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A computational investigation of the nonlinear dynamics of heavy particles in a row of
counterrotating strained vortices is presented. By tracking the particles numerically in the
quasi-two-dimensional fluid velocity field, information is obtained on the nature of their trajectories,
as well as on probability distribution functions and potential accumulation regions. The particle
behavior is discussed as a function of the dimensionless strain rate, the particle Stokes3imber
and the dimensionless gravity parameter Only for very low values of thé&t can the particles
accumulate at the vortex centers. For moderate valueStothey remain trapped on closed
trajectories around the vortex centers. IncreaShigads to periodic open trajectories that allow for
spanwise transport of the particles. Further bifurcations lead to the generation of multiple
trajectories, as well as to subharmonic solutions. Eventually, intermittent and chaotic particle
dynamics are observed. In the chaotic regime, a simplified flow model is employed in order to
derive various scaling laws for the particle concentration field. For strong levels of gravity, the
accumulation of large numbers of particles is observed in the upwelling regions predicted in part |
of the present investigatiofB. Marcu and E. Meiburg, Phys. Fluidg 715 (1996]. © 1996
American Institute of Physic§S1070-663(96)00403-3

I. INTRODUCTION of attraction of stable equilibrium points, as well as about the
nonlinear particle dynamics and related concentration fields
In Part | of the present investigatidnye introduced an  should stable equilibrium points not exist. We address these
analytical model of the counterrotating strained streamwiséssues by means of numerical simulations of the nonlinear
braid vortices commonly found in three-dimensionally de-particle dynamics for a variety of different conditions. The
veloping plane mixing layers.® These flow structures are nature of these simulations will be described in Section II.
expected to result in a significant modification of the domi-The calculations exhibit a rich dynamical behavior of the
nant two-dimensional particle dispersion mechaniém$, particles, with qualitative differences for low, intermediate,
which are known to lead to the formation of bands of par-and high strain intensities. In Section 1ll we will describe
ticles in the braid region. We investigated analytically thethese results in the absence of gravity, while in Section 1V
circumstances under which heavy patrticles can be trapped wte will address the ways in which gravity modifies the par-
the centers of the strained vortex structures, and whether dicle dynamics. Dispersion of heavy particles in the fully
not these vortices can lead to an accumulation of particles ighaotic regime will be analyzed in Section V, along with
certain regions of the flow field. One of the main findings gravity effects on the particle dispersion field, and a descrip-
was that, in the absence of gravity, only particles below dion of the particle accumulation process. In Section VI we
critical value of the Stokes numb@&t,,;; can be trapped at Will present some conclusions from the present investigation.
the vortex centers. For larger values3# the vortices’ ten-
dency to eject heavy particles overcomes the strain’s ability
to trap them, so that accumulation at the vortex centers is not
possible. However, in the presence of gravity multiple equi-
librium points with different stability characteristics can ex- |l NUMERICAL SIMULATIONS
ist. In particular, for a horizontal mixing layer and strong ) o ) ) o
gravitational effects, unconditional accumulation can occur ~1h€ present investigation of particle dispersion in the
in the upwelling regions midway between the streamwiser@id region of a plane mixing layeFig. 1) is based on the
braid vortices. analytical flow model developed by Marcu and Meibtirg.
While in Part I, we addressed the existence and lineaf "€ non-dimensional fluid velocity fieldw,vs) in the
stability of equilibrium points in an array of counterrotating r0SS-Streanz,y-plane is expressed by the relationships
streamwise vortices, we will now focus on the nonlinear dy-
namics of heavy particles in such flows. In particular, it is of

interest to obtain information regarding the size of the basin Wee —0.5 sinf 27 (y—Yo)]
- g
! costi2m(y—yo)]—kecod 2m(z—2y)]
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St of a particle will vary as the characteristic velocity de-

oal I } } } i l } { l | l t } { ‘ ! k # 1 ] scribing the strength of the streamwise vortiag#/ or their
' spatial spacing\, change during the evolution of the flow
oaf {414 AR RR SR T ! SRRE field. As is well known Stindicates the ratio of the particle’s
02 i H / PR EERERNNNN t t t aerodynamic response time and the characteristic fluid flow
N RN NN NN S time scale, whileFr expresses in dimensionless form the
S SN T NN R relative importance of inertial and gravitational forces. s
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- of ! Ix /l/l“ Pttty ‘l\l\l\ b decreases, gravity bec_omes more important _for thg dynami-
A AL AR BN PR R cal behavior of the particle. As in Part | of this investigatfon,
Sl SN N R RN S NN we only consider the effects of inertia, drag, and gravity.
P 7 ,f f ; ; ; ; } ; § 2 : NN Consequently, the results can be expected to hold in the limit
porrnd f ; frrn § NN of large particle to fluid density ratios. The order of magni-
O3ttt BEREREE tude analysis conducted by Lazaro and LasHeirsdicates
o4 1 that in this limit the effects of flow nonuniformity, virtual
mass, Basset history force, and Saffman lift force are negli-
05, 0.2 04 06 08 1 gible. In order to investigate the influence of higher order

N

effects, we took into account a nonlinear drag law in our
earlier study of two-dimensional mixing layersWe found

that the particle dynamics do not change qualitatively, but
that they may be shifted to slightly different valuessif We
assume the same would hold true in the present case if we
included the above higher order effects in our simulations.

FIG. 1. Fluid velocity field for the row of counterrotating vortices in the
cross-stream,z,y)-plane fore=4.0 andk=0.9.

ksin 27 (z—zp)]

vi=0.5 cosh 2 (y—yo) | — kcod 27(z— )] _ Equ_ations(3) and (4) are written as alrllz?{]slir?ear. four-
dimensional system far,, y,, w,, andv,,” " yielding
5 ksin2m(z—2,)] _
cos2a(y—y,)]—keo§2m(z—2)] 7’ X=F(x), @
2 where
Here, @,Y0) and (z;,y;1) denote the locations of the vortex e r W .
centers, which we place &.25,0 and(0.75,0. The flow is P P
periodic in the spanwise-direction, with a period equal to Yp Up
the unit width of the computational domain. The velocity 1 ey,
V= (w,,v,) and locationx, of a small spherical particle of X=lwp [ FOO=| g(Wi—wp)+ 3] 8
diameterd in the fluid velocity fieldU=(ws,vs) are then 1 o
governed by the dimensionless equatidns v, Q(Uf_vp)ﬂ:_?yz
dv, 1 1 - - - -
dt St le:xp_vp) T 2% G Here ey, and ey, represent the- and y-components of the
unit vector in the direction of the,y-projection of the grav-
%:V 4) ity vector. This system of ordinary differential equations,
dt P with appropriate initial conditions specified for 0, consti-

Here e, represents the unit vector in the direction of thetutes a nonlinear dissipative dynamical system. We advance

projection of gravity on thez,y-plane. Lengths, time, and the System of equation&) and (8) in time by a standard

velocities were rendered dimensionless by the characterisf@urth order Runge-Kutta method. In order to obtain detailed

velocity AW, which is related to the strength of the stream-nformation on the short-time and long-time aspects of the

wise vortices: and by the spanwise wavelengih of the particle motion, three different types of simulations are per-

row of counterrotating streamwise vortices. The dimensionformed: - _ o _
During the initial stages of the investigation, the motion

less parameters . .
of 10,000 particles was computed simultaneously for moder-

Si— dZPpAW ) ately long time periods, and for a variety of different combi-
18p;vih, nations ofk, o, St, andFr. The particles were seeded ran-
and domly over the whole or upper half of the computational
box, with their initial velocities equal to the local fluid ve-
AW locity. Subsequently, they were tracked in time, and their
Fr= \/ﬁ (6) instantaneous positions recorded at different time levels.
z

Snapshots of the particle distributions at different times dem-
onstrate their tendency towards accumulation along specific
denotes the kinematic viscosity of the fluid agpdepresents attractors or in certain regions. The large number of particles
the length of the projection of gravity on tlzgy-plane. No-  in each simulation maximizes the probability that all existing
tice that, as a result of the above scaling, the Stokes numbeand stable attractors will be identified.

are the Stokes and Froude numbers, respectively. kere
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During the following stages, small sets of 10 to 50 par-rollers. Using the scaling analysis by Marcu and Meibtieg,
ticles were simultaneously tracked for longer times, in ordewvalue of 0=13 is obtained for the non-dimensional strain
to analyze the long-time behavior of the particles in morefactor.
detail. A typical, moderate dimensionless strain value is based

In order to analyze changes in the attractors, i.e., in th@n the situation when the streamwise vortices reach half of
particle trajectories, as a function of the dimensionless pathe spanwise vortices’ strength. The value corresponding to
rameters, simulations using only one particle were carriedhis case isr=4.
out. The initial position of the particle, along the lige=0,
was found after several tests, such that the particular desired
tr_ajecto_ry cou!d be Captur_e(_:I_. Then,_ _repeated one_—partlclg\_ Particle behavior at moderate strain
simulations using constant initial conditions, and varying one

of the particle parameteiSt or Fr, enabled us to study the Here the flow parameters ake=0.9 ando=4.0. Under
particular effects of particle inertia and gravity on the naturethese conditions, the critic&t value for particle accumula-
and form of the trajectory. tion' is

Details of the computational procedures used to obtain
statistical data are provided in Section V. 20

Repeated simulations were conducted to test the accu- Stc,:4[277k/(1_ K= o2 =0.0023.
racy, and to choose the time step size. Since the particle

parameter§_t and Fr were varled_ over a large range of Only below this critical value, accumulation at the center of
values, the time step was also varied, in orc_ier to ensure ﬂ}%e vortex is possible. This critical value t was confirmed
accuracy of the simulation. The range of time step Valueﬂumerically by carrying out simulations for slightly smaller
was 0.00&At=<0.05. Small time steps were used for small and slightly larger values dBt, respectively. For larger, but

St values, and for S”OT‘Q gravity cases corresponding 'Qill moderate values oBt, Figs. 2a)—(c) show the instan-
small Fr values. The validity of the results was checked bytaneous positions of 10,000 particles initially randomly

repgating the simulgtion With. the time step size cut in half. Inseeded in the upper half of the computational box, with ini-
partlcular, qbsgrvatlops of blfurcatlgps, as .weII as computaﬁal velocities equal to the fluid velocity. The computations
t!ons of Poincae sections were venﬂ_ed using a very small are run for a period of time long enough to allow for the
t!me step OfAt:O'.()Ol' T he a_symptonc accumulation OT Pa harticles to approach their asymptotic and stable trajectory.
tl_cles a_Iong cer_tam trajector|e§ was tested by extending th Il of the randomly seeded particles characterized by
simulations to fivefold longer imes. St=0.2 collect along closed trajectories around the vortices,
as shown in Fig. @). These closed patrticle trajectories are
IIl. LONG TERM DYNAMICAL BEHAVIOR OF due to a balance between viscous d_rag ant_j inertial forces
PARTICLES IN THE ABSENCE OF GRAVITY only, as opposed to those observed in previous stiftfigs
_ _ _ _ ~applicable to the main co-rotating spanwise vortices, where
_As a first step, we investigate the solutions for particlethe centrifugal forces were balanced by the pressure forces in
trajectories in the absence of gravity, focusing on the balancghe flow field around the vortices. In the present case, the
between the viscous and inertial forces on the particle. Inerclosed orbits are characterized by the balance between the
tial properties, expressed by the Stokes nuneralter the  centrifugal(inertial) forces, which tend to eject the particles
trajectory of the particle from that of a fluid marker by con- out of the vortex cores, and the viscous drag force caused by
tinuously generating a phase shift between the particle mathe strain, which brings the particles back to the vortex row.

tion and the forcing fluid velocity field. This situation is similar to the dynamics of heavy particles in
Corcos and Sherméh derive the scaling law for the a Burgers vortex/ where they collect along circular trajec-
dimensional strain parameter, tories around the vortex centér.
3AU As the inertial forces become more important, a ten-

o= , (9 dency of the particles to break-up the closed loop trajectory
A becomes evident by small overshoots at the corners of the
whereAU is the velocity difference between the upper andloops, as shown in Fig.(B) for St=0.23. The overshoots
the lower layer streams of the mixing layer, and is the  become longer aStincreases, until they touch the neighbor-
spacing between the Kelvin-Helmholtz rollers. By combin-ing trajectory, which has an opposite sense of rotation. At a
ing this relationship with the experimental observation bycritical value ofSt, the closed loops open, and a spatially
Bernal and RoshkKathat the spacing between the streamwiseperiodic solution emerges. The spatial period is unity, which
vortices\ ,~ 2\, Marcu and Meiburfshowed that the non- is equal to that of the fluid velocity field. Figuréc2 shows
dimensional strain parameter can only take values above the instantaneous particle positions #r=0.30. All of the
the minimum ofo=2, which corresponds to fully developed, particles collect along the period one solution, which has two
strong streamwise vortices. A typical value for the earlysymmetric branches, allowing for particle transport either to
stages of the streamwise vortices’ growth can be given basetie left or to the right of the computational box. Notice the
on the experimental results of Bell and MeRthlere their symmetry of each of the two branches with respect to the
measurements show the circulation of the streamwise vortisections above and beloy+= 0. This symmetry is expressed
ces to be approximately ten per cent of that of the spanwisby the fact that if the section abowe=0 of a branch is
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FIG. 2. Particle trajectories in the absence of grauty,

i) St=0.40. A symmetry breaking bifurcation leads to a second stable particle trajego8t=0.56. The

trajectories with a spatial period equal to un

0.67. Unique basic solution for the particle trajectory. The two trajectories have merged into a

single, stable ondg) St=0.78. A bifurcation allows for two different types of solutions for particle trajectories: a basic sol(@nod unity and a

two trajectories are distinct, with different amplitud€s. St

subharmonic solution with spatial period equal to thfagSt=0.93. Basic solution only. The two different trajectories have again marged into a unique stable
one. (i) St=0.95. Agan , a bifurcation allows for the existence of two different solutions for particle trajectaories: a basic sépgi@md unity and a

subharmonic solution with spatial period equal to two.
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FIG. 2. (Continued)

of the samebasic solution.Physically, this solution demon-
strates that, in spite of the symmetries of the fluid velocity
field, the particle’s inertia enables it to regularly escape from
each vortex by oscillating in the vertical direction, and
thereby to continue to travel along its periodic path in the
spanwise direction. In other words, the particle’s inertia al-
lows it to break the symmetry of the fluid velocity field,
thereby enabling spanwise particle transport in the plane
mixing layer.

As we increasést further, we observe a series of bifur-
cations of the above basic solution, cf. Fig&d)2(i). These
bifurcations can lead to the emergence of multiple stable
period one trajectories, or to the appearance of subharmonic
trajectories through period doubling. F6t=0.40, a second,
stable solution appears as a result of a symmetry-breaking
bifurcation, as shown in Fig.(d). Now the sections above
y=0 of a solution are no longer symmetric to those sections
belowy=0 of the same solution. However, through flipping
and shifting, the two trajectories along which the particles
travel in the same direction can still be shown to have iden-
tical shapes. A&tis further increased, the asymmetry of the
y>0 and they<0 sections of the same solution becomes
more pronounced, cf. Fig.(® for St=0.56. When we in-
creaseStfurther to 0.67, the trajectories merge, and ybe0
andy< 0 sections of the same trajectory have become sym-
metric once again, cf. Fig.(B.

As we further increasé&t, subsequent bifurcations of
different kinds produce a variety of secondary solutions. Fig-
ure Zg) shows particle trajectories obtained f8it=0.78.
Through visual inspection of the trajectories, one can iden-
tify the left and right branches of two coexisting solutions:
the basic solution with a spatial period of one, and a new
periodic solution with spatial period of three. We call this
new solution asubharmonie3 one, and generally solutions
with spatial periodh subharmonia.

The subharmonic-3 solution is stable only over the lim-
ited range 0.78 St<0.926. By further increasingtto 0.93,
the subharmonic-3 solution can no longer be observed, and
only the basic solution is stable, as shown in Figh)2

A third bifurcation is observed fot between 0.93 and
0.95. In this case, the newly generated secondary solution is
a subharmonic-2 solution shown with both left and right
branches in Fig. @), along with the basic solution.

For St>1, the complexity of the particle dynamics
grows rapidly as it becomes increasingly dominated by iner-
tial forces. As will be demonstrated below in detail, two
main processes can be identified: firstly, additional sub-
harmonic-2 solutions are created by successive bifurcations.
These new solutions coexist with each other and the basic
solution, thereby enriching the collection of stable trajecto-
ries. Secondly, each of these subharmonic-2 solutions under-
goes a succession of period doubliregs infinitum,thereby
transitioning to chaos. Order in the form of a single subhar-
monic trajectory is reestablished beyond a further critical

flipped belowy=0 and shifted by one half unit in the value ofSt, before another transition to chaos occurs.

z-direction, it will be identical to the section of the branch

belowy=0.

The process of successive bifurcations is shown in Fig. 3
for the flow parameterk=0.9 ando=4.0. Simulations us-

In the following discussion, we consider the two sym-ing 10 to 50 particles initially seeded with the fluid velocity
metric branches of a period unity particle trajectory to be parat y=0 and 0.0%z<0.17 (in the downwelling regional-
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FIG. 3. Successive bifurcations of particle trajectorles.0.9; c=4.0. (a)
Right branches of particle trajectory solutions fdBt=0.95. A
subharmonic-2 trajectory exists along with the basic soluti@. Right
branches of particle trajectory solutions f8t=1.00. A bifurcation has

generated an additional subharmonic-2 trajectory. As a result, three possible
stable trajectories exist: one basic and two subharmonic-2 solutions.

Right branches of particle trajectory solutions o= 1.05. A new bifurca-
tion has led to a third subharmonic-2 solution.

Phys. Fluids, Vol. 8, No. 3, March 1996

low us to capture the right branches of the multiple existing
solutions of Fig. ).

Figure 3a) shows the right branches of the basic solu-
tion and a subharmonic-2 solution f&t=0.95, a situation
similar to that shown in Fig. @. In contrast to previous
bifurcations, where subharmonic-3 secondary solutions were
created which then dissapeared at higher St values, the addi-
tional subharmonic-2 solution remains stable until a new bi-
furcation occurs. FoSt=1.00, we observe the creation of a
new subharmonic-2 solution, allowing for three simultaneous
solutions for the particle trajectories to exist: one basic solu-
tion and two subharmonic-2 solutions, as shown in F{g).3
A third bifurcation occurs aSt=1.053, allowing for the ex-
istence of four simultaneous solutions: one basic solution
and three subharmonic-2 solutions, as shown in Fig. 3

Beyond St=1.10, it becomes increasingly difficult to
visually distinguish between possible newly emerging sub-
harmonic solutions and previously existing solutions that
may have undergone a period doubling bifurcation. In order
to understand the mechanisms at work, we hence follow only
one of the possible solutions for the particle trajectories. This
is achieved by one-particle simulations, starting with the
same initial position and velocity for each calculation, vary-
ing only the value oSt. The initial location i(0.01,0, with
the initial particle velocity again being equal to the local
fluid velocity. Nevertheless, additional tools are necessary in
order to analyze the nature of the computed solutions. By
considering the particle motion as a four-dimensional dy-
namical system in the, y, w=2, andv =y coordinates, it is
possible to project the solutions into the two-dimensional
v=y,y—phase plane, and to construct Poincaeetions by
recording they— andv — coordinates in the phase plane ev-
ery time the particle travels one spatial peribd=1.

The evolution of a single subharmonic-2 solution with
increasingSt is shown in Fig. 4. A subharmonic-2 solution,
previously generated in the sequence of the successive bifur-
cations described above, is shown in Figa)4or St=1.10.
The corresponding Poincasection accordingly shows two
points. AsStis slightly increased to 1.15, this subharmonic-2
solution becomes a subharmonic-4 solution, Fign)4The
corresponding Poincarsection shows four points. Subse-
quently, a further period doubling occurs, which leads to the
presence, aSt=1.167, of a subharmonic-8 solutidmith
eight points in the Poincarsection, as shown in Fig. &).
This behavior is typical for certain nonlinear dynamical
systems? and it rapidly leads to a chaotic solution. Figures
4(d)—4(f) show the evolution of the solution structure until it
finally becomes chaotic foSt=1.23. The corresponding
Poincaresection in Fig. 4) shows a characteristic chaotic
structure. For the slightly increased valuesSt£1.25, order
is reestablished in the form of a subharmonic-2 solutkig.
5(@)].

The final stages in the evolution of the subharmonic-2
solution are shown in Fig. 5. The subharmonic-2 form of the
solution that exists fo6t=1.25 is stable only over a small
range ofSt It is shown in Fig. 5a) over eight units in the
Z-direction, with the cores of the clockwise rotating vortices
indicated by filled circles, and those of the counterclockwise
rotating ones denoted by empty circles. A$ is slightly

Marcu, Meiburg, and Raju 739
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FIG. 4. Successive period doubling for a particle trajectkry0.9; c=4.0. (a) Particle trajectoryleft plot) and the corresponding Poincasection(right
plot) for St=1.10. The subharmonic solution with a spatial period of t¢b.Particle trajectory and the corresponding Poincaretion forSt=1.15. First
period doubling: subharmonic solution with a spatial period of fédr.Particle trajectory and the corresponding Poincseetion forSt=1.167. Second
period doubling: subharmonic solution with a spatial period of eightParticle trajectory and the corresponding Poincsetion forSt=1.184. Quasi-
periodic solution(e) One particle trajectory and the corresponding Poinsaation forSt=1.19. Banded chaotic solutioff) One particle trajectory and the
corresponding Poincargection forSt=1.23. Chaotic solution.

increased toSt=1.286, a closed periodic solution is ob- closed loop of similar form. The plot in Fig(& shows this
served, as shown in Fig.(®. The physical mechanism process.

which generates this particular form of the trajectory is a  As Stis further increased, the pattern of the closed loop
certain resonance between the phase shift generated by tivich captures the particle at random from time to time be-
inertia of the particle and the forcing flow: The inertia of the comes less visible. The particle motion becomes fully cha-
particle generates a delay in the particle’s response as it fobtic. In Fig. §a), such a chaotic particle trajectory is plotted
lows the flow. It cannot follow the flow as a fluid particle over a distancéz=8 for St=1.32. In this one-particle tra-
would, as its inertia is continuously altering its trajectory jectory plot, the particle is moving chaotically in both span-
from that of a fluid particle. The particular resonance for thewise directions, as it is being turned back and forth at ran-
present value oSt leads to a situation where the heavy par-dom. The Poincaresection and the particle distribution
ticle follows a trajectory similar to the previous subharmonicpattern corresponding to this trajectory are shown in Fig.
one, but only for about a distance of four units. It then6(b). While the chaotic structure in the two-dimensional
switches directions, upon which it travels in the oppositephase space is similar to that found ®t=1.23[Fig. 4(f)],
spanwise direction for about four units, before switchingwith additional spiral forms, the distribution of the particles
again. This solution is stable only over a very narrow rangeno longer shows a strong particle concentration along pre-
of St By increasingStto 1.289, the closed solution becomes ferred paths and the regions near the vortex centers are de-
unstable, and the particle trajectory exhibits intermitteficy. pleted of particles. A simulation using 32 pairs of particles
Here, the particle is captured in a nearly closed trajectory fowas performed in order to compute the Lyapunov exponent
only a few cycles. It then escapes, travels for a few units irof the trajectories. The particles were initially placed at ran-
the spanwise direction, and is captured in a different nearlylom locations in the flow with a distance of 1Dbetween
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05 ; ; : ; . : : along small, nearly circular trajectories around the vortex
centers, as shown in Fig(d, similar again to the case of an
axisymmetric Burgers vorte¥, in spite of the present plane
strain. Lin and Corcdssuggest that the fully developed
streamwise vortices “feel” a radially averaged strain, which
corresponds to Net?$ solution for the asymptotic state of a
vortex under plane strain, which shows a similarity with the
Burgers vortex model. Keeping this in mind, it is to be ex-
pected that the particle dynamics in the vicinity of the
streamwise vortices in plane strain resembles that found
around a Burgers vorteX.

As Stincreases, the closed loops formed by the particles
around each vortex become largiig. 7(b)], until they
break up and form open periodic trajectories, corresponding
to the above basic solution, with left and right branchés.
7(c)]. No further bifurcations are observed at this low as
Stis increased and the open trajectories acquire larger am-
plitudes. As shown in Fig.(d), for St values as high as 4.0
the trajectory is still stable.

The transition to the chaotic regime of motion occurs
gradually, as fewer and fewer particles asymptotically ap-
proach periodic trajectories. As shown in Fige){ while
most of the particles still collect along the periodic trajectory,
a significant number of them continue to move chaotically,

0.5, . 7 6 10 12 ” o even for long times. The pattern shown in Fige)7remains

© the same, even if the simulation is carried out to fivefold
FIG. 5. Onset of chaotic behavior for a particla. Subharmonic-2 solution Igr_ger tlmes'_ \_Ne hence CO_nCIUde that under the prese_nt QOn'
for St=1.25. The empty and filled circles mark the left and right rotating ditions transition to chaos is the result of a gradual shrinking
vortices.(b) Particle trajectory foSt=1.286. A closed loop solution results  Of the basin of attraction of the single existing periodic so-
from periodic switching of directiongc) Particle trajectorySt=1.289. In- lution.

termittency the particle remains attracted by the closed loop trajectory only As Stis further increased. the contour of the basic solu-
for a limited number of periods, then escapes, eventually being recaptured !

later by another closed loop, where it is trapped again for a limited numbeF!on trajectory gradually “diSSOI\/es'.’ in the partide di_Stribu'
of periods. tion snapshots. Eventually, all particles move chaotically, as

shown in Fig. Tf) for St=4.75.

N ™|

the particles of each pair. All pairs were tracked in time,c. particle behavior at high strain

simultaneously, and the distance between the particles of . .

each pair renormalized periodically. The growth of the dis-  High values of the strain parameter correspond to the
tance with time is shown in Fig.(6), averaged for all 32 early stages of development of the streamwise vortices, when
particle pairs. The diagram indicates a Lyapunov exponent 0tlhelr strength is a small fraction of that of the spanwise vor-

0.06662. The variation of the Lyapunov exponent vthis ~ UCES- TO study this regime, welg(r:]napsloy a valueoot 13.
shown in Fig. 6d). A maximum is observed arour@it= 3. At this intense strain, the criticabt value is 0.0077. For

It is important to notice that it is not the process of St=0.005, the accumulation process is shown in the succes-

period doubling ad infinitum that leads to the final onset ofSion Of particle position snapshots in Fig. 8. Initially, all par-
chaotic motion, but rather the inability of the particle to es-icles rapidly collect in a narrow band, as shown in Fig)8
tablish a consistent direction of motion, which leads to ran-1 NiS band is located slightly above and below the level of the
dom directional switches. vortex row. It grows continuously narrower at a slower rate
[Figs. 8b) and 8c)] and becomes entrained into the vortex
centers. Subsequently, it is slowly being depldteid. 8d)],
as particles are transported towards the vortex cores. The
Our scaling analysisfor o shows that when the coun- initial band formation proceeds on a fast time scale, as it is
terrotating streamwise vortices are fully developed and reacbaused by the strong strain induced fluid velocity. The strain
a strength comparable to that of the spanwise Kelvinkeeps the particles within the narrowing band, which passes
Helmholtz vortices, the value of the dimensionless strain rat¢hrough the flow stagnation points. The actual particle accu-
reaches a minimum o&2. The term of “low strain” there- mulation at the vortex centers is then accomplished by the
fore indicates a reduced strength of the strain component ofortex induced velocity. Since the vortices are relatively
the fluid motion as compared to the vortex related compoweak, this second part of the process is slow. In a real, three-
nent. Such low strain can only trap very small particles at thalimensionally evolving flow, one would expected that during
vortex centers. Forr=2, the critical value for the Stokes this time the vortices will strengthen, so that the rotational
numbet is St,,=0.0011. Particles witt5t=0.005 collect velocities that they induce will become stronger.

B. Particle behavior at low strain
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Downloaded-22-May-2004-t0-128.111.70.70.-Redistribution-subject-to-AlP-license-or-copyright,~see-http://pof.aip.org/pof/copyright.jsp



10° T T T T T T T

0.5

Distance

0.07

0.06

Lyapunov exponent
o
o
o

=]

(=3

1Y
T

0.03

(b) (d) ® s

FIG. 6. The particle dynamics in the chaotic regime. Here).9; o=4.0. (a) Chaotic particle trajector§t=1.32. (b) Particle distribution foiSt=1.32 (left
plot) and the corresponding Poincasection in the ¥,v)-phase spacgight plot). (c) Lyapunov diagram foBt=1.32.(d) Variation of the Lyapunov exponent
with the particleSt values. A maximum can be observedSit=3.0.

For St values larger that the accumulation limit, closed strate the effects of gravity on the trajectories described in
trajectories are formed around each vortex. At high strairSection Ill for the moderate strain parameter vadte 4.0.
rates, the first bifurcations leading to secondary solutions foThe concentration of vorticity is again characterized by
the particle trajectories occur before the closed loops are brde=0.9.
ken open, so that the newly generated trajectories are closed The general observation is that gravity deforms the pre-
as well. In Fig. 9a), two stable closed loops are shown viously observed trajectories. Figure 10 shows the evolution
around each vortex. of the trajectory’s shape under increased gravity for

As Stincreases, each of the two loops starts a periodst=0.20. At Fr=10.0, the effect of the gravity is barely
doubling process. In Fig. (B), for St=0.25, one of the felt, and the particle trajectory has a shape that is very similar
closed trajectories is still a simple loop, while the other hasg that in the absence of gravifgf. Fig. 2a)]. Also shown
split in two interconnected loops. F&t=0.30 both loops  are the equilibrium points for the particle, which for the
previously observed in Fig.(8) have split into two intercon-  yresent parameters are unstable and located very close to the
nected loops eadFig. 9(c)]. The period doubling continues o tex centers and the stagnation points.
until the chaotic regime is reached, as shown in Fig).9 For Fr<1.0, the effects of gravity become apparent, as

The opening of the closed chaotic trajectories 0CCUrgm4| secondary loops form near the upper corner of the
aroundSt=0.5, as shown in Fig.(®). For St=0.75, the cha- trajectory [Fig. 10b)]. The symmetry with respect to the
otically moving parﬂcle; still form relatively narrow bands, center of the vortex is rapidly destroyed by gravity, and the
due t(.) the strong st_ram. These bands, shown in Fi, 9 displacement of equilibrium points from the vortex centers
allow intense spanwise particle transport. and flow stagnation points is observable.

The deformation of the initial trajectory continues for
IV. GRAVITY EFFECTS decreasedrr values, until it touches the neighboring trajec-

Under certain circumstances, gravity is expected to leadory. Even lower values dfr lead to trajectories that form a

to particle accumulatioh.In the following, we will demon-  double loop around a pair of counterrotating vorties.
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2.0; k

4.0, the present orbits form at half tisd

0.25. Particles collect along an open periodic trajectory corresponding to the basic s@t)tion.

Marcu, Meiburg, and Raju

0.9; St=4.75. No coherent solution exists for the trajectories, all particles move

4.6. While a number of particles still collect along the open, unique trajectory, other particles
2.0; k

2.0; k=0.9; St=0.005. Particles collect along closed, nearly circular orhits. o

0.9; St
0.9; St

2.0;k
0.9; St=4.0. All particles collect along one open unique trajectory corresponding to the basic solution. Il. Particle dispersion: the onset of chaotic
2.0;k

I. Particle trajectories at low straifa) o
St=0.1. Increased inertia enlarges the collection orbits. While similar in size to those shown indfitpr2r-

value, and they are rounder in shafi®.o

2.0;k
behavior at increased patrticle inertia) o

do not asymptotically approach any periodic trajectdfy.o

chaotically.
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FIG. 8. Accumulation of particles at the center of the counterrotating vortices, under conditions of highrstrB310. HereSt=0.005. (a) t=0.1275. All

particles are rapidly collected within a narrow band along the row of vortigest=0.252. The band of particles is narrowing continuously under the
influence of strain in the flow fieldc) t=0.752. The band of particles has been narrowed to a thin line. The particles are gradually entrained into the vortex
centers(d) t=1.752. The band is gradually depleted of particles which accumulate at the center of vortices.

10(c)]. The break-up due to increased gravity is fundamendouble loop trajectoryFig. 11(b)], which for even lowefFr
tally different from the break-up due to increased inertia ob-s further deformedFig. 11(c)], until the accumulation con-
served earlier. There the symmetry of the trajectory with redition StFr2>k is satisfied and the particle comes to rest at
spect to the vortex center was fully preserved through théhe stable equilibrium pointFig. 11(d)].
bifurcation, which led to a periodic open trajectory. Increased  For particles characterized by largét values, the phe-
gravity, on the other hand, results in trajectories that are stilhomena associated with increased gravity levels become
closed, and no longer symmetric with respect to the vortexnore complex. As an example, we present the modification
centers. However, the symmetry with respect to the verticabf an initially subharmonic-3 particle trajectory by gravity.
axis is maintained. By further increasing gravity, we reach aigure 12Za) shows the trajectory, along with the associated
threshold beyond which the condittoBtFr?>k is satis- Poincaresection, for low levels of gravity Fr=10) and
fied, so that the particles accumulate at the now stable equBt=0.78. The Poincarsection shows three distinct points,
librium point on thez=0.5 axis just below the row of vorti- confirming the subharmonic-3 nature. As gravity is in-
ces[Fig. 10d)]. Based on our earlier stability resultshis  creased, the trajectory is deformed, and its periodicity is al-
behavior is to be expected, as no other stable equilibriuntered. In Fig. 1&b), for Fr=1.72 the trajectory is quasi-
points exist for the present parameters. chaotic. The Poincareection shows a large number of
The deformation of an open, periodic trajectory underpoints, but the trajectory is limited to a small fraction of the
gravity is depicted in Fig. 11 fo8t=0.30. ForFr=10[Fig. = computational domain. For further increased gravity, corre-
11(a)], the trajectory is hardly affected by gravifgf. Fig.  sponding td=r =1.68, the trajectory becomes periodic again,
2(c)]. At Fr=1, it has undergone a bifurcation to a closeddisplaying a spatial period of 2, as shown in Fig(d2We
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0.8
0.5. For increased inertia, the

0.9; St=0.75. The chaotic trajectory is

widening with increased particle inertia, forming bands of particles whcih allow intense spanwise transport of material.

0.30. For these parameters, both of

0.6
0.9; St=0.35. Mutliple bifurcations allow for the production of a band of trajectories until the

Marcu, Meiburg, and Raju

periodic trajectories around each vgiex.
0.9; St

0.9; St

0.4
13.0;k

0.2

0.8
0.9; St=0.2; All particles collect along two closed,

13.0;k

13.0;k
0.9; St=0.25. A bifurcation leads to a period doubling of one of the closed lo@psr

the closed loops are of subharmonic natud.o

0.6

0.4

0.2

13.0;k
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chaotic regime is reached. However, particle dispersion is limited to a narrow closed chaotic (&gion.13.0; k

closed, chaotic trajectory beaks up into an open chaotic trajectory, with left and right braf¢hes.13.0; k

FIG. 9. Particle dispersion at high strai@ o
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FIG. 10. The effect of gravity on a patrticle trajectory at moderate strain. Flow parameteds9;0=4.0. The circles indicate the location of the equilibrium
points. (a) St=0.20;Fr =10.0. Closed loop trajectory around one counterclockwise rotating vdtigx6t=0.20;Fr =0.90. Increased gravity deforms the
shape of the closed trajectory and breaks its symmefry. St=0.20;Fr =0.60. Closed trajectory around both counterrotating vortices.
St=0.20;Fr=0.47. The particle is driven towards the equilibrium position.

thus find that, under increasing gravity, the initial sub-V. STATISTICAL MEASURES FOR THE DISPERSION
harmonic-3 trajectory is transformed into a subharmonic-2O0F HEAVY PARTICLES

trajectory, after passing through quasi-periodic intermediate, Dispersion in the absence of gravity

state.

The alteration of the trajectory form continues with the N the following, we will present statistical information
closing of the trajectory, at a gravity level corresponding toregarding the particle concentration fields generated by coun-
Fr=1.15. In Fig. 12d), the periodic closed trajectory is terrotating strained vortices. In order to obtain this informa-
shown in a plot extending over eight counterrotating vortextion, we carried out simulations with 1,000 particles for vari-
pairs. The closed loop extends over four counterrotating vorousStvalues in the range of 1:55t<25. The particles were
tices, while maintaining symmetry with respect to the verti-initially randomly seeded in the upper half of the computa-
cal line midway between the vortices of the inner pair_tional domain and then tracked for 5000 time steps. To avoid
Slightly increased gravity levelsF¢=1.10) render the any effects due to the initial conditions, the particle positions
closed loop unstable and generate a random motion of theere recorded only for the last 1,000 time steps. Since for
particle. By further increasing gravity, we eventually againthe present range dt the particle motion is chaotic, the
reach a threshold beyond which the accumulation criteriol®® positions recorded over time for i(@articles have the
StYFr2>k is satisfied, so that the particle comes to rest at @ame distribution as the positions of®1@ifferent particles
stable equilibrium poinfFig. 12f)]. recorded in an instantaneous snap-shot. A two-dimensional
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FIG. 11. The effects of gravity on particle trajectory at moderate strain. Flow parameteds9;0=4.0. (a) St=0.30;Fr =10.0. Open, periodic trajectory
corresponding to the basic solutigh) St=0.30;Fr =1.0. Gravity deforms the shape of the basic trajectory into a closed double loop trajectory around a pair
of counterrotating vorticegc) St=0.30;Fr =0.80. Increased gravity further deforms the double loop trajectdnt=0.30;Fr =0.57. The particle is driven
towards the equilibrium position.

probability distribution functiorC4¢(z,y), equivalent to the ratio of the maximunD,, of the cross-stream distribution
particle concentration field, can be computed from th& 10and its average valub ,,4 between the extreme locations
recorded locations by dividing the computational domain

into square bins of sizA =0.01 and counting the number of _ Dmax . (10)
particles in each bin. A typical pdf is shown in Fig. 13 for Daverage

St=25. Darker gray shades indicate higher particle CONCENrHe variation of the cross-stream distribution widihas a

trations, or, equivalently, a higher probability to find a par- function of Stis shown in Fig. 14a) for the flow parameters
ticle in a certain bin. In order to obtain information on the k=0.9 ando=4.0. By comp;’;lring the data with the dotted

cross-stream particle distributidd(y), we integrate in the . ; . : :
T S line, whose slope is 1/4, we find the approximate scaling law,
z-direction and normalize in such a way that the concentra-

tion would be unity if the particles were distributed equally 5~ St4 (11
betweeny= —1 andy=1. This normalized distributiod is o . o
shown in the right half of Fig. 13. Similarly, Fig. 14b) shows the variation of the cross-stream

The ability of the counterrotating vortices to eject par_distribution width § as a functio_n of the §train. parameter
ticles can be quantified by the wid# of the cross-stream ¢ for St=10 andk=0.9. By again comparing with straight
distribution, which represents the distance between the esines of given slopes, we find a relationship,
treme locations at which particles can still be found, as indi- S~ P (12
cated in Fig. 13. A further important qualitative aspect of the ’
dispersion is its non-uniformity, which is expressed as the where the slop@ is in the range—1/3<p<—1/4.
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FIG. 12. The effects of gravity on a particle trajectory. |. Change of period of a subharmonic soki#i@9;0=4.0. () Particle trajectory and the
corresponding Poincasection forSt=0.78;Fr =10.0. Subharmonic solution with a spatial period oft8.Particle trajectory and the corresponding Poincare
section forSt=0.78;Fr=1.72. Quasi-chaotic solutioric) Particle trajectory and the corresponding Poincaetion forSt=0.78;Fr =1.68. Subharmonic
solution with a spatial period of 2. Il. closing the periodic subharmonic-2 trajectory, onset of chaotic behavior, and accumulatios.O:-8s0e=4.0. (d)
Particle trajectory, foiSt=0.78;Fr=1.15. Periodic closed trajectory, with vertical symmetry ax&.Particle trajectory, foiSt=0.78;Fr=1.10. Chaotic
motion with random direction change$) St=0.78;Fr =0.92. The particle comes to rest at the stable equilibrium point.

The above scaling laws can be explained on the basis of 1 '
a simplified model, for which the particle motion can be o8 0.8
found analytically. This model consists of one-dimensional 06k N N
particle motion in a modified fluid velocity field. Specifically, :
the one-dimensional fluid velocity field contains the strain %4, A pof e
component plus a forcing component intended to model the oob o ]
effect of the vortices. This forcing component always points 5
in the direction of the particle motion, i.e., it changes direc- ~ > o
tion when the particle changes its direction. In this way, it o> —02}
emulates the upwelling and downwelling regions through '
which the particle travels alternatingly. The strength of the o4 o4
forcing velocity B is constant and will be specified below. -os}: -0
The fluid velocity then has the following form: o8 ’ os

+B-oy,, ifv,>0, » , » i ; ;
vt —B- pr, if Up<0- ° ois 1 o nor?ﬁilized t:oncensr'astion 2

ThIS. approx_lmatlon gIves Tise FO a linear prpblem for theFIG. 13. The probability distribution function for particle concentration
pl_':‘m(fle mqtlon. |!" ordpr to obtain an expression for the diSieft) with corresponding cross-stream particle distributitight), for
tribution width & in this model problem, we need to deter- St=25k=0.9;,0=4.0.
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mine the maximum locatiog, that the particle reaches dur-

ing periodic motion. By symmetry, the minimum location is

—Y¥Yg, SO that the distribution widtld is 2y,. To obtainy,
we assume that the particle starts frgnwith zero initial
velocity. The value ofy, can then be obtained by requiring
that the minimum location of the particle bey,. The re-
sulting equation of motion for the particle is

© ° 5

FIG. 14. (a) The variation of the dispersion width as a function ofStin
the absence of gravity fdt=0.9 ando=4.0. For comparison, the dotted
line has a slope of 1/4b) The variation of the dispersion width as a
function of o in the absence of gravity fd¢=0.9 andSt=10.0. The dotted
lines have slopes of 1/4 and— 1/3. (c) The variation of the nonuniformity
v as a function ofSt in the absence of gravity. Heie=0.9,0=4.0.
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.1 )
yp:§[( -B- a'yp_)/p)y
(13

Yp(t=0)=0; Yp(t=0)=Yo.

We are interested in the chaotic motion of fairly heavy par-
ticles, so that we can assurBé>1/(4¢). The solution then
takes the form

_ (Yo—©C) _ .
Yp=(yo—C)e "Scog wt) + sty © 2S'sin(wt) + ¢,
(14)
B 4g/St—1/St
C=—— =
o 2

We now specify the constant model fluid velocByas the
average of the actual vortex-induced velocity betweey,
andy,. We obtain

B k
4y’
which yields

Ymin=— (Yo—C)e~ ™&¥tc.
Since

Ymin= — Yo
we obtain

k 1+e—77/2Stw

2—_
y0_40'

(15
The exponential terms in the above equation can be ex-
panded for large values &t to obtain

1/2
(St) 1/4( 0') - 1/4.

v

o= 2y0:

We thus arrive at a scaling law for the distribution width
which is in good agreement witfil) and(12), as far as the
dependence o8t ando is concerned. Notice, however, that
both our full model for the braid region, as well as the
present simplified model, employ a linear strain induced ve-
locity that grows withy without limits. Hence, far away from
the vortex row this is not a very accurate representation of
the actual three-dimensional mixing layer. Consequently, the
above scaling laws§l11), (12) can be expected to hold only if

é is not too large, i.e., fo6t not too large.

Figure 14c) shows the variation of the non-uniformity
measurey as defined by(10) with St Its non-monotonic
dependence oBt indicates that at various intermediate val-
ues ofStthe particle distribution in the braid region becomes
quite nonuniform. This is also reflected in the pdf plot of Fig.
13. We notice several dark streaks which indicate larger par-
ticle concentrations. These are due to the fact that the ran-
dom switchbacks occur at preferred locations within the spa-
tial period, and that the particles have small velocities when
they undergo a directional reversal, so that they spend a rela-
tively long time near those locations.
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B. Gravity effects

1. Modification of the particle dispersion field

While we showed earlier that periodic open patrticle tra-
jectories are altered and eventually broken up and closed k
increasing gravity, the chaotic trajectories, with their randorr
switches of direction, can display more complex effects un-
der gravity. It is to be expected that under gravity the entire
cross-stream distribution function will be displaced towards
negativey-values and undergo an asymmetric deformation.

Typical changes in the dispersion field for particles char-
acterized by high inertiagt=25) are presented in Fig. 15.
For relatively weak levels of gravity correspondingito=8
[Fig. 15a)], the pdf plot as well as the cross-stream distri-
bution function show a slight downward displacement. In

addition, both show a slight asymmetry. However, the dis(@)

persion width$ remains nearly unchanged by the preseni
weak level of gravity.

A pronounced effect of gravity can be observed for
Fr=7 in Fig. 15b). A large number of particles have col-
lected along statistically preferred trajectories, visible in the
form of coherent dark streaks in the two-dimensioGg};;
image. While these do not affect the dispersion width, they
result in significant non-uniformities in the cross-stream dis-
tribution function. As gravity increases further ko = 6, the
preferred trajectories disappear agH#ig. 5(c)], while both
the pdf and the cross-stream distribution function are shifte«
to lowery-values. The dispersion width remains unchanged

The above simulations indicate that for constanthe
dispersion widths does not vary with gravity, while the pdf
is displaced downward. This displacement can be quantifie
by tracking the position of the midpoiwgt, between the two
y-locations at which the cross-stream distribution reache
zero. Further information about the degree of asymmetry ca
be obtained by comparing, to y.q4, which denotes the
“center of mass” of the cross-stream distribution profile

_JZ.Dydy
Yeg™ [“.Ddy "’

In the absence of gravity, and hence asymmetry, both quat
tities are zero. As gravity increases, a growing difference
betweeny,, andy.q indicates a larger degree of asymmetry.
This is shown in Fig. 1@) for c=4, k=0.9, and the twt
values of 5 and 25, respectively. F8it=5, the difference
betweeny,, andy., remains small with increasing gravity.
For St= 25, this difference increases with gravity, suggesting
a growing asymmetry.

Figure 16b) shows the variation of the non-uniformity
with Fr for the same parameters. Whileis relatively low
for St=5, more pronounced variations occur f8it= 25,
with a maximum of over 40% foFr =7. This situation cor-
responds to that shown in Fig. @5, when preferred trajec-
tories exist.

C. Particle accumulation
As shown in part | of the present investigatibance the
accumulation criterion
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0.6} ] 0.8 vt

St

¥>k (16
is satisfied, unconditionally stableccumulation points
can exist in the flow-field, as opposed to the unstable or
conditionally stable equilibrium points that are always
present. Figure 17 displays several such cases of particl
accumulation. In Fig. 1(&), the flow parameterk=0.9 and
o=4.0 establish only a single accumulation point for par-
ticles with St=25 andFr=5.25, aso>o,, whereo, de- v :
notes the critical strain valuek. We haveStFr2=0.907, o 05 1 5 o5 1 15 2
which is only slightly above the accumulation threshold of (© z normalized concentration
0.9. Both from the pdf image and from the cross-stream dis-
tribution, one finds that a large number of particles have
accumulated at the equilibrium point located on the Ssymmeg g 17. Particle accumulation: probability distribution function and the
try line z=0.5 just belowy=0. Here a small dark region in corresponding cross-stream distribution profilea) St=25Fr=5.25,

the pdf image corresponds to a large spike in the crosg«=0.9, ando=4.0. Particle accumulation occurs at the unique stable equi-
stream distribution function librium point. (b) St=25Fr=5.25k=0.9, ando=2.0. Particle accumula-

. . . . . . tion occurs at two stable equilibrium points. Significantly stronger accumu-
In Fig. l7(b)v k=0.9 ando=2. Since the strain value is lation can be observed at the lower equilibrium poinfc)

now subcritical, the flow parameters correspond to the casgt=5Fr=2.35k=0.9, ando=4.0. Besides accumulation at the equilib-
when triple equilibrium points can existThe terminal ve-  rium point, strong collection of particles occurs along preferred trajectories.
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locity is SFr2=0.907, which is equal to the value for Fig. force, resulting in small particle velocities. For the chaotic
17(a). Under these conditions, accumulation occurs at two oparticle motion regime, we investigated in some detail the
the three equilibrium points. The figure indicates that accuiwo-dimensional probability distribution function as well as
mulation is considerably more pronounced at the lower on¢he averaged cross-stream distribution. Both of these show
of the two points. some non-uniformities, indicating the existence of regions
In Fig. 17c), the flow parameters ate=0.9 ando=4,  and trajectories preferred by the particles. The degree of non-
corresponding again to the case when only one single accumiformity depends on the values of the governing param-
mulation point can exist. For the particle paramet8ts5  eters in a non-monotonic fashion. By means of a simplified
and Fr=2.35, the terminal velocityStFr?=0.905 is one-dimensional model that could be solved analytically, we
slightly above the accumulation limit. In this case, the lowerwere able to derive scaling laws for the dependence of the
St=5 value allows for the presence of preferred trajectoriescross-stream distribution width on the dimensionless strain
along which many of the particles collect. This results inrate ¢ and onSt These scaling laws agree well with the
strong non-uniformities in the cross-stream distribution func-numerical data.
tion, along with the accumulation spike. The influence of gravity leads to a breakup of the open
In the accumulation cases presented above, the accumtrajectories into closed loops again, thereby disabling the
lation criterion(16) is exceeded only slightly. Consequently, spanwise particle transport. Furthermore, it shifts the particle
many of the particles do not come to rest at the accumulationoncentration field in the direction of gravity, without affect-
point, and instead continue their chaotic motion. Additionaling the cross-stream distribution width. Beyond a critical
simulations conducted for terminal velocities that are 10%evel of gravity, unconditionally stable accumulation points
higher than the accumulation threshold show all particlesxist. If this critical level is only slightly exceeded, many but
accumulating. The conditiol6) is therefore a necessary, not all particles collect at these points. Only for even stron-
but not sufficient, condition for accumulation of all particles ger gravity do all particles come to rest at the accumulation

in the flow field at the equilibrium point. points.
It should be pointed out that the present study employs a
VI. CONCLUSIONS simplified steady quasi-two-dimensional fluid velocity field,

The present computational investigation regarding thén order to gain detailed insight into the effects that stretched

dynamics of heavy particles in the braid region of a three_c_ounterrotating yqrtices hav_e on the dynamics of heayy par-
dimensionally evolving mixing layer complements the t|f:Ies.| A rdeal mt|X|r:jg Iz;yer Is of Ii:oijhrsedboth trlree-(rj]l_mhert]r-]
mostly analytical results given in Part There we addressed sional and unsteady. As a result, the degree to whic N

guestions regarding the existence and linear stability of equir-mCh"’m'smS studied in isolation here will be observable in

librium points. However, when the interest focuses on quesg'uch unsteady three-dimensional flows, will depend, for ex-

tions regarding the dynamics of particles for which equilib_ample, on the relative time scales of the particle motion and

rium points do not exist, or the size of the basin of attractionthe transient evolution of the fluid velocity field. Clearly,

of those points, we have to rely on numerical simulations OIfully three-dimensional numerical simulations and experi-

the full nonlinear system. These issues are addressed herd'ents are needed in order FO investigate these ISSU€s. How-
As was shown in Part I, only particles with fairly small ever, the present observations and results can guide the

values of St can be stably located at the centers of theanalysis and interpretation of the data obtained from such

stretched vortices. However, here we find that even for sig‘fuum:J investigations.
nificantly larger values ofSt, particles remain trapped on
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