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The linear stability analysis of a simple model of a swirling jet illuminates the competition and 
interaction of centrifugal and Kelvin-Helmholtz instabilities. By employing potential theory, 
analytical expressions are derived for the growth rate and propagation velocity of both 
axisymmetric and helical waves. The results show that centrifugally stable flows become 
destabilized by sufficiently short Kelvin-Helmholtz waves. The asymptotic limits demonstrate 
that for long axisymmetric waves the centrifugal instability dominates, while long helical waves 
approach the situation of a Kelvin-Helmholtz instability in the azimuthal direction, modulated 
by a stable or unstable centrifugal stratification. Both short axisymmetric and short helical 
waves converge to the limit of a plane Kelvin-Helmholtz instability feeding on the azimuthal 
vorticity. 

In this short note, we investigate the stability charac- 
teristics of a simple model of a swirling jet, which consists 
of a line vortex of strength I?, at r=O, surrounded by a 
cylindrical vortex sheet at r= R. The unperturbed axisym- 
metric vortex sheet contains both azimuthal circulation 
(corresponding to a jump AU, in the axial velocity) and 
streamwise circulation Fe- I’i (representing a jump AU, 
in the circumferential velocity). The vortex lines in the 
sheet hence are of helical shape, with their pitch angle 1c, 
being 

$=tan-1[(AUe/AUX)“2]. (1) 

This model represents an extension of earlier ones in- 
vestigated by Rotunno’ and Caflisch et al2 Rotunno’s 
work concerns the stability of the axisymmetric vortex 
sheet alone, i.e., without the line vortex, under axisymmet- 
ric and helical perturbations. Caflisch et al. investigate the 
linear stability with respect to axisymmetric perturbations 
of the purely swirling flow generated by a line vortex sur- 
rounded by a cylindrical vortex sheet containing axial cir- 
culation only. Within the current investigation, our goal is 
to determine if and how Rayleigh’s stability criterion3 will 
be modified by the addition of an axial velocity jump AU, 
across the vortex sheet. This type of flow allows for the 
development of both centrifugal and Kelvin-Helmholtz in- 
stabilities, with potentially interesting interactions between 
the two. We employ potential theory to analyze the flow. 
The perturbed velocity potential is given by 

41 (x,r,O) + r1Wh--l-x, 
‘= [ ~oW,O,t> +roW2 

inside the sheet, r< 1, 

r, outside the sheet, r> 1, 
(2) 

with the vortex sheet position r=l +g(x,O,t). Here, all 
lengths are made dimensionless by the radius of the sheet, 
R, and all velocities by the streamwise velocity jump, AU,. 
The disturbance velocity potentials satisfy V2&=0 and 
V2&=0 inside and outside the sheet, respectively, with the 
usual conditions of equal normal displacements and pres- 
sure at the sheet location. In linearized form, these read 

h=&+We~2~+~x and 40,=6t+ GWW, (3) 

h*-E( 2) 2+fgL$,,+g&&)2+~. (4) 

By requiring the solution to be bounded on the axis and at 
infinity, we obtain the relevant normal mode solutions to 
the above equations with wave number y, 

g-=ei(yx+m8)+uf , (5) 

~l=bl~m(yr)ei(yx+“e)+~~, (6) 

~o=boKm(yr)r)e’(“+me)+u~, (7) 

in which I, and K,,, are the modified Bessel functions, with 
subscripts indicating their order. In order to determine bi , 
bc, and a, we substitute Eqs. (5)-(7) into (3) and (4). 
With 

Iv?(r) -Kn(y) 
“=YL?-,(y) -mmrm(y) and p=yKm-~(,) +mK,Jy) 

(8) 
we thus obtain for the growth rate (T 

a=& g (arl-flro) +3/a f . ( 1 [ 
1 

4(o---P) 

X 
( 

l?J ‘G+$ (&-flr$ +4pa,-!E$5! 
) 

1 

( 
” br, -m,) +p 

2 l/2 

-(a-p)z 27r )I . (9) 

The real part of (T( =a,+i~i) represents the nondimen- 
sional growth rate, while the imaginary part, pi, deter- 
mines the propagation velocity, -o/y. 

The axisymmetric case m=O. Using the relation 
&(x)K,(x) +11(x>&(x) =1/x, we obtain a-8 
= 1/[?1i (y)K, (y)] which results in 
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? x $dymy)~+ mm2- (wwz. (10) 
While the first term under the square root reflects the effect 
of a Kelvin-Helmholtz instability feeding on the azimuthal 
vorticity, the second term is related to centrifugal instabil- 
ity. For all y>O, lo(y), It(y), K,(y), and K,(y) are 20. 
Thus for instability to occur, 

1W 

d 6- 

(~~~Y)%(Y)K~(Y) + r: > r;. (11) 

The above instability criterion ( 11) differs from the Ray- 
leigh criterion by the additional term (27ry)‘Ic( y)K,( y). 
Hence we find that if G > r-6, the flow remains unstable for 
all wave numbers (in agreement with Rayleigh’s stability 
criterion). Note, however, that in the case of l?: < I’;, the 
flow remains unstable to large enough wave numbers that 
satisfy (27~y)~I~(y)K~(y> > J$I’:. Hence a flow that is 
centrifugally stable can be destabilized by sufficiently short 
axisymmetric Kelvin-Helmholtz waves that feed on the 
azimuthal vorticity component of the vortex sheet. Conse- 
quently Rayleigh’s criterion, which states that the flow is 
stable if and only if II’: < I$, no longer is a sufficient con- 
dition to guarantee stability in the swirling jet configura- 
tion. 
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For I’r = I’e=O in ( lo), our flow reduces to the non- 
swirling jet analyzed by Batchelor and Gi11,4 and we re- 
cover their solution (when recast in nondimensional form) 
for the growth rate and propagation velocity of an axisym- 
metric disturbance 

~,=&y[I~(y)K~(y)]~‘~ I,(y)K,(y) (12) 

and 

-~i/y=Yl,(Y)K,(Y)- (13) 

Caflisch et al. consider a configuration without azi- 

03 

muthal vorticity, i.e., without a streamwise velocity jump 
AU,. Hence we have to nondimensionalize differently in 
order to be able to compare with their results. By using 
rl/R as the velocity scale and setting the streamwise ve- 
locity jump equal to zero, we recover their growth rate 
expression for vortex sheets containing axial circulation 
only a-~y[11(y)K,(y)]*‘2[(1/2~)2-((ro/2rr)2]”2. We 
now focus on the limits of long and short instability waves, 
respectively, i.e., on the limits of y-0 and y- CO. Employ- 
ing the relevant asymptotic expansions for small arguments 
of the modified Bessel functions,5 we obtain for y-0, 
My>-1, II(Y)-~12, G(y)----Iny, Kl(y)-ym’. Thus 
the expression for (T [Eq. (lo)] takes the following asymp- 
totic form for long waves: 

FIG. 1. Growth rate, a,, for [m I=2,3 and 4 with (a) It= 10.0; Ic=5.0 
(centrifugally unstable). Disturbances with positive azimuthal wave 
number have a higher growth rate than their negative counterparts, due to 
their greater alignment with the helical vortex lines. (b) I,=5.0: 
I’,=lO.O (centrifugally stable). In this case the flow remains stable to 
long-wavelength disturbances. In both figures, growth rates for axisym- 
metric disturbances are indicated by dashed lines. 

a--iyay/JZJ--?jln y+(rl;2~)2-(l?c/277)Z. (14) 

asymptotes to one for y-0. The observation that long- 
wave disturbances propagate with the streamwise core ve- 
locity of the swirling jet, corresponds to Batchelor and 
Gill’s finding for nonswirling jets. The leading-order as- 
ymptotic growth rate a,- i (27r) -‘y( T’:/2 - r&‘/2) “’ 
corresponds to the limiting form of the above expression 
derived by Caflisch et al. for the pure swirling flow. 

For small y the first term under the square root is positive, 
so that long Kelvin-Helmholtz waves act to destabilize the 
flow. However, the second and third term dominate for 
y-0, since + In ~40. Therefore, with I?:> I’$, the swirl- 
ing jet shear layer in the long-wave limit is dominated by 
the Rayleigh instability. The growth rate is proportional to 
the wave number, while the propagation velocity, -a/y, 

For very short waves, i.e., y-t CO, the pertinent asymp- 
totic expansions of the modified Bessel functions lead to 

. + y(rl-ro) ,m-;* --+-..- i 
We find the overall growth rate approaching that of the 
plane Kelvin-Helmholtz instability alone a,- y/2. The 
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FIG. 2 Growth rate, or, as a function of the azimuthal wave number for 
y-0. Solid line: I’,= 10.0; Fo=5.0; i.e., centrifugally unstable. Chain- 
dotted line: I1 =5.0: To= 10.0; i.e., centrifugally stable. Notice that for 
this case long waves are stable. 

leading-order influence of the swirl can be stabilizing or 
destabilizing, depending on the streamwise circulation of 
the line vortex and the vortex sheet. 

Helical perturbations: 1 m 122. From the way in which 
we have posed the stability problem, it is obvious that only 
such perturbation waves can be considered that do not lead 
to a displacement or deformation of the centerline vortex. 
From symmetry reasons, it immediately follows that a he- 
lical wave 1 m 1 = 1 violates, this condition and is hence not 
admissible. However, all modes 1 m I >2 maintain a sym- 
metry of the flow field that leads to a vanishing radial 
velocity at the centerline. 

Using Eq. (9), we show in Fig. 1 (a) the growth rate 
versus the streamwise wave number for I m I =2, 3, and 4 
when lY,=lO.O and I?,=5.0, i.e., when the flow is centrif- 
ugally unstable. The graph reflects the broken symmetry 
between positive and negative values of m as a result of the 
streamwise vorticity in the vortex sheet. All helical modes 
have positive growth rates for all values of ‘y. In Fig. 1 (b) 
we show the corresponding centrifugally stable case with 
l?i = 5.0 and IO= 10.0. 

Again the most interesting limits concern y-+0 and 
y- CO, while keeping m fixed. For y-0, the small argu- 
ment expansions for the modified Bessel functions yield 
IX-+ l/m, fi- -l/m, so that we obtain for the complex 
growth rate 

g--E &fro) 

*(2a)-’ (16) 

for m)O. This limit y-+0 corresponds to a situation in 

which the wave-number vector becomes aligned with the 
azimuthal direction. In this case, the flow can develop a 
Kelvin-Helmholtz instability, feeding on the streamwise 
vorticity component. For y-0, Fig. 2 shows the real part 
of the growth rate as a function of m both for a centrifu- 
gally unstable and a centrifugally stable stratification. In 
the limit of large m, a, cc m, as the curvature of the shear 
layer becomes less important. It should be pointed out that 
the presence of the centerline vortex is important for the 
real part of the growth rate, as it affects the centrifugal 
stratification. The imaginary part of the growth rate de- 
pends on the presence of the centerline vortex as well. 
However, this effect is a purely kinematic one, as the rota- 
tion of the helical wave by the centerline vortex leads to a 
streamwise propagation velocity of the wave crest in the 
plane 8=const. It is clear from Eq. (16) that this stream- 
wise propagation velocity approaches infinity as y-0. 

In the limit of fixed m and y-+ CO, we obtain a situation 
that is quite different. Using the large argument expansions 
for the modified Bessel functions, we obtain a-t l/y, p- 
- l/y, and 0 asymptotically approaches LT- - iy/2 5 y/2, 
i.e., the growth rate of the plane Kelvin-Helmholtz 
instability. 

The present model of a swirling jet lends itself well to 
a nonlinear and three-dimensional investigation using vor- 
tex methods. A study along these lines is currently under- 
way in order to compare the three-dimensional evolution 
of swirling jets with that of nonswirling ones (Martin and 
Meiburg’>‘) . 
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