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A computational investigation of the nonlinear dynamics of heavy particles in a row of
counterrotating strained vortices is presented. By tracking the particles numerically in the
quasi-two-dimensional fluid velocity field, information is obtained on the nature of their trajectories,
as well as on probability distribution functions and potential accumulation regions. The particle
behavior is discussed as a function of the dimensionless strain rate, the particle Stokes numberSt,
and the dimensionless gravity parameterFr . Only for very low values of theSt can the particles
accumulate at the vortex centers. For moderate values ofSt, they remain trapped on closed
trajectories around the vortex centers. IncreasingSt leads to periodic open trajectories that allow for
spanwise transport of the particles. Further bifurcations lead to the generation of multiple
trajectories, as well as to subharmonic solutions. Eventually, intermittent and chaotic particle
dynamics are observed. In the chaotic regime, a simplified flow model is employed in order to
derive various scaling laws for the particle concentration field. For strong levels of gravity, the
accumulation of large numbers of particles is observed in the upwelling regions predicted in part I
of the present investigation@B. Marcu and E. Meiburg, Phys. Fluids8, 715 ~1996!#. © 1996
American Institute of Physics.@S1070-6631~96!00403-3#

I. INTRODUCTION

In Part I of the present investigation,1 we introduced an
analytical model of the counterrotating strained streamwise
braid vortices commonly found in three-dimensionally de-
veloping plane mixing layers.2–6 These flow structures are
expected to result in a significant modification of the domi-
nant two-dimensional particle dispersion mechanisms,7–12

which are known to lead to the formation of bands of par-
ticles in the braid region. We investigated analytically the
circumstances under which heavy particles can be trapped at
the centers of the strained vortex structures, and whether or
not these vortices can lead to an accumulation of particles in
certain regions of the flow field. One of the main findings
was that, in the absence of gravity, only particles below a
critical value of the Stokes numberStcrit can be trapped at
the vortex centers. For larger values ofSt, the vortices’ ten-
dency to eject heavy particles overcomes the strain’s ability
to trap them, so that accumulation at the vortex centers is not
possible. However, in the presence of gravity multiple equi-
librium points with different stability characteristics can ex-
ist. In particular, for a horizontal mixing layer and strong
gravitational effects, unconditional accumulation can occur
in the upwelling regions midway between the streamwise
braid vortices.

While in Part I, we addressed the existence and linear
stability of equilibrium points in an array of counterrotating
streamwise vortices, we will now focus on the nonlinear dy-
namics of heavy particles in such flows. In particular, it is of
interest to obtain information regarding the size of the basin

of attraction of stable equilibrium points, as well as about the
nonlinear particle dynamics and related concentration fields
should stable equilibrium points not exist. We address these
issues by means of numerical simulations of the nonlinear
particle dynamics for a variety of different conditions. The
nature of these simulations will be described in Section II.
The calculations exhibit a rich dynamical behavior of the
particles, with qualitative differences for low, intermediate,
and high strain intensities. In Section III we will describe
these results in the absence of gravity, while in Section IV
we will address the ways in which gravity modifies the par-
ticle dynamics. Dispersion of heavy particles in the fully
chaotic regime will be analyzed in Section V, along with
gravity effects on the particle dispersion field, and a descrip-
tion of the particle accumulation process. In Section VI we
will present some conclusions from the present investigation.

II. NUMERICAL SIMULATIONS

The present investigation of particle dispersion in the
braid region of a plane mixing layer~Fig. 1! is based on the
analytical flow model developed by Marcu and Meiburg.1

The non-dimensional fluid velocity field (wf ,v f) in the
cross-streamz,y-plane is expressed by the relationships

wf520.5
sinh@2p~y2y0!#

cosh@2p~y2y0!#2kcos@2p~z2z0!#

10.5
sinh@2p~y2y1!#

cosh@2p~y2y1!#2kcos@2p~z2z1!#
, ~1!
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v f50.5
ksin@2p~z2z0!#

cosh@2p~y2y0!#2kcos@2p~z2z0!#

20.5
ksin@2p~z2z1!#

cosh@2p~y2y1!#2kcos@2p~z2z1!#
2sy.

~2!

Here, (z0 ,y0) and (z1 ,y1) denote the locations of the vortex
centers, which we place at~0.25,0! and~0.75,0!. The flow is
periodic in the spanwisez-direction, with a period equal to
the unit width of the computational domain. The velocity
Vp5(wp ,vp) and locationxp of a small spherical particle of
diameterd in the fluid velocity fieldU5(wf ,v f) are then
governed by the dimensionless equations13

dVp

dt
5

1

St
~Uux5xp

2Vp!1
1

Fr 2
eg , ~3!

dxp
dt

5Vp . ~4!

Here eg represents the unit vector in the direction of the
projection of gravity on thez,y-plane. Lengths, time, and
velocities were rendered dimensionless by the characteristic
velocity DW, which is related to the strength of the stream-
wise vortices,1 and by the spanwise wavelengthlz of the
row of counterrotating streamwise vortices. The dimension-
less parameters

St5
d2rpDW

18r fn flz
~5!

and

Fr5
DW

Alzg
, ~6!

are the Stokes and Froude numbers, respectively. Heren f

denotes the kinematic viscosity of the fluid andg represents
the length of the projection of gravity on thez,y-plane. No-
tice that, as a result of the above scaling, the Stokes number

St of a particle will vary as the characteristic velocity de-
scribing the strength of the streamwise vorticesDW or their
spatial spacinglz change during the evolution of the flow
field. As is well known,St indicates the ratio of the particle’s
aerodynamic response time and the characteristic fluid flow
time scale, whileFr expresses in dimensionless form the
relative importance of inertial and gravitational forces. AsFr
decreases, gravity becomes more important for the dynami-
cal behavior of the particle. As in Part I of this investigation,1

we only consider the effects of inertia, drag, and gravity.
Consequently, the results can be expected to hold in the limit
of large particle to fluid density ratios. The order of magni-
tude analysis conducted by Lazaro and Lasheras8 indicates
that in this limit the effects of flow nonuniformity, virtual
mass, Basset history force, and Saffman lift force are negli-
gible. In order to investigate the influence of higher order
effects, we took into account a nonlinear drag law in our
earlier study of two-dimensional mixing layers.12 We found
that the particle dynamics do not change qualitatively, but
that they may be shifted to slightly different values ofSt. We
assume the same would hold true in the present case if we
included the above higher order effects in our simulations.

Equations~3! and ~4! are written as a nonlinear four-
dimensional system forzp , yp , wp , andvp ,

1,14,15yielding

ẋ5F~x!, ~7!

where

x53
zp

yp

wp

vp
4 , F~x!53

wp

vp
1

St
~wf2wp!1

egz
Fr 2

1

St
~v f2vp!1

egy
Fr 2

4 . ~8!

Hereegz andegy represent thez- and y-components of the
unit vector in the direction of thez,y-projection of the grav-
ity vector. This system of ordinary differential equations,
with appropriate initial conditions specified fort50, consti-
tutes a nonlinear dissipative dynamical system. We advance
the system of equations~7! and ~8! in time by a standard
fourth order Runge-Kutta method. In order to obtain detailed
information on the short-time and long-time aspects of the
particle motion, three different types of simulations are per-
formed:

During the initial stages of the investigation, the motion
of 10,000 particles was computed simultaneously for moder-
ately long time periods, and for a variety of different combi-
nations ofk, s, St, andFr . The particles were seeded ran-
domly over the whole or upper half of the computational
box, with their initial velocities equal to the local fluid ve-
locity. Subsequently, they were tracked in time, and their
instantaneous positions recorded at different time levels.
Snapshots of the particle distributions at different times dem-
onstrate their tendency towards accumulation along specific
attractors or in certain regions. The large number of particles
in each simulation maximizes the probability that all existing
and stable attractors will be identified.

FIG. 1. Fluid velocity field for the row of counterrotating vortices in the
cross-stream, (z,y)-plane fors54.0 andk50.9.
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During the following stages, small sets of 10 to 50 par-
ticles were simultaneously tracked for longer times, in order
to analyze the long-time behavior of the particles in more
detail.

In order to analyze changes in the attractors, i.e., in the
particle trajectories, as a function of the dimensionless pa-
rameters, simulations using only one particle were carried
out. The initial position of the particle, along the liney50,
was found after several tests, such that the particular desired
trajectory could be captured. Then, repeated one-particle
simulations using constant initial conditions, and varying one
of the particle parametersSt or Fr , enabled us to study the
particular effects of particle inertia and gravity on the nature
and form of the trajectory.

Details of the computational procedures used to obtain
statistical data are provided in Section V.

Repeated simulations were conducted to test the accu-
racy, and to choose the time step size. Since the particle
parametersSt and Fr were varied over a large range of
values, the time step was also varied, in order to ensure the
accuracy of the simulation. The range of time step values
was 0.001<Dt<0.05. Small time steps were used for small
St values, and for strong gravity cases corresponding to
smallFr values. The validity of the results was checked by
repeating the simulation with the time step size cut in half. In
particular, observations of bifurcations, as well as computa-
tions of Poincar´e sections were verified using a very small
time step ofDt50.001. The asymptotic accumulation of par-
ticles along certain trajectories was tested by extending the
simulations to fivefold longer times.

III. LONG TERM DYNAMICAL BEHAVIOR OF
PARTICLES IN THE ABSENCE OF GRAVITY

As a first step, we investigate the solutions for particle
trajectories in the absence of gravity, focusing on the balance
between the viscous and inertial forces on the particle. Iner-
tial properties, expressed by the Stokes numberSt, alter the
trajectory of the particle from that of a fluid marker by con-
tinuously generating a phase shift between the particle mo-
tion and the forcing fluid velocity field.

Corcos and Sherman16 derive the scaling law for the
dimensional strain parameters̃,

s̃5
3DU

lx
, ~9!

whereDU is the velocity difference between the upper and
the lower layer streams of the mixing layer, andlx is the
spacing between the Kelvin-Helmholtz rollers. By combin-
ing this relationship with the experimental observation by
Bernal and Roshko2 that the spacing between the streamwise
vorticeslz'

2
3lx , Marcu and Meiburg

1 showed that the non-
dimensional strain parameters can only take values above
the minimum ofs.2, which corresponds to fully developed,
strong streamwise vortices. A typical value for the early
stages of the streamwise vortices’ growth can be given based
on the experimental results of Bell and Mehta.4 Here their
measurements show the circulation of the streamwise vorti-
ces to be approximately ten per cent of that of the spanwise

rollers. Using the scaling analysis by Marcu and Meiburg,1 a
value of s.13 is obtained for the non-dimensional strain
factor.

A typical, moderate dimensionless strain value is based
on the situation when the streamwise vortices reach half of
the spanwise vortices’ strength. The value corresponding to
this case iss.4.

A. Particle behavior at moderate strain

Here the flow parameters arek50.9 ands54.0. Under
these conditions, the criticalSt value for particle accumula-
tion1 is

Stcr5
2s

4@2pk/~12k2!#22s2 50.0023.

Only below this critical value, accumulation at the center of
the vortex is possible. This critical value ofStwas confirmed
numerically by carrying out simulations for slightly smaller
and slightly larger values ofSt, respectively. For larger, but
still moderate values ofSt, Figs. 2~a!–~c! show the instan-
taneous positions of 10,000 particles initially randomly
seeded in the upper half of the computational box, with ini-
tial velocities equal to the fluid velocity. The computations
are run for a period of time long enough to allow for the
particles to approach their asymptotic and stable trajectory.
All of the randomly seeded particles characterized by
St50.2 collect along closed trajectories around the vortices,
as shown in Fig. 2~a!. These closed particle trajectories are
due to a balance between viscous drag and inertial forces
only, as opposed to those observed in previous studies14,15

applicable to the main co-rotating spanwise vortices, where
the centrifugal forces were balanced by the pressure forces in
the flow field around the vortices. In the present case, the
closed orbits are characterized by the balance between the
centrifugal~inertial! forces, which tend to eject the particles
out of the vortex cores, and the viscous drag force caused by
the strain, which brings the particles back to the vortex row.
This situation is similar to the dynamics of heavy particles in
a Burgers vortex,17 where they collect along circular trajec-
tories around the vortex center.18

As the inertial forces become more important, a ten-
dency of the particles to break-up the closed loop trajectory
becomes evident by small overshoots at the corners of the
loops, as shown in Fig. 2~b! for St50.23. The overshoots
become longer asSt increases, until they touch the neighbor-
ing trajectory, which has an opposite sense of rotation. At a
critical value ofSt, the closed loops open, and a spatially
periodic solution emerges. The spatial period is unity, which
is equal to that of the fluid velocity field. Figure 2~c! shows
the instantaneous particle positions forSt50.30. All of the
particles collect along the period one solution, which has two
symmetric branches, allowing for particle transport either to
the left or to the right of the computational box. Notice the
symmetry of each of the two branches with respect to the
sections above and belowy50. This symmetry is expressed
by the fact that if the section abovey50 of a branch is
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FIG. 2. Particle trajectories in the absence of gravity,k50.9; s54.0. ~a! St50.20. Particle collect along closed loop trajectories around each vortex.~b!
St50.23. Increased inertia generates small overshoots at the corners of the loops preceding their break-up.~c! St50.30. Particles collect along open periodic
trajectories with a spatial period equal to unity.~d! St50.40. A symmetry breaking bifurcation leads to a second stable particle trajectory.~e! St50.56. The
two trajectories are distinct, with different amplitudes.~f! St50.67. Unique basic solution for the particle trajectory. The two trajectories have merged into a
single, stable one~g! St50.78. A bifurcation allows for two different types of solutions for particle trajectories: a basic solution~period unity! and a
subharmonic solution with spatial period equal to three.~h! St50.93. Basic solution only. The two different trajectories have again marged into a unique stable
one. ~i! St50.95. Again , a bifurcation allows for the existence of two different solutions for particle trajectaories: a basic solution~period unity! and a
subharmonic solution with spatial period equal to two.
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flipped below y50 and shifted by one half unit in the
z-direction, it will be identical to the section of the branch
below y50.

In the following discussion, we consider the two sym-
metric branches of a period unity particle trajectory to be part

of the samebasic solution.Physically, this solution demon-
strates that, in spite of the symmetries of the fluid velocity
field, the particle’s inertia enables it to regularly escape from
each vortex by oscillating in the vertical direction, and
thereby to continue to travel along its periodic path in the
spanwise direction. In other words, the particle’s inertia al-
lows it to break the symmetry of the fluid velocity field,
thereby enabling spanwise particle transport in the plane
mixing layer.

As we increaseSt further, we observe a series of bifur-
cations of the above basic solution, cf. Figs. 2~d!–~i!. These
bifurcations can lead to the emergence of multiple stable
period one trajectories, or to the appearance of subharmonic
trajectories through period doubling. ForSt50.40, a second,
stable solution appears as a result of a symmetry-breaking
bifurcation, as shown in Fig. 2~d!. Now the sections above
y50 of a solution are no longer symmetric to those sections
belowy50 of the same solution. However, through flipping
and shifting, the two trajectories along which the particles
travel in the same direction can still be shown to have iden-
tical shapes. AsSt is further increased, the asymmetry of the
y.0 and they,0 sections of the same solution becomes
more pronounced, cf. Fig. 2~e! for St50.56. When we in-
creaseSt further to 0.67, the trajectories merge, and they.0
andy,0 sections of the same trajectory have become sym-
metric once again, cf. Fig. 2~f!.

As we further increaseSt, subsequent bifurcations of
different kinds produce a variety of secondary solutions. Fig-
ure 2~g! shows particle trajectories obtained forSt50.78.
Through visual inspection of the trajectories, one can iden-
tify the left and right branches of two coexisting solutions:
the basic solution with a spatial period of one, and a new
periodic solution with spatial period of three. We call this
new solution asubharmonic-3 one, and generally solutions
with spatial periodn subharmonic-n.

The subharmonic-3 solution is stable only over the lim-
ited range 0.78,St,0.926. By further increasingSt to 0.93,
the subharmonic-3 solution can no longer be observed, and
only the basic solution is stable, as shown in Fig. 2~h!.

A third bifurcation is observed forSt between 0.93 and
0.95. In this case, the newly generated secondary solution is
a subharmonic-2 solution shown with both left and right
branches in Fig. 2~i!, along with the basic solution.

For St.1, the complexity of the particle dynamics
grows rapidly as it becomes increasingly dominated by iner-
tial forces. As will be demonstrated below in detail, two
main processes can be identified: firstly, additional sub-
harmonic-2 solutions are created by successive bifurcations.
These new solutions coexist with each other and the basic
solution, thereby enriching the collection of stable trajecto-
ries. Secondly, each of these subharmonic-2 solutions under-
goes a succession of period doublingsad infinitum,thereby
transitioning to chaos. Order in the form of a single subhar-
monic trajectory is reestablished beyond a further critical
value ofSt, before another transition to chaos occurs.

The process of successive bifurcations is shown in Fig. 3
for the flow parametersk50.9 ands54.0. Simulations us-
ing 10 to 50 particles initially seeded with the fluid velocity
at y50 and 0.01,z,0.17 ~in the downwelling region! al-

FIG. 2. ~Continued.!
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low us to capture the right branches of the multiple existing
solutions of Fig. 2~i!.

Figure 3~a! shows the right branches of the basic solu-
tion and a subharmonic-2 solution forSt50.95, a situation
similar to that shown in Fig. 2~i!. In contrast to previous
bifurcations, where subharmonic-3 secondary solutions were
created which then dissapeared at higher St values, the addi-
tional subharmonic-2 solution remains stable until a new bi-
furcation occurs. ForSt51.00, we observe the creation of a
new subharmonic-2 solution, allowing for three simultaneous
solutions for the particle trajectories to exist: one basic solu-
tion and two subharmonic-2 solutions, as shown in Fig. 3~b!.
A third bifurcation occurs atSt51.053, allowing for the ex-
istence of four simultaneous solutions: one basic solution
and three subharmonic-2 solutions, as shown in Fig. 3~c!.

Beyond St51.10, it becomes increasingly difficult to
visually distinguish between possible newly emerging sub-
harmonic solutions and previously existing solutions that
may have undergone a period doubling bifurcation. In order
to understand the mechanisms at work, we hence follow only
one of the possible solutions for the particle trajectories. This
is achieved by one-particle simulations, starting with the
same initial position and velocity for each calculation, vary-
ing only the value ofSt. The initial location is~0.01,0!, with
the initial particle velocity again being equal to the local
fluid velocity. Nevertheless, additional tools are necessary in
order to analyze the nature of the computed solutions. By
considering the particle motion as a four-dimensional dy-
namical system in thez, y, w5 ż, andv5 ẏ coordinates, it is
possible to project the solutions into the two-dimensional
v5 ẏ,y2phase plane, and to construct Poincare´ sections by
recording they2 andv2coordinates in the phase plane ev-
ery time the particle travels one spatial periodDz51.

The evolution of a single subharmonic-2 solution with
increasingSt is shown in Fig. 4. A subharmonic-2 solution,
previously generated in the sequence of the successive bifur-
cations described above, is shown in Fig. 4~a! for St51.10.
The corresponding Poincare´ section accordingly shows two
points. AsSt is slightly increased to 1.15, this subharmonic-2
solution becomes a subharmonic-4 solution, Fig. 4~b!. The
corresponding Poincare´ section shows four points. Subse-
quently, a further period doubling occurs, which leads to the
presence, atSt51.167, of a subharmonic-8 solution~with
eight points in the Poincare´ section!, as shown in Fig. 4~c!.
This behavior is typical for certain nonlinear dynamical
systems,19 and it rapidly leads to a chaotic solution. Figures
4~d!–4~f! show the evolution of the solution structure until it
finally becomes chaotic forSt51.23. The corresponding
Poincare´ section in Fig. 4~f! shows a characteristic chaotic
structure. For the slightly increased values ofSt51.25, order
is reestablished in the form of a subharmonic-2 solution@Fig.
5~a!#.

The final stages in the evolution of the subharmonic-2
solution are shown in Fig. 5. The subharmonic-2 form of the
solution that exists forSt51.25 is stable only over a small
range ofSt. It is shown in Fig. 5~a! over eight units in the
z-direction, with the cores of the clockwise rotating vortices
indicated by filled circles, and those of the counterclockwise
rotating ones denoted by empty circles. AsSt is slightly

FIG. 3. Successive bifurcations of particle trajectories.k50.9; s54.0. ~a!
Right branches of particle trajectory solutions forSt50.95. A
subharmonic-2 trajectory exists along with the basic solution.~b! Right
branches of particle trajectory solutions forSt51.00. A bifurcation has
generated an additional subharmonic-2 trajectory. As a result, three possible
stable trajectories exist: one basic and two subharmonic-2 solutions.~c!
Right branches of particle trajectory solutions forSt51.05. A new bifurca-
tion has led to a third subharmonic-2 solution.
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increased toSt51.286, a closed periodic solution is ob-
served, as shown in Fig. 5~b!. The physical mechanism
which generates this particular form of the trajectory is a
certain resonance between the phase shift generated by the
inertia of the particle and the forcing flow: The inertia of the
particle generates a delay in the particle’s response as it fol-
lows the flow. It cannot follow the flow as a fluid particle
would, as its inertia is continuously altering its trajectory
from that of a fluid particle. The particular resonance for the
present value ofSt leads to a situation where the heavy par-
ticle follows a trajectory similar to the previous subharmonic
one, but only for about a distance of four units. It then
switches directions, upon which it travels in the opposite
spanwise direction for about four units, before switching
again. This solution is stable only over a very narrow range
of St. By increasingSt to 1.289, the closed solution becomes
unstable, and the particle trajectory exhibits intermittency.20

Here, the particle is captured in a nearly closed trajectory for
only a few cycles. It then escapes, travels for a few units in
the spanwise direction, and is captured in a different nearly

closed loop of similar form. The plot in Fig. 5~c! shows this
process.

As St is further increased, the pattern of the closed loop
which captures the particle at random from time to time be-
comes less visible. The particle motion becomes fully cha-
otic. In Fig. 6~a!, such a chaotic particle trajectory is plotted
over a distanceDz58 for St51.32. In this one-particle tra-
jectory plot, the particle is moving chaotically in both span-
wise directions, as it is being turned back and forth at ran-
dom. The Poincare´ section and the particle distribution
pattern corresponding to this trajectory are shown in Fig.
6~b!. While the chaotic structure in the two-dimensional
phase space is similar to that found forSt51.23 @Fig. 4~f!#,
with additional spiral forms, the distribution of the particles
no longer shows a strong particle concentration along pre-
ferred paths and the regions near the vortex centers are de-
pleted of particles. A simulation using 32 pairs of particles
was performed in order to compute the Lyapunov exponent
of the trajectories. The particles were initially placed at ran-
dom locations in the flow with a distance of 1026 between

FIG. 4. Successive period doubling for a particle trajectory.k50.9; s54.0. ~a! Particle trajectory~left plot! and the corresponding Poincare´ section~right
plot! for St51.10. The subharmonic solution with a spatial period of two.~b! Particle trajectory and the corresponding Poincare´ section forSt51.15. First
period doubling: subharmonic solution with a spatial period of four.~c! Particle trajectory and the corresponding Poincare´ section forSt51.167. Second
period doubling: subharmonic solution with a spatial period of eight.~d! Particle trajectory and the corresponding Poincare´ section forSt51.184. Quasi-
periodic solution.~e! One particle trajectory and the corresponding Poincare´ section forSt51.19. Banded chaotic solution.~f! One particle trajectory and the
corresponding Poincare´ section forSt51.23. Chaotic solution.
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the particles of each pair. All pairs were tracked in time,
simultaneously, and the distance between the particles of
each pair renormalized periodically. The growth of the dis-
tance with time is shown in Fig. 6~c!, averaged for all 32
particle pairs. The diagram indicates a Lyapunov exponent of
0.06662. The variation of the Lyapunov exponent withSt is
shown in Fig. 6~d!. A maximum is observed aroundSt53.

It is important to notice that it is not the process of
period doubling ad infinitum that leads to the final onset of
chaotic motion, but rather the inability of the particle to es-
tablish a consistent direction of motion, which leads to ran-
dom directional switches.

B. Particle behavior at low strain

Our scaling analysis1 for s shows that when the coun-
terrotating streamwise vortices are fully developed and reach
a strength comparable to that of the spanwise Kelvin-
Helmholtz vortices, the value of the dimensionless strain rate
reaches a minimum of.2. The term of ‘‘low strain’’ there-
fore indicates a reduced strength of the strain component of
the fluid motion as compared to the vortex related compo-
nent. Such low strain can only trap very small particles at the
vortex centers. Fors52, the critical value for the Stokes
number1 is Stcr50.0011. Particles withSt50.005 collect

along small, nearly circular trajectories around the vortex
centers, as shown in Fig. 7~a!, similar again to the case of an
axisymmetric Burgers vortex,17 in spite of the present plane
strain. Lin and Corcos6 suggest that the fully developed
streamwise vortices ‘‘feel’’ a radially averaged strain, which
corresponds to Neu’s21 solution for the asymptotic state of a
vortex under plane strain, which shows a similarity with the
Burgers vortex model. Keeping this in mind, it is to be ex-
pected that the particle dynamics in the vicinity of the
streamwise vortices in plane strain resembles that found
around a Burgers vortex.18

As St increases, the closed loops formed by the particles
around each vortex become larger@Fig. 7~b!#, until they
break up and form open periodic trajectories, corresponding
to the above basic solution, with left and right branches@Fig.
7~c!#. No further bifurcations are observed at this lows, as
St is increased and the open trajectories acquire larger am-
plitudes. As shown in Fig. 7~d!, for St values as high as 4.0
the trajectory is still stable.

The transition to the chaotic regime of motion occurs
gradually, as fewer and fewer particles asymptotically ap-
proach periodic trajectories. As shown in Fig. 7~e!, while
most of the particles still collect along the periodic trajectory,
a significant number of them continue to move chaotically,
even for long times. The pattern shown in Fig. 7~e! remains
the same, even if the simulation is carried out to fivefold
larger times. We hence conclude that under the present con-
ditions transition to chaos is the result of a gradual shrinking
of the basin of attraction of the single existing periodic so-
lution.

As St is further increased, the contour of the basic solu-
tion trajectory gradually ‘‘dissolves’’ in the particle distribu-
tion snapshots. Eventually, all particles move chaotically, as
shown in Fig. 7~f! for St54.75.

C. Particle behavior at high strain

High values of the strain parameter correspond to the
early stages of development of the streamwise vortices, when
their strength is a small fraction of that of the spanwise vor-
tices. To study this regime, we employ a value ofs513.

At this intense strain, the critical1 St value is 0.0077. For
St50.005, the accumulation process is shown in the succes-
sion of particle position snapshots in Fig. 8. Initially, all par-
ticles rapidly collect in a narrow band, as shown in Fig. 8~a!.
This band is located slightly above and below the level of the
vortex row. It grows continuously narrower at a slower rate
@Figs. 8~b! and 8~c!# and becomes entrained into the vortex
centers. Subsequently, it is slowly being depleted@Fig. 8~d!#,
as particles are transported towards the vortex cores. The
initial band formation proceeds on a fast time scale, as it is
caused by the strong strain induced fluid velocity. The strain
keeps the particles within the narrowing band, which passes
through the flow stagnation points. The actual particle accu-
mulation at the vortex centers is then accomplished by the
vortex induced velocity. Since the vortices are relatively
weak, this second part of the process is slow. In a real, three-
dimensionally evolving flow, one would expected that during
this time the vortices will strengthen, so that the rotational
velocities that they induce will become stronger.

FIG. 5. Onset of chaotic behavior for a particle.~a! Subharmonic-2 solution
for St51.25. The empty and filled circles mark the left and right rotating
vortices.~b! Particle trajectory forSt51.286. A closed loop solution results
from periodic switching of directions.~c! Particle trajectory,St51.289. In-
termittency: the particle remains attracted by the closed loop trajectory only
for a limited number of periods, then escapes, eventually being recaptured
later by another closed loop, where it is trapped again for a limited number
of periods.
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For St values larger that the accumulation limit, closed
trajectories are formed around each vortex. At high strain
rates, the first bifurcations leading to secondary solutions for
the particle trajectories occur before the closed loops are bro-
ken open, so that the newly generated trajectories are closed
as well. In Fig. 9~a!, two stable closed loops are shown
around each vortex.

As St increases, each of the two loops starts a period
doubling process. In Fig. 9~b!, for St50.25, one of the
closed trajectories is still a simple loop, while the other has
split in two interconnected loops. ForSt50.30 both loops
previously observed in Fig. 9~a! have split into two intercon-
nected loops each@Fig. 9~c!#. The period doubling continues
until the chaotic regime is reached, as shown in Fig. 9~d!.

The opening of the closed chaotic trajectories occurs
aroundSt50.5, as shown in Fig. 9~e!. ForSt50.75,the cha-
otically moving particles still form relatively narrow bands,
due to the strong strain. These bands, shown in Fig. 9~f!,
allow intense spanwise particle transport.

IV. GRAVITY EFFECTS

Under certain circumstances, gravity is expected to lead
to particle accumulation.1 In the following, we will demon-

strate the effects of gravity on the trajectories described in
Section III for the moderate strain parameter values54.0.
The concentration of vorticity is again characterized by
k50.9.

The general observation is that gravity deforms the pre-
viously observed trajectories. Figure 10 shows the evolution
of the trajectory’s shape under increased gravity for
St50.20. At Fr510.0, the effect of the gravity is barely
felt, and the particle trajectory has a shape that is very similar
to that in the absence of gravity@cf. Fig. 2~a!#. Also shown
are the equilibrium points for the particle, which for the
present parameters are unstable and located very close to the
vortex centers and the stagnation points.

For Fr,1.0, the effects of gravity become apparent, as
small secondary loops form near the upper corner of the
trajectory @Fig. 10~b!#. The symmetry with respect to the
center of the vortex is rapidly destroyed by gravity, and the
displacement of equilibrium points from the vortex centers
and flow stagnation points is observable.

The deformation of the initial trajectory continues for
decreasedFr values, until it touches the neighboring trajec-
tory. Even lower values ofFr lead to trajectories that form a
double loop around a pair of counterrotating vortices@Fig.

FIG. 6. The particle dynamics in the chaotic regime. Herek50.9;s54.0. ~a! Chaotic particle trajectorySt51.32. ~b! Particle distribution forSt51.32~left
plot! and the corresponding Poincare´ section in the (y,v)-phase space~right plot!. ~c! Lyapunov diagram forSt51.32. ~d! Variation of the Lyapunov exponent
with the particleSt values. A maximum can be observed atSt53.0.
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FIG. 7. I. Particle trajectories at low strain.~a! s52.0; k50.9; St50.005. Particles collect along closed, nearly circular orbits.~b! s52.0; k50.9;
St50.1. Increased inertia enlarges the collection orbits. While similar in size to those shown in Fig. 2~a! for s54.0, the present orbits form at half theSt
value, and they are rounder in shape.~c! s52.0;k50.9;St50.25. Particles collect along an open periodic trajectory corresponding to the basic solution.~d!
s52.0;k50.9;St54.0. All particles collect along one open unique trajectory corresponding to the basic solution. II. Particle dispersion: the onset of chaotic
behavior at increased particle inertia.~e! s52.0; k50.9;St54.6. While a number of particles still collect along the open, unique trajectory, other particles
do not asymptotically approach any periodic trajectory.~f! s52.0; k50.9; St54.75. No coherent solution exists for the trajectories, all particles move
chaotically.
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10~c!#. The break-up due to increased gravity is fundamen-
tally different from the break-up due to increased inertia ob-
served earlier. There the symmetry of the trajectory with re-
spect to the vortex center was fully preserved through the
bifurcation, which led to a periodic open trajectory. Increased
gravity, on the other hand, results in trajectories that are still
closed, and no longer symmetric with respect to the vortex
centers. However, the symmetry with respect to the vertical
axis is maintained. By further increasing gravity, we reach a
threshold beyond which the condition1 St/Fr 2.k is satis-
fied, so that the particles accumulate at the now stable equi-
librium point on thez50.5 axis just below the row of vorti-
ces @Fig. 10~d!#. Based on our earlier stability results,1 this
behavior is to be expected, as no other stable equilibrium
points exist for the present parameters.

The deformation of an open, periodic trajectory under
gravity is depicted in Fig. 11 forSt50.30. ForFr510 @Fig.
11~a!#, the trajectory is hardly affected by gravity@cf. Fig.
2~c!#. At Fr51, it has undergone a bifurcation to a closed

double loop trajectory@Fig. 11~b!#, which for even lowerFr
is further deformed@Fig. 11~c!#, until the accumulation con-
dition St/Fr 2.k is satisfied and the particle comes to rest at
the stable equilibrium point@Fig. 11~d!#.

For particles characterized by largerSt values, the phe-
nomena associated with increased gravity levels become
more complex. As an example, we present the modification
of an initially subharmonic-3 particle trajectory by gravity.
Figure 12~a! shows the trajectory, along with the associated
Poincare´ section, for low levels of gravity (Fr510) and
St50.78. The Poincare´ section shows three distinct points,
confirming the subharmonic-3 nature. As gravity is in-
creased, the trajectory is deformed, and its periodicity is al-
tered. In Fig. 12~b!, for Fr51.72 the trajectory is quasi-
chaotic. The Poincare´ section shows a large number of
points, but the trajectory is limited to a small fraction of the
computational domain. For further increased gravity, corre-
sponding toFr51.68, the trajectory becomes periodic again,
displaying a spatial period of 2, as shown in Fig. 12~c!. We

FIG. 8. Accumulation of particles at the center of the counterrotating vortices, under conditions of high strains513.0. HereSt50.005. ~a! t50.1275. All
particles are rapidly collected within a narrow band along the row of vortices.~b! t50.252. The band of particles is narrowing continuously under the
influence of strain in the flow field.~c! t50.752. The band of particles has been narrowed to a thin line. The particles are gradually entrained into the vortex
centers.~d! t51.752. The band is gradually depleted of particles which accumulate at the center of vortices.
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FIG. 9. Particle dispersion at high strain.~a! s513.0; k50.9; St50.2; All particles collect along two closed, periodic trajectories around each vortex.~b!
s513.0;k50.9;St50.25. A bifurcation leads to a period doubling of one of the closed loops.~c! s513.0;k50.9;St50.30. For these parameters, both of
the closed loops are of subharmonic nature.~d! s513.0;k50.9;St50.35. Mutliple bifurcations allow for the production of a band of trajectories until the
chaotic regime is reached. However, particle dispersion is limited to a narrow closed chaotic region.~e! s513.0;k50.9;St50.5. For increased inertia, the
closed, chaotic trajectory beaks up into an open chaotic trajectory, with left and right branches.~f! s513.0; k50.9; St50.75. The chaotic trajectory is
widening with increased particle inertia, forming bands of particles whcih allow intense spanwise transport of material.
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thus find that, under increasing gravity, the initial sub-
harmonic-3 trajectory is transformed into a subharmonic-2
trajectory, after passing through quasi-periodic intermediate
state.

The alteration of the trajectory form continues with the
closing of the trajectory, at a gravity level corresponding to
Fr51.15. In Fig. 12~d!, the periodic closed trajectory is
shown in a plot extending over eight counterrotating vortex
pairs. The closed loop extends over four counterrotating vor-
tices, while maintaining symmetry with respect to the verti-
cal line midway between the vortices of the inner pair.
Slightly increased gravity levels (Fr51.10) render the
closed loop unstable and generate a random motion of the
particle. By further increasing gravity, we eventually again
reach a threshold beyond which the accumulation criterion
St/Fr 2.k is satisfied, so that the particle comes to rest at a
stable equilibrium point@Fig. 12~f!#.

V. STATISTICAL MEASURES FOR THE DISPERSION
OF HEAVY PARTICLES

A. Dispersion in the absence of gravity

In the following, we will present statistical information
regarding the particle concentration fields generated by coun-
terrotating strained vortices. In order to obtain this informa-
tion, we carried out simulations with 1,000 particles for vari-
ousSt values in the range of 1.5,St,25. The particles were
initially randomly seeded in the upper half of the computa-
tional domain and then tracked for 5000 time steps. To avoid
any effects due to the initial conditions, the particle positions
were recorded only for the last 1,000 time steps. Since for
the present range ofSt the particle motion is chaotic, the
106 positions recorded over time for 103 particles have the
same distribution as the positions of 106 different particles
recorded in an instantaneous snap-shot. A two-dimensional

FIG. 10. The effect of gravity on a particle trajectory at moderate strain. Flow parameters:k50.9;s54.0. The circles indicate the location of the equilibrium
points. ~a! St50.20;Fr510.0. Closed loop trajectory around one counterclockwise rotating vortex.~b! St50.20;Fr50.90. Increased gravity deforms the
shape of the closed trajectory and breaks its symmetry.~c! St50.20;Fr50.60. Closed trajectory around both counterrotating vortices.~d!
St50.20;Fr50.47. The particle is driven towards the equilibrium position.
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probability distribution functionCpdf(z,y), equivalent to the
particle concentration field, can be computed from the 106

recorded locations by dividing the computational domain
into square bins of sizeD50.01 and counting the number of
particles in each bin. A typical pdf is shown in Fig. 13 for
St525. Darker gray shades indicate higher particle concen-
trations, or, equivalently, a higher probability to find a par-
ticle in a certain bin. In order to obtain information on the
cross-stream particle distributionD(y), we integrate in the
z-direction and normalize in such a way that the concentra-
tion would be unity if the particles were distributed equally
betweeny521 andy51. This normalized distributionD is
shown in the right half of Fig. 13.

The ability of the counterrotating vortices to eject par-
ticles can be quantified by the widthd of the cross-stream
distribution, which represents the distance between the ex-
treme locations at which particles can still be found, as indi-
cated in Fig. 13. A further important qualitative aspect of the
dispersion is its non-uniformityg, which is expressed as the

ratio of the maximumDmax of the cross-stream distribution
and its average valueDavg between the extreme locations

g5
Dmax

Daverage
. ~10!

The variation of the cross-stream distribution widthd as a
function ofSt is shown in Fig. 14~a! for the flow parameters
k50.9 ands54.0. By comparing the data with the dotted
line, whose slope is 1/4, we find the approximate scaling law,

d;St1/4. ~11!

Similarly, Fig. 14~b! shows the variation of the cross-stream
distribution width d as a function of the strain parameter
s, for St510 andk50.9. By again comparing with straight
lines of given slopes, we find a relationship,

d;sp, ~12!

where the slopep is in the range21/3,p,21/4.

FIG. 11. The effects of gravity on particle trajectory at moderate strain. Flow parameters:k50.9;s54.0. ~a! St50.30;Fr510.0. Open, periodic trajectory
corresponding to the basic solution.~b! St50.30;Fr51.0. Gravity deforms the shape of the basic trajectory into a closed double loop trajectory around a pair
of counterrotating vortices.~c! St50.30;Fr50.80. Increased gravity further deforms the double loop trajectory.~d! St50.30;Fr50.57. The particle is driven
towards the equilibrium position.
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The above scaling laws can be explained on the basis of
a simplified model, for which the particle motion can be
found analytically. This model consists of one-dimensional
particle motion in a modified fluid velocity field. Specifically,
the one-dimensional fluid velocity field contains the strain
component plus a forcing component intended to model the
effect of the vortices. This forcing component always points
in the direction of the particle motion, i.e., it changes direc-
tion when the particle changes its direction. In this way, it
emulates the upwelling and downwelling regions through
which the particle travels alternatingly. The strength of the
forcing velocityB is constant and will be specified below.
The fluid velocity then has the following form:

v f5H 1B2syp , if vp.0,

2B2syp , if vp,0.

This approximation gives rise to a linear problem for the
particle motion. In order to obtain an expression for the dis-
tribution width d in this model problem, we need to deter-

FIG. 12. The effects of gravity on a particle trajectory. I. Change of period of a subharmonic solution.k50.9;s54.0. ~a! Particle trajectory and the
corresponding Poincare´ section forSt50.78;Fr510.0. Subharmonic solution with a spatial period of 3.~b! Particle trajectory and the corresponding Poincare´
section forSt50.78;Fr51.72. Quasi-chaotic solution.~c! Particle trajectory and the corresponding Poincare´ section forSt50.78;Fr51.68. Subharmonic
solution with a spatial period of 2. II. closing the periodic subharmonic-2 trajectory, onset of chaotic behavior, and accumulation. Herek50.9;s54.0. ~d!
Particle trajectory, forSt50.78;Fr51.15. Periodic closed trajectory, with vertical symmetry axis.~e! Particle trajectory, forSt50.78;Fr51.10. Chaotic
motion with random direction changes.~f! St50.78;Fr50.92. The particle comes to rest at the stable equilibrium point.

FIG. 13. The probability distribution function for particle concentration
~left! with corresponding cross-stream particle distribution~right!, for
St525;k50.9;s54.0.
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mine the maximum locationy0 that the particle reaches dur-
ing periodic motion. By symmetry, the minimum location is
2y0 , so that the distribution widthd is 2y0 . To obtainy0 ,
we assume that the particle starts fromy0 with zero initial
velocity. The value ofy0 can then be obtained by requiring
that the minimum location of the particle be2y0 . The re-
sulting equation of motion for the particle is

ÿp5
1

St
~2B2syp2 ẏp!,

~13!
ẏp~ t50!50; yp~ t50!5y0 .

We are interested in the chaotic motion of fairly heavy par-
ticles, so that we can assumeSt.1/(4s). The solution then
takes the form

yp5~y02c!e2t/2Stcos~vt !1
~y02c!

2Stv
e2t/2Stsin~vt !1c,

~14!

c52
B

s
v5

A4s/St21/St2

2
.

We now specify the constant model fluid velocityB as the
average of the actual vortex-induced velocity between2y0
andy0 . We obtain

B5
k

4y0
,

which yields

ymin52~y02c!e2p/2Stv1c.

Since

ymin52y0,

we obtain

y0
25

k

4s S 11e2p/2Stv

12e2p/2StvD . ~15!

The exponential terms in the above equation can be ex-
panded for large values ofSt to obtain

d52y05S 2kp D 1/2~St!1/4~s!2 1/4.

We thus arrive at a scaling law for the distribution width
which is in good agreement with~11! and~12!, as far as the
dependence onSt ands is concerned. Notice, however, that
both our full model for the braid region, as well as the
present simplified model, employ a linear strain induced ve-
locity that grows withy without limits. Hence, far away from
the vortex row this is not a very accurate representation of
the actual three-dimensional mixing layer. Consequently, the
above scaling laws~11!, ~12! can be expected to hold only if
d is not too large, i.e., forSt not too large.

Figure 14~c! shows the variation of the non-uniformity
measureg as defined by~10! with St. Its non-monotonic
dependence onSt indicates that at various intermediate val-
ues ofSt the particle distribution in the braid region becomes
quite nonuniform. This is also reflected in the pdf plot of Fig.
13. We notice several dark streaks which indicate larger par-
ticle concentrations. These are due to the fact that the ran-
dom switchbacks occur at preferred locations within the spa-
tial period, and that the particles have small velocities when
they undergo a directional reversal, so that they spend a rela-
tively long time near those locations.

FIG. 14. ~a! The variation of the dispersion widthd as a function ofSt in
the absence of gravity fork50.9 ands54.0. For comparison, the dotted
line has a slope of 1/4.~b! The variation of the dispersion widthd as a
function ofs in the absence of gravity fork50.9 andSt510.0. The dotted
lines have slopes of21/4 and21/3. ~c! The variation of the nonuniformity
g as a function ofSt in the absence of gravity. Herek50.9,s54.0.
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B. Gravity effects

1. Modification of the particle dispersion field

While we showed earlier that periodic open particle tra-
jectories are altered and eventually broken up and closed by
increasing gravity, the chaotic trajectories, with their random
switches of direction, can display more complex effects un-
der gravity. It is to be expected that under gravity the entire
cross-stream distribution function will be displaced towards
negativey-values and undergo an asymmetric deformation.

Typical changes in the dispersion field for particles char-
acterized by high inertia (St525) are presented in Fig. 15.
For relatively weak levels of gravity corresponding toFr58
@Fig. 15~a!#, the pdf plot as well as the cross-stream distri-
bution function show a slight downward displacement. In
addition, both show a slight asymmetry. However, the dis-
persion widthd remains nearly unchanged by the present
weak level of gravity.

A pronounced effect of gravity can be observed for
Fr57 in Fig. 15~b!. A large number of particles have col-
lected along statistically preferred trajectories, visible in the
form of coherent dark streaks in the two-dimensionalCpdf

image. While these do not affect the dispersion width, they
result in significant non-uniformities in the cross-stream dis-
tribution function. As gravity increases further toFr56, the
preferred trajectories disappear again@Fig. 5~c!#, while both
the pdf and the cross-stream distribution function are shifted
to lower y-values. The dispersion width remains unchanged.

The above simulations indicate that for constantSt the
dispersion widthd does not vary with gravity, while the pdf
is displaced downward. This displacement can be quantified
by tracking the position of the midpointym between the two
y-locations at which the cross-stream distribution reaches
zero. Further information about the degree of asymmetry can
be obtained by comparingym to ycg , which denotes the
‘‘center of mass’’ of the cross-stream distribution profile

ycg5
*2`

` D y dy

*2`
` D dy

.

In the absence of gravity, and hence asymmetry, both quan-
tities are zero. As gravity increases, a growing difference
betweenym andycg indicates a larger degree of asymmetry.
This is shown in Fig. 16~a! for s54, k50.9, and the twoSt
values of 5 and 25, respectively. ForSt55, the difference
betweenym and ycg remains small with increasing gravity.
ForSt525, this difference increases with gravity, suggesting
a growing asymmetry.

Figure 16~b! shows the variation of the non-uniformity
with Fr for the same parameters. Whileg is relatively low
for St55, more pronounced variations occur forSt525,
with a maximum of over 40% forFr57. This situation cor-
responds to that shown in Fig. 15~b!, when preferred trajec-
tories exist.

C. Particle accumulation

As shown in part I of the present investigation,1 once the
accumulation criterion

FIG. 15. Probability distribution function and the corresponding cross-
stream distribution profile, for flow parametersk50.9,s54.0 and increased
gravity. ~a! St525,Fr58.0;Cpdf image~left! and cross-stream distribution
profile ~right!, show no pronounced non-uniformities.~b! St525;Fr57.0.
Dark streaks in theCpdf image indicate coherent particle trajectories, with
correspondent sharp peaks in the cross-stream, distribution profile.~c!
St525,Fr56.0. Smooth distribution profile showing visible asymmetry due
to stronger gravity.
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St

Fr 2
.k ~16!

is satisfied, unconditionally stableaccumulation points
can exist in the flow-field, as opposed to the unstable or
conditionally stable equilibrium points that are always
present. Figure 17 displays several such cases of particle
accumulation. In Fig. 17~a!, the flow parametersk50.9 and
s54.0 establish only a single accumulation point for par-
ticles withSt525 andFr55.25, ass.scr , wherescr de-
notes the critical strain valuepk. We haveSt/Fr 250.907,
which is only slightly above the accumulation threshold of
0.9. Both from the pdf image and from the cross-stream dis-
tribution, one finds that a large number of particles have
accumulated at the equilibrium point located on the symme-
try line z50.5 just belowy50. Here a small dark region in
the pdf image corresponds to a large spike in the cross-
stream distribution function.

In Fig. 17~b!, k50.9 ands52. Since the strain value is
now subcritical, the flow parameters correspond to the case
when triple equilibrium points can exist.1 The terminal ve-

FIG. 16. ~a! The variation of the middle-section of the particle dispersion
field ym , and the corresponding ‘‘center of mass’’ of the fieldycg , with
increased gravity~decreasingFr values! for St55 andSt525. The flow
parameters arek50.9 ands54.0. ~b! The variation of the non-uniformity
g with gravity ~decreasingFr values! for St55 and St525. The flow
parameters arek50.9 ands54.0.

FIG. 17. Particle accumulation: probability distribution function and the
corresponding cross-stream distribution profile.~a! St525,Fr55.25,
k50.9, ands54.0. Particle accumulation occurs at the unique stable equi-
librium point. ~b! St525,Fr55.25,k50.9, ands52.0. Particle accumula-
tion occurs at two stable equilibrium points. Significantly stronger accumu-
lation can be observed at the lower equilibrium point.~c!
St55,Fr52.35,k50.9, ands54.0. Besides accumulation at the equilib-
rium point, strong collection of particles occurs along preferred trajectories.
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locity is St/Fr 250.907, which is equal to the value for Fig.
17~a!. Under these conditions, accumulation occurs at two of
the three equilibrium points. The figure indicates that accu-
mulation is considerably more pronounced at the lower one
of the two points.

In Fig. 17~c!, the flow parameters arek50.9 ands54,
corresponding again to the case when only one single accu-
mulation point can exist. For the particle parametersSt55
and Fr52.35, the terminal velocitySt/Fr 250.905 is
slightly above the accumulation limit. In this case, the lower
St55 value allows for the presence of preferred trajectories,
along which many of the particles collect. This results in
strong non-uniformities in the cross-stream distribution func-
tion, along with the accumulation spike.

In the accumulation cases presented above, the accumu-
lation criterion~16! is exceeded only slightly. Consequently,
many of the particles do not come to rest at the accumulation
point, and instead continue their chaotic motion. Additional
simulations conducted for terminal velocities that are 10%
higher than the accumulation threshold show all particles
accumulating. The condition~16! is therefore a necessary,
but not sufficient, condition for accumulation of all particles
in the flow field at the equilibrium point.

VI. CONCLUSIONS

The present computational investigation regarding the
dynamics of heavy particles in the braid region of a three-
dimensionally evolving mixing layer complements the
mostly analytical results given in Part I.1 There we addressed
questions regarding the existence and linear stability of equi-
librium points. However, when the interest focuses on ques-
tions regarding the dynamics of particles for which equilib-
rium points do not exist, or the size of the basin of attraction
of those points, we have to rely on numerical simulations of
the full nonlinear system. These issues are addressed here.

As was shown in Part I, only particles with fairly small
values ofSt can be stably located at the centers of the
stretched vortices. However, here we find that even for sig-
nificantly larger values ofSt, particles remain trapped on
closed loop trajectories around individual vortices. Only be-
yond a further critical value ofSt do these loops break open,
so that particles can move to neighboring vortices. This
threshold value ofSt depends both on the dimensionless
strain rates, as well as on the dimensionless level of gravity
expressed by the Froude numberFr . It is of interest to note
that beyond this threshold particles can travel on one of two
open trajectories, each of which does not reflect the symme-
try of the underlying fluid velocity field. In other words,
there exists aspanwise transport mechanismfor the par-
ticles.

With increasingSt, we observe a gradual transition to
chaotic particle motion that involves symmetry breaking and
period doubling bifurcations, as well as intermittency. De-
pending on the set of dimensionless governing parameters,
this transition can occur below or above the thresholdSt
value for the existence of open trajectories. The chaotic re-
gime is characterized by random directional reversals of the
particle motion, which frequently occur in the upwelling re-
gions. Here gravity can roughly balance the viscous drag

force, resulting in small particle velocities. For the chaotic
particle motion regime, we investigated in some detail the
two-dimensional probability distribution function as well as
the averaged cross-stream distribution. Both of these show
some non-uniformities, indicating the existence of regions
and trajectories preferred by the particles. The degree of non-
uniformity depends on the values of the governing param-
eters in a non-monotonic fashion. By means of a simplified
one-dimensional model that could be solved analytically, we
were able to derive scaling laws for the dependence of the
cross-stream distribution width on the dimensionless strain
rate s and onSt. These scaling laws agree well with the
numerical data.

The influence of gravity leads to a breakup of the open
trajectories into closed loops again, thereby disabling the
spanwise particle transport. Furthermore, it shifts the particle
concentration field in the direction of gravity, without affect-
ing the cross-stream distribution width. Beyond a critical
level of gravity, unconditionally stable accumulation points
exist. If this critical level is only slightly exceeded, many but
not all particles collect at these points. Only for even stron-
ger gravity do all particles come to rest at the accumulation
points.

It should be pointed out that the present study employs a
simplified steady quasi-two-dimensional fluid velocity field,
in order to gain detailed insight into the effects that stretched
counterrotating vortices have on the dynamics of heavy par-
ticles. A real mixing layer is of course both three-dimen-
sional and unsteady. As a result, the degree to which the
mechanisms studied in isolation here will be observable in
such unsteady three-dimensional flows, will depend, for ex-
ample, on the relative time scales of the particle motion and
the transient evolution of the fluid velocity field. Clearly,
fully three-dimensional numerical simulations and experi-
ments are needed in order to investigate these issues. How-
ever, the present observations and results can guide the
analysis and interpretation of the data obtained from such
future investigations.
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