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This paper presents a linear stability analysis as well as some numerical results for the motion of 
heavy particles in the flow field of a Burgers vortex, under the combined effects of particle inertia, 
Stokes drag, and gravity. By rendering the particle motion equations dimensionless, the particle 
Stokes number, a Froude number, and a vortex Reynolds number are obtained as the governing three 
parameters. In the absence of gravity, the vortex center represents a stable equilibrium point for 
particles up to a critical value of the Stokes number, as the inward drag overcomes the destabilizing 
centrifugal force on the particle. Particles exceeding the critical Stokes number value asymptotically 
approach closed circular orbits. Under the influence of gravity, one or three equilibrium points 
appear away from the vortex center. Both their locations and their stability characteristics are 
derived analytically. These stability characteristics can furthermore be related to the nature of the 
critical points in a related directional force field. These findings are expected to be applicable to the 
coupling between the small-scale turbulent flow structures and the ‘motion of suspended 
particles. Q 1995 American Institute of Physics. 

I. INTRODUCTION 

An important goal in two-phase flow research is the de- 
velopment of simple yet comprehensive models for the inter- 
action of small drops and solid particles with turbulent flow 
fields. Tawards this end, the computational1-3 and 
experimenta14-7 investigations of the iniluence of the two- 
dimensional large-scale flow structures on the overall par- 
ticle dispersion represent an important step. A common ob- 
servation in all of the above investigations has been the 
ejection of particles from vortex centers, along with their 
accumulation in regions near stagnation points. The obvious 
explanation for the particle ejection from strong vertical re- 
gions is the absence, in two-dimensional flows, of a force 
that could counteract the outwardly directed centrifugal 
force. 

Further important information on the dynamics of par- 
ticles in turbulent flow fields is obtained from the statistical 
data provided by direct Navier-Stokes simulations with pas- 
sive and active particles.*-l4 As Wang and Maxey point out, 
quantities such as the settling velocity under gravity and lo- 
cal accumulation properties of the particles are a function of 
small-scale turbulence processes rather than the large eddies. 
Their simulations demonstrate that the successful design of 
two-phase turbulence models will eventually have to be 
based on a thorough understanding of the dynamical inter- 
play between the inertial, drag, gravitational, and other 
forces acting on the particles and the small-scale vertical 
structures of the turbulent flow field. In this regard, recent 
findings from direct Navier-Stokes simulations of turbulent 
flows15716 provide evidence that extensionally strained con- 
centrated tube-like vortices play a prominent role in fully 
developed turbulence. 

Based on these and other observations, Ashurstr7 sug- 
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gests that much of the dynamics of turbulence can be under- 
stood by regarding it as a collection of Burgers vortices.‘* 
Ashurst furthermore points out that for a particle moving in 
the field of a Burgers vortex, the drag force created by the 
radially inward fluid motion can balance the centrifugal 
force, thereby preventing the particle from being ejected. A 
similar argument concerning a balance between the centrifu- 
gal and drag forces was put forward by Maxworthy.” Given 
the important role that the small scales play in the interaction 
between particles and turbulence, and the prominence of 
Burgers vortex-like structures among these small scales, an 
investigation of the dynamics of heavy particles in the field 
of a Burgers vortex will provide useful information towards 
an understanding of two-phase turbulence. In the following, 
we will establish the governing nondimensional equations 
and parameters, and subsequently analyze separately the 
cases without and with gravity. 

II. FLOW MODEL AND GOVERNING EQUATIONS 

The fluid flow model is a steady Burgers vortex with the 
axial, radial, and circumferential velocity components, re- 
spectively, 

v,= 2Cr.q 

v,=- i.rr, (1) 

v,=&[l--ex,i-$)I. 
Here CT denotes the strain, and l? represents the circula- 

tion of the vortex, whose core size S = m is determined 
by the balance of strain and viscous diffusion v. 

By choosing S as a characteristic length, and l?f6 as the 
characteristic velocity, the nondimensional flow field has the 
form 
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uz= 2A2, 

v,= -4r? 

Do=& [ 1-xp( -s)l. 
Here A = o62/I = v/F is the nondimensional strain param- 

eter, l/A is also known as the vortex Reynolds number. Our 
interest focuses on the two-dimensional particle dynamics in 
the r, f3 plane, in which the velocity field in Cartesian coor- 
dinates becomes 

u= -Ax- &[l-exp( -;)I¶ 

u=-Ay+$[l-exp( -$)I, (3) 

r2=X2+y2. 

In studying the particle motion, we limit ourselves to the 
dilute regime, in which both the particles’ effect on the fluid 
motion, as well as the particle-particle interaction is ne- 
glected. In most situations involving solid particles or liquid 
drops in gaseous flows, the particle motion will be deter- 
mined by the effects of inertia, viscous drag, and gravity,4 
with all other forces being at least one order of magnitude 
smaller. The motion for a small, spherical, rigid particle of 
diameter d, density pP and velocity V=(u, ,u,,) in a fluid 
with density pf and velocity U=(uf,uf), then rs determined 
by the nondimensional equation? 

dV 1 
dt= c WI,-y-V)+ $2 es7 (5) 

where Stokes’ drag law is employed. Here x,, denotes the 
instantaneous position of the particle, U is the fluid velocity 
as given by (3) at the location xp while es represents the unit 
vector in the direction of the gravity vector’s projection into 
the r, 19 plane. It should be pointed out that the particle mo- 
tion in the axial direction is decoupled from that in the r, 6 
plane, so that it does not affect the stability, or the r or 8 
components of the equilibrium position. The parameters 

d”p CT-T St=--- 
18 pf v- (6) 

and 

u3J4r 
Fr= v3/4 (7) 

are the Stokes and Froude number, respectively. Here g is the 
length of the projection of the gravitational acceleration vec- 
tor g on the r, 19 plane. The following analysis is hence valid 
for arbitrary orientations of the vortex axis with respect to 
the direction of gravity. Crowe et al.’ interpret the Stokes 
number as the ratio of the aerodynamic response time of the 
particle rA= ppd2/18p to the time scale associated with the 
fluid motion, which for the present study is r=v/Fo. Small 
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values of the Stokes parameter may be regarded as describ- 
ing either very light particles or a very viscous fluid, in both 
cases the particle behavior being dominated by the viscous 
forces. In contrast, large values of the Stokes parameter de- 
scribe either heavy particle or a less viscous fluid, with par- 
ticle behavior being dominated by inertial forces. The Froude 
number expresses in nondimensional form the relative im- 
portance of inertial forces and gravitational forces for the 
particle motion. Large Froude numbers describe inertia 
dominated particle motion, for which gravity is not important 
and the behavior of the particle is determined merely by the 
ratio between the viscous and inertial forces given by the 
Stokes number. As the Froude number decreases, gravity be- 
comes more important for the dynamical behavior of the 
particle. 

Equations (4) and (5) are written as a nonlinear four- 
dimensional system, for the variables V=(u, ,up) and 
xp = (xp ,y,) .21 Without any loss of generality we can restrict 
the mathematical formulation to the case when gravity points 
in the negative y direction. With these considerations, the 
system is written as 

i=F(x), 

where 

i 

“P 

YP 

UP 

VP 

F(x)= 

VP 

I I &f-Up) . 

& bf-UPj- & 

(8) 

I 

(9) 

The system of equations (8) and (9) with initial condi- 
tions {xp ,y, ,up ,up} specified at time t=O constitute a non- 
linear non-Hamiltonian dynamical system. 

Ill. PARTICLE DYNAMICS IN THE ABSENCE OF 
GRAVITY 

A. Equilibrium points and trajectories 

The flow model, as defined by Eqs. (3), provides only 
one equilibrium point for a particle, in the absence of gravity, 
at the center of the vortex. By equilibrium point we mean a 
location where the particle has zero velocity and accelera- 
tion, all forces considered to act upon it being perfectly bal- 
anced. In the following we analyze the linear stability of this 
equilibrium point. The plane velocity field (3) is linearized 
around the vortex center 

u=--Ax- &+0(r2), 

(10) 
u=-Ay+-&+0(r2), 

and thus Eqs. (8) and (9) can be written as follows: 
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III YP XP 0 0 0 0 0 1 0 1 
= I )I 

XP  y, 
UP I > (11) 

VP  

UP !:J I -b -c -a 0 
VP c -b 0 -a 

where 

1 A 1 
a=;sI, b=s, c=m* w 

The coefficient matrix has complex eigenvalues of the 
form 

a 1 
s1,2,3,4= 

--c- 2 -, a2-4(bfci). (13) 

For stability, one requires that the real parts of all of the 
eigenvalues be zero or negative. After isolating the real parts 
in (13) the inequality Re(s)sO yields 

c’Ga2b. (14) 

Replacing a, b, and c from (12) this condition gives a 
simple stability criterion for a particle moving in the vicinity 
of the vortex center. If St obeys 

St< 16 ,rr2A = St,,, (15) 

then the centrifugal force acting on the particle is always 
smaller than the inward radial drag force, hence the particle 
will be driven by the tiow towards the center of the vortex. In 
the opposite situation, the centrifugal force overcomes the 
inward drag at small radii, thus the particle will move away 
from the vortex center and asymptotically approach a circu- 
lar trajectory at a radius where the balance is restored due to 
increased inward fluid velocity. 

By plotting the variation of the four eigenvalues given 
by (13), as shown in Fig. l(a) for A =0.003, it is straightfor- 
ward to verify that the periodic solution for the trajectory 
arises as a result of a Hopf bifurcation.22 Two eigenvalues 
cross the imaginary axis as complex conjugates, while the 
other two have negative real parts. 

By balancing the centrifugal and drag forces, we obtain 
for the radius of the trajectory 

r2&-&[l--ex,i -cj]=O. (16) 

The centrifugal and the drag forces on a particle moving 
along a circular trajectory of radius r depend on the radius, 
as shown in Fig. l(b), for a St value higher than critical, 
where F, and FD stand for the centrifugal and drag force, 
respectively. From the plot, one can observe that the trajec- 
tory is unique and stable, as the two curves intersect in only 
one point, and any departure of the particle from the radius 
corresponding to the intersection point will generate an im- 
balance of the two forces which will drive the particle back 
towards the equilibrium trajectory. From this we can also 
conclude that the Hopf bifurcation is supercritical. 

In order to obtain a feeling for typical particle sizes that 
might be trapped by the stretched, Burgers-like vortices ob- 
served at the small scales of turbulent flows, it is useful to 

Eigenvalue 1 Eigenvalue 2 

Real Part Real Parf 

Eigenvalue 3 Eigenvalue 4 

(a) 
..,,: ;...r...; . ,,....... . . . . . . . . i 

: : : : : : : 

1.5 2 2.5 3 3.5 4 4.5 5 

04 
r 

FIG. 1. (a) The variations of the four eigenvalues for A =0.003 and 0.001 
CStcS.0. Eigenvalues 1 and 2 cross the imaginary axis as compIex conju- 
gates, while eigenvalues 3 and 4 have negative real part. St values increase 
from left to right on each plot. (b) The variation of the centrifugal and 
inward drag forces acting on a particle characterized by St=2.8 moving 
along a circular trajectory around the center of a Burgers vortex with 
A =0.003, w.r.t. the radius of the trajectory (nondimensional), in the absence 
of gravity. 

relate the above parameters to representative flow situations. 
From (6) and (15), using also A = v/l? we obtain 

St d2 pp u 
St,,= 288 2 ; VA”’ 07) 

The direct numerical simulations of isotropic turbulence 
by Jimdnez et al.= show that the core size 6 = 6 of the 
Burgers-like intense vertical structures scales with the Kol- 
mogorov scale v, and that typically 6;/77=4. Furthermore, the 
VortexReynolds number A -r scales approximately as 

A-l -20 ReL’=, 08) 

where Re, is the Reynolds number formed with the Taylor 
microscale. Consequently, we obtain from (17): 

d2 ?&O-2 !!k _ Rex. 
r 0 pf v 

(19) 
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In the case of water droplets in air, pP/pf=103, thus 

For a typical laboratory experiment,24 with Re,=190 
and ~=0.16 mm, (20) gives d,,=4 ,um. 

A typical atmospheric flo~,~ on the other hand, is char- 
acterized by Reh=104 and ~7’1 mm, and from (20) we ob- 
tain again d,,=4 pm. 

These estimates indicate that, as far as the small scale 
turbulent air flow is concerned, only small particles will be 
trapped. For other kinds of stretched vortex configurations, 
such as the streamwise structures observed in mixing 
layers,z6tu we are currently evaluating the effect on the dy- 
namics of heavy particles and droplets. 

IV. GRAVITY EFFECTS 

A. Equilibrium points 

One immediately realizes that the equilibrium point at 
the center of the vortex will cease to exist in the presence of 
gravity. We will now determine if equilibrium is possible at 
other locations. In order to find equilibrium points, one has 
to solve Eqs. (8) and (9) for zero velocity and acceleration 
for the particle. The set (8) and (9) can be put in a condensed 
form of two second-order ODES and one equation for r 

. . 1 
“=st -AX- 2,r+Z+yT) [ 1-exp( -x$J5)]-+ 

. . 1 
Y=s -AY + y= 3 

1 
-3’ 

x”+y”=r2* 

By setting the particle velocity X,9, and acceleration -;t,j; 
to zero in (21) one can then solve for all the locations where 
equilibrium is achieved for the particle, stably or not. Elimi- 
nating x and y in favor of r, leads to a transcendental equa- 
tion for y 

St 1 1 - exp( - r*/2) 

r=iGT &Ijq-y 
where ,Y( Y) = 

27rAr2 * 

cm 

From the way the parameters St, Fr, and A are grouped 
in Eqs. (22) and (23), the ratio St/Fr2 can be regarded as a 
single parameter. Physically, it expresses the terminal veloc- 
ity a particle characterized by St would achieve if it were 
falling under the action of gravity in a still fluid. Therefore, 
Eq. (22) has two parameters, the terminal velocity St/Fr* and 
the strain parameter A. In Fig. 2, the solutions to Eq. (22) are 
plotted versus the St/F? values. The different equilibrium 
curves correspond to different values of the strain parameter 
A, as indicated. Such an equilibrium curve, intersected with a 
constant St/F? line yields the radial position of the equilib- 
rium locations, which can be multiple or unique. At the criti- 
cal value A,,=O.02176, a bifurcation from one unique solu- 
tion to three solutions occurs. This equilibrium curve has a 
horizontal slope at the inflection point, as will be discussed 
below in more detail. 

Once we know the solutions for r we can immediately For illustration purposes, let us study the solutions for 
find the corresponding x and y coordinate values with St/F?=O.O4 and for A =0.003. Equation (22) states that there 

TABLE I. Eauilibrium radii for A =0.003, St/F1?=0.04. 

FIG. 2. Equilibrium curves. The intersection(s) of given St/J?? level line 
with an equilibrium curve corresponding to a given A parameter value 
yields the radial position of the equilibrium points of the particle within the 
Row field. 

St x(r) 
x=i?T 1 +X2(r) ’ 

(23) 

St 1 
Y=-ET4 1+&r)’ 

GFi Sign of +((r) 

0.5397 0.5393 -0.0218 n/a 0.637 66 
4.1906 3.9782 -1.3171 0.009 05 da + 

12.6547 3.9789 - 12.0158 0.000 99 n/a + 
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are three solutions for r, from which one can compute the 
coordinates of three equilibrium points using (23); see the 
first three columns in Table 1. 

B. Stability of the equilibrium positions 

In order to determine if these equilibrium points are 
stable or not, we carry out a linear stability analysis. To this 
end, the fluid velocity field (3) is linearized around the ge- 
neric location (x,,ya) of the equilibrium point under study. 
The initial position of the particle is displaced by a small 
distance ( eX, eY) from the equilibrium position. By inserting 
x =x0+ eX and y = ye+ eY into (3) and retaining only the 
first-order terms in e, we obtain the linearized velocity field 
in the vicinity of the equilibrium position (x0 ,ye): 

u=-A*oAe,--$[ I-exp( --$)I 

+ l-exp(-$2) 

( 

exp(-$2) - 
m;t 2rrri i 

XoYod 

[ 

1 - exp( - $2) - 
277ri - i 

1 - exp( - $2) 
4 

rr0 

exp( - $2) - 2-4 i 1 Yo” Ey’ 
u= -Aye-AE,,+ &[ l-exP( -$)I 

+ 
i 

1 - exp( - $2) 1 - exp( - $2) -- 
2rrr~ ( 7rri 

exp( - $2) - 
27rri 11 i x; Ex-- 

1 - exp( - $2) 
4 

=r0 

exp( - $2) - 
2rrrfj I 

XoYoa * 

(244 

Wb) 

We write Eqs. (8) and (9) for x=x0 + cX and y = y. -I- eY, 
using the velocity field (24), and then subtract from the re- 
sulting system the base equations, i.e., Eqs. (8) and (9) writ- 
ten for (xo,yo) and using the velocity field (3). The result of 
these algebraic manipulations is a system of four first-order 
ODES with four unknowns, i.e., the particle’s perturbed po- 
sition (E, , ey) and velocity (E, = I$, E, = $) 

‘i;-(;b _1 iu ‘I[.# 
where 

1 A -fl(roj 
a= St, b= St , 

A +fl(rd , dLf+, eef3;j 
(36) 

C’ St 
and 

fl(r0) = 
1 - exp( - $2) exp( - r$2) 

- 
7rri 297r;4 XOYO, 

fitr0) = 
1 - exp( - $2) 

i 

1 - exp( -r$2) 
29i-ri - 4 

rr0 

exp( - $2) - 
293-r; 1 

Yk 

f3Cr0) = 
1 - exp( - $2) 

i 

1 - exp( - $2) 
2~i-i - 4 

=ro 

(27) 

exp( - $2) 2 
29-n-i xo’ 1 

The coefficient matrix of the system (25) has eigenval- 
ues of the form 

1 
s1,2,3,4= 

-- 
2 St 

1 1 4A 4 
4- 2 s- 5 2% dft(y0> -fi(r0)f3(r0>, 

(28) 

thus the discussion of stability depends on the value of the 
expression 

exp( - r$2) - 
1 2T * G3 

First, if +(ro) is negative, all four eigenvalues are com- 
plex. Their real parts have the expression 

1 1 
Re(s)=- =~t-f? p1j2 cos i , 

0 

where 

(l-4A St)2 
P2’ St4 

+ 1614(rdl 
St2 

and 

(25) 
(30) 

For stability, one requires that Re(s)<O, which leads to 
the stability condition, 
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FIG. 3. Variation of qf(r) and its square root (when positive) with the radius. 
The radial locations for the equilibrium points marked, correspond to the 
case when St/F?=O.O4 and A =0.003. 

st=s i-$&j =% 
Therefore, stability in this case depends explicitly on St 

and A but not on the parameter St/Fr2. The dependence on 
the last parameter is implicit, since its value determines the 
position. 

Second, when c,b(ro)Xl, the eigenvalues may be either 
real or complex depending on the whole expression under 
the outer square root in (28); 

1  4A it 
e=g--S;.*s \m (32) 

being positive or negative, respectively. In this case, complex 
eigenvalues indicate stability, since the real part left is nega- 
tive. For real eigenvalues stability requires that the largest 
eigenvalue be negative or zero. Analyzing (28), one obtains 
stability if @ l/St’ and instability is fi>l/St2. This immedi- 
ately results in stability if A 3 dm and instability if 
AGGGJ. 

Therefore, in summary, the conditions for stability of an 
equilibrium position located at a  certain radius ra are 

4(1.0)<0 

dro)>O 
AC mo> unstable. 

Wb) 

Examining the curves in Fig. 3, which show the varia- 
tion of &b(r) and m  r vs r, one can observe that the first 
condition in (33) applies to equilibrium positions located at 
small radii, in the proximity of the vortex center. The second 
condition applies to equilibrium positions located at larger 

radii, where the stability criterion does not explicitly depend 
on St, but only implicitly, through the value of the radius r at 
these locations. For all equilibrium points, there is no explicit 
dependence of their stability on Fr, only an implicit one, as 
the position itself depends on Fr. 

An analysis of the particular set of equilibrium positions 
shown in Table I will provide a better understanding of our 
results. Here we consider three cases: In the first case, 
A=0.003, St=OS, and Fr=3.5355; In the second case, 
A=0.003, St=l.O, and Fr=5.0; and in the third case, 
A =0.003, St= 10.0, and Fr= 15.81138. The parameters are 
chosen such that St/Fr2 and A values are the same in all three 
cases, thus the equilibrium positions are the same. 

Applying the set of stability conditions (33) and using 
the values in Table I, one can predict that the equilibrium 
point 1  is stable in the first case and unstable in the second 
and third cases. The equilibrium points 2 and 3 are unstable 
and stable, respectively, for all three cases. The stability of 
the equilibrium point 1  depends on St and a comparison of 
the values in the three cases with the critical value in Table I 
yields the nature of the point. In Fig. 3, one can observe that, 
for all three cases, the necessary stability condition 
m  G A is not satisfied for the equilibrium point 2, and 
satisfied for the equilibrium point 3. 

In Fig. 4, numerical simulations for the three cases con- 
sidered are shown. The vortex center is located at (0,O). In 
each simulation, 50 particles are initially seeded along the 
line y = --x starting from a location (0.01, O.Ol), and placed 
at regular intervals Ar =0.35 with zero initial velocity. These 
initial conditions were selected for purely illustrative pur- 
poses, as they provide a clear pattern of the particle trajecto- 
ries. The successive positions of each particle are then 
tracked in time using a fourth-order Runge-Kutta algorithm, 
and plotted. In Fig. 4(a), the particles in the upper region are 
spiraling into the first equilibrium position, while the rest of 
them are attracted by the third equilibrium point. No accu- 
mulation is observed at the middle (second) equilibrium 
point. In Fig. 4(b), corresponding to the second case, the 
particles in the upper region do not accumulate at the first 
equilibrium point which is no longer stable, however, they 
orbit it along a closed, stable trajectory. The rest of the par- 
ticles collect at the third equilibrium point, while, again, no 
accumulation occurs at the middle point. In Fig. 4(c), the 
particles’ St is much larger than St, for stability at the first 
equilibrium position, and even orbiting the point is no longer 
possible. All particles collect at the third equilibrium point. 

The nature of the multiple equilibrium points can be bet- 
ter explained by plotting a directional force-field graph. The 
directional force field is computed by setting the particle 
velocity i,)i to zero in (21), then computing the values of the 
right-hand side terms of the resulting equations at each point 
(x,y) of the graph. By tracking marker particles moving in 
the resulting force field, one can obtain a directional graph of 
the force lines similar to the streamlines in a flow field. 
Physically, the value of the force field at a  certain location 
(x,y) gives the magnitude of the force which would act on a 
particle if the particle were kept fixed at that position. The 
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FIG. 4. Particle trajectories for the case St/Fr’=O.O4 and A=0.003. (a) 
St=O.S, Fr=3.5355. (b) St=l.O, Fr=S.O. (c) St=lO.O, Fr=15.8114. 

equilibrium points will then be stagnation points in this 
graph since equilibrium points are given by zeros in the force 
field. Another physical interpretation is also useful in analyz- 
ing the resulting plots. The right-hand side terms in (21), 
with the particle velocity i,j, set to zero, can be written as 

FIG. 5. Directional force field graph for the case (A,St/F?}={O.OO3,0.04}. 

& -Ax- $ 
i 

I -AY+& 

r2 
l-exp -2 ( i II 2 

(34) 

l-exp( -FJ)--$21, 
which is the initial velocity field (3) generated by the Burgers 
vortex, from which the terminal velocity of the particle 
St/F? has been subtracted, then multiplied by a l/St factor. 
Equations (34) can be viewed as a modified velocity field 
(PY,PY) within, which the particles will move without grav- 
ity. 

The directional force field graph for the parameter set 
considered in Table I is shown in Fig. 5. The graph clearly 
shows the nature of the three equilibrium points. The equi- 
librium point 1, located closest to the center of the vortex is 
a focus, with the stability given by (33) for #(r)<O. The 
middle equilibrium point is a saddle, therefore unstable, 
while the last, equilibrium point 3, is a node, thus stable. 

The influence of the strain parameter A and the terminal 
velocity St/F? on the existence and stability nature of the 
equilibrium point can also be explained by using the direc- 
tional force field graphs. 

Using the parameter set A ==0.003 and St/Fr?=O.O4 as 
reference case, the effect of increasing A is shown in Fig. 6. 
In Fig. 6(a), A is increased from 0.003 to 0.005. There are 
still three equilibrium points, with the same stability proper- 
ties, but the saddle point is located very close to the node 
(refer, also, to Fig. 2). In Fig. 6(b), for A =0.006 there is only 
one equilibrium point left, the focus. Between A =0.005 and 
A =0.006 the saddle and the node have merged and then 
vanished. 

The effect of increasing StfFr’ is shown in Fig. 7 for a 
fixed value of A =0.003, by comparison to the same refer- 

406 Phys. Fluids, Vol. 7, No. 2, February 1995 Marcu, Meiburg, and Newton 

Downloaded 22 May 2004 to 128.111.70.70. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



(b) -2 0 2 4 6x 8 10 12 14 

FIG. 6. Directional force field graphs. Dynamics of the equilibrium points at 
constant level of terminal velocity St/Fr’=O.O4, with increasing strain pa- 
rameter A values. (a) A =0.005, St/Fr*=O.O4. Three equilibrium points still 
exist. The equilibrium point 2. th2saddle. is closer to the equilibrium point 
3, the node. (b) A =0.006, St/Fra=0.04. Unique equilibrium point, the focus. 
The node and the saddle have merged and vanished. 

ence case. In Fig. 7(a), St/F? is increased to 0.055. There are 
still three equilibrium points, with the same stability proper 
ties, but we observe a repositioning: the saddle is closer to 
the focus, while the node has relocated to a larger radius 
(see, also, Fig. 3, and find the intersections of the level line 
St/J?r2=0.055 with the equilibrium curve corresponding to 
A =0.003). Also, the inward spiraling force field around the 
focus is less vigorous. In Fig. 7(b), St/F? has been increased 
to 0.073. In this case, there is only one equilibrium point left, 
the node. The focus and the saddle have merged and van- 
ished. 

As the curves shown in Fig. 2 suggest, there is a maxi- 
mum value of A above which multiple equilibrium points 
can no longer exist. For values of A larger than this critical 
value, a line St/F?=const will no longer intersect the curve 
so+ = fM4=A, in three points but only in one, no matter 
what the const value is. For critical A, the curve St/Fr2 
= f(~)\~=~,, has an infection point at the same location 
where the slope is zero. For the St/I@ value corresponding to 
that location, all three equilibrium points observed for lower 
A have merged into only one. The critical value for A can be 
obtained by writing the equation of a curve St/F? 

x 

(b) 

FIG. 7. Directional force field graphs. Dynamics of the equilibrium points at 
constant strain parameter A value, with increasing terminal velocity St/F?. 
(a) A=0.003, St/FrZ=0.055. Three equilibrium points exist. Equilibrium 
point 2, the saddle, is closer to the equilibrium point 1, the focus. (b) 
A =0.003, St/F?=O.O73. Unique equilibrium point, the node. Equilibrium 
points 1 and 2 have merged and vanished. 
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= f(r)IAZAo using the equilibrium equation (22), and then 
requiring the first and second derivatives with respect to the 
radius of this curve be zero. Based on Eq. (22), one can write 

which expresses the variation of the terminal velocity StLFrs 
with the radius, while A is a parameter. For different values 
of A, Eq. (35) gives the curves in Fig. 2. Based on (35), the 
conditions for the critical A are 

A 

Equations (36) form a system of two equations with two 
unknowns, A and r. The equations have a transcendental 
form, allowing only for a numerical solution. Using Math- 
ematicaTM, we have found the critical value A,=0.021 76. 
The location of the triple equilibrium point corresponding to 
this A value, is (see Fig. 2) ;=2.1866 and St/Frs=0.0815. 

For values of A smaller than A, there will always exist 
three equilibrium points within a range of StiFr2 values de- 
limited by the local maximum and the local minimum of an 
equilibrium curve like the ones shown in Fig. 2. The size of 
this range depends on the actual value of A. The stability of 
these points is given by (33). pne can note that the stability 
conditions (33) differ qualitatively for positive and negative 
values of &(r). The change in sign occurs at rA1.5852 
where &(r)=O. One can find for every A value, the terminal 
velocity level St/Fr2=const which determines the equilib- 
rium point location at exactly r=1.5852 In order to find this 
terminal velocity level, simply substitute the desired A, and 
r=1.5852 in (35). The pair of A and St/Fra computed this 
way characterizes the transition in the stability nature of 
equilibrium point 1, which will be explained below. 

The significance of these values is explained in Fig. 8, 
where the transition curve is shown. For St/F? values above 
the transition curve, the equilibrium point(s)’ stability no 
longer depends explicitly on the St. The qualitative. change 
occurs for the equilibrium point located closest to the center 
of the vortex: it changes from a focus to a node as soon as its 
location exceeds r = 1.5852. This process occurs for multiple 
or unique equilibrium point cases but ‘it always concerns the 
first point in the multiple case. We will present here the tran 
sition for an equilibrium- point located on a curve with 
A>&, on which the equilibrium point is unique for any 
given St/Fr2 level. 

Figure 9 shows the directional force field for an equilib- 
rium point located at successively outward positions-and 
therefore at successively higher St/F2 levels-along the 
A=0.03 equilibrium curve. In Fig. 9(a), the equilibrium 
point is located at a radius. t-=0.4959 corresponding to a 
level St/Fr2=0.04. At this.radius +(r> is negative, thus the 
stability depends explicitly on St according to stability con- 
dition (31). The directional force field lines display a spiral- 
ing pattern around the equilibrium point; which explains the 

FIG. 8. Transition curve: variation of the terminal velocity St/F? at which 
the equilibrium point 1 changes its stability nature from a focus into a node 
versus the strain parameter A. 

nature of the stability at that point: a particle approaching the 
equilibrium position will undergo an angular acceleration, 
thus, if possessing enough inertia it will be expelled or kept 
along a closed trajectory by the centrifugal force. In Fig. 
9(b), the equilibrium point is located at a radius Y= 1.3004, 
corresponding to a level St/Fr2=0.08. Again, &(Y) is nega- 
tive, however, its modulus is very small, thus giving a large 
value St,,=32.2016, hence large range of St values for which 
the point is stable. Nevertheless, when the equilibrium point 
is located at a radius I =2.7484, which corresponds to a level 
St/Fr2=0.1, as shown in Fig. 9(c), &(r) is positive, and the 
stability at this point no longer depends explicitly on St. As 
the directional force field line patterns suggest, any particle 
within a vicinity of the equilibrium point will be steadily 
driven towards the equilibrium point, which has become a 
node. 

We can again evaluate the applicability of the above re- 
sults by relating them to the small scale turbulent structures 
in representative laboratory and atmospheric flow situations. 
As Fig. 2 shows, multiple equilibrium solutions are possible 
only for A-CO.021 76=A,,, i:e., approximately for vortex 
Reynolds numbers Re,=S/v>SO. Using the scaling relation 
(18), we obtain Re,,&6. This indicates that both for atmo- 
spheric and for laboratory turbulent, flows the vortex Rey- 
nolds numbers of the small-scale-stretched vortices are suf- 
ficiently large for multiple solutions to exist. As far as the 
particles themselves are concerned, we see from Fig. 2 that 
they must satisfy St/Fr2G0.0815 in order to allow for mul- 
tiple solutions. Using (6) and (7), we obtain for pP%=*pf 

St d2 pP g 
FP=ST,,3 

SAsO.0815. 

It should be noted here that g is the projection of the 
gravitational acceleration in the r-, B plane, St/Fr2 will be 
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FIG. 9. Directional force field graphs. The change in nature of a unique 
equilibrium point at constant strain parameter A value, with increasing ter- 
minal velocity St/F?. (a) A =0.03, St/F?=O.O4. The equilibrium point is a 
focus. (b) A =0.03, St/F?=O.OS. The equilibrium still remains a focus, how- 
ever, the spiraling of the directional force lines is weak. (a) Az0.03, 
St@=O.l. The equilibrium point is a node. 

largest for horizontal vortices. For water droplets in air, 
pP/pf=103 and g/&+X1O1o rnw3, thus the condition (37) 
becomes 

d”SA=G3 X lo-l4 m3. 

With the scaling relation (18), this leads to 

d”~ 6X lo-l3 m2 
s 

Rek”. 

Using again a=417 and the the Browne et al3 data for 
typical laboratory flow, i.e., 77=O.16X1O-3 m and Re,=190, 
the critical particle diameter becomes d,- 115 pm, while for 
atmospheric flows, using the WyngaardZ5 data, 
3=417=4X10m3 m, and Rex=104, we obtain d,,=120 pm. 

In a spray with a size distribution similar to that ob- 
served by Lizaro and Lasheras,’ we would hence expect the 
largest droplets to fall into the single solution regime. Most 
of the droplets, however, would be in the multiple solution 

regime, where the outermost solution is always stable and 
the middle one always unstable, with the stability of the 
nearest solution depending on the exact parameters of the 
flow. 

V. CONCLUSIONS 

We have presented a linear stability analysis as well as 
some numerical results for the motion of heavy particles in 
the flow field of a Burgers vortex. The findings are expected 
to be applicable to the coupling between the small scales of 
a turbulent fluid velocity field and the motion of heavy par- 
ticles suspended in the flow. We consider only the effects of 
particle inertia, Stokes drag, and gravity, so that we obtain as 
the governing equations for the particle motion a four- 
dimensional nonlinear dissipative system with three dimen- 
sionless parameters, namely the particle Stokes number, a 
Froude number, and a vortex strain parameter. 
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The results show that in the absence of gravity, suffi- 
ciently light particles can be stably located at the vortex cen- 
ter, since the inward drag force created by the strain field is 
strong enough to overcome the destabilizing centrifugal 
force on the particle. The critical value of the Stokes number 
for instability is given analytically. A particle with a Stokes 
number larger than the critical value orbits the center of the 
vortex along a circular trajectory, whose radius is a function 
of both Stokes number and strain parameter. 

When the effect of gravity is considered as well, the 
vortex center no longer is an equilibrium point, and instead 
either one or three equilibrium points appear away from the 
center. The location of these equilibrium points depends on 
the terminal settling velocity and the strain parameter. If the 
strain parameter is smaller than a critical value, three equi- 
librium points exist within a certain range of terminal settling 
velocities, otherwise, there is only one equilibrium point. 
Near the vortex center, the stability depends on both Stokes 
number and strain parameter, while farther away from the 
center, only the strain parameter enters into the stability cri- 
terion. It should be mentioned that both the Stokes and the 
Froude number of course enter implicitly by determining the 
location of the equilibrium points. By analyzing the critical 
points of a related directional force field, we were further- 
more able to relate changes in the stability properties of the 
equilibrium points to changes in the nature of the critical 
points. 

ACKNOWLEDGMENTS 

This work has been supported by the National Science 
Foundation under Grant No. CTS-9058065 and by the Elec- 
tric Power Research Institute. 

‘C. T. Crowe, R. Gore, and T. R. Troutt, “ Particle dispersion by coherent 
structures in free shear flows,” Part. Sci. Tech. 3, 149 (1985). 

*J. N. Chung and T. R Troutt, “Simulation of particle dispersion in an 
axisymmetric jet,” J. Fluid Mech. 186, 199 (1988). 

3J. E. Martin and E. Meiburg, “The accumulation and dispersion of heavy 
particles in forced two-dimensional mixing layers. I. The fundamental and 
subharmonic cases,” Phys. Fluids 6, 1116 (1994). 

‘B. J. L&zaro and J. C. Lasheras, “Particle dispersion in a turbulent, plane, 
free shear layer,” Phys. Fluids A 1, 1035 (1989). 

‘B. J. L&aro and J. C Lasheras, “Particle dispersion in the developing free 

shear layer. Part 1. Unforced flow,” J. Fluid Mech. 235, 143 (1992a). 
6B. J. L&mro and J. C. Lasheras, “Particle dispersion in the developing free 
shear layer. Part 2. Forced flow,” J. Fluid Mech. 235, 179 (1992b). 

7E. K. Longmire and J. K. Eaton, “Structure of a particle-laden round jet,” 
J. Fluid Mech. 236, 217 (1992). 

‘S. Elghobashi and G. C. Truesdell, “Direct simulation of particle disper- 
sion in a decaying isotropic turbulence,” J. Fluid Mech. 242, 655 (1992). 

as. Mghobashi and G. C. Truesdell, “On the two-way interaction between 
homogeneous turbulence and dispersed solid particles. I. Turbulence modi- 
fication,” Phys. Fluids A 5, 1790 (1993). 

r”G. C. Truesdell and S. Elghobashi, “On the two-way interaction between 
homogeneous turbulence and dispersed solid particles. II. Particle disper- 
sion,” Phys. Fluids 6, 1405 (1994). 

“K. D. Squires and J. K. Eaton, “Particle response and turbulence modifi- 
cation in isotropic turbulence,” Phys. Fluids A 2, 1191 (1990). 

‘zK. D. Squires and J. K. Eaton, “Measurements of particle dispersion ob- 
tained from direct numerical simulations of isotropic turbulence,” J. Fluid 
Mech. 226, 1 (1991). 

13K. D. Squires and J. K. Eaton, “Preferential concentration of particles by 
turbulence,” Phys. Fhrids A 3, 1169 (1991). 

“L.-P. Wang and M. R. Maxey, “Settling velocity and concentration distri- 
bution of heavy particles in homogeneous isotropic turbulence,” J. Fluid 
Mech. 256, 27 (1993). 

“Z.-S. She, E. Jackson, and S. A. Orszag, “Intermittent vortex structures in 
homogeneous isotropic turbulence,” Nature 344, 226 (1990j. 

t6G. R. Ruetsch and M. R. Maxey, “Small-scale features of vorticity and 
passive scalar fields in homogeneous isotropic turbulence,” Phys. Fluids A 
3, 1.587 (1991). 

“W. T Ashurst, “Is turbulence a collection of Burgers Vortices?” preprint 
(1991). 

‘*J. M. Burgers, “A mathematical model illustrating the theory of turbu- 
lence,” Adv. Appl. Mech. 1, 171 (1948). 

tgT. Maxworthy, “Storm in a tea cup,” J. Appl. Mech. 35, 453 (1968). 
mM. R. Maxey and J. J. Riley, “Equation of motion for a small rigid sphere 

in a nonuniform flow,” Phys. Fluids 26, 883 (1983). 
“‘A. M. Gafrhn-Calve and J. C. Lasheras, “The dynamics and mixing of 

small spherical particles in a plane, tree shear layer,” Phys. Fluids A 3, 
1207 (1991). 

“J. K. Hale and H. Kocak, Dynamics and Bifurcations (Springer-Verlag, 
Berlin, i99ij. 

z3J. Jimenez, A. A. Wray, P. G. Saffman, and R. S. Rogallo, “The structure 
of intense- vorticity in isotropic turbulence,” J. Fluid Mech. 255, 65 
(1993). 

%L. W. B. Browne, R A. Antonia, and N. Rajagopalan, “The spatial de- 
rivative of temperature in a turbulent flow and Taylor’s hypothesis,” Phys. 
Fluids 26, 1222 (1983). 

=J. C. Wyngaard, “Atmospheric turbmence,” Annu. Rev. Fluid Mech. 24, 
205 (1992). 

%W. T. Ashurst and E. Meiburg, “Three-dimensional shear layers via vortex 
dynamics,” J. Fluid Mech. 189, 87 (1988). 

“L. P. Bernal and A. Roshko, “Streamwise vortex structure in plane mixing 
layers,” J. Fluid Me&. 170, 499 (1986). 

410 Phys. Fluids, Vol. 7, No. 2, February 1995 Marcu, Meiburg, and Newton 

Downloaded 22 May 2004 to 128.111.70.70. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp


