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The dynamics of small, heavy, spherical particles are investigated in an analytical model of the
stretched counterrotating streamwise braid vortices commonly found in three-dimensionally
evolving mixing layers. The flow field consists of two superimposed rows of Stuart vortices of
opposite sign, with an additional two-dimensional strain field. The particle dynamics are determined
by a balance of inertial, gravitational, and viscous drag forces, i.e., the dimensionless Stokes and
Froude numbersStandFr, as well as by the dimensionless strain rate, and the Stuart vortex family
parameter. Equilibrium points for the particles, as well as their stability criteria, are determined
analytically, both in the absence and in the presence of gravity, and for different orientations of the
gravity vector. In the absence of gravity, accumulation of Btparticles can occur at the center of

the braid vortices. An analytical expression for the critical particle diameter, below which
accumulation is possible, is derived. The presence of gravity can lead to the emergence of multiple
equilibrium points, whose stability properties depend on their locations. For a horizontal mixing
layer flow and strong gravity effects, unconditional accumulation can occur midway between the
streamwise braid vortices in the upwelling regions. Conditionally stable accumulation regions exist
a short horizontal distance away from the centers of the braid vortices. If the gravity vector lies
within the plane of the mixing layer, accumulation points exist only for moderate strengths of
gravity. Under these circumstances, conditional accumulation is possible near the streamwise vortex
centers. ©1996 American Institute of Physid$§1070-663(96)00303-6

I. INTRODUCTION as well as Raju and Meibufgshow this accumulation pro-
cess to be optimally effective for a particle Stokes number of
Due to its importance in a variety of technical applica- one.
tions and environmental contexts, particle dispersion in plane  All of the above two-dimensional investigations draw
mixing layers has been the focus of a considerable amount @fttention to the importance of the braid region in the particle
recent experimental and computational research. The maiispersion process. The crucial role played by this region
thrust of this work has been towards understanding an#@iear the free stagnation point then immediately raises the
quantifying the role played by the two-dimensional |arge_question as to how the two-dimensional scenario for the par-
scale coherent vorticdswhich are triggered by a Kelvin- ficle dispersion mechanism is modified by the presence of
Helmholtz instability and dominate the flow by means of athe three-dimensional secondary vortex structure known to

succession of vortex pairing eveRtas was first pointed out exist in this part of the flow field. These counterrotating co-

by Crowe, Gore, and Trouttthese coherent vortices prefer- herent streamwise vorticEs®® arise through the reorienta-

entially disperse particles whose ratio of aerodynamic re:[Ion of the |n|t'|ally.weak spanwise braid vorticity into the

. L A streamwise direction. Subsequently they undergo strong

sponse time to characteristic flow time, also known as thé Lo . -

. . . ... Stretching in the extensional strain field created by the evolv-
particle Stokes number, is on the order of unity. This finding

b | ; d and ded both by furth ing spanwise Kelvin-Helmholtz vortices. As a result, they
was S,u sequenty con wme an e.ern ed both by furt &an reach considerable strength, and their associated velocity
two-dimensional computational studi&s,as well as by ex-

. : NN i field plays an important role in the three-dimensional evolu-
perimental investigatior:* These studies demonstrate that o of the flow. A detailed computational investigation of the
the main mechanism for the dispersion of particles into thgormation and subsequent evolution of this streamwise vor-
unseeded stream consists of their ejection from the vorteyex structure in the mixing layer was undertaken by Corcos
centers, and the Subsequent formation of bands of hlgh pagnd |_ir|_l6 Subsequenﬂy, Lin and Corddq)resented numeri-
ticle accumulations near the free stagnation point in the braiga computations for a guasi-two-dimensional model of the
region between consecutive Kelvin-Helmholtz rollers. Therestrained streamwise braid vorticity that demonstrates how the
these bands become aligned with the direction of extensionakelf-induced velocity of the regions of opposite-signed
strain, which subsequently pulls them into the unseeded fregtreamwise vorticity, in conjunction with the extensional
stream. Scaling arguments presented by Martin and Méiburgplane strain, can lead to the collapse of the streamwise vor-
ticity into concentrated vortex tubes. The computations, as
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of axisymmetric Burgers vorticéSin axisymmetric strain.

With respect to the dynamics of heavy particles, these
three-dimensional attributes of the flow field in the braid
region raise issues that are absent from the two-dimensional
mixing layer. In particular, Marcu, Meiburg, and Newt8n
recently demonstrated the possibility of particle trapping in a
Burgers vortex, since the centrifugal ejection of the particle )
by the vortex can be counteracted by the inward pointing ~
viscous drag created by the strain component of the velocity /
vector. They formulated and solved the corresponding stabil- \
ity problem, which led to an analytical criterion for particle
trapping. It was furthermore shown that in the presence of
gravity multiple equilibrium points can exist, which, if
stable, lead to the accumulation of particles. This demon-
strates that the inclusion of the secondary vortex structure in
the braid region can lead to entirely new dynamical effects in
the particle behavior. The counteracting effects of centrifugal
ejection caused by the streamwise vortices and compressive n=0 n=1 n=
strain induced by the Kelvin-Helmholtz structures provide 0.5 y
the key mechanisms for an overall complex dynamical be-
havior of the particles. It will be of interest to investigate the
possibility of trapping and accumulation in such an array of 0.3r
streamwise vortices under plane strain, and the extent to
which these or other new features of particle dynamics
modify the purely two-dimensional scenario.

The most complete quantitative data on particle disper- .
sion in three-dimensionally evolving mixing layers will
eventually be provided by three-dimensional direct numeri-
cal simulations and experimental measurements. However,
the interpretation, understanding, and ultimately the model-
ing of such data has to be built on insight gained from the

gualitative and quantitative analysis of simplified flow mod- 041
els that allow us to study the interaction of several important 08 | ) . ]
mechanisms in isolation. It is in this spirit, which proved to (b) 0 02 04, 0® 08 1

be so successful in the investigations by Lin and Cdrcos

and Neul'g that we intend to elucidate the mechanisms byFIG. 1. (a) The three-dimensional Bernal-Roshko shear layer mogeis

which the counterrotating strained streamwise vortex tubege spacing between the spanwise vortices)gris the spacing between two

in the braid region influence the dispersion of heavy particlegortices with the same direction of vorticity in the row of counterrotating

in three-dimensionally evolving mixing layers. For this pur- vortices.(b) Streamlinis for the rgw of counterrotating vortices in the cross-
- ; . ., Streamz,y-plane fore=4.0 andk=0.9

pose, we will introduce a model of the fluid flow in the braid

region that captures the essential features of the real flow.

This flow model, as well as the governing equations for thesimulations, to be discussed in Part 2 of the present

particle dynamics, is presented in section Il of this paperinvestigatiorﬁlThere we will focus on the potential accumu-

along with a discussion of its advantages and shortcomingition of particles at equilibrium points or on equilibrium

in comparison with potential alternate models. The paramirajectories, along with the characteristic features of the par-

eters that enter into this model are furthermore interpretedicle concentration fields, in order to gain insight into the

from the point of view of experimental situations, in order to relevant transport mechanisms for particles that do not col-

establish a connection between the two. In Section Il weect at stable equilibrium points, and to quantify particle con-

analyze this model with respect to the existence of equilibcentration distributions.

rium points. Their stability characteristics are evaluated in

order to establish whether or not they can serve as accumy- FLOW MODEL

lation points for the particles. In Section IV we extend the

analysis to include gravity as well. Finally, in section V we

summarize the results and discuss their implications for the  Our goal is to investigate the dynamics of heavy par-

particle dispersion process. It should be pointed out that thécles in the z,y-plane across the braid region of a plane

abovelinear results concern only the existence and stabilitymixing layer[Fig. 1(a)]. For this purpose, we follow Lin and

of equilibrium points. Issues such as thenlineardynamics ~ Corcos’ in approximating the flow as being quasi-two-

of particles, or the size of the basin of attraction of the equi-dimensional. In this way, the effect of the compressive strain

librium points, will be addressed by means of numericaldue to the spanwise Kelvin-Helmholtz vortices can be ac-

A. Fluid velocity field
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counted for, but any variation in the streamwiselirection 1

is neglected. After rendering all spatial coordinates, velocity ~ ¥= 7 In[cosh2m(y—yo))—k cod2m(z—2,)], (6)
components, time, and pressure dimensionless by referring

them to a characteristic length and a characteristic veloc- Where €q.,yo) denotes the location of a vortex center. The
ity u*, respectively, the steady incompressible continuity andarametek determines the degree to which the vorticity is

Navier-Stokes equations take the form _concentrated in the vortex cores. Fk}Fl,_ the floyv is that
induced by a row of corotating point vortices, while for0
wLow_ (1)  We have a uniform shear layer with a tanh velocity profile,
ay oz ' The above streamfunction describes the flow field due to
’ ) a row of corotating vortices. In order to obtain a model for a
v v +w v __ P n i a I v ) ) counterrotating vortex row, we superimpose another Stuart
ay 0z dy Rel\ay® dz°)’ vortex row of equal strength and opposite sign, whose vortex
P w P 1 12w 2w centers are located midway between the vortices of the origi-
v _W+W ——— _p+ _ <_2_+ _2_) (3) nal row at @;,y;). _To accqunt for the plane strain, we fur-
ay 9z oz Relody” odz thermore add a fluid velocity component,
I* andu* will be specified below. Here ve=—0Y, (7)
au where o denotes the dimensionless strain rate, which is re-
7= % 4 |ated to the dimensional straf by
denotes the strength of the plane strain and o= A; ®)
. . AW’
U=iox+jv+kw (5)

) ) ) Due to the strain component, the fluid velocity field in the
represents the fluid velocity vector. In order to obtain the; y_pjane no longer is divergence free, so that it cannot be
flow in the cross-stream,y-plane, we have to make a fun- eypressed in terms of a streamfunction. The dimensionless

tions numerically, in a way similar to Lin and CorcbsThe z-direction, then have the form

advantage of this approach is that it gives a solution which,

except for truncation errors of the selected computational \, _ (5 sinf{ 2m(y —yo)]

algorithm, accurately satisfies these equations. The flow field cosh2m(y—Yo)]—k cog 2m(z—2zj)]

can then be seeded with heavy particles in order to study sin{ 27(y—y1)]

different aspects of their behavior such as accumulation, dis- +0. L , (9
persion, etc. The disadvantage of this strategy lies in the costi2m(y—y1)]—k cog2m(z—2,)]
difficulty to obtain information in an analytical form, which k sin2m(z—2p)]

could be useful in the development of simplified models and v{=0.5
scaling laws. For example, tﬁe limits of stability for condi- cosii2m(y=yo) ]~k cog2m(z=2y)]
tionally stable equilibrium points as a function of the particle k siN2m(z—2z;)]
Stokgs number would _bg hard to obtain, as would be th_e —05 cosh27(y—y,)]—k co§2m(z—z;)] ay.
location of unstable equilibrium points. For these purposes, it
would be preferable to employ an analytical model of the (10
fluid flow in the z,y-plane. Such a model will allow us to It should be noted that far away from the counterrotating
make progress analytically towards determining the locatiorvortex row the horizontal velocity component now ap-
of equilibrium points, their respective stability criteria, etc. proaches zero. However, even thoug thus can no longer
However, due to the nonlinearity of the governing system ote interpreted as a free stream velocity difference, it still
equations, no model for this flow is known that satisfiesserves to characterize the strength of the counterrotating vor-
equationg1)—(3) exactly. In spite of this obvious shortcom- tices.
ing, it is our belief that an investigation based on a simplified  The above velocity components solve the continuity
analytical model should precede a full numerical simulationequation(1) exactly. However, while they satisfy the inviscid
of the problem, as it allows us to develop insight and intu-form of the governing momentum equatioi®,(3) for k=1,
ition which will be useful in conducting and interpreting di- this is not the case for other valueslgfdue to the nonlin-
rect simulations of the governing equations. earity of those equations. The error increases for smaller val-
The particular flow model that we choose is based on theies ofk, so that the following analysis is more accurate the
solution to the steady two-dimensional Euler equationsloserk is to unity. It should be mentioned that Mallier and
known as Stuart vortice€.This solution describes a periodic Maslowe?® recently gave a closed form solution to the steady
row of like-signed vortices a distance, apart from each incompressible Euler equations for a row of counterrotating
other. The vortex row separates two free streams with a difvortices, based on a streamfunction derived from a complex
ference velocityAW. By taking A\, as the characteristic potential suggested by Milne-Thomson. Still, when subjected
length1* and AW as the characteristic velocity*, we ob-  to plane strain, this flow field as well fails to solve the gov-
tain for the dimensionless streamfunction of the Stuart vorti-erning equations exactly. By settingy=0.25, y,=0 and
ces, z,=0.75,y,=0, we place the vortices on tlreaxis such that
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we have a counterclockwise rotating vortexzat0.25, and a  continuity equation identically for all values of the Stuart
clockwise rotating one a=0.75. For illustrative purposes, family parametek, the model represents an exact solution to
streamlines are shown in Fig( for k=0.9 ando=4. The the Euler equations only in the limkt—1. However, even for
vortex centers correspond to foci in the streamline plot, invalues ofk near unity the structure of the model vortices
dicating their sink-like character due to the plane strainapproaches that of axisymmetric Burgers vortices, just as
which is compressive in thg-direction and extensional in solutions to the full Navier-Stokes solutions Hd81t should
thex-direction. Apart from the vortex centers, we find further be pointed out that the model is time-independent, so that the
fixed points at locationg,y defined by dynamic roll-up of the initially weak streamwise braid vor-
ticity is not reproduced.

n
= ii’ B. Equation of motion for the particles

(13) We limit our investigation to the dilute regime, in which
(—1)n*t oy=0. the particle concentration is small enough for the interaction

cosi2y) among particles and the effect of the particle motion on the

These equilibrium points represent saddle points. Even vafuid flow to be neglected. We furthermore consider only
ues ofn, and n=0 in particular, indicate free stagnation particles whose density, is much greater than that of the
points below thez-axis in the downwelling regions, whereas surrounding fluidp; , such as solid particles or liquid drops in
odd values ofn denote those above theaxis in the up- gaseous flows. Under these conditions, the particle motion is
welling regions. dominated by the effects of particle inertia, the viscous drag

The natural scaling for the present quasi-two-force created by the slip velocity, and gravitfhe velocity
dimensional problem is based on the spanwise pexjahd  V,=(w,,v,) and locatiornx, of a small spherical particle of
on AW, which characterizes the strength of each streamwisdiameterd in the fluid velocity fieldU=(w;,v¢) are then
vortex. In a typical experimental flow, however, the circula-governed by the dimensionless equatfons
tion of the streamwise vorticeB,=AWN\, increases with av. 1 1
time. During the initial, nearly two-dimensional evolution of P (Ul — V) = &y, (15)
a transitional mixing | i i i dt st PTEZS

g layer, the streamwise vortices are quite

weak, but during the later stages their circulation can grow to
the same order as that of the spanwise Kelvin-Helmholtz —p=Vp, (16)
vorticesI',=AUM\,. Here,AU denotes the streamwise ve-

locity difference between the two streams forming the mix-ynere we have applied Stokes’ drag law, based on the as-

ing layer, and\, indicates the spacing of the Kelin- g,mption of small particle Reynolds numbétsieree, rep-
Helmholtz vortices. During these later stages of the threefesents the unit vector in the direction of the projection of

dimensional evolution, the dimensional strain stays gravity on thez,y-plane. Note that, as a consequence of the

approximately constant. lts strength is estiméters quasi-two-dimensional nature of the flow field, in conjunc-

. AU tion with Stokes’ drag law, the motion of the patrticles in the
o~3 N (12 spanwise and cross-stream directions is decoupled from that

X in the streamwise&-direction. The dimensionless parameters,

By rendering this strain dimensionless in the way described

earlier, i.e., withAW and\,, we obtain _ dZPpAW
‘ S Taprm, ol
L AU s Vihz
7 AW\’ 13 and
so that AW
Fr= , (18)
I, [\,)\? VA9
o~3=—] . (14
FX )\X

are the Stokes and Froude numbers, respectively. kHere

Bernal and RoshKS find that typically A\,/A,=2/3.  denotes the kinematic viscosity of the fluid apdepresents
Thus, the minimum dimensionless strain rates that we shoulthe length of the projection of gravity on they-plane, so
consider, corresponding to the stage where the streamwidbat the above equations hold for all orientations of gravity.
vortices have reached a strength that is of the same order &kotice that, as a result of the above scaling, the Stokes num-
that of the spanwise vortices, is approximatety4/3. ber St of a particle will vary asAW or A, change during the

In summary, motivated by the desire to make analyticalevolution of the flow field. As is well knowr§tindicates the
progress, we apply a simplified quasi-two-dimensionalratio of the particle’s aerodynamic response time and the
model for the fluid velocity field. This model consists of two characteristic flow time scale. Small valuesStfcorrespond
superimposed rows of counterrotating Stuart vortices residto very light particles or relatively viscous fluid, so that the
ing in a plane strain field. In this way, the model reproducesarticle motion is dominated by viscous forces, and the par-
the periodic array of counterrotating stretched stream-wisgicle can be expected to follow the fluid closely. For heavy
braid vortices known to dominate the braid region of nomi-particles or less viscous fluids, on the other haatifakes
nally two-dimensional mixing layers. While it satisfies the large values, and the particle motion becomes mostly a func-
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tion of its inertia. HereFr expresses in dimensionless form We express the expanded equatid®$) in coordinates
the relative importance of inertial and gravitational forces.with the origin at the vortex center by making the transfor-
As Fr decreases, gravity becomes more important for thenation{=z—z,. Subsequent linearization with respectyto
dynamical behavior of the particle. and /¢ yields

It is of interest to compare the particle Stokes number
values caused by the spanwise Kelvin-Helmholtz vortices  \y,=
with those due to the streamwise braid vortices. The flow
time scalétg,eamcorresponding to the Kelvin-Helmholtz vor- 2k (22)
tices is given byA2/T',. On the other hand, the flow time Vi=T2 {—oy.
scaletg,,,imposed by the streamwise vortices can be written
as \2/T',. With A,~2/3\,*2 and I',~1/2I",,>" we obtain Using (22), the particle motion equations in the absence
totreant=9/8tspan l€AMING US to conclude that, by the time the of gravity (19),(20) can be written as
streamwise vortices have reached a mature stage, the two 0 o 1 0

2k
el

time scales are of the same order. This indicates that those Zp &p
particles that are preferentially concentrated in the braid re- | y,| [0 0 0 1]y, 03
gion by the Kelvin-Helmholtz vortices will also be strongly \)vp 1o =¢ —-a o Wp |’ (23
influenced by the streamwise braid vortices. Up c b 0 —allve
We can write equation$l5) and (16) as a nonlinear
four-dimensional system faz,, y,, w,, andv,, 28 obtaining  where a=1/St, b=0a/St, c=¢(k)/St, and
_ d(k)=27k/(1-Kk?).
x=F(x), 19 The coefficient matrix of the syste23) has eigenval-
ues of the form
where
S10ai — 1.1 V1—20St+2Styo?—4¢2(k). (24)
[ W, ] 12347 St st B '
Zp Up The discussion of stability depends on the value of the
= Yp L F0=| = (wi—wp) + eizz _ (20) expre§siom2—4¢2(k). When this expression is negative, all
Wy St Fr four eigenvalues24) are complex, with the real part of the
v 1 e form
P = (vi— Up) + ﬂz
| St Fre | 1 P
Res)=— —*+=-—p*? cos( —) ,
Here ey, and ey, represent the- andy-components of the 25t 25t 2

unit vector in the direction of the,y-projection of the grav- \yhere
ity vector. This system of ordinary differential equations with

2_ 2
appropriate initial conditions specified fo=0 constitutes a p?=1-40St+ 165 ¢*(k) (25
nonlinear dissipative dynamical system. and
[ 2St/4¢*(k)—o?
f=tan 1- 205t . (26)
I1l. EQUILIBRIUM POINTS AND THEIR STABILITY IN 7
THE ABSENCE OF GRAVITY For stability, one requires Rg(<0. Using the trigonometric
identity,
In the absence of gravity, the only equilibrium points for y
the particles are the stagnation points given(b}) and the 0 1 1
centers of the counterrotating vortices. The stagnation points €O 2= E 1+ m, (27

are saddle points, as indicated by the streamline pattern in
Fig. 1, so that they are unstable for particle accumulatfon. in isolating the real part of the eigenvalug®l), we obtain
In the following, we analyze the linear stability at the centerthe stability condition
of the vortex located at=0.25,y=0. 20

The fluid velocity field(9),(10) can be linearized around St<—— 5 =St .
the vortex center by obtaining a series expansion form for 4¢°(k)—a

the horizontal and vertical velocities, retaining only the firstif ¢?—44¢?%(k) is positive, one can show immediately that if
order terms in the expansions of the hyperbolic and trigono-

(28)

metric functions, 1-20Stx2St/o*~4¢*(k) <0, (29
the eigenvalueg24) are complex and have negative real
2k 14K2 g 29 P g
W= Y| 27 1o (@, P
21) 1-20St+2StJo?—4¢%(k)=0, (30)
2mk +k? the ei | I, and the | ity 5 <
_ B H 2 2| genvalues are real, and the inequality ; =<0 [where
U1 oK2 (z=20)| 1=2m 1k (2 Z0)%| ~ oY, only the “+” signs need to be considered {84)] leads to
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50 : . , , and thus correspond to the stable accumulation of particles at

; : : : the centers of the vortices. As the vortices develop, their
cores shrink, forming regions of concentrated vorticity, de-
scribed by higher values &. Under these conditions, the
strain can balance only the centrifugal forces of smaller and
smaller particles, so that it depends 8t whether or not
particle accumulation occurs.

In the conditional stability zone, below the curve in Fig.
2(a), the critical valueSt., drops rapidly with increasing.

In Fig. 2(b), the variation ofSt., with k at constant values of
o is shown for k0<9. For each curve, below thevalue
corresponding to the critical strain curve for a giveim Fig.
2(a), St., is infinite. Then, ask increasesSt,, decreases
rapidly towards zero.

We conclude that diluted streamwise vorticity as well as
strong strain is required for stable accumulation of particles
at the centers of the vortices. As the vortices are stretched by
the axial strain, and their cores achieve concentrated vortic-
ity, only particles characterized by smaller and smafr
can accumulate.

A scaling analysis can relate the particle size to the mix-
ing layer characteristics, based on the set of condit{8ts
There, the termp?(k) expresses the non-dimensional vortic-
ity at the center of the vortex, as computed from the linear-
ized velocity field(22). It is the competition between the
fluid velocity related to the vorticity and that related to the
strain which determines the stability of the particle at the
center of the vortex.

The above stability criterio31) can be used in order to
obtain a critical particle size, below which accumulation is
possible. To this end, we employ Netsesult that a vortex
FIG. 2. (a) Variation of the criticalo with respect tk. Above the curve, the  stretched by plane strain asymptotically approaches an axi-

equilibrium point is unconditionally stable, while below the curve the sta- ; - . . . . .
bility depends on th&t values, as shown ifb). (b) Variation of the critical symmetric Burgers vortex with a dimensional vorticity dis

St with respect tdk for different values of the strain parameter as indi- tribution,
cated. For each curve the vertical asymptote is shown, below which uncon- r ,{ r2 )

(b)

ditional stability is achieved.

w:_z47TR exp — W . (32)
the condition 162¢%(k)=0, which is always satisfied. HereI' is the vortex circulation. AlsoR denotes the core
Thus, in this last case, the eigenvali@é) are real but will ~ radius, which asymptotically approachB$= v/5,& being

always have nonpositive values. the dimensional plane strain. Thus the vorticity at the vortex
In summary, the conditions for stability at the center ofcenter has the value
the vortex are T
o?—4¢?(k)>0, stable, 0= (33
20 Corcos and Shermahprovide a scaling law for the plane
St< 442(k)— o2’ stable, strain aso~3AU/\, whereAU is the streamwise velocity
o?—4¢%(k)<0 20 (31)  difference of the mixing layer, andl, denotes the spacing
SDW, unstable. between the spanwise Kelvin-Helmholz vortices. By non-

dimensionalizingo with A, and AW, and using Bernal and
The variation of the critical strain parameter with the Roshko’s observatidr that A ,~3\,/2, the non-dimensional
Stuart family parameter is shown in Fig(a2 Above the strain coefficient becomes
curve, the equilibrium points are stable, while below the
curve the second stability condition i(81) applies. The UZZA_U_
strain parameter necessary to ensure unconditional stability AW
grows rapidly ask increases. During the initial stages of a Non-dimensionalizing the vorticit33) in the same way, we
typical mixing layer evolution, the streamwise vortex coresppain, with(34),
are not yet concentrated, so that they correspond to small
values ofk. The dimensionless strain on the other hand, is _ ' Au
quite large. These conditions lie above the curve in Fig),2 T 2my AW

(34

(35
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By employing (34) and (35) in (31), the critical Stis ex-  which must be solved foy andz to find the coordinates of
pressed as the equilibrium points.
AW It is interesting to note that the equatio(®9) express
—— the fluid velocity field as given by9),(10), from which the
St, = AU _ (36) particle terminal velocityStFr? has been subtracted. The
(T12mv)?-1 result is a modified velocity field, whose fixed points repre-

From the above expression, one can estimate the critical par€nt €auilibrium points for the particlégln the absence of
ticle diameter in terms of the characteristic flow parametersdravity, the streamlines of this modified velocity field are
An important scaling result from the experiments of Bema||dent|cal to the streamlines of the fluid velocity field, shown
and Roshkd? and Bell and Mehi is that the spacing, of 1 Fig- 1(b) for k=0.9 ando=4. For the same values &f

the streamwise vortices scales with the vorticity thickngss and o, the streamline patterns of the modified velocity fields
of the mixing layer for different levels of gravity are shown in Fig. 3. In Fig.

3(a), for SYFr?=0.8, the foci of the modified velocity field
N AU 37) are displaced laterally while the saddle point is significantly
z e displaced downwards, as compared to the no-gravity case.

(AUI3Y) max d C _ e e _
By using (37) and (17) in conjunction with expressiof36) As gravity increas¢Fig. S(b)], two new equilibrium points
- . . emerge, located symmetrically with respect tozked.5 ver-
for the critical value ofSt, one obtains an estimate for the ; : . S
tical line. Finally, for strong gravity, only one equilibrium

critical particle diameter, point is left, located below the row of vortices on the vertical

) Y line z=0.5.
der~ (U1 3Y) mad (T12770)%—1]" (38) An important observation, based on the plots in Fig. 3, is
that all equilibrium points are located either on the vertical

whereY =(18p;»)/p, depends only on the material prop- ji,a5,—0 or 7=0.5, or on the horizontal ling=0. The rea-

erties of the particle and the fluid. Notice that the veIc.>citySon for this behavior lies in the fact that only along these

d|ﬁerenc$]sAU and ,AW_ no IongeL apfpear mkthe _relatlon lines the horizontal fluid velocity vanishes, which is a nec-

abovg. The expression |nd|catgst qt or wea vorthes aCClssary condition for the existence of an equilibrium point.

mulatloq of relatlve'ly large pgrtlcles IS p035|ble..For INCr€as-ry;s is reflected by the existence of two sets of solutions to

ing rotational velocities, the_ diameter of the particles that CaNha first equation in39). The first set consists of a family of

accumulate decreases rapidly. linesz= xn/2, along which the equation is satisfied for any
y, and the second set represents the {ised, along which

the equation is satisfied for any valueofFor convenience,

IV. EQUILIBRIUM POINTS AND THEIR STABILITY IN let us denote the first set of solutions as the vertical set, and
THE PRESENCE OF GRAVITY the second set as the horizontal set.

A. Gravity perpendicular to the mixing layer

While in the absence of gravity the equilibrium points 1. Bquilibrium points from the vertical set

for the particles were located at the critical points of the fluid By substitutingz= +n/2 into the second equatidi39),
velocity field, this is no longer the case when gravity isone obtains an equation for tlyelocations along these lines
added. In this section, we assume that the gravity vector=const, where equilibrium is achieved. The vertical set of
points in the—y-direction. As a result, the locations of the solutions for the equilibrium pointsz(,y,) is given by
particle equilibrium points are displaced. Furthermore, addi-

tional equilibrium points may be producé&din order to find z,= in,
the coordinates of these points one can use equatit®)s 2
and (20) with the particle velocity and acceleration set to (—1)" 1k St (40)
zero, along with the fluid velocity field9),(10). We obtain W— va=ﬁ.
the following two equations: v
. Comparison of this set of points with the stagnation points
sinf{27(y —Yo)] (11) shows that the equilibrium points of the vertical set are

~0.5
cosh2m(y—yo)]—k co§2m(z—2,)] located below the alternating stagnation poiftd) of the
sinH2m(y—y,)] flow. When n=1 (or od_d _vaIues i.e., at the periodic _
> ” > = z-locations where the fluid is pushed upwards by the vorti-
cosfizm(y—yi)] -k cog2m(z-2y)] ces, they,-coordinate of the equilibrium point can be either
k sin2m(z—27y)] (39 positive or negative, depending on the value of the terminal
0.5 velocity SYFr?, but whenn=0 (or even values i.e., at the
cosh2 - —k co§2m(z—z ' ’
h2m(y=yo)] g2m( o] periodic locations where the fluid is pushed downwards by

+0.5

sinj 27 (z—2;)] the vortices, they,-coordinate of the equilibrium point can
5cosr[21-r(y—y1)]—k co$2m(z—2;)] only be negative. This fact is important for the stability
analysis around the equilibrium points from the vertical set.
oy ﬂzo We will show that the equilibrium points at locations char-
YT Fr2 ™Y acterized byn=0 in (40) are always unstable.
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FIG. 4. Equilibrium curves for the vertical set, ftar=0.9. The intersec-
tion(s) of a givenStFr? vertical line with an equilibrium curve correspond-
ing to a given parameter value yields the vertical position of the particle
equilibrium points).

Figure 4 shows the variation of the left hand side in the
second equation i40) with respect toy, for several values
of o, andk=0.9. The intersection of a=const curve, called
equilibrium curve, with a vertical lin&tFr2=const yields
one or three equilibrium points. As an example, the three
equilibrium points resulting from the intersection of the equi-
librium curve o=2.0 with the vertical lineStFr?=0.95 are
shown. The pattern of the equilibrium curves in Fig. 4 indi-
cates that there is a critical value for above which the
equilibrium points are always unique, and below which they
can be either multiple or unique, depending on 8i&Fr?
value. The value for the criticat can be found by identify-
ing the curve which has a zero of its first derivative at the
same location as a zero of the second derivafiVighis con-
dition immediately leads to

o= 7K, (47

i.e., the critical strain varies linearly with the vorticity distri-

bution parameter. For the curves in Fig. 4, sikee0.9, the

value for the critical strain parameter ig,,=2.8274. The

corresponding curve is indicated by a dashed line.

. — A / Whether or not particle accumulation at these equilib-

02 '\ T rium points will occur depends on the stability of these
Y \ ; points. In order to perform the stability analysis for the ver-

o ‘ ; : ‘ tical set of equilibrium points, we linearize the velocity field

AT T R (9),(100 around the equilibrium point from the set,

o5 : xy,=(z,,Y,). Using series expansions along with thealues
© ° 02 o4 06 08 ! in (40) and the values for the vortex center locatiags 0.25

andz;=0.75, the linearized velocity field has the form
FIG. 3. Modified velocity field for horizontal mixing layers. The square Nl
symbols mark the centers of the vortices, while the circles mark the equi- 2mk(—1) S|n“27yu)

librium points. (8) 0=4.0; k=0.9; SFr?=0.8. As gravity increases, the = |xv+ COSH(Zﬂ'y ) )

equilibrium points are displaced either laterally, along the vortex row axis, v

or vertically, along the lines of symmetry between the vorti¢bso=4.0; 27k(— 1)n+1 sinh( 2my,) (42)
k=0.9; StFr2=1.0. As gravity is further increased, the equilibrium points V=0 |X — v oln

located on the symmetry line between the vortices can be displaced below v Cosﬁ(Zwyv)

the line of vortices aty=0. (c) 0=4.0; k=0.9; StFr2=1.15. For suffi- . Sl e
ciently strong gravity, only one equilibrium point exists, located signifi- Here (§777) are small dlsplacements around the equmbrlum

cantly below the vortex row line. point x,=(z,,y,). We write the equationg19),(20) for
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z=z,+{ andy=y,+#, using the velocity field42), and where
then subtract from the resulting system the base state equa-

tions (19),(20) written for (z,,y,), using the velocity field 2wk(—1)""1 sinh(27y,)
(9),(10) at the pointx,=(z,,y,). The result is a system of a= cost(2my,) . (44)
four first order ODEs with four unknowns, i.e., the particle’'s
perturbed positioriZ,») and velocity(y=¢, 7=17) The coefficient matrix of the systefd3) has eigenvalues of
the form
[0 0 1 0] 1 1
RS —
(110 o 11 S127 ~ 55t~ o5t VT AaSt
7 a 1 n (45)
x| | st St x| “3 1
. 33’4:_2_Sti2_8t 1-4(a+o)St
A _1T
L St St The stability properties determined by the eigenvalues

(45) will have to be discussed separately for0 (even val-
ues and n=1 (odd value§ corresponding to the down-
welling and upwelling regions, respectively. Fore1, the
solution fory, from (40) can be either positive or negative.
Employing expressiofd4) for n=1 in (45), one obtains

1.1 \/ 27k sinh(27ry,)
127 7 55t 25t cosK(2my,)
27k sinh(27y,)

. \/ K
[ —
Ss4=~ 25t 25t VI H “CosRizmy,) TSt

The term sinthyU)/cosﬁ(eryv) is positive fory,>0
and negative fol,<<0. For positivey, , the first expression
in (46) used with the “-" sign will produce real and positive
eigenvalues, thus indicating unstable behavior of the particle.
Physically, this is a consequence of the fact that near the
equilibrium point the horizontal fluid velocity component
points away from this point. For negatiwe , the first ex-
pression in46) may be either real negative, or complex with
negative real part. Therefore, in order to check for instability,
we have to focus on the second expressign There, the
term

St,
(46)

27k sinh(2my,)

|\ cosK(2my,) to (47

is the first derivative of the LHS in the second equati4),

for n=1, i.e., the slope of the equilibrium curve. With refer-
ence to Fig. 4, the discussion links the eigenvalsigs(46)

to the slopes of the equilibrium curves. Therefore, when a
given equilibrium curve has a negative slope, the tetif is
negative, leading to either complex values with a negative
real part, or real negative valuessg, (46), no matter which
sign is chosen, thus indicating stability, provided that0.

In the opposite situation, when a given equilibrium curve has
positive slope, the ternfd7) is positive and gives real posi-
FIG. 5. Modified velocity field. Stability of the equilibrium points from the Ve €igenvalues is; 4 (46) with the “+" sign chosen. Thus,
vertical set for the case when only one equilibrium point may ex@t. the regions with positive slope of the equilibrium curves pro-

0=4.0; k=0.9; StFr?=0.85. The equilibrium point is located at positive duce unstable equilibrium points. Such regions exist only if

y-coordinate, therefore it is unstable. The pattern of the modified velocity, ; g ; ;
field ines indicates a saddith) o=4.0; k=0.9; SUFr?=0.92. The equiib- ToIuPIe equilibrium points can exist, because only then are

rium point is located at a negatiwe coordinate, therefore it is stable. The the equ"ibrium_ curves changi-r!g Fheir sIope;. Since_ the posi-
pattern of the modified velocity field lines indicates a node. tive slope region of the equilibrium curve is confined be-
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tween the zeros of the its derivatives, only the middle point 1 1 27K sinh(27y,)
of the equilibrium triplets will fall in the unstable region Sl'ZZ_Z_StiZ_St
unless the upper equilibrium point has positive vertical coor-

4 cost(2my,) St

dinate y, (see Fig. 4, the plotted equilibrium points for (48)
0=2.0. We also note that foo>o, there are no positive i
slopes, therefore the unique equilibrium points are alwayg _ 1 |27k sinh(27y,) tolst
stable at negativg, . Note that stability of the particle ata ~>*  2St™ 2St cosf(2my,) | C

[ v

certain equilibrium point does not depend directly on the

particle St parameter but only indirectly, as the position of

the equilibrium point is determined by the strainand the  The first expression i48) with the “+" sign will produce

terminal velocitySYFr2, and it is the position which deter- real positive eigenvalues at all positions, hence all equilib-

mines the stability characteristics. rium points for the case in the vertical set are unconditionally
For n=0, corresponding to locations where the fluid is unstable. Physically, the horizontal fluid velocity points away

pushed down by the vortices, it was shown above that th&rom these equilibrium locations, precluding any particle ac-

equationg40) admit equilibrium points only at negative val- cumulation.

ues ofy, . Consequently, the eigenvalugks) can be written We can summarize the stability discussion for the verti-
as cal equilibrium set as follows:
(" y,>0, unconditionally unstable solutions
. triple equilibrium points

may exist. If they do, the
middle point is always un-
stable, the upper point is
stable (if located at neg-
J T<Oer> ative y,), and the lower
0 point is stable. If unique,
the equilibrium point is sta-
ble (if located at negative
Yoo
only unique equilibrium
o>0,, points can exist. If so, they
N ~ are stable;

n=1 upwelling locations <

¥,>0, no solutions,

n=0 downwelling locations y,=0, unconditionally unstable solutions. (49

In Fig. 5, one can follow the change in the stability char-equilibrium points are produced in the vertical set. One can
acteristics of an equilibrium point in the vertical set asalso refer to Fig. 4 and intersect the curve o+ 2.0 with the
St/Fr? is varied. Shown are the streamlines of the modifiedappropriateStFr? vertical line. Note that the upper equilib-
velocity field fork=0.9 ando=4.0. Sinces>o0,, the equi-  rium point in the triplet still has a positivwg, -coordinate, and
librium point is unique. In Fig. &), the equilibrium pointis  therefore is unstable. Fig.(® shows the points plotted in
still located at positivey, , and therefore unstable. This is Fig. 4. Here the upper point of the triplet is located at nega-
confirmed by the streamlines, which form a saddle. In Figtive y,, and therefore stable, while the middle point is an
5(b), with y,<0, the equilibrium point is stable, and the unstable saddle. As gravity increases further, the upper and
streamlines demonstrate the existence of a node. the middle equilibrium points are displaced towards each

In Fig. 6, one can follow the change in the stability prop- other(corresponding to the intersection points of the equilib-
erties as well as the production and extinction of equilibriumrium curve fore=2.0 in Fig. 4 with a vertical line moving
points with increasing gravity, when the strain is subcriticaltowards the rightuntil they merge and vanish. Beyond that,
o<oy, . Herek=0.9 ando=2.0. In Fig. &a), the influence of only the lowest equilibrium point of the previous triplet is
gravity is small, and the equilibrium point is displaced only left [Fig. 6(d)]. It is stable, as can be seen from the stream-
slightly below the stagnation point of the fluid. When gravity line pattern which indicates a node.
is stronger, as foBYFr2=0.89 in Fig. &b), two additional The above discussion demonstrates that a necessary cri-
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FIG. 6. Modified velocity field. The stability of the equilibrium points from the vertical set. The case when multiple (iopiets) may exist.(a) 0=2.0;

k=0.9; SYFr2=0.5. Single equilibrium point, located at positiyecoordinate and therefore unstable. The pattern of the modified velocity field streamlines
indicates a saddléb) 0=2.0;k=0.9; St/Fr2=0.89. Three equilibrium points exist: the upgstill located aty>0) and the middle one are saddles, while the
lower point is a node(c) o=2.0; k=0.9; SYFr2=0.95. Three equilibrium points exist: the upper one is a node, the middle one is a saddle, and the lower one
is a node(d) o=2,0;k=0.9; SYFr?=0.98. A single equilibrium point, located at the negatjveoordinate, therefore stableode. The upper and the middle
equilibrium points have merged and vanished.

terion for the accumulation of particles at equilibrium points vy, =0,
of the vertical set is the existence in upwelling regions of
equilibrium points below the level of the row of counterro- k cog2mz,) St

tating vortices. This conditiog, <0 in the equilibrium equa- T =V (51
tions for the vertical sef40) translates into kK{1-[cod2mz) ]} =1 Fr
St Along the liney=0, the horizontal fluid velocity is zero,
ﬁ>k’ (50 \whereas the vertical velocity is given by the left hand side

_ ) term in the second equation i®1). The variation of this
which can be considered the fundamental necessary Conq}'elocity as a function of is plotted in Fig. 7, for several
tion for accumulation at the vertical set of equilibrium \5ues ofk. These curves can again be interpreted as equi-
points. librium curves, similar to Fig. 4 for the vertical set, in the
sense that any intersection with a constant level line
St/Fr2=const yields the locatiom, of an equilibrium point.

By settingy=0 in the second equation ¢89), and also One can observe in Fig. 7 that, depending on the valde of
using the valueg,=0.25 andz;=0.75, one obtains an equa- either none, two, or four equilibrium points may exist, at
tion for the locations along the line=0 where equilibrium locations that are symmetrical with respect to the vertical
is achieved. One can then express the horizontal set of equine z=0.5. Due to this symmetry, we will examine only the
librium points in the following form: nature of the equilibrium points located to the left of the

2. Equilibrium points from the horizontal set
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(critical)

k=0.707

k=08 . ... 3G N

L L L

0.3 0.35 0.4

L L 2 H L
0.5 0.55 06 0.65 0.7
z

L
0.25 0.45 0.75

FIG. 7. Equilibrium curves for the horizontal set. The interse¢spnf a
given St'Fr? horizontal line with an equilibrium curve corresponding to a
given parametek value yields the horizontal position of the particle
equilibrium points). The equilibrium points p and 2o are the symmetrical
images of the points 1 and 2 with respect to the vertical #ir®.5.

vertical linez=0.5, while keeping in mind that all consider-
ations are valid for the points to the right of it as well.

0.4 i i i i i i i
05 055 06 065 07 075 08 08 09
k

FIG. 8. Variation of various bounds f@tFr? with respect tck.

St 1
HS—Z'
r~ 2yi-k

Physically, the right hand side of the above inequality ex-
presses the maximum vertical fluid velocity along the line

(59

Whether there are one or two equilibrium points locatedy =0. An additional condition for the existence of equilib-

in the interval 6<z<<0.5 is controlled by the value &f. One
can find the critical value of that separates these two situ-

rium points can be obtained by requiring that the right hand
side in(53) be bounded within the interval-1,1], due to the

ations by identifying again the curve that has a zero of itscosine term on the left hand side. One can easily verify that

first derivative at the same location as a zero of its secon
derivative This yields a critical value

1

V2

Ker= (52)
above which two equilibrium points may exist, and below
which only one equilibrium point can exist in the horizontal
set.

Equation (51) can be cast in a quadratic form for
cos(2rz,) to yield

—1+\1-4(1-K?)(S¥Fr?)?
2k(StFr?) '

cog2mz,) = (53

Already from equatiorf51), it follows that in the absence of

gravity, whenFr—o, and thusStFr?—0, the equilibrium
locations are

1
=—Xm

2 , with m=0,=1,%2,...,

Zy

N -

which represents the locations of the centers of the counterP

rotating vortices. In this way, the case without gravity is
recovered. Expressio(63) provides a condition for a real
solution to exist,

1-4(1-k% (54)

St 2>0
Fr2) —
which leads to a limiting value foBt/Fr? above which equi-

librium points no longer exist in the horizontal set,
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fpr values of SYFr? that satisfy(55), the right hand side in
(53) taken with the “+” sign is always bounded within
[—1,1]. However, when the *" sign is taken, the necessary
boundedness is achieved only if

St 1)

F—zzmav{ K, 2K
where the priority in the max function term switches exactly
at critical k (given by 53, i.e., abovek,, ,k>1/2k, while
belowk,, ,k<1/2; see Fig. 8.

It was shown above that the+” sign in (53) corre-
sponds to the vortex center in the absence of gravity. This
situation is depicted in Fig.(8). As the value of SYFr?
increases, gravity gains importance and generates a displace-
ment of the equilibrium point from the position of the vortex
center to a different position along the horizontal lywe0,
as shown in Fig. @). As long as theStFr? values are
below those required by56), only the “+” sign makes
sense in53) and thus only one equilibrium point will exist.
WhenSt/Fr? increases enough to satis#y6), an additional
equilibrium point will appear, as shown in Fig(c9, corre-
onding to the sign in (53). The two equilibrium
points are further displaced towards each othelS#&r?
continues to increasgrig. Ad)]. At the limit of inequality
(55) the two equilibrium points will merge, and subsequently
vanish for largerStFr? values[Fig. 9e)].

This scenario is valid for values &flarger than critical,
when(55) still allows for (56) to be satisfied. Below,, , the
right hand side in the limiting conditio(65) is larger than
the right hand side in the conditid®6), which means that
the condition(56) is no longer active, thus the—" sign in

(56)

w
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0.2 0.25 0.35
{c) 2
FIG. 10. Modified velocity field. Stability of the equilibrium points from the
horizontal set. The case when only one equilibrium point may edt.
0=4.0;k=0.7; SYFr2=0.5. At weak gravity, the equilibrium point is dis-
placed from its initial location at the vortex center towards the symmetry
line z=0.5, and remains a focugb) 0=4.0; k=0.7; SYFr?=0.69. The
terminal velocity value is close to thle value, the limit of existence for
equilibrium points of the horizontal set. The equilibrium point is close to the

z=0.5 symmetry line and has become a node) 0=4.0; k=0.7;
St#Fr2=0.71. The gravity level is beyond the limit of existence of equilib-
rium points from the horizontal set. The equilibrium point has merged with

its symmetrical pair from the right side of the symmetry lime0.5, and
vanished.
(;’054 ~ } 035 05 (9), (10) around the equilibrium point,=(z,,y) from the

horizontal set. Using series expansions and setyingO,
FIG. 9. Modified velocity field. Stability of the equilibrium points from the Zo=0.25, andz;=0.75, the linearized velocity field has the

horizontal set. The case when multiple poiritoublety may exist. (a) form

0=4.0; k=0.9; SYFr2=0.0. No-gravity case; the equilibrium point is lo-

cated at the vortex center, which is a foc(ls.c=4.0;k=0.9; StFr?=0.8.

At weak gravity, the equilibrium point is displaced towards #€0.5 sym- .

metry line. The point is still a focugc) o=4.0; k=0.9; StFr2=0.95. For 2wk sin(2mz,)

sufficiently strong gravity, a new equilibrium point is created, while the first W:W|xh_ 1—K? Sin2(27TZ ) g

one is further displaced. The new point is a saddle, while the first one h

remains a focus(d) o=4.0; k=0.9; SYFr?=1.12. For further increased (57)
gravity, the two equilibrium points approach each other towards a merging

location.(e) 0=4.0;k=0.9; StFr?=1.15. Gravity level is beyond the limit 2sin27z,)—k

of existence for equilibrium points of the horizontal set. The two points have v=v |X +kar - 5

merged and vanished. h (1—k sin(27z))
2 sin(2mz,) +k

(53) no longer is physically relevant, and only one equilib- (1+k sin(27z,))? |

rium point can exist. In this case, &/Fr? increases, the

equilibrium point will be continuously displaced alogg-0

[Figs. 1Ga) and 1Qb)] towards the vertical line of symmetry where(¢,n) are small displacements around the equilibrium

z=0.5, where it will merge with its symmetrical counterpart point. Performing algebraic manipulations similar to those

and vanisHFig. 10c)]. presented in section Ill, we obtain a system of four first order
In order to perform a stability analysis for the horizontal ODE’s with four unknowns, i.e., the particle’s perturbed po-

set of equilibrium points, we again linearize the velocity field sition (£,77) and its velocity(x=¢, ™=17),
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0 0 1
'g 0 0 0 1 Z
i b -1 i
S = — — 0
X St St X\’ 8)
T cC —o -1 T
st st U st
where
2k sin(2rz;,)
b:_ 2 - y
1—Kk? sirf(2mzp,)
(59
2sin2mzy) —k 2 sin2mz,) +k
c

=k Ak sim2az 2 T A+ Kk sm2az))2 |’

The coefficient matrix of the systef68) has eigenvalues of
the form

1 1
_t
2St 2St

V1-20St=2StJo2+ 4bc. (60)

In spite of the similarity with the no-gravity cagg4),

S1234 —

the discussion of the stability of the equilibrium points base
on the eigenvalue@®0) is quite involved, due to the fact that

the location appears explicitly in the ternbd, so that one

cannot easily extract a stability criterion as a function of the®

particle and flow parameters. The analysis(&® must be

carried out differently for positive and negative values of the

expression

A(zn,k,0)=0?+4bc. (61)

As shown in Fig. 11, the dependence of the terbt 4n z
varies significantly withk, whereb andc are given by(59).
In addition, the parametar can vary widely as well. Nev-
ertheless, the value ok divides the interval 0.28z<0.5
into two subintervals. In the left one of thesk,is negative,
while it is positive in the right one. For a fixed the bound-

where

p=\(1—20St)?>+4SP|A| and
o tan ! 2SHA| 63
—n T st (63

For stability, one requires th&e(s) <0. Using(63) and
again the trigonometric relatiai27), one obtains the stability
condition

s 2o 64
t<|A(Zhvk!0-)|. ( )

Consequently, in this case the stability of the equilibrium
point (z,,y,=0) depends explicitly orst, o, andk, but not
on the paramete8t/Fr2. The situation is similar to that of a
Burgers vorteX in the presence of gravity, in that the termi-
nal velocity StFr? determines the location of the equilib-
rium point, while not directly entering into the related stabil-
ity criterion (64).

When A is positive, the eigenvalug$0) may be either

0reaI or complex, depending on the sign of the expression

under the outer square root. In this case, complex eigenval-
ues indicate stability, since the real part will be negative. One
an write the expressiof®0) in the form

1
S12046 ~ 5g; (15 V1-2St0= A)).

By analyzing(65), one obtains that i— |A>0 the eigen-
values are either complex with a negative real part, or real
and negative, thus indicating stability. On the other hand, if
o—JA<O0 at least one of the four eigenvalues will be real and
positive, thus indicating instability. Along witti61), this
condition translates into stability forbe<0, and instability
for 4bc>0. One can see in Fig. 11 that the curvésc4ither

(65

ary between the two subintervals will be located at differenStey negative for the whole interval 0:2%,<0.5 if k<kc,

positions for different values ok. Note that the interval
0=z=0.25 cannot contain any equilibrium points.

When A is negative, all four eigenvalugg0) are com-
plex. Their real parts are

0
4 12 7

1
Re(s)=— ==

25t 62)

or become positive towards the right end of the interval for
valuesk>k,, . In this latter case, the zero-crossing coordi-
nate is always given by the solution @3) at the limit of
condition (55), so that the zero-crossing takes place at the
location where the two equilibrium points merge and vanish.
Consequently, the stability conditions for the equilibrium
points of the horizontal set can be summarized as follows:

(66)

2
St<—0, stable equilibrium points,
|A(Zhrk10-)|
A(Zh,k,cr)<0, 2
g
St>———, unstable equilibrium points;
|A(zn .k, 0)]
A . 0 4bc<0, stable equilibrium points,
>
(Zn,k)>0, 4bc>0, unstable equilibrium points.
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100 , ! . , (56) cannot be satisfied simultaneously, so that a second so-
5 5 : lution for equation(53) does not exist.

As gravity increases further, fde>k,, the initial equi-
librium point will continue to move towards the right, while
the additional point will start to move towards the left. This
can be shown either by solvir{§3) for increasingSt/Fr?, or
by following in Fig. 7 the intersections of a curve corre-
sponding tok=0.9 with a horizontal line moving upwards.
As soon as the second equilibrium point leaves 2k 0.5
position, it becomes unstable. For the cdse0.9 and
0=4.0, the term $c>0 near the right border of the interval
(see Fig. 11 With z,>0.3285, we have\>0, so that the

: : : stability of the second equilibrium point is governed by the
=200 L . L . . . . . . -
0.25 03 0.35 04 0.45 05 second set of conditions i66) which indicates instability.

50F

4bc terms
1
(4.
=]

=100

-150

z
This is evident in Figs. @) and 9d), as the streamlines form
FIG. 11. The variation of the termb& with respect tk. For valuek>k,, a saddle at the new equilibrium point’s location. The initial

the curves have a positive region towards the right of the interval, otherwis e s . . .
they remain negative. Also shown are the points of zero-crossing and th%qu”lb”um point is still a focus at this level of gravity.

boundary point betweeN<0 andA>0 for k=0.9 ando=4.0. If gravity increases further, the two equilibrium points
will collide for supercriticalk once the level of gravity given
by the limit of condition(55) is reached. The collision hap-

A physical interpretation of these results may again bePens at the zero-crossing of thebe term, which is
obtained by describing the evolution of the location and staz,=0.3305 fork=0.9 ando=4.0. Fork<k.,, the single
bility of the equilibrium points) with increasing gravity. In  equilibrium point will become unconditionally stable as it
the absence of gravity, the only equilibrium point from the passes the boundary betweAr<0 and A>0, which is lo-
horizontal set is located at the center of the vortex. At thiscated aiz,,=0.3855 for the case in Fig. 11. As shown in Fig.
location, substitutingz,=0.25 into (66), the term 4c be-  10(b), the point then corresponds to a node. Subsequently,
comes —4(27k/ (1-k%))*=—4¢7(k) [see (23)], which is  the equilibrium point will collide with its symmetrical pair to
negative, and conditio(66) reduces td31). As we pointed the right of the vertical line=0.5. This collision occurs at
out for the no-gravity case, an important condition for stabil-ihe intersection of thg =0 line with thez=0.5 line.
ity at the center of the vortex is the existence of strong strain,  gq, gravity levels larger than that the limit 685), only
l.e., largeo. Consequently, without gravity one equilibrium o, ijibrium points from the vertical set are possible. If the
point eX|stsZ _vvh_lch is Iocgted at the center of th_e vortex, an%train is strong enough to enforce the conditisna,, , only
}’xhgise S(t;bs"ggvlvss?E;?rm;ngduti(ﬁ;r){ume ositr:(tazr;s“rt]r?epl?ot :ﬁ]rr;f one stable equilibrium point exists in the entire flow field.

9 q P It is of interest to note that fok>k_, the stability prop-

a focus. . . A . .

As gravity increases, the equilibrium point is continu- erties of the fI.I’St equmbrlum.pomt change dunpg the last
ously shifted towards the right along the line=0. For  Part Qf its motion alongy=0, just before .the collision. By
k=0.9>k,, ando=4.0 as in Fig. 10, the termbk is nega-  €xamining Fig. 11, one can observe that in order to reach the
tive over the interval 0.25z,<0.3305 (see Fig. 11, and collision locationz,=0.3305, the left equilibrium point must
A<O0 over the interval 0.25z,<0.3285. Therefore, over this Ppass the boundary between the negatlvend positiveA,
last interval, the stability is controlled by the first set of con-2,=0.3285. Once this boundary is passed, the tebu &
ditions in(66). Fork=0.7<k., ando=4.0 as in Fig. 11, the still negative, butA is positive, indicating unconditional sta-
term 4bc is always negative, whilé\ is negative over the bility according to(66). Thus, the initial equilibrium point
interval 0.255z,<0.3855, so that over this interval the sta- has a range of locations where it is stable regardless of the
bility of the particle at the equilibrium point is governed by value of St The interval is bounded by the zero-crossing
the first set of conditions i1666) as well. In both cases the |ocation of A to the left, and by the zero-crossing location of
equilibrium point is a focus, and its stability depends explic-gp to the right(see Fig. 11, fok=0.9).
itly on the particleSt value.

When gravity is increased sufficiently for conditi¢f6)
to be satisfied, a second equilibrium point will appear if
k>k., . This occurs between the situation shown in Fign)9
and that shown in Fig. 8). To find the new equilibrium g Gravity pointing in the spanwise direction
point’s location, one can substitug®/Fr2=k into equation
(53) taken with the(* —") sign. This yieldsz,=0.5, i.e., the Here we consider flows for which gravity points in the
right border of the interval considered. At this locatiomc4 Nnegativez-direction. This results iey,=—1, €5,=0 in equa-
=0, so thatA is positive and the equilibrium point is neu- tions (19) and (20). Proceeding in a manner similar to the
trally stable. Fok<k., no additional equilibrium points ap- above, one obtains a system of two equations with two un-
pear, since for subcriticd the limiting conditions(55) and  knowns for the equilibrium locations,
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sini 27(y—Yo)] sinf 27 (y—yo)]

05 Costizay —yo) ]~k cog2m(z—2o)] 05 Costiza(y—yo ]k cog 2m(z—zo)]
sinf27(y—y1)]
. +0.5
t05 sinf{ 2m(y—y1)] St cosi2m(y—yi)]—k cog2m(z—2)]
“cosh2m(y—y;)]-k co§2m(z—z;)] Fr? St
(67) "r‘ﬁ €9z~ 0,
k sif2m(2-2)] K sinf 2m(2-2o)] (69
05 = o — 0.5
coshh2m(y—Yyo)]—k cog 2m(z—2zp)] coshi2m(y—yo)]—k cog 2m(z—2p)]
sinj2mw(z—2,)]
. —-0.5 —oy
05 k sifn2m(z—2y)] 0 cosh2mw(y—yq1)]—k co§2m(z—2z;)]
—U. oy=Vu.
cosh2m(y—y,)]—k cog2m(z—2)] <t
+ ﬁ egy=0.
_ Inthe following, we provide a brief analysis of the equi-  The anove equations must be solved numerically in or-
I|_br|um po!nt Ipcatlons and their stability, based on the modi- 4o to obtain the positionsz{,y.) of the equilibrium points.
fied velocity field plots. Stability of these equilibrium points then requires that the

The presence of a spanwise component of the gravity,c| fluid velocity field, after subtraction of the terminal
vector destroy_s the symmetry_of the streamline pattern of thgemmg velocity, has the character of a stable fixed point.
modified flowfield, as shown in Fig. 1@. The equilibrium A general linear linear stability analysis around a generic
points are displaced from their no-gravity position in both ¢qyilibrium point can be carried out in a manner similar to
their z- andy-coordinates, while maintaining their nature as o analyses presented in sections Ill and IV A. By using

pairs of foci and saddle points. As gravity increases, th_e f9'series expansions around a generic equilibrium point
cus and saddle move closer to each other, as shown in F|gé:(ze,ye) one can express the fluid velocities as

12(b), until they collide and vanish. Fig. & shows the

case when the terminal veloci$t/Fr? is larger than the W aw

maximum horizontal fluid velocity, for which equilibrium W=W|Xe+65+77 ay’

points no longer exist. (70)
The observation of main interest is that for the present v v

v=v|xe+e—+

orientation of gravity there are no unconditionally stable ac- gz 7 @

cumulation points, i.e., no nodes in the modified stream-line h Il disol ¢ dth ilibri
pattern. For low values of gravity, conditionally stable accu-" .ere(e,n) are smail displacements around the equilibrium
mulation points in the form of foci exist, whereas for stron- point. These linearized expressions for the fluid velocity field

ger values of gravity no equilibrium points are present. As a(70), after some algebraic manipulations similar to those in

necessary condition for the existence of conditionally stabl%e[():té?ns llr: fand leA’ lead Fo a ﬂs}ysten:. ?f fou; f'rbSt dorde_r
accumulation points in the flow, the terminal velocity must S with four unknowns, 1.€., the particie perturbed posi-

be smaller than the maximumcomponent of the fluid ve- 1°" (€7) and velocity(x=e, 7= 1),

locity. This leads to [0 0 1 0]
p 0O 0 O 1 €
stk n|_|a b -1 7
== = = , 71
T c d 0 _ 1|t7
B
C. Arbitrary orientation of the gravity vector in the where a=dw/dz, b=dw/dy, c=dvldz, d=dv/dy are the
cross-stream plane components of the fluid velocity gradient tensor. The eigen-

In this most general case, gravity forms an angheith ~ values of the coefficient matrix in the systett) are
the —y-direction, so that there are gravitational components 1
acting both in thez- and in they-direction. Here, we assume 31,23,4=§[ [—1=* \/1+ Stla+d=*\(a—d)?+4bc)].

that the gravity components act inz and —y-direction, re-

) . (72
spectively, henceey,=—sin(a), and g5, =—cod«). Conse-
guently, each of the equatiori9), (20) retains a term re- These eigenvalug32) allow us to identify those regions

lated to gravity. The equilibrium equations, obtained fromin the flowfield in which any existing equilibrium points
(19), (20) with the flowfield (9), (10) form a system of two would be unconditionally stable. One can immediately ob-

equations for two unknowns, servethatifexpressioh = (a+ d = \/(a—d)2+4bc)in(72)
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FIG. 12. Modified velocity field for the case of the vertical row of vortices.
Here gravity acts from right to left. The black dots mark the center of the

vortices, while the circles mark the position of the equilibrium points, if they FIG. 13. The topology of the zones of potential particle accumulati@n.
exist(a) 0=4.0;k=0.9; SYFr2=0.5. Gravity destroys the symmetry of the o=4.0;k=0.9. The zones corresponding to potential particle accumulation
line pattern. The equilibrium points are displaced from both their no-gravity(dark areagsare located at the up- and downwelling locations, alternatively.
casez-andy-coordinates. The line pattern suggest two sets of focus-saddl¢b) ¢=2.0; k=0.9. The zones corresponding to potential particle accumula-
points.(b) 0=4.0;k=0.9; SYFr?=0.75. Increasing gravity does not gener- tion (dark areashave become disconnected: one small area, located close to
ate any additional equilibrium points. The initial stability characteristics the vortex row line and one larger area can be observed at each down- and
remain the same, while the points in each focus-saddle pair move closer tgpwelling location.(c) 0=4.0; k=0.8. The zones corresponding to potential
each other(c) 0=4.0; k=0.9; SYFr2=1.0. After collision, all equilibrium  particle accumulatingdark areaslocated at downwelling locations have

points vanish. Gravity is strong enough to “wash” out all of the equilibrium become connected to the areas located at upwelling locations.
points.
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is real and negative, then the eigenvalues are either real amiim points below the plane of the mixing layer. Condition-

negative, or complex with negative real part, both of whichally stable accumulation regions exist a short horizontal

cases indicate unconditional stability. distance away from the centers of the braid vortices. If the
Figure 13 distinguishes areas where the texns real  gravity vector lies within the plane of the mixing layer, ac-

and negativgdark areasfrom those where it is either real cumulation points exist only for moderate valuesFaf Un-

and positive or complexwhite areas The dark areas indi- der these conditions, conditional accumulation is possible

cate zones of unconditional stability, provided that equilib-near the streamwise vortex centers.

rium points are located within those zones. These zones of The above results only concern the existence and stabil-

unconditional stability do not depend on the particle characity of equilibrium points. They cannot address such issues as,

teristics St), but only on the flow characteristics. Their to- for example, the size of the basin of attraction of the stable

pology changes, as the strain coefficientor the Stokes’ equilibrium points, or the nonlinear dynamics of particles for

parametelk are varied. In Fig. 1&), for c=4 andk=0.9, which stable equilibrium points do not exist. Finding an-

the zones of unconditional stability are periodically locatedswers to these questions requires the help of numerical simu-

in the up- and downwelling flow areas. For a lower value oflations, which will be discussed in detail in Part 2 of the

o=2, a small island of unconditional stability survives nearpresent investigatioff There we will explore theonlinear

the vortex row. This is shown in Fig. 18, which also pro- dynamics of heavy particles in the braid region of the mixing

vides a better understanding of the stability characteristickayer, in order to study the potential accumulation of par-

for the vertical set of equilibrium points in Fig. 6. An inter- ticles on equilibrium trajectories, along with the characteris-

esting topology develops when=4 and the Stokes’ param- tic features of the related particle concentration fields.

eter is lowered t&=0.8. The unconditionally stable zones in

the down-welling regions become linked to those in the up- ACKNOWLEDGMENTS
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