing vortices un-, 
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FIG. 18. Magnification of the stagnation point region of the full mixing 
layer at t ime t= 15.0 for St equal to (a) 1.0 and (b) 10.0. For St= 1.0, 
particles accumulate in a single band delineated by the stagnation stream- 
line, whereas for St= 10.0, two lines of increased particle accumulation in 
the area surrounding the stagnation point become evident. 

dego a  different evolution from those in between vortex 
pairs. The  streamwise-averaged concentration plot now 
shows four well-developed local maxima, which can be  
related to the evolving streaks. 

By time  t=30, the streaks have wrapped entirely 
around the vortex pairs. Those streaks in between pairing 
vortices undergo a  more intensive stretching, which leads 
to their more rapid depletion of particles. The  shape of the 
depleted region around the vortex pair reflects not only the 
instantaneous centrifugal action by the vortices, but also a  
time  integration effect: the remnants of the original, but 
now strongly deformed regions of depletion around each 
individual vortex are still clearly visible. 

At time  t=54, we stop the pairing calculation. The  
folding and  stretching of the particle streaks, cf. also Wen  
et aL,13 continues and  leads to the formation of lobe-like 
structures which resemble those observed in the study of 
chaotic m ixing layer dynamics by Me iburg et al.29 The  
overall shape of the particle concentration profile begins to 
look quite similar to that for the fundamental  wave only 

X 

FIG. 19. Trajectories of particles within magnified region whose final 
position is given in Fig. 18(b), St= 10.0. The beginning oscillatory be- 
havior of the particles appears in the trajectories at the rightmost portion 
of the figure. 

case, with well-developed spikes above and below the plane 
of the vortex pairs. 

The  particle dispersion for the perturbed m ixing layer 
undergoing pairing can be  quantif ied in a  similar fashion to 
the case of the fundamental  wave only. In F ig. 21, we plot 
6, as a  function of the Stokes number  for times t== 12, 30, 
and  54. According to this measure,  an  intermediate range 
of Stokes numbers again is dispersed more effectively than 
fluid elements. By time  54, the maximum in Z$  occurs 
roughly at a  Stokes number  slightly greater than one, as in 
the fundamental  wave only case. 

F igure 22  shows 6, as a  function of time  for different 
values of the Stokes number.  W e  find that, compared to the 
fundamental  wave only case, it now takes considerably 
longer for the optimally dispersed heavy particles to exceed 
the dispersion of the fluid elements. There appear  to be  two 
ma in differences between the evolution of the basic case 
and the subharmonic case. The  first of these concerns the 
extensional strain field. In the case without pairing, the 
extensional strain field between successive vortices acts in 
approximately the same direction for all times, thereby 
continuously directing large numbers of particles across 
the centerl ine of the m ixing layer. If vortex pairing takes 
place, on  the other hand, the strain field in between pairing 
vortices undergoes a  continual reorientation in space. Par- 
ticles are no  longer necessari ly directed towards the un- 
seeded stream. On  the other hand, the rotating motion of 
the pairing vortices around each other lets them sweep out 
a  much larger part of the flow field, so that they can cap- 
ture and  eject into the unseeded stream a  larger number  of 
particles. The  combined effect of these two mechanisms is 
an  enhanced dispersion of particles (Fig. 23), al though 
intermediate size particles do  not necessari ly experience 
stronger dispersion than fluid particles, as was seen in F ig. 
22. 

IV. SUMMARY AND CONCLUSIONS 

W e  have presented detailed computational results for 
the dispersion of heavy particles in transitional m ixing lay- 
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(b) 

FIG. 20. Vorficity contours with particle positions superimposed for St = 1.0 at t imes (a) t= 18.0, (b) t=30.0, and (c) t=54.0 for the plane mixing layer 
under additional, equal-amplitude, subharmonic perturbation. By time t= 18.0, particle streaks surround the pairing vortices. By time r=30.0, particle 
streaks between pairing vortices become depleted, while particle streaks between vortex pairs become extended. Each vortex sweeps out ear-shaped 
regions devoid of particles. 

ers forced at both the fundamental and the subharmonic 
frequencies. Our results confirm the observations of other 
investigators that streaks of particles forming in the braid 
region between successive vortices dominate the dispersion 
process. These streaks are closely aligned with the exten- 
sional direction of the stagnation point flow field. A scaling 
argument, based on the idealization of the spatially peri- 
odic m ixing layer as a row of point vortices, shows that the 
formation of these concentrated particle streaks proceeds 
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FIG. 21. Weighted particle displacement thickness for a plane mixing 
layer under additional, equal amplitude, subharmonic perturbation. -: 
i= 12.0; - - -: i=30.0; - --: tz54.0. 6, for passive fluid marker particles 
at each time is indicated by the dotted line. In contrast to the fundamental 
wave only case, by time 30.0, no particle Stokes number disperses more 
effectively than the surrounding fluid. Eventually, by time t=54.0, a 
range of St of 0( 1) achieve dispersion in excess of the surrounding fluid. 

with optimum efficiency for St- 1, in agreement with ex; 
perimental and numerical observations of preferential par- 
ticle dispersion at Stokes numbers of order unity. The stag- 
nation point flow field model furthermore predicts the 
formation of two bands of high particle concentrations for 
Stokes numbers somewhat larger than one, which is con- 

0 
0 6 12 1% 24 30 36 42 4% 54 

t 

FIG. 22. Evolution of the weighted particle displacement thickness for a 
plane mixing layer under additional, equal amplitude subharmonic per- 
turbation: A, St= 1.0; 0, St=l.5; X, St=2.0; Cl, St= 10.0; 0, St=lOO.O; 
+, passive thud marker particles. 6, is greatest for passive thrid marker 
particles roughly until t ime f=46.0. The extensional strain field under- 
goes a continual reorientation for the mixing layer undergoing pairing. 
Therefore, the mechanisms by which particles accumulate at St of 0( 1) 
are less etlicient than those in a mixing layer without pairing. By time 
t=54.0, the vortices have neared completion of pairing, and the parficles 
with St slightly greater than one achieve maximum dispersion. 
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FIG. 23. Evolution of the weighted particle displacement thickness for 
the mixing layer under fundamental only (-) and under additional 
subharmonic (- --) perturbation: A, St=1.0; X, St==2.0. For each St, 
dispersion of particles is greater at all t imes for the mixing layer under- 
going vortex pairing. 

iirmed  by the concentration field and  the divergence of the 
particle velocity field in the full m ixing layer simulation for 
St=iO. Both the mode l and  the full simulation show os- 
cillatory particle trajectories at this Stokes number.  

W e  quantify the particle dispersioe as a  function of 
time  and St by means of two different integral scales. The  
first one, which represents a  measure of the number of 
particles that have crossed the m ixing layer, does not ex- 
hibit a  maximum for intermediate Stokes numbers.  How- 
ever, if we weight with the distance that the particles have 
traveled into the unseeded stream, we do  !ind an  opt imum 
for intermediate values of the Stokes number.  

Our calculations furthermore allow us to trace back in 
time  the locations of those particles that experience ejec- 
tion into the unseeded stream. W e  find that these particles 
originate in inclined narrow bands that initially stretch 
from the braid region into the seeded free stream. The  fact 
that these regions are very localized indicates that particle 
dispersion in an  experiment can be  optimized by phase- 
coupl ing the injection device with the forcing signal for the 
cont inuous phase. 

When  we introduce a  subharmonic perturbation into 
our flow field as well, we find that the region in between 
pairing vortices evolves quite differently from the region in 
between vortex pairs. The  strain field in between pairing 
vortices increases in strength, which leads to a  rapid ejec- 
tion of particles from this region. However, since this local 
strain field also undergoes a  cont inuous rotation in time, 
this ejection does not necessari ly enhance the flux of par- 
ticles into the unseeded stream. On  the other hand, during 
the pairing process the vortices spiral around each other, 
thereby sweeping a  much larger region of the flow field 
than in the case without pairing. This effect leads to in- 
creased overall particle dispersion in the presence of a  sub- 
harmonic wave. 

The  present investigation draws attention to the im- 
portance of the braid region in the particle dispersion pro- 

cess. It is well known that concentrated and  strained coun- 
terrotating streamwise vortices form in this region.39-42 
Cqnsequently, these can be  expected to play a  significant 
role in the particle dispersion by a  three-dimensional evolv- 
ing m ixing layer. This issue is currently addressed in a  
separate investigation. 
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