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The dynamics of small, heavy, spherical particles are investigated in an analytical model of the
stretched counterrotating streamwise braid vortices commonly found in three-dimensionally
evolving mixing layers. The flow field consists of two superimposed rows of Stuart vortices of
opposite sign, with an additional two-dimensional strain field. The particle dynamics are determined
by a balance of inertial, gravitational, and viscous drag forces, i.e., the dimensionless Stokes and
Froude numbers,St andFr , as well as by the dimensionless strain rate, and the Stuart vortex family
parameter. Equilibrium points for the particles, as well as their stability criteria, are determined
analytically, both in the absence and in the presence of gravity, and for different orientations of the
gravity vector. In the absence of gravity, accumulation of lowSt particles can occur at the center of
the braid vortices. An analytical expression for the critical particle diameter, below which
accumulation is possible, is derived. The presence of gravity can lead to the emergence of multiple
equilibrium points, whose stability properties depend on their locations. For a horizontal mixing
layer flow and strong gravity effects, unconditional accumulation can occur midway between the
streamwise braid vortices in the upwelling regions. Conditionally stable accumulation regions exist
a short horizontal distance away from the centers of the braid vortices. If the gravity vector lies
within the plane of the mixing layer, accumulation points exist only for moderate strengths of
gravity. Under these circumstances, conditional accumulation is possible near the streamwise vortex
centers. ©1996 American Institute of Physics.@S1070-6631~96!00303-6#

I. INTRODUCTION

Due to its importance in a variety of technical applica-
tions and environmental contexts, particle dispersion in plane
mixing layers has been the focus of a considerable amount of
recent experimental and computational research. The main
thrust of this work has been towards understanding and
quantifying the role played by the two-dimensional large-
scale coherent vortices,1 which are triggered by a Kelvin-
Helmholtz instability and dominate the flow by means of a
succession of vortex pairing events.2 As was first pointed out
by Crowe, Gore, and Troutt,3 these coherent vortices prefer-
entially disperse particles whose ratio of aerodynamic re-
sponse time to characteristic flow time, also known as the
particle Stokes number, is on the order of unity. This finding
was subsequently confirmed and extended both by further
two-dimensional computational studies,4–7 as well as by ex-
perimental investigations.8–12These studies demonstrate that
the main mechanism for the dispersion of particles into the
unseeded stream consists of their ejection from the vortex
centers, and the subsequent formation of bands of high par-
ticle accumulations near the free stagnation point in the braid
region between consecutive Kelvin-Helmholtz rollers. There
these bands become aligned with the direction of extensional
strain, which subsequently pulls them into the unseeded free
stream. Scaling arguments presented by Martin and Meiburg6

as well as Raju and Meiburg7 show this accumulation pro-
cess to be optimally effective for a particle Stokes number of
one.

All of the above two-dimensional investigations draw
attention to the importance of the braid region in the particle
dispersion process. The crucial role played by this region
near the free stagnation point then immediately raises the
question as to how the two-dimensional scenario for the par-
ticle dispersion mechanism is modified by the presence of
the three-dimensional secondary vortex structure known to
exist in this part of the flow field. These counterrotating co-
herent streamwise vortices13–15 arise through the reorienta-
tion of the initially weak spanwise braid vorticity into the
streamwise direction. Subsequently they undergo strong
stretching in the extensional strain field created by the evolv-
ing spanwise Kelvin-Helmholtz vortices. As a result, they
can reach considerable strength, and their associated velocity
field plays an important role in the three-dimensional evolu-
tion of the flow. A detailed computational investigation of the
formation and subsequent evolution of this streamwise vor-
tex structure in the mixing layer was undertaken by Corcos
and Lin.16 Subsequently, Lin and Corcos17 presented numeri-
cal computations for a quasi-two-dimensional model of the
strained streamwise braid vorticity that demonstrates how the
self-induced velocity of the regions of opposite-signed
streamwise vorticity, in conjunction with the extensional
plane strain, can lead to the collapse of the streamwise vor-
ticity into concentrated vortex tubes. The computations, as
well as the asymptotic analysis by Neu,18 show that the col-
lapsed, concentrated streamwise vorticity tubes under plane
strain acquire a structure which can be approximated by that
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of axisymmetric Burgers vortices19 in axisymmetric strain.
With respect to the dynamics of heavy particles, these

three-dimensional attributes of the flow field in the braid
region raise issues that are absent from the two-dimensional
mixing layer. In particular, Marcu, Meiburg, and Newton20

recently demonstrated the possibility of particle trapping in a
Burgers vortex, since the centrifugal ejection of the particle
by the vortex can be counteracted by the inward pointing
viscous drag created by the strain component of the velocity
vector. They formulated and solved the corresponding stabil-
ity problem, which led to an analytical criterion for particle
trapping. It was furthermore shown that in the presence of
gravity multiple equilibrium points can exist, which, if
stable, lead to the accumulation of particles. This demon-
strates that the inclusion of the secondary vortex structure in
the braid region can lead to entirely new dynamical effects in
the particle behavior. The counteracting effects of centrifugal
ejection caused by the streamwise vortices and compressive
strain induced by the Kelvin-Helmholtz structures provide
the key mechanisms for an overall complex dynamical be-
havior of the particles. It will be of interest to investigate the
possibility of trapping and accumulation in such an array of
streamwise vortices under plane strain, and the extent to
which these or other new features of particle dynamics
modify the purely two-dimensional scenario.

The most complete quantitative data on particle disper-
sion in three-dimensionally evolving mixing layers will
eventually be provided by three-dimensional direct numeri-
cal simulations and experimental measurements. However,
the interpretation, understanding, and ultimately the model-
ing of such data has to be built on insight gained from the
qualitative and quantitative analysis of simplified flow mod-
els that allow us to study the interaction of several important
mechanisms in isolation. It is in this spirit, which proved to
be so successful in the investigations by Lin and Corcos17

and Neu,18 that we intend to elucidate the mechanisms by
which the counterrotating strained streamwise vortex tubes
in the braid region influence the dispersion of heavy particles
in three-dimensionally evolving mixing layers. For this pur-
pose, we will introduce a model of the fluid flow in the braid
region that captures the essential features of the real flow.
This flow model, as well as the governing equations for the
particle dynamics, is presented in section II of this paper,
along with a discussion of its advantages and shortcomings
in comparison with potential alternate models. The param-
eters that enter into this model are furthermore interpreted
from the point of view of experimental situations, in order to
establish a connection between the two. In Section III we
analyze this model with respect to the existence of equilib-
rium points. Their stability characteristics are evaluated in
order to establish whether or not they can serve as accumu-
lation points for the particles. In Section IV we extend the
analysis to include gravity as well. Finally, in section V we
summarize the results and discuss their implications for the
particle dispersion process. It should be pointed out that the
abovelinear results concern only the existence and stability
of equilibrium points. Issues such as thenonlineardynamics
of particles, or the size of the basin of attraction of the equi-
librium points, will be addressed by means of numerical

simulations, to be discussed in Part 2 of the present
investigation.21 There we will focus on the potential accumu-
lation of particles at equilibrium points or on equilibrium
trajectories, along with the characteristic features of the par-
ticle concentration fields, in order to gain insight into the
relevant transport mechanisms for particles that do not col-
lect at stable equilibrium points, and to quantify particle con-
centration distributions.

II. FLOW MODEL

A. Fluid velocity field

Our goal is to investigate the dynamics of heavy par-
ticles in the z,y-plane across the braid region of a plane
mixing layer@Fig. 1~a!#. For this purpose, we follow Lin and
Corcos17 in approximating the flow as being quasi-two-
dimensional. In this way, the effect of the compressive strain
due to the spanwise Kelvin-Helmholtz vortices can be ac-

FIG. 1. ~a! The three-dimensional Bernal-Roshko shear layer model:lx is
the spacing between the spanwise vortices andlz is the spacing between two
vortices with the same direction of vorticity in the row of counterrotating
vortices.~b! Streamlines for the row of counterrotating vortices in the cross-
streamz,y-plane fors54.0 andk50.9
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counted for, but any variation in the streamwisex-direction
is neglected. After rendering all spatial coordinates, velocity
components, time, and pressure dimensionless by referring
them to a characteristic lengthl * and a characteristic veloc-
ity u* , respectively, the steady incompressible continuity and
Navier-Stokes equations take the form
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l * andu* will be specified below. Here

s5
]u

]x
~4!

denotes the strength of the plane strain and

U5 isx1 jv1kw ~5!

represents the fluid velocity vector. In order to obtain the
flow in the cross-streamz,y-plane, we have to make a fun-
damental choice. One possibility is to solve the above equa-
tions numerically, in a way similar to Lin and Corcos.17 The
advantage of this approach is that it gives a solution which,
except for truncation errors of the selected computational
algorithm, accurately satisfies these equations. The flow field
can then be seeded with heavy particles in order to study
different aspects of their behavior such as accumulation, dis-
persion, etc. The disadvantage of this strategy lies in the
difficulty to obtain information in an analytical form, which
could be useful in the development of simplified models and
scaling laws. For example, the limits of stability for condi-
tionally stable equilibrium points as a function of the particle
Stokes number would be hard to obtain, as would be the
location of unstable equilibrium points. For these purposes, it
would be preferable to employ an analytical model of the
fluid flow in the z,y-plane. Such a model will allow us to
make progress analytically towards determining the location
of equilibrium points, their respective stability criteria, etc.
However, due to the nonlinearity of the governing system of
equations, no model for this flow is known that satisfies
equations~1!–~3! exactly. In spite of this obvious shortcom-
ing, it is our belief that an investigation based on a simplified
analytical model should precede a full numerical simulation
of the problem, as it allows us to develop insight and intu-
ition which will be useful in conducting and interpreting di-
rect simulations of the governing equations.

The particular flow model that we choose is based on the
solution to the steady two-dimensional Euler equations
known as Stuart vortices.22 This solution describes a periodic
row of like-signed vortices a distancelz apart from each
other. The vortex row separates two free streams with a dif-
ference velocityDW. By taking lz as the characteristic
length l * andDW as the characteristic velocityu* , we ob-
tain for the dimensionless streamfunction of the Stuart vorti-
ces,

c5
1

4p
ln@cosh„2p~y2y0!…2k cos„2p~z2z0!…#, ~6!

where (z0 ,y0) denotes the location of a vortex center. The
parameterk determines the degree to which the vorticity is
concentrated in the vortex cores. Fork51, the flow is that
induced by a row of corotating point vortices, while fork50
we have a uniform shear layer with a tanh velocity profile.

The above streamfunction describes the flow field due to
a row of corotating vortices. In order to obtain a model for a
counterrotating vortex row, we superimpose another Stuart
vortex row of equal strength and opposite sign, whose vortex
centers are located midway between the vortices of the origi-
nal row at (z1 ,y1). To account for the plane strain, we fur-
thermore add a fluid velocity component,

vs52sy, ~7!

wheres denotes the dimensionless strain rate, which is re-
lated to the dimensional strains̃ by

s5s̃
lz

DW
. ~8!

Due to the strain component, the fluid velocity field in the
z,y-plane no longer is divergence free, so that it cannot be
expressed in terms of a streamfunction. The dimensionless
velocity components, which are periodic in the spanwise
z-direction, then have the form

wf520.5
sinh@2p~y2y0!#

cosh@2p~y2y0!#2k cos@2p~z2z0!#

10.5
sinh@2p~y2y1!#

cosh@2p~y2y1!#2k cos@2p~z2z1!#
, ~9!

v f50.5
k sin@2p~z2z0!#

cosh@2p~y2y0!#2k cos@2p~z2z0!#

20.5
k sin@2p~z2z1!#

cosh@2p~y2y1!#2k cos@2p~z2z1!#
2sy.

~10!

It should be noted that far away from the counterrotating
vortex row the horizontal velocity component now ap-
proaches zero. However, even thoughDW thus can no longer
be interpreted as a free stream velocity difference, it still
serves to characterize the strength of the counterrotating vor-
tices.

The above velocity components solve the continuity
equation~1! exactly. However, while they satisfy the inviscid
form of the governing momentum equations~2!,~3! for k51,
this is not the case for other values ofk, due to the nonlin-
earity of those equations. The error increases for smaller val-
ues ofk, so that the following analysis is more accurate the
closerk is to unity. It should be mentioned that Mallier and
Maslowe23 recently gave a closed form solution to the steady
incompressible Euler equations for a row of counterrotating
vortices, based on a streamfunction derived from a complex
potential suggested by Milne-Thomson. Still, when subjected
to plane strain, this flow field as well fails to solve the gov-
erning equations exactly. By settingz050.25, y050 and
z150.75,y150, we place the vortices on thez-axis such that
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we have a counterclockwise rotating vortex atz50.25, and a
clockwise rotating one atz50.75. For illustrative purposes,
streamlines are shown in Fig. 1~b! for k50.9 ands54. The
vortex centers correspond to foci in the streamline plot, in-
dicating their sink-like character due to the plane strain,
which is compressive in they-direction and extensional in
thex-direction. Apart from the vortex centers, we find further
fixed points at locationsz,y defined by

z56
n

2
,

~11!

~21!n11
k

cosh~2py!
2sy50.

These equilibrium points represent saddle points. Even val-
ues of n, and n50 in particular, indicate free stagnation
points below thez-axis in the downwelling regions, whereas
odd values ofn denote those above thez-axis in the up-
welling regions.

The natural scaling for the present quasi-two-
dimensional problem is based on the spanwise periodlz and
onDW, which characterizes the strength of each streamwise
vortex. In a typical experimental flow, however, the circula-
tion of the streamwise vorticesGx.DWlz increases with
time. During the initial, nearly two-dimensional evolution of
a transitional mixing layer, the streamwise vortices are quite
weak, but during the later stages their circulation can grow to
the same order as that of the spanwise Kelvin-Helmholtz
vorticesGz.DUlx . Here,DU denotes the streamwise ve-
locity difference between the two streams forming the mix-
ing layer, and lx indicates the spacing of the Kelvin-
Helmholtz vortices. During these later stages of the three-
dimensional evolution, the dimensional strains̃ stays
approximately constant. Its strength is estimated24 as

s̃;3
DU

lx
. ~12!

By rendering this strain dimensionless in the way described
earlier, i.e., withDW andlz , we obtain

s;3
DUlz

DWlx
, ~13!

so that

s;3
Gz

Gx
S lz

lx
D 2. ~14!

Bernal and Roshko13 find that typically lz/lx52/3.
Thus, the minimum dimensionless strain rates that we should
consider, corresponding to the stage where the streamwise
vortices have reached a strength that is of the same order as
that of the spanwise vortices, is approximatelys54/3.

In summary, motivated by the desire to make analytical
progress, we apply a simplified quasi-two-dimensional
model for the fluid velocity field. This model consists of two
superimposed rows of counterrotating Stuart vortices resid-
ing in a plane strain field. In this way, the model reproduces
the periodic array of counterrotating stretched stream-wise
braid vortices known to dominate the braid region of nomi-
nally two-dimensional mixing layers. While it satisfies the

continuity equation identically for all values of the Stuart
family parameterk, the model represents an exact solution to
the Euler equations only in the limitk→1. However, even for
values ofk near unity the structure of the model vortices
approaches that of axisymmetric Burgers vortices, just as
solutions to the full Navier-Stokes solutions do.17,18It should
be pointed out that the model is time-independent, so that the
dynamic roll-up of the initially weak streamwise braid vor-
ticity is not reproduced.

B. Equation of motion for the particles

We limit our investigation to the dilute regime, in which
the particle concentration is small enough for the interaction
among particles and the effect of the particle motion on the
fluid flow to be neglected. We furthermore consider only
particles whose densityrp is much greater than that of the
surrounding fluidrf , such as solid particles or liquid drops in
gaseous flows. Under these conditions, the particle motion is
dominated by the effects of particle inertia, the viscous drag
force created by the slip velocity, and gravity.8 The velocity
Vp5(wp ,vp) and locationxp of a small spherical particle of
diameterd in the fluid velocity fieldU5(wf ,v f) are then
governed by the dimensionless equations25

dVp

dt
5

1

St
~Uux5xp

2Vp!1
1

Fr 2
eg , ~15!

dxp
dt

5Vp , ~16!

where we have applied Stokes’ drag law, based on the as-
sumption of small particle Reynolds numbers.26 Hereeg rep-
resents the unit vector in the direction of the projection of
gravity on thez,y-plane. Note that, as a consequence of the
quasi-two-dimensional nature of the flow field, in conjunc-
tion with Stokes’ drag law, the motion of the particles in the
spanwise and cross-stream directions is decoupled from that
in the streamwisex-direction. The dimensionless parameters,

St5
d2rpDW

18r fn flz
~17!

and

Fr5
DW

Alzg
, ~18!

are the Stokes and Froude numbers, respectively. Herenf
denotes the kinematic viscosity of the fluid andg represents
the length of the projection of gravity on thez,y-plane, so
that the above equations hold for all orientations of gravity.
Notice that, as a result of the above scaling, the Stokes num-
berSt of a particle will vary asDW or lz change during the
evolution of the flow field. As is well known,St indicates the
ratio of the particle’s aerodynamic response time and the
characteristic flow time scale. Small values ofSt correspond
to very light particles or relatively viscous fluid, so that the
particle motion is dominated by viscous forces, and the par-
ticle can be expected to follow the fluid closely. For heavy
particles or less viscous fluids, on the other hand,St takes
large values, and the particle motion becomes mostly a func-
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tion of its inertia. HereFr expresses in dimensionless form
the relative importance of inertial and gravitational forces.
As Fr decreases, gravity becomes more important for the
dynamical behavior of the particle.

It is of interest to compare the particle Stokes number
values caused by the spanwise Kelvin-Helmholtz vortices
with those due to the streamwise braid vortices. The flow
time scaletstreamcorresponding to the Kelvin-Helmholtz vor-
tices is given bylx

2/Gz . On the other hand, the flow time
scaletspanimposed by the streamwise vortices can be written
as lz

2/Gx . With lz'2/3lx
13 and Gx'1/2Gz,

27 we obtain
tstream'9/8tspan, leading us to conclude that, by the time the
streamwise vortices have reached a mature stage, the two
time scales are of the same order. This indicates that those
particles that are preferentially concentrated in the braid re-
gion by the Kelvin-Helmholtz vortices will also be strongly
influenced by the streamwise braid vortices.

We can write equations~15! and ~16! as a nonlinear
four-dimensional system forzp , yp , wp , andvp ,

28 obtaining

ẋ5F~x!, ~19!

where

x5F zp
yp
wp

vp

G , F~x!5F wp

vp
1

St
~wf2wp!1

egz
Fr 2

1

St
~v f2vp!1

egy
Fr 2

G . ~20!

Hereegz andegy represent thez- and y-components of the
unit vector in the direction of thez,y-projection of the grav-
ity vector. This system of ordinary differential equations with
appropriate initial conditions specified fort50 constitutes a
nonlinear dissipative dynamical system.

III. EQUILIBRIUM POINTS AND THEIR STABILITY IN
THE ABSENCE OF GRAVITY

In the absence of gravity, the only equilibrium points for
the particles are the stagnation points given by~11! and the
centers of the counterrotating vortices. The stagnation points
are saddle points, as indicated by the streamline pattern in
Fig. 1, so that they are unstable for particle accumulation.20

In the following, we analyze the linear stability at the center
of the vortex located atz50.25,y50.

The fluid velocity field~9!,~10! can be linearized around
the vortex center by obtaining a series expansion form for
the horizontal and vertical velocities, retaining only the first
order terms in the expansions of the hyperbolic and trigono-
metric functions,

wf5
2pk

12k2
yF2p2

11k2

12k2
~z2z0!

221G ,
~21!

v f5
2pk

12k2
~z2z0!F122p2

11k2

12k2
~z2z0!

2G2sy,

We express the expanded equations~21! in coordinates
with the origin at the vortex center by making the transfor-
mationz5z2z0 . Subsequent linearization with respect toy
andz yields

wf52
2pk

12k2
y,

~22!

v f5
2pk

12k2
z2sy.

Using ~22!, the particle motion equations in the absence
of gravity ~19!,~20! can be written as

F żp
ẏp
ẇp

v̇p
G5F 0 0 1 0

0 0 0 1

0 2c 2a 0

c 2b 0 2a

GF zp
yp
wp

vp
G , ~23!

where a51/St, b5s/St, c5f(k)/St, and
f(k)52pk/(12k2).

The coefficient matrix of the system~23! has eigenval-
ues of the form

s1,2,3,452
1

St
6
1

St
A122sSt62StAs224f2~k!. ~24!

The discussion of stability depends on the value of the
expressions224f2(k). When this expression is negative, all
four eigenvalues~24! are complex, with the real part of the
form

Re~s!52
1

2St
6

1

2St
r1/2 cosS u

2D ,
where

r25124sSt116St2f2~k! ~25!

and

u5tan21S 2StA4f2~k!2s2

122sSt D . ~26!

For stability, one requires Re(s),0. Using the trigonometric
identity,

cosS u

2D5
1

&

A11
1

A11tan2~u!
, ~27!

in isolating the real part of the eigenvalues~24!, we obtain
the stability condition

St<
2s

4f2~k!2s2 5Stcr . ~28!

If s224f2(k) is positive, one can show immediately that if

122sSt62StAs224f2~k!,0, ~29!

the eigenvalues~24! are complex and have negative real
parts. If

122sSt62StAs224f2~k!>0, ~30!

the eigenvalues are real, and the inequalitys1,2,3,4<0 @where
only the ‘‘1’’ signs need to be considered in~24!# leads to
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the condition 16St2f2(k)>0, which is always satisfied.
Thus, in this last case, the eigenvalues~24! are real but will
always have nonpositive values.

In summary, the conditions for stability at the center of
the vortex are

s224f2~k!.0, stable,

s224f2~k!<0H St<
2s

4f2~k!2s2 , stable,

St.
2s

4f2~k!2s2 , unstable.
~31!

The variation of the critical strain parameter with the
Stuart family parameter is shown in Fig. 2~a!. Above the
curve, the equilibrium points are stable, while below the
curve the second stability condition in~31! applies. The
strain parameter necessary to ensure unconditional stability
grows rapidly ask increases. During the initial stages of a
typical mixing layer evolution, the streamwise vortex cores
are not yet concentrated, so that they correspond to small
values ofk. The dimensionless strains, on the other hand, is
quite large. These conditions lie above the curve in Fig. 2~a!,

and thus correspond to the stable accumulation of particles at
the centers of the vortices. As the vortices develop, their
cores shrink, forming regions of concentrated vorticity, de-
scribed by higher values ofk. Under these conditions, the
strain can balance only the centrifugal forces of smaller and
smaller particles, so that it depends onSt whether or not
particle accumulation occurs.

In the conditional stability zone, below the curve in Fig.
2~a!, the critical valueStcr drops rapidly with increasingk.
In Fig. 2~b!, the variation ofStcr with k at constant values of
s is shown for 1<s<9. For each curve, below thek value
corresponding to the critical strain curve for a givens in Fig.
2~a!, Stcr is infinite. Then, ask increases,Stcr decreases
rapidly towards zero.

We conclude that diluted streamwise vorticity as well as
strong strain is required for stable accumulation of particles
at the centers of the vortices. As the vortices are stretched by
the axial strain, and their cores achieve concentrated vortic-
ity, only particles characterized by smaller and smallerSt
can accumulate.

A scaling analysis can relate the particle size to the mix-
ing layer characteristics, based on the set of conditions~31!.
There, the termf2(k) expresses the non-dimensional vortic-
ity at the center of the vortex, as computed from the linear-
ized velocity field ~22!. It is the competition between the
fluid velocity related to the vorticity and that related to the
strain which determines the stability of the particle at the
center of the vortex.

The above stability criterion~31! can be used in order to
obtain a critical particle size, below which accumulation is
possible. To this end, we employ Neu’s18 result that a vortex
stretched by plane strain asymptotically approaches an axi-
symmetric Burgers vortex with a dimensional vorticity dis-
tribution,

ṽ5
G

4pR2 expS 2
r 2

4R2D . ~32!

Here G is the vortex circulation. Also,R denotes the core
radius, which asymptotically approachesR25n/s̃,s̃ being
the dimensional plane strain. Thus the vorticity at the vortex
center has the value

ṽ5
G

4pn
s̃. ~33!

Corcos and Sherman24 provide a scaling law for the plane
strain ass̃;3DU/lx whereDU is the streamwise velocity
difference of the mixing layer, andlx denotes the spacing
between the spanwise Kelvin-Helmholz vortices. By non-
dimensionalizings̃ with lz andDW, and using Bernal and
Roshko’s observation13 thatlx;3lz/2, the non-dimensional
strain coefficient becomes

s5
2DU

DW
. ~34!

Non-dimensionalizing the vorticity~33! in the same way, we
obtain, with~34!,

v5
G

2pn

DU

DW
. ~35!

FIG. 2. ~a! Variation of the criticals with respect tok. Above the curve, the
equilibrium point is unconditionally stable, while below the curve the sta-
bility depends on theSt values, as shown in~b!. ~b! Variation of the critical
St with respect tok for different values of the strain parameters, as indi-
cated. For each curve the vertical asymptote is shown, below which uncon-
ditional stability is achieved.
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By employing ~34! and ~35! in ~31!, the criticalSt is ex-
pressed as

Stcr5

DW

DU

~G/2pn!221
. ~36!

From the above expression, one can estimate the critical par-
ticle diameter in terms of the characteristic flow parameters.
An important scaling result from the experiments of Bernal
and Roshko,13 and Bell and Mehta27 is that the spacinglz of
the streamwise vortices scales with the vorticity thicknessdv

of the mixing layer,

lz;dv5
DU

~]U/]y!max
. ~37!

By using ~37! and ~17! in conjunction with expression~36!
for the critical value ofSt, one obtains an estimate for the
critical particle diameter,

dcr
2 ;

Y

~]U/]y!max@~G/2pn!221#
, ~38!

whereY5(18r fn f)/rp depends only on the material prop-
erties of the particle and the fluid. Notice that the velocity
differencesDU and DW no longer appear in the relation
above. The expression indicates that for weak vortices accu-
mulation of relatively large particles is possible. For increas-
ing rotational velocities, the diameter of the particles that can
accumulate decreases rapidly.

IV. EQUILIBRIUM POINTS AND THEIR STABILITY IN
THE PRESENCE OF GRAVITY

A. Gravity perpendicular to the mixing layer

While in the absence of gravity the equilibrium points
for the particles were located at the critical points of the fluid
velocity field, this is no longer the case when gravity is
added. In this section, we assume that the gravity vector
points in the2y-direction. As a result, the locations of the
particle equilibrium points are displaced. Furthermore, addi-
tional equilibrium points may be produced.20 In order to find
the coordinates of these points one can use equations~19!
and ~20! with the particle velocity and acceleration set to
zero, along with the fluid velocity field~9!,~10!. We obtain
the following two equations:

20.5
sinh@2p~y2y0!#

cosh@2p~y2y0!#2k cos@2p~z2z0!#

10.5
sinh@2p~y2y1!#

cosh@2p~y2y1!#2k cos@2p~z2z1!#
50,

~39!

0.5
k sin@2p~z2z0!#

cosh@2p~y2y0!#2k cos@2p~z2z0!#

20.5
sinh@2p~z2z1!#

cosh@2p~y2y1!#2k cos@2p~z2z1!#

2sy2
St

Fr 2
50,

which must be solved fory andz to find the coordinates of
the equilibrium points.

It is interesting to note that the equations~39! express
the fluid velocity field as given by~9!,~10!, from which the
particle terminal velocitySt/Fr 2 has been subtracted. The
result is a modified velocity field, whose fixed points repre-
sent equilibrium points for the particles.20 In the absence of
gravity, the streamlines of this modified velocity field are
identical to the streamlines of the fluid velocity field, shown
in Fig. 1~b! for k50.9 ands54. For the same values ofk
ands, the streamline patterns of the modified velocity fields
for different levels of gravity are shown in Fig. 3. In Fig.
3~a!, for St/Fr 250.8, the foci of the modified velocity field
are displaced laterally while the saddle point is significantly
displaced downwards, as compared to the no-gravity case.
As gravity increase@Fig. 3~b!#, two new equilibrium points
emerge, located symmetrically with respect to thez50.5 ver-
tical line. Finally, for strong gravity, only one equilibrium
point is left, located below the row of vortices on the vertical
line z50.5.

An important observation, based on the plots in Fig. 3, is
that all equilibrium points are located either on the vertical
linesz50 or z50.5, or on the horizontal liney50. The rea-
son for this behavior lies in the fact that only along these
lines the horizontal fluid velocity vanishes, which is a nec-
essary condition for the existence of an equilibrium point.
This is reflected by the existence of two sets of solutions to
the first equation in~39!. The first set consists of a family of
lines z56n/2, along which the equation is satisfied for any
y, and the second set represents the liney50, along which
the equation is satisfied for any value ofz. For convenience,
let us denote the first set of solutions as the vertical set, and
the second set as the horizontal set.

1. Equilibrium points from the vertical set

By substitutingz56n/2 into the second equation~39!,
one obtains an equation for they-locations along these lines
z5const, where equilibrium is achieved. The vertical set of
solutions for the equilibrium points (zv ,yv) is given by

zv56
n

2
,

~40!
~21!n11k

cosh~2pyv!
2syv5

St

Fr 2
.

Comparison of this set of points with the stagnation points
~11! shows that the equilibrium points of the vertical set are
located below the alternating stagnation points~11! of the
flow. When n51 ~or odd values!, i.e., at the periodic
z-locations where the fluid is pushed upwards by the vorti-
ces, theyv-coordinate of the equilibrium point can be either
positive or negative, depending on the value of the terminal
velocity St/Fr 2, but whenn50 ~or even values!, i.e., at the
periodic locations where the fluid is pushed downwards by
the vortices, theyv-coordinate of the equilibrium point can
only be negative. This fact is important for the stability
analysis around the equilibrium points from the vertical set.
We will show that the equilibrium points at locations char-
acterized byn50 in ~40! are always unstable.
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Figure 4 shows the variation of the left hand side in the
second equation in~40! with respect toy, for several values
of s, andk50.9. The intersection of as5const curve, called
equilibrium curve, with a vertical lineSt/Fr 25const yields
one or three equilibrium points. As an example, the three
equilibrium points resulting from the intersection of the equi-
librium curves52.0 with the vertical lineSt/Fr 250.95 are
shown. The pattern of the equilibrium curves in Fig. 4 indi-
cates that there is a critical value fors above which the
equilibrium points are always unique, and below which they
can be either multiple or unique, depending on theSt/Fr 2

value. The value for the criticals can be found by identify-
ing the curve which has a zero of its first derivative at the
same location as a zero of the second derivative.20 This con-
dition immediately leads to

scr5pk, ~41!

i.e., the critical strain varies linearly with the vorticity distri-
bution parameter. For the curves in Fig. 4, sincek50.9, the
value for the critical strain parameter isscr52.8274. The
corresponding curve is indicated by a dashed line.

Whether or not particle accumulation at these equilib-
rium points will occur depends on the stability of these
points. In order to perform the stability analysis for the ver-
tical set of equilibrium points, we linearize the velocity field
~9!,~10! around the equilibrium point from the set,
xv5(zv ,yv). Using series expansions along with thez-values
in ~40! and the values for the vortex center locationsz050.25
andz150.75, the linearized velocity field has the form

w5wuxv1
2pk~21!n11 sinh~2pyv!

cosh2~2pyv!
z,

~42!

v5vuxv2S 2pk~21!n11 sinh~2pyv!

cosh2~2pyv!
1s Dh.

Here ~z,h! are small displacements around the equilibrium
point xv5(zv ,yv). We write the equations~19!,~20! for

FIG. 3. Modified velocity field for horizontal mixing layers. The square
symbols mark the centers of the vortices, while the circles mark the equi-
librium points. ~a! s54.0; k50.9; St/Fr 250.8. As gravity increases, the
equilibrium points are displaced either laterally, along the vortex row axis,
or vertically, along the lines of symmetry between the vortices.~b! s54.0;
k50.9;St/Fr 251.0. As gravity is further increased, the equilibrium points
located on the symmetry line between the vortices can be displaced below
the line of vortices aty50. ~c! s54.0; k50.9; St/Fr 251.15. For suffi-
ciently strong gravity, only one equilibrium point exists, located signifi-
cantly below the vortex row line.

FIG. 4. Equilibrium curves for the vertical set, fork50.9. The intersec-
tion~s! of a givenSt/Fr 2 vertical line with an equilibrium curve correspond-
ing to a given parameters value yields the vertical positiony of the particle
equilibrium point~s!.
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z5zv1z and y5yv1h, using the velocity field~42!, and
then subtract from the resulting system the base state equa-
tions ~19!,~20! written for (zv ,yv), using the velocity field
~9!,~10! at the pointxv5(zv ,yv). The result is a system of
four first order ODEs with four unknowns, i.e., the particle’s
perturbed position~z,h! and velocity~x5ż, t5ḣ!

F ż
ḣ
ẋ
ṫ
G53

0 0 1 0

0 0 0 1

a

St
0 2

1

St
0

0 2
a1s

St
0 2

1

St

4 F z
h
x
t
G , ~43!

where

a5
2pk~21!n11 sinh~2pyv!

cosh2~2pyv!
. ~44!

The coefficient matrix of the system~43! has eigenvalues of
the form

s1,252
1

2St
6

1

2St
A114aSt,

~45!

s3,452
1

2St
6

1

2St
A124~a1s!St.

The stability properties determined by the eigenvalues
~45! will have to be discussed separately forn50 ~even val-
ues! and n51 ~odd values!, corresponding to the down-
welling and upwelling regions, respectively. Forn51, the
solution foryv from ~40! can be either positive or negative.
Employing expression~44! for n51 in ~45!, one obtains

s1,252
1

2St
6

1

2St
A114

2pk sinh~2pyv!

cosh2~2pyv!
St,

~46!

s3,452
1

2St
6

1

2St
A124S 2pk sinh~2pyv!

cosh2~2pyv!
1s DSt.

The term sinh~2pyv!/cosh
2~2pyv! is positive foryv.0

and negative foryv,0. For positiveyv , the first expression
in ~46! used with the ‘‘1’’ sign will produce real and positive
eigenvalues, thus indicating unstable behavior of the particle.
Physically, this is a consequence of the fact that near the
equilibrium point the horizontal fluid velocity component
points away from this point. For negativeyv , the first ex-
pression in~46! may be either real negative, or complex with
negative real part. Therefore, in order to check for instability,
we have to focus on the second expressions3,4. There, the
term

2S 2pk sinh~2pyv!

cosh2~2pyv!
1s D ~47!

is the first derivative of the LHS in the second equation~40!,
for n51, i.e., the slope of the equilibrium curve. With refer-
ence to Fig. 4, the discussion links the eigenvaluess3,4 ~46!
to the slopes of the equilibrium curves. Therefore, when a
given equilibrium curve has a negative slope, the term~47! is
negative, leading to either complex values with a negative
real part, or real negative values ins3,4 ~46!, no matter which
sign is chosen, thus indicating stability, provided thatyv,0.
In the opposite situation, when a given equilibrium curve has
positive slope, the term~47! is positive and gives real posi-
tive eigenvalues ins3,4 ~46! with the ‘‘1’’ sign chosen. Thus,
the regions with positive slope of the equilibrium curves pro-
duce unstable equilibrium points. Such regions exist only if
multiple equilibrium points can exist, because only then are
the equilibrium curves changing their slopes. Since the posi-
tive slope region of the equilibrium curve is confined be-

FIG. 5. Modified velocity field. Stability of the equilibrium points from the
vertical set for the case when only one equilibrium point may exist.~a!
s54.0; k50.9; St/Fr 250.85. The equilibrium point is located at positive
y-coordinate, therefore it is unstable. The pattern of the modified velocity
field lines indicates a saddle.~b! s54.0; k50.9;St/Fr 250.92. The equilib-
rium point is located at a negativey coordinate, therefore it is stable. The
pattern of the modified velocity field lines indicates a node.
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tween the zeros of the its derivatives, only the middle point
of the equilibrium triplets will fall in the unstable region
unless the upper equilibrium point has positive vertical coor-
dinate yv ~see Fig. 4, the plotted equilibrium points for
s52.0!. We also note that fors.scr there are no positive
slopes, therefore the unique equilibrium points are always
stable at negativeyv . Note that stability of the particle at a
certain equilibrium point does not depend directly on the
particleSt parameter but only indirectly, as the position of
the equilibrium point is determined by the strains and the
terminal velocitySt/Fr 2, and it is the position which deter-
mines the stability characteristics.

For n50, corresponding to locations where the fluid is
pushed down by the vortices, it was shown above that the
equations~40! admit equilibrium points only at negative val-
ues ofyv . Consequently, the eigenvalues~45! can be written
as

s1,252
1

2St
6

1

2St
A114U2pk sinh~2pyv!

cosh2~2pyv!
USt,

~48!

s3,452
1

2St
6

1

2St
A124S U2pk sinh~2pyv!

cosh2~2pyv!
U1s DSt.

The first expression in~48! with the ‘‘1’’ sign will produce
real positive eigenvalues at all positions, hence all equilib-
rium points for the case in the vertical set are unconditionally
unstable. Physically, the horizontal fluid velocity points away
from these equilibrium locations, precluding any particle ac-
cumulation.

We can summarize the stability discussion for the verti-
cal equilibrium set as follows:

~49!

In Fig. 5, one can follow the change in the stability char-
acteristics of an equilibrium point in the vertical set as
St/Fr 2 is varied. Shown are the streamlines of the modified
velocity field fork50.9 ands54.0. Sinces.scr , the equi-
librium point is unique. In Fig. 5~a!, the equilibrium point is
still located at positiveyv , and therefore unstable. This is
confirmed by the streamlines, which form a saddle. In Fig.
5~b!, with yv,0, the equilibrium point is stable, and the
streamlines demonstrate the existence of a node.

In Fig. 6, one can follow the change in the stability prop-
erties as well as the production and extinction of equilibrium
points with increasing gravity, when the strain is subcritical
s,scr . Herek50.9 ands52.0. In Fig. 6~a!, the influence of
gravity is small, and the equilibrium point is displaced only
slightly below the stagnation point of the fluid. When gravity
is stronger, as forSt/Fr 250.89 in Fig. 6~b!, two additional

equilibrium points are produced in the vertical set. One can
also refer to Fig. 4 and intersect the curve fors52.0 with the
appropriateSt/Fr 2 vertical line. Note that the upper equilib-
rium point in the triplet still has a positiveyv-coordinate, and
therefore is unstable. Fig. 6~c! shows the points plotted in
Fig. 4. Here the upper point of the triplet is located at nega-
tive yv , and therefore stable, while the middle point is an
unstable saddle. As gravity increases further, the upper and
the middle equilibrium points are displaced towards each
other~corresponding to the intersection points of the equilib-
rium curve fors52.0 in Fig. 4 with a vertical line moving
towards the right! until they merge and vanish. Beyond that,
only the lowest equilibrium point of the previous triplet is
left @Fig. 6~d!#. It is stable, as can be seen from the stream-
line pattern which indicates a node.

The above discussion demonstrates that a necessary cri-
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terion for the accumulation of particles at equilibrium points
of the vertical set is the existence in upwelling regions of
equilibrium points below the level of the row of counterro-
tating vortices. This conditionyv,0 in the equilibrium equa-
tions for the vertical set~40! translates into

St

Fr 2
.k, ~50!

which can be considered the fundamental necessary condi-
tion for accumulation at the vertical set of equilibrium
points.

2. Equilibrium points from the horizontal set

By settingy50 in the second equation of~39!, and also
using the valuesz050.25 andz150.75, one obtains an equa-
tion for the locations along the liney50 where equilibrium
is achieved. One can then express the horizontal set of equi-
librium points in the following form:

yh50,

k cos~2pzh!

k2$12@cos~2pzh!#
2%21

5
St

Fr 2
. ~51!

Along the liney50, the horizontal fluid velocity is zero,
whereas the vertical velocity is given by the left hand side
term in the second equation in~51!. The variation of this
velocity as a function ofz is plotted in Fig. 7, for several
values ofk. These curves can again be interpreted as equi-
librium curves, similar to Fig. 4 for the vertical set, in the
sense that any intersection with a constant level line
St/Fr 25const yields the locationzh of an equilibrium point.
One can observe in Fig. 7 that, depending on the value ofk,
either none, two, or four equilibrium points may exist, at
locations that are symmetrical with respect to the vertical
line z50.5. Due to this symmetry, we will examine only the
nature of the equilibrium points located to the left of the

FIG. 6. Modified velocity field. The stability of the equilibrium points from the vertical set. The case when multiple points~triplets! may exist.~a! s52.0;
k50.9;St/Fr 250.5. Single equilibrium point, located at positivey-coordinate and therefore unstable. The pattern of the modified velocity field streamlines
indicates a saddle.~b! s52.0;k50.9;St/Fr 250.89. Three equilibrium points exist: the upper~still located aty.0! and the middle one are saddles, while the
lower point is a node.~c! s52.0;k50.9;St/Fr 250.95. Three equilibrium points exist: the upper one is a node, the middle one is a saddle, and the lower one
is a node.~d! s52,0;k50.9;St/Fr 250.98. A single equilibrium point, located at the negativey-coordinate, therefore stable~node!. The upper and the middle
equilibrium points have merged and vanished.

725Phys. Fluids, Vol. 8, No. 3, March 1996 B. Marcu and E. Meiburg

Downloaded¬22¬May¬2004¬to¬128.111.70.70.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright,¬see¬http://pof.aip.org/pof/copyright.jsp



vertical linez50.5, while keeping in mind that all consider-
ations are valid for the points to the right of it as well.

Whether there are one or two equilibrium points located
in the interval 0,z,0.5 is controlled by the value ofk. One
can find the critical value ofk that separates these two situ-
ations by identifying again the curve that has a zero of its
first derivative at the same location as a zero of its second
derivative.20 This yields a critical value

kcr5
1

&

~52!

above which two equilibrium points may exist, and below
which only one equilibrium point can exist in the horizontal
set.

Equation ~51! can be cast in a quadratic form for
cos(2pzh) to yield

cos~2pzh!5
216A124~12k2!~St/Fr 2!2

2k~St/Fr 2!
. ~53!

Already from equation~51!, it follows that in the absence of
gravity, whenFr→`, and thusSt/Fr 2→0, the equilibrium
locations are

zh5
1

4
6m

1

2
, with m50,61,62,...,

which represents the locations of the centers of the counter-
rotating vortices. In this way, the case without gravity is
recovered. Expression~53! provides a condition for a real
solution to exist,

124~12k2!S St

Fr 2D
2

>0, ~54!

which leads to a limiting value forSt/Fr 2 above which equi-
librium points no longer exist in the horizontal set,

St

Fr 2
<

1

2A12k2
. ~55!

Physically, the right hand side of the above inequality ex-
presses the maximum vertical fluid velocity along the line
y50. An additional condition for the existence of equilib-
rium points can be obtained by requiring that the right hand
side in~53! be bounded within the interval@21,1#, due to the
cosine term on the left hand side. One can easily verify that
for values ofSt/Fr 2 that satisfy~55!, the right hand side in
~53! taken with the ‘‘1’’ sign is always bounded within
@21,1#. However, when the ‘‘2’’ sign is taken, the necessary
boundedness is achieved only if

St

Fr 2
>maxS k, 1

2kD , ~56!

where the priority in the max function term switches exactly
at critical k ~given by 52!, i.e., abovekcr ,k.1/2k, while
below kcr ,k,1/2k; see Fig. 8.

It was shown above that the ‘‘1’’ sign in ~53! corre-
sponds to the vortex center in the absence of gravity. This
situation is depicted in Fig. 9~a!. As the value ofSt/Fr 2

increases, gravity gains importance and generates a displace-
ment of the equilibrium point from the position of the vortex
center to a different position along the horizontal liney50,
as shown in Fig. 9~b!. As long as theSt/Fr 2 values are
below those required by~56!, only the ‘‘1’’ sign makes
sense in~53! and thus only one equilibrium point will exist.
WhenSt/Fr 2 increases enough to satisfy~56!, an additional
equilibrium point will appear, as shown in Fig. 9~c!, corre-
sponding to the ‘‘2’’ sign in ~53!. The two equilibrium
points are further displaced towards each other asSt/Fr 2

continues to increase@Fig. 9~d!#. At the limit of inequality
~55! the two equilibrium points will merge, and subsequently
vanish for largerSt/Fr 2 values@Fig. 9~e!#.

This scenario is valid for values ofk larger than critical,
when~55! still allows for ~56! to be satisfied. Belowkcr , the
right hand side in the limiting condition~55! is larger than
the right hand side in the condition~56!, which means that
the condition~56! is no longer active, thus the ‘‘2’’ sign in

FIG. 7. Equilibrium curves for the horizontal set. The intersection~s! of a
givenSt/Fr 2 horizontal line with an equilibrium curve corresponding to a
given parameterk value yields the horizontal positionz of the particle
equilibrium point~s!. The equilibrium points 1p and 2p are the symmetrical
images of the points 1 and 2 with respect to the vertical linez50.5.

FIG. 8. Variation of various bounds forSt/Fr 2 with respect tok.
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~53! no longer is physically relevant, and only one equilib-
rium point can exist. In this case, asSt/Fr 2 increases, the
equilibrium point will be continuously displaced alongy50
@Figs. 10~a! and 10~b!# towards the vertical line of symmetry
z50.5, where it will merge with its symmetrical counterpart
and vanish@Fig. 10~c!#.

In order to perform a stability analysis for the horizontal
set of equilibrium points, we again linearize the velocity field

~9!, ~10! around the equilibrium pointxh5(zh ,yh) from the
horizontal set. Using series expansions and settingyh50,
z050.25, andz150.75, the linearized velocity field has the
form

w5wuxh2
2pk sin~2pzh!

12k2 sin2~2pzh!
h,

~57!

v5vuxh1kpH 2 sin~2pzh!2k

„12k sin~2pzh!…
2

1
2 sin~2pzh!1k

„11k sin~2pzh!…
2 J z,

where~z,h! are small displacements around the equilibrium
point. Performing algebraic manipulations similar to those
presented in section III, we obtain a system of four first order
ODE’s with four unknowns, i.e., the particle’s perturbed po-
sition ~z,h! and its velocity~x5ż, t5ḣ!,

FIG. 9. Modified velocity field. Stability of the equilibrium points from the
horizontal set. The case when multiple points~doublets! may exist. ~a!
s54.0; k50.9; St/Fr 250.0. No-gravity case; the equilibrium point is lo-
cated at the vortex center, which is a focus.~b! s54.0;k50.9;St/Fr 250.8.
At weak gravity, the equilibrium point is displaced towards thez50.5 sym-
metry line. The point is still a focus.~c! s54.0; k50.9;St/Fr 250.95. For
sufficiently strong gravity, a new equilibrium point is created, while the first
one is further displaced. The new point is a saddle, while the first one
remains a focus.~d! s54.0; k50.9; St/Fr 251.12. For further increased
gravity, the two equilibrium points approach each other towards a merging
location.~e! s54.0; k50.9;St/Fr 251.15. Gravity level is beyond the limit
of existence for equilibrium points of the horizontal set. The two points have
merged and vanished.

FIG. 10. Modified velocity field. Stability of the equilibrium points from the
horizontal set. The case when only one equilibrium point may exist.~a!
s54.0; k50.7; St/Fr 250.5. At weak gravity, the equilibrium point is dis-
placed from its initial location at the vortex center towards the symmetry
line z50.5, and remains a focus.~b! s54.0; k50.7; St/Fr 250.69. The
terminal velocity value is close to thek value, the limit of existence for
equilibrium points of the horizontal set. The equilibrium point is close to the
z50.5 symmetry line and has become a node.~c! s54.0; k50.7;
St/Fr 250.71. The gravity level is beyond the limit of existence of equilib-
rium points from the horizontal set. The equilibrium point has merged with
its symmetrical pair from the right side of the symmetry linez50.5, and
vanished.
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F ż
ḣ
ẋ
ṫ
G53

0 0 1 0

0 0 0 1

0
b

St

21

St
0

c

St

2s

St
0

21

St

4 F z
h
x
t
G , ~58!

where

b52
2pk sin~2pzh!

12k2 sin2~2pzh!
,

~59!

c5kpH 2 sin~2pzh!2k

„12k sin~2pzh!…
2 1

2 sin~2pzh!1k

„11k sin~2pzh!…
2 J .

The coefficient matrix of the system~58! has eigenvalues of
the form

s1,2,3,452
1

2St
6

1

2St
A122sSt62StAs214bc. ~60!

In spite of the similarity with the no-gravity case~24!,
the discussion of the stability of the equilibrium points based
on the eigenvalues~60! is quite involved, due to the fact that
the location appears explicitly in the term 4bc, so that one
cannot easily extract a stability criterion as a function of the
particle and flow parameters. The analysis of~60! must be
carried out differently for positive and negative values of the
expression

L~zh ,k,s!5s214bc. ~61!

As shown in Fig. 11, the dependence of the term 4bc on z
varies significantly withk, whereb andc are given by~59!.
In addition, the parameters can vary widely as well. Nev-
ertheless, the value ofL divides the interval 0.25<z<0.5
into two subintervals. In the left one of these,L is negative,
while it is positive in the right one. For a fixeds, the bound-
ary between the two subintervals will be located at different
positions for different values ofk. Note that the interval
0<z<0.25 cannot contain any equilibrium points.

WhenL is negative, all four eigenvalues~60! are com-
plex. Their real parts are

Re~s!52
1

2St S 16r1/2 cosS u

2D D , ~62!

where

r5A~122sSt!214St2uLu and

u5tan21S 2StuLu
122sStD . ~63!

For stability, one requires thatRe(s)<0. Using~63! and
again the trigonometric relation~27!, one obtains the stability
condition

St,
2s

uL~zh ,k,s!u
. ~64!

Consequently, in this case the stability of the equilibrium
point ~zh ,yh50! depends explicitly onSt, s, andk, but not
on the parameterSt/Fr 2. The situation is similar to that of a
Burgers vortex20 in the presence of gravity, in that the termi-
nal velocitySt/Fr 2 determines the location of the equilib-
rium point, while not directly entering into the related stabil-
ity criterion ~64!.

WhenL is positive, the eigenvalues~60! may be either
real or complex, depending on the sign of the expression
under the outer square root. In this case, complex eigenval-
ues indicate stability, since the real part will be negative. One
can write the expression~60! in the form

s1,2,3,452
1

2St
~16A122St~s6AL!!. ~65!

By analyzing~65!, one obtains that ifs2AL.0 the eigen-
values are either complex with a negative real part, or real
and negative, thus indicating stability. On the other hand, if
s2AL,0 at least one of the four eigenvalues will be real and
positive, thus indicating instability. Along with~61!, this
condition translates into stability for 4bc,0, and instability
for 4bc.0. One can see in Fig. 11 that the curves 4bc either
stay negative for the whole interval 0.25<zh<0.5 if k,kcr ,
or become positive towards the right end of the interval for
valuesk.kcr . In this latter case, the zero-crossing coordi-
nate is always given by the solution of~53! at the limit of
condition ~55!, so that the zero-crossing takes place at the
location where the two equilibrium points merge and vanish.

Consequently, the stability conditions for the equilibrium
points of the horizontal set can be summarized as follows:

L~zh ,k,s!,0, H St,
2s

uL~zh ,k,s!u
, stable equilibrium points,

St.
2s

uL~zh ,k,s!u
, unstable equilibrium points;

~66!

L~zh ,k,s!.0, H 4bc,0, stable equilibrium points,

4bc.0, unstable equilibrium points.
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A physical interpretation of these results may again be
obtained by describing the evolution of the location and sta-
bility of the equilibrium point~s! with increasing gravity. In
the absence of gravity, the only equilibrium point from the
horizontal set is located at the center of the vortex. At this
location, substitutingzh50.25 into ~66!, the term 4bc be-
comes24„2pk/(12k2)…2524f2(k) @see ~23!#, which is
negative, and condition~66! reduces to~31!. As we pointed
out for the no-gravity case, an important condition for stabil-
ity at the center of the vortex is the existence of strong strain,
i.e., larges. Consequently, without gravity one equilibrium
point exists, which is located at the center of the vortex, and
whose stability is determined by~31!. The streamline pattern
in Fig. 9~a! shows that the equilibrium point has the form of
a focus.

As gravity increases, the equilibrium point is continu-
ously shifted towards the right along the liney50. For
k50.9.kcr ands54.0 as in Fig. 10, the term 4bc is nega-
tive over the interval 0.25<zh<0.3305 ~see Fig. 11!, and
L,0 over the interval 0.25<zh<0.3285. Therefore, over this
last interval, the stability is controlled by the first set of con-
ditions in ~66!. For k50.7,kcr ands54.0 as in Fig. 11, the
term 4bc is always negative, whileL is negative over the
interval 0.25<zh<0.3855, so that over this interval the sta-
bility of the particle at the equilibrium point is governed by
the first set of conditions in~66! as well. In both cases the
equilibrium point is a focus, and its stability depends explic-
itly on the particleSt value.

When gravity is increased sufficiently for condition~56!
to be satisfied, a second equilibrium point will appear if
k.kcr . This occurs between the situation shown in Fig. 9~b!
and that shown in Fig. 9~c!. To find the new equilibrium
point’s location, one can substituteSt/Fr 25k into equation
~53! taken with the~‘‘ 2’’ ! sign. This yieldszh50.5, i.e., the
right border of the interval considered. At this location, 4bc
50, so thatL is positive and the equilibrium point is neu-
trally stable. Fork,kcr no additional equilibrium points ap-
pear, since for subcriticalk the limiting conditions~55! and

~56! cannot be satisfied simultaneously, so that a second so-
lution for equation~53! does not exist.

As gravity increases further, fork.kcr the initial equi-
librium point will continue to move towards the right, while
the additional point will start to move towards the left. This
can be shown either by solving~53! for increasingSt/Fr 2, or
by following in Fig. 7 the intersections of a curve corre-
sponding tok50.9 with a horizontal line moving upwards.
As soon as the second equilibrium point leaves thezh50.5
position, it becomes unstable. For the casek50.9 and
s54.0, the term 4bc.0 near the right border of the interval
~see Fig. 11!. With zh.0.3285, we haveL.0, so that the
stability of the second equilibrium point is governed by the
second set of conditions in~66! which indicates instability.
This is evident in Figs. 9~c! and 9~d!, as the streamlines form
a saddle at the new equilibrium point’s location. The initial
equilibrium point is still a focus at this level of gravity.

If gravity increases further, the two equilibrium points
will collide for supercriticalk once the level of gravity given
by the limit of condition~55! is reached. The collision hap-
pens at the zero-crossing of the 4bc term, which is
zh50.3305 for k50.9 ands54.0. For k,kcr , the single
equilibrium point will become unconditionally stable as it
passes the boundary betweenL,0 andL.0, which is lo-
cated atzh50.3855 for the case in Fig. 11. As shown in Fig.
10~b!, the point then corresponds to a node. Subsequently,
the equilibrium point will collide with its symmetrical pair to
the right of the vertical linez50.5. This collision occurs at
the intersection of they50 line with thez50.5 line.

For gravity levels larger than that the limit of~55!, only
equilibrium points from the vertical set are possible. If the
strain is strong enough to enforce the conditions.scr , only
one stable equilibrium point exists in the entire flow field.

It is of interest to note that fork.kcr the stability prop-
erties of the first equilibrium point change during the last
part of its motion alongy50, just before the collision. By
examining Fig. 11, one can observe that in order to reach the
collision locationzh50.3305, the left equilibrium point must
pass the boundary between the negativeL and positiveL,
zh50.3285. Once this boundary is passed, the term 4bc is
still negative, butL is positive, indicating unconditional sta-
bility according to~66!. Thus, the initial equilibrium point
has a range of locations where it is stable regardless of the
value of St. The interval is bounded by the zero-crossing
location ofL to the left, and by the zero-crossing location of
4bc to the right~see Fig. 11, fork50.9!.

B. Gravity pointing in the spanwise direction

Here we consider flows for which gravity points in the
negativez-direction. This results inegz521, egy50 in equa-
tions ~19! and ~20!. Proceeding in a manner similar to the
above, one obtains a system of two equations with two un-
knowns for the equilibrium locations,

FIG. 11. The variation of the term 4bc with respect tok. For valuesk.kcr ,
the curves have a positive region towards the right of the interval, otherwise
they remain negative. Also shown are the points of zero-crossing and the
boundary point betweenL,0 andL.0 for k50.9 ands54.0.
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20.5
sinh@2p~y2y0!#

cosh@2p~y2y0!#2k cos@2p~z2z0!#

10.5
sinh@2p~y2y1!#

cosh@2p~y2y1!#2k cos@2p~z2z1!#
2

St

Fr 2
50,

~67!

0.5
k sin@2p~z2z0!#

cosh@2p~y2y0!#2k cos@2p~z2z0!#

20.5
k sin@2p~z2z1!#

cosh@2p~y2y1!#2k cos@2p~z2z1!#
2sy50.

In the following, we provide a brief analysis of the equi-
librium point locations and their stability, based on the modi-
fied velocity field plots.

The presence of a spanwise component of the gravity
vector destroys the symmetry of the streamline pattern of the
modified flowfield, as shown in Fig. 12~a!. The equilibrium
points are displaced from their no-gravity position in both
their z- andy-coordinates, while maintaining their nature as
pairs of foci and saddle points. As gravity increases, the fo-
cus and saddle move closer to each other, as shown in Fig.
12~b!, until they collide and vanish. Fig. 12~c! shows the
case when the terminal velocitySt/Fr 2 is larger than the
maximum horizontal fluid velocity, for which equilibrium
points no longer exist.

The observation of main interest is that for the present
orientation of gravity there are no unconditionally stable ac-
cumulation points, i.e., no nodes in the modified stream-line
pattern. For low values of gravity, conditionally stable accu-
mulation points in the form of foci exist, whereas for stron-
ger values of gravity no equilibrium points are present. As a
necessary condition for the existence of conditionally stable
accumulation points in the flow, the terminal velocity must
be smaller than the maximumz-component of the fluid ve-
locity. This leads to

St

Fr 2
,

k

2A12k2
. ~68!

C. Arbitrary orientation of the gravity vector in the
cross-stream plane

In this most general case, gravity forms an anglea with
the2y-direction, so that there are gravitational components
acting both in thez- and in they-direction. Here, we assume
that the gravity components act in2z and2y-direction, re-
spectively, henceegz52sin~a!, and egy52cos~a!. Conse-
quently, each of the equations~19!, ~20! retains a term re-
lated to gravity. The equilibrium equations, obtained from
~19!, ~20! with the flowfield ~9!, ~10! form a system of two
equations for two unknowns,

0.5
sinh@2p~y2y0!#

cosh@2p~y2y0!#2k cos@2p~z2z0!#

10.5
sinh@2p~y2y1!#

cosh@2p~y2y1!#2k cos@2p~z2z1!#

1
St

Fr 2
egz50,

~69!

0.5
k sin@2p~z2z0!#

cosh@2p~y2y0!#2k cos@2p~z2z0!#

20.5
sinh@2p~z2z1!#

cosh@2p~y2y1!#2k cos@2p~z2z1!#
2sy

1
St

Fr 2
egy50.

The above equations must be solved numerically in or-
der to obtain the positions (ze ,ye) of the equilibrium points.
Stability of these equilibrium points then requires that the
local fluid velocity field, after subtraction of the terminal
settling velocity, has the character of a stable fixed point.

A general linear linear stability analysis around a generic
equilibrium point can be carried out in a manner similar to
the analyses presented in sections III and IV A. By using
series expansions around a generic equilibrium point
xe5(ze ,ye) one can express the fluid velocities as

w5wuxe1e
]w

]z
1h

]w

]y
,

~70!

v5vuxe1e
]v
]z

1h
]v
]y

,

where~e,h! are small displacements around the equilibrium
point. These linearized expressions for the fluid velocity field
~70!, after some algebraic manipulations similar to those in
sections III and IV A, lead to a system of four first order
ODE’s with four unknowns, i.e., the particle perturbed posi-
tion ~e,h! and velocity~x5ė, t5ḣ!,

F ė
ḣ
ẋ
ṫ
G53

0 0 1 0

0 0 0 1

a

St

b

St

21

St
0

c

St

d

St
0

21

St

4 F e
h
x
t
G , ~71!

where a5]w/]z, b5]w/]y, c5]v/]z, d5]v/]y are the
components of the fluid velocity gradient tensor. The eigen-
values of the coefficient matrix in the system~71! are

s1,2,3,45
1

St
@216A11St~a1d6A~a2d!214bc!#.

~72!

These eigenvalues~72! allow us to identify those regions
in the flowfield in which any existing equilibrium points
would be unconditionally stable. One can immediately ob-
serve that if expressionL 5 „a1 d6 A(a2d)214bc… in ~72!
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FIG. 13. The topology of the zones of potential particle accumulation.~a!
s54.0; k50.9. The zones corresponding to potential particle accumulation
~dark areas! are located at the up- and downwelling locations, alternatively.
~b! s52.0; k50.9. The zones corresponding to potential particle accumula-
tion ~dark areas! have become disconnected: one small area, located close to
the vortex row line and one larger area can be observed at each down- and
upwelling location.~c! s54.0;k50.8. The zones corresponding to potential
particle accumulating~dark areas! located at downwelling locations have
become connected to the areas located at upwelling locations.

FIG. 12. Modified velocity field for the case of the vertical row of vortices.
Here gravity acts from right to left. The black dots mark the center of the
vortices, while the circles mark the position of the equilibrium points, if they
exist ~a! s54.0; k50.9;St/Fr 250.5. Gravity destroys the symmetry of the
line pattern. The equilibrium points are displaced from both their no-gravity
casez-andy-coordinates. The line pattern suggest two sets of focus-saddle
points.~b! s54.0; k50.9;St/Fr 250.75. Increasing gravity does not gener-
ate any additional equilibrium points. The initial stability characteristics
remain the same, while the points in each focus-saddle pair move closer to
each other.~c! s54.0; k50.9; St/Fr 251.0. After collision, all equilibrium
points vanish. Gravity is strong enough to ‘‘wash’’ out all of the equilibrium
points.
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is real and negative, then the eigenvalues are either real and
negative, or complex with negative real part, both of which
cases indicate unconditional stability.

Figure 13 distinguishes areas where the termL is real
and negative~dark areas! from those where it is either real
and positive or complex~white areas!. The dark areas indi-
cate zones of unconditional stability, provided that equilib-
rium points are located within those zones. These zones of
unconditional stability do not depend on the particle charac-
teristics (St), but only on the flow characteristics. Their to-
pology changes, as the strain coefficients or the Stokes’
parameterk are varied. In Fig. 13~a!, for s54 andk50.9,
the zones of unconditional stability are periodically located
in the up- and downwelling flow areas. For a lower value of
s52, a small island of unconditional stability survives near
the vortex row. This is shown in Fig. 13~b!, which also pro-
vides a better understanding of the stability characteristics
for the vertical set of equilibrium points in Fig. 6. An inter-
esting topology develops whens54 and the Stokes’ param-
eter is lowered tok50.8. The unconditionally stable zones in
the down-welling regions become linked to those in the up-
welling regions by thin filaments around the cores of the
counterrotating vortices.

V. CONCLUSIONS

The present investigation represents a first step towards
extending results for particle accumulation and dispersion in
two-dimensional free shear flows to fully three-dimensional
flows. A prominent feature of these three-dimensional flows,
absent in two dimensions, is the existence of stretched vor-
tices. These were shown earlier20 to possess the ability to
trap heavy particles. Consequently, the array of extensionally
strained counterrotating vortices known to exist in the braid
region of three-dimensionally evolving mixing layers, can be
expected to significantly affect the dynamics of the bands of
heavy particles forming there as a result of the action of the
spanwise Kelvin-Helmholtz rollers. In order to be able to
make theoretical progress, we employ an analytical model
for the fluid flow in the braid region, based on Stuart vorti-
ces. This approach allowed us to identify the locations of
equilibrium points for the heavy particles. By employing
some basic tools from the field of dynamical systems theory,
we were able to demonstrate the existence of both unstable
~saddle!, conditionally stable~foci!, and unconditionally
stable~nodes! equilibrium points. The latter two may serve
as accumulation regions for the heavy particles. Accumula-
tion criteria were derived in terms of the particleSt andFr
numbers, and the flow parameters.

In the absence of gravity, accumulation of moderateSt
particles can occur only at the center of the braid vortices. An
analytical expression for the critical particle diameter, below
which accumulation is possible, was derived. The effect of
gravity can lead to the emergence of multiple equilibrium
points, whose stability properties depend on their locations.
Orientations of the gravity vector both perpendicular to and
within the plane of the mixing layer were considered. In the
former case, unconditional accumulation is possible only
midway between the streamwise braid vortices in the up-
welling regions, if gravity is strong enough to create equilib-

rium points below the plane of the mixing layer. Condition-
ally stable accumulation regions exist a short horizontal
distance away from the centers of the braid vortices. If the
gravity vector lies within the plane of the mixing layer, ac-
cumulation points exist only for moderate values ofFr . Un-
der these conditions, conditional accumulation is possible
near the streamwise vortex centers.

The above results only concern the existence and stabil-
ity of equilibrium points. They cannot address such issues as,
for example, the size of the basin of attraction of the stable
equilibrium points, or the nonlinear dynamics of particles for
which stable equilibrium points do not exist. Finding an-
swers to these questions requires the help of numerical simu-
lations, which will be discussed in detail in Part 2 of the
present investigation.21 There we will explore thenonlinear
dynamics of heavy particles in the braid region of the mixing
layer, in order to study the potential accumulation of par-
ticles on equilibrium trajectories, along with the characteris-
tic features of the related particle concentration fields.
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