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The flow of a partial-depth lock-exchange gravity current past an isolated surface-
mounted obstacle is studied by means of two-dimensional direct numerical simulations
and steady shallow water theory. The simulations indicate that the flux of the current
downstream of the obstacle is approximately constant in space and time. This information
is employed to extend the shallow-water models of Rottman et al. (1985) and Lane-Serff
et al. (1995), in order to predict the height and front speed of the downstream current as
functions of the upstream Froude number and the ratio of obstacle to current height. The
model predictions are found to agree closely with the simulation results. In addition, the
shallow water model provides an estimate for the maximum drag that lies within 10% of
the simulation results, for obstacles much larger than the boundary layer thickness.

1. Introduction

Gravity currents form in natural environments and engineering applications when a
heavier fluid propagates into a lighter one in a predominantly horizontal direction (Simp-
son (1997)). The study of gravity current flows around surface-mounted obstacles has
been motivated by practical applications such as the design of barriers for the contain-
ment of heavy hazardous gases (Rottman et al. (1985); Lane-Serff et al. (1995)), powder
snow avalanches (Hopfinger (1983)), and dilute ash flows (Woods et al. (1998)); the devel-
opment of strategies for controlling sedimentation (Oehy & Schleiss (2007); Kneller et al.
(1999)); and the need to obtain estimates of the dynamic loads on submarine structures
from the impact of gravity and/or turbidity currents (Ermanyuk & Gavrilov (2005a,b);
Gonzalez-Juez et al. (2007, 2008a,b)).

When a gravity current encounters an isolated, impermeable surface-mounted obstacle,
its head first is deflected upwards and later reattaches to the bottom wall. The current
eventually reestablishes itself downstream of the obstruction, and the flow around the
obstacle becomes quasisteady (Ermanyuk & Gavrilov (2005a,b); Gonzalez-Juez et al.
(2008a)). Such quasisteady flow long after the impact stage can be modeled based on
the existing steady shallow water theory for the flow of a denser fluid under a lighter
fluid past bottom topography (e.g. the monographs by Turner (1973) and Baines (1995)
among others). This well-studied problem is characterized by the ratio of the obstacle
height to the undisturbed dense fluid layer height D/d;, the ratio of the heights of the
undisturbed dense fluid layer and the light fluid layer d;/d,,, and the Froude number of
the undisturbed flow (Baines (1995) p. 111). For D/d; — 0 the flow problem can be
analyzed with linear theory, while for D/d; = 0(1) nonlinearities appear in the form
of hydraulic jumps and rarefactions. When d;/d, — 0, the upper layer of light fluid
can be assumed to be stationary. Consequently, the equations of motion for the lower
layer resemble those for the problem of a single layer of fluid with a free surface flowing
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past bottom topography, but with Earth’s gravitational acceleration g replaced with
the reduced gravity ¢’ = g(p; — pu)/pu- This model is called a 1%—layer model. For
d;/d, = O(1) the equations of motion for both layers must be considered, so that one
obtains a 2-layer model (or 2%—layer model if a free surface above the upper layer is
accounted for). The problem of a finite volume gravity current flowing past a surface-
mounted obstacle was first studied by Rottman et al. (1985) with a 1%—1ayer model, and
later analyzed in more depth by Lane-Serff et al. (1995) with both 1% and 2-layer models,
as well as a series of laboratory experiments. The authors focused on a configuration in
which the two fluid layers are counter-flowing, so that there is no net flow across a plane
perpendicular to the flow direction (Lane-Serff et al. (1995)). Co-flowing layers (Baines
(1995)) or counter-flowing layers with non-zero net flow (Armi & Farmer (1986); Farmer
& Armi (1986)) have been addressed as well.

When a gravity current encounters an obstacle, a portion of the dense fluid flow passes
over the obstacle while the rest of the dense fluid flow is reflected in the upstream di-
rection. Considerable attention has been devoted to quantifying the influence of the
obstacle height on the over-passing flux (Rottman et al. (1985), Lane-Serff et al. (1995),
and Greenspan & Young (1978) for the classic dam-break problem), and predictions
based on steady shallow water theory have been found to agree well with experimental
measurements (Lane-Serff et al. (1995)). By comparison, less attention has focused on
the influence of the obstacle height on the front speed of the gravity current that forms
downstream. Predicting this speed is important when the objective of the barrier is to
reduce the speed of the oncoming gravity current to protect, for example, submarine
installations. Hence, our first objective is to extend the 1% steady shallow water model
of Rottman et al. (1985) and Lane-Serff et al. (1995), in order to predict the front speed
and the height of the current downstream of the obstacle. As a key difference between
the present analysis and that of the well-studied problem of a flow of denser fluid un-
der lighter fluid past bottom topography (e.g. Baines (1995)), we will not match the
flow conditions far downstream of the obstacle to those far upstream (cf. section 4.3).
Throughout the present work, the predictions of the model are compared with results
from two-dimensional Navier-Stokes simulations that capture many of the important as-
pects of the interaction of compositional gravity currents with surface-mounted obstacles
(Gonzalez-Juez et al. (2008a)). To achieve this first objective, simulations of the front
speed and height of constant-flux gravity currents or starting plumes (cf. Simpson (1997)
p. 176) will be performed.

Recently, the time-varying force on surface-mounted rectangular obstacles from the im-
pact of gravity currents has been investigated both experimentally (Ermanyuk & Gavrilov
(2005b)) and numerically (Gonzalez-Juez et al. (2008a)). These studies demonstrate that
the magnitude of the drag increases exponentially towards a first maximum when the
current impinges on the obstacle, then goes through a transient phase, and finally reaches
a quasisteady value. Both experiments and simulations show the drag to reach its maxi-
mum during impact, when it can be more than twice as large as during the quasisteady
stage. Hence, our second objective is to obtain an estimate of this maximum drag. Since
the impact stage cannot be captured with a steady shallow water model, we will have to
base this estimate on insight gained from the Navier-Stokes simulations.

Gravity current flows around circular cylinders mounted some distance above a wall
have received particular attention. This is motivated by the need to obtain estimates for
the time-varying force on submarine pipelines (Ermanyuk & Gavrilov (2005a); Gonzalez-
Juez et al. (2008b)). Even though this complex flow problem is not amenable to shallow
water analysis, the estimate of the maximum drag for a square ridge provided in the
present work can be used as an upper bound for this problem, based on the observations
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FIGURE 1. Schematic of the flow configuration. A channel of length L and height H contains a
lock of length I and height h. When the gate at x = 0 is opened, a current of the denser fluid
forms and propagates towards a square ridge of side length D, which is situated a distance .
away from the gate.

that circular cylinders experience the largest drag when they are in contact with the
bottom wall (Gonzalez-Juez et al. (2008b)), and that cylinders with square cross-sections
experience larger forces than those with circular cross sections (Gonzalez-Juez et al.
(2007, 2008b)).

The manuscript is organized as follows. Section 2 defines the geometrical set-up of
the problem and describes the numerical simulations and parameters considered in this
work. A basic description of the flow obtained from the simulations is given in section
3. The shallow water model is described in section 4 and compared with results from
simulations in section 5. The estimation of the maximum drag is described in section 6,
and comparisons between the predictions of the model and results from the simulations
are provided. Finally, section 7 summarizes the main findings and conclusions.

2. Problem description and computational approach

In order to address the objectives outlined above, we conduct two-dimensional numer-
ical simulations of lock-exchange gravity currents interacting with square ridges. These
currents are compositional in nature, with the density difference caused by differential
concentration fields. Figure 1 shows a sketch of the channel of length L and height H,
filled with ambient fluid of density p, and concentration c¢,. Submerged in it is a lock of
length [ and height h, which contains the denser fluid of density p; and concentration ¢;.
When the vertical gate at x = 0 is opened, a current of the denser fluid forms with an
approximate thickness of d = h/2 (Huppert & Simpson (1980); Shin et al. (2004)), and
propagates towards the right along the floor of the channel. After traveling a distance I,
it encounters an obstacle with square cross-section and side length D.

The simulations are based on the dimensionless form of the two-dimensional Navier-
Stokes equations in the Boussinesq approximation (Hértel et al. (2000); Ooi et al. (2005);
and others). A characteristic velocity exists in the form of the buoyancy velocity u, =
v/g'd. The relationship between density and concentration c is assumed to be linear, and
given by p = py + (p1 — pu)(c — cu)/(c1 — ¢y). By using d as a length-scale, and wuy, as a
velocity scale, the following dimensionless variables, denoted with asterisks, are defined:
t* = t/(d/wp), u* = u/up, p* = (p — pres)/(puui), and c* = (¢ — ¢,)/(c; — cy). Here,
u denotes the velocity vector (u = (u,v)), p the total pressure, and p,.s a reference
pressure. With this non-dimensionalization, the conservation of mass, momentum, and
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concentration takes the form

Vu* =0, (2.1)
* 1
?,;tl* + V-u*u* = —vp* + R—edVQu* + C*eg 5 (22)
oc* 1 9
e Rt — * 9.
at*—i—ch Redchc ; (2.3)

where e indicates the unit vector pointing in the direction of gravity.

The dimensionless governing parameters are the Reynolds number Re; = upd/v and
the Schmidt number Sc¢ = v/, where v represents the kinematic viscosity and & the
molecular diffusivity, respectively.

The bottom (y = 0) boundary is treated either as a no-slip or slip wall, while the top
(y = H) boundary is considered to be a slip wall. The left (x = —I) boundary of the
computational domain, and the surface of the obstacle, are treated as no-slip boundaries.
A convective boundary condition is employed along the right boundary (z = L — 1) of
the domain (Pierce (2001)). The flow field is initialized with the fluid at rest everywhere,
and the dimensionless concentration ¢* being one (zero) within (outside) the lock.

A well-validated finite-volume code is used in this work (Pierce (2001); Pierce & Moin
(2004); Gonzalez-Juez et al. (2008a)). The momentum and concentration conservation
equations are discretized on a non-uniform Cartesian mesh, which is refined close to the
bottom wall and close to the obstacle. Time integration is accomplished via an iterative
procedure similar to the Crank-Nicolson scheme. To ensure that the continuity equation
is satisfied, a Poisson equation for the pressure correction is solved at each time step. The
simulation of irregular domains is accomplished by means of a grid blanking methodol-
ogy. Results obtained with this code closely reproduce the experiments by Ermanyuk &
Gavrilov (2005a,b), cf. Gonzalez-Juez et al. (2007, 2008a).

The computational domain length is kept at L/d = 48 for all simulations. A lock length
of I/d = 18 ensures that reflections from the left wall do not influence the interaction
between the gravity current and the obstacle, during the time of the simulation. The
distance between the gate and the obstacle is chosen as l./d = 6, so that the current is
in the constant front speed phase when it encounters the square ridge (Simpson (1997)
p. 167). The ratio of the channel height and the lock height is set to H/h = 5, which
approximates well the deep ambient case of H/d — oo found in practice (Gonzalez-Juez
et al. (2008a)). The value for Rey considered in this work is 707, which is representative of
laboratory gravity currents, allows to resolve all the scales of motion with direct numerical
simulations, and is sufficiently large for Rey not to be a dominant parameter of the flow
problem; selected data for Req = 3,535 are also discussed. The Schmidt number Sc is
kept at unity.

The side of the square ridge is varied in the range D/d = 0.3 — 1.6, which ensures that
D/d is sufficiently small not to block the current completely, while being large enough
for linear theory to be invalid (Baines (1995) p. 39). For comparison, typical gravity
current heights of O(1-100m) and obstacle length scales of O(1m) yield a range of D/d =
0.01—1.0. A grid of 2,048 %320 is employed, along with a time step of At/(d/up) = 0.003.
The grid spacing near the obstacle is at most 0.02D.

In the present work, the key control parameters of the simulations hence are the ob-
stacle height or square side D/d and the use of either no-slip or slip bottom boundary
conditions. With slip bottom boundaries the retarding effect of the bottom boundary
layer is eliminated, producing currents with higher dimensionless front speeds V/+/¢’d
(e.g. Hértel et al. (2000)). We remark that two-dimensional simulations will be sufficient
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FIGURE 2. Interaction of a gravity current and a square ridge with D/d = 1 and a no-slip (a-d)

or slip (e) bottom boundary condition. The corresponding times are t/\/d/g’ = 7.4 (a), 9.6
(b), 17.5 (c), 36.2 (d), and 27.7 (e). The current is visualized by means of the ¢* = 0.1, 0.3,
0.5, 0.7 and 0.9 concentration contours. The current head is deflected upward by the obstacle,
overshoots it, and subsequently reestablishes itself downstream of the obstacle. Note that only
a fraction of the computational domain is shown.

for the purpose of the present investigation, since our earlier comparison between two-
and three-dimensional simulations (Gonzalez-Juez et al. (2008a)) showed that both the
force magnitude during the impact stage and the front velocity during the quasisteady
phase are well reproduced in two dimensions.

3. Basic flow description

Figure 2(a-c) shows the evolution of the flow field with time during the impact and
transient stages, for D/d = 1 and a no-slip bottom boundary, at Re = 707. Frames (d)
and (e) depict the flow during the quasisteady state (t//d/g’ > 17) for both no-slip and
slip bottom boundaries, respectively. Upon encountering the obstacle (a), the current
head is deflected upward (b), and eventually reattaches downstream of the obstacle (c).
Subsequently, the flow around the obstacle reaches a quasisteady state, and the current
reestablishes itself downstream of the obstacle (d).

The temporal evolution of the gravity current front position is shown in figure 3 for a
no-slip bottom boundary and different values of D/d. Here the current front is defined
as the z-location where the height of the dense fluid layer, defined as

Ayt < (ec— Cy Yy
b d (—) 3.1
d /0 (cl — cu) d (3:1)
has a value d,/d = 1073, consistent with the definition employed by Cantero et al.

(2007). The gravity current speed (V/+/¢’d) is given by the slope of the curves in figure
3. We observe that, after a transient phase lasting until approximately t/+/d/g’ ~ 25,
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FIGURE 3. Temporal evolution of the gravity current front position (zs/d) for no-slip bottom
boundaries and different obstacle sizes D/d: 0.3 (solid lines), 0.8 (dashed lines), and 1.2 (dash—
dotted lines). After a transient phase, the front speed of the current downstream of the obstacle
becomes approximately constant. It decreases with increasing obstacle height.
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FIGURE 4. Streamwise variation of the current height d. ./d: (a) at t//d/g" = 33.9 for a no-slip

bottom wall; and (b) at ¢/1/d/¢g’ = 31.1 for a slip bottom wall. The values of D/d are: D/d = 0.3
(solid lines), 0.8 (dashed lines), and 1.2 (dash-dotted lines). The obstacle location is denoted
with a thick vertical line. Note that the height of the current forming downstream of the obstacle
decreases with increasing obstacle height D/d. The streamwise variation of dg :/d upstream of
the obstacle indicates the presence of a hydraulic jump.

the front speed of the current downstream of the obstacle assumes a roughly constant
value that decreases with increasing obstacle size.

Figure 4 displays the streamwise variation of the current height d,. ;/d for different ob-
stacle sizes D /d and both no-slip (a) and slip (b) bottom boundaries. Note that the height
of the current forming downstream of the obstacle decreases with increasing obstacle size
D/d. Similar findings were observed for other sets of parameters.

As explained above, one of our objectives is the development of a model for the pre-
diction of the speed and height of the current downstream of the obstacle. This model,
which extends the earlier work by Rottman et al. (1985) and Lane-Serff et al. (1995),
will be described in the following.

4. Shallow water model

The gravity current flow over the obstacle during the quasisteady state, cf. figures 2d
and 2e, can be divided into a dense fluid layer at the bottom, and a light fluid layer on top.
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FIGURE 5. Schematic showing a gravity current flowing past an obstacle during the
quasisteady state. The present analysis divides the flow into five distinct regions.

We assume inviscid Boussinesq flow with a rigid top wall, along with negligible mixing
between the layers. For the values of H/h considered in this work, the simulations show
that the horizontal velocities in the upper layer are small compared to those in the lower
layer, so that a 1%—1ayer model can be used. The flow is divided into five distinct regions,
as shown in figure 5: the inflow region (0), the region between the reflected flow structure
and the obstacle (1), the region at the obstacle location (2), the region immediately
downstream of the obstacle (3), and the head of the gravity current downstream of the
obstacle (4). We employ subscripts to denote the horizontal velocity u, the layer height
d, the flux ¢ = ud, and the Froude number Fr = u/+/g’d in each region.

For the shallow water model, the current height in the inflow region dy and \/g’dy are
chosen as the length and velocity scales. This is in contrast to the nondimensionalization
employed for the simulation work, where we employed the half-height d of the lock and
v/g'd, since they are the only quantities known a priori. Two governing dimensionless
parameters exist in the form of the ratio of the obstacle height and the height of the dense
fluid layer of the inflow region, D/dy, and the inflow Froude number Frg = ug/v/g’do.
Following Lane-Serff et al. (1995), for the purpose of comparing with simulation results
we will later set ug equal to the front speed of the lock-exchange gravity current, and dy
equal to the thickness of the undisturbed tail of this current. As will be discussed in more
detail in section 5, for the parameter range typically considered here the inflow Froude
number is subcritical (Frg < 1) in currents with no-slip bottom boundaries, whereas it
is supercritical (F'rg > 1) in currents with slip bottom boundaries.

4.1. Region upstream of the obstacle

Figure 2c indicates the presence of a hydraulic jump some distance upstream of the obsta-
cle. This is confirmed by the streamwise profile of d, ;/d in figure 4. A detailed inspection
of the simulation results furthermore shows this jump to move upstream. Figure 4 also
demonstrates that the variation of dy +/d upstream of the obstacle is smoother for the
slower current with no-slip boundaries, suggesting the presence of a smooth or undular
jump with subcritical inflow conditions. By comparison, d, ;/d varies more abruptly for
the faster current with slip boundaries, indicating the presence of a strong jump. No
rarefactions were detected in the reflected structure. Thus, for the purpose of developing
a model, we assume that upstream of the obstacle a reflected hydraulic jump or internal
bore exists that moves upstream with a constant speed U.

After changing to a reference frame moving with the jump sped U, conservation of
mass and momentum across the jump give

(up —U)do = (u1 — U)dy , (4.1)
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1 1
5g’dg + (ug — U)?dy = 5g’df + (up — U)?d; . (4.2)

Furthermore, conservation of mass at the obstacle, between regions 1 and 2, yields

u1d1 = u2d2 . (43)

By following the approach of Lane-Serff et al. (1995) and applying Bernoulli’s principle
between regions 1 and 2, we obtain

1 1
51@ +4g'dy = §u§ +¢'(de + D). (4.4)

Note that Rottman et al. (1985) proceed differently at this juncture, by replacing equation
(4.4) with the assumption do = d; — D.

4.2. The obstacle location

Figure 6 shows the streamwise variation of the Froude number Fr ; for different values
of D/d. Here, Fry; is defined as

qgc,t

- )
\/Q/dg,t

with the flux of dense fluid per unit width across an x-plane given by

&: oo C — Cy u d(g) . (4.6)
Vg'd3 0 €~ Cu g'd d
We consistently find an abrupt streamwise variation of F'r;; at the obstacle location,
where the critical condition F'r,; = 1 is reached for D/d > 0.5. For D/d < 0.5, the
criticality can still be achieved some distance downstream of the obstacle, cf. figure 6.

For the purpose of developing a simplified flow model, we assume criticality at the obstacle
location

Frx,t = (45)

u2 1
Vy'ds
Note that assuming a hydraulically controlled obstruction is common in the modeling of
single- and two-layer flows past bottom topography (e.g. Rottman et al. (1985), Lane-
Serff et al. (1995), Woods et al. (1998) and Oehy & Schleiss (2007) for gravity current
flows; Armi & Farmer (1986) and Farmer & Armi (1986) for exchange flows; and Baines
(1995) p. 38-40 for single layer flows).

(4.7)

4.3. Regions downstream of the obstacle

In order to be able to relate the properties of the current downstream of the obstacle
to the upstream flow conditions, we will now extend the approach taken by Rottman
et al. (1985) and Lane-Serff et al. (1995), and consider regions 3 and 4, cf. figure 5.
Figure 6 shows that for all but the smallest obstacles the flow reaches a supercritical
state (Fry; > 1) downstream of the obstacle. Even further downstream, a super- to
subcritical transition occurs for the slower current with a no-slip bottom wall, whereas the
flow remains mostly supercritical for the faster current with a slip wall. In the terminology
of Baines (1995) (his figures 2.9 and 2.11), we observe a partially blocked flow with a
lee jump for a no-slip bottom wall, and a flow without lee jump for a slip wall. The
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FIGURE 6. Streamwise variation of F'r;; downstream of the obstacle: (a) at t/1/d/g’ = 33.9

for a no-slip bottom wall; and (b) at t//d/g’ = 31.1 for a slip bottom wall. The different
obstacle sizes D/d are: D/d = 0.3 (solid lines), 0.8 (dashed lines) and 1.2 (dash-dotted lines).
The upstream face of the obstacle is located at z/d = 6. The flow reaches a critical state near the
obstacle. Further downstream (near z/d = 11 for D/d = 0.8, and near z/d = 13 for D/d = 1.2),
a super- to subcritical transition occurs for subcritical inflow conditions and a no-slip bottom
wall. For supercritical inflow conditions and a slip wall, the flow remains mostly supercritical.

simulations show that the lee jump, when present, is smooth, of small amplitude, and
stationary. Note that, in contrast, figure 2.12 in Baines (1995) predicts a strong lee jump
with noticeable speed (of about 0.21/¢’dp) for the values of F'rg and D/dy considered here.
This discrepancy stems from the fact that in Baines (1995) the flow structures (jumps
and/or rarefactions) downstream of the obstacle are constructed such that V4 =V, and
dy = dy, which does not apply to the present case, cf. figures 3 and 4.

The fact that the lee jump, if present, is stationary has two implications. First, the
flux at the obstacle equals the flux supplied to the current downstream

q2 = 44, ie. u2d2 = U4d4. (48)
This is confirmed by the simulations: Figure 7 shows that for each value of D/d the flux
qu.t/(g'd*)%® is approximately constant with x between the obstacle and some distance
upstream of the current head. Only in the immediate neighborhood of the head do we
observe more substantial variations of the instantaneous flux, as a result of unsteady
dynamics. Moreover, figure 8 shows that this flux remains approximately constant with
time at the obstacle (x/d = 6) during the quasisteady period. Furthermore, the lee
jump, if present, does not catch up with the front of the downstream current, implying
that the front conditions of the current are independent of the events at the obstacle
location. As a consequence of these two observations, detailed information about the
transition from region 3 to region 4 is not required to determine the speed and the height
of the front. Rather, it suffices to know that ¢ = g3 = q4. In fact, region 3 could be
eliminated altogether for the purpose of determining the front properties. Nevertheless,
we do keep region 3 in our consideration, in order to be consistent with previous work
(Baines (1995)).

At this point, with Frg and D/dg given, the five equations (4.1)-(4.4) and (4.7) can be
solved iteratively for the five unknowns u1, dy, U, ug, and ds. Furthermore, we have made
the observation that the flux passing over the obstacle (g2 = u2ds) approximately equals
the flux near the head of the current (¢4 = u4ds), cf. equation (4.8). However, equations
(4.1)-(4.4), (4.7), and (4.8) do not suffice for determining both the speed u4 and the
height d4 of the gravity current downstream of the obstacle. In order to close the system
of equations, we require one additional relationship. In this regard, the observation of an
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FIGURE 7. Streamwise variation of gy /1/g’d® downstream of the obstacle: (a) at t/1/d/g’ = 33.9
for a no-slip bottom wall; and (b) at t//d/¢g’ = 31.1 for a slip bottom wall. The different
obstacle sizes D/d are: D/d = 0.3 (solid lines), 0.8 (dashed lines) and 1.2 (dash-dotted lines).
The upstream face of the obstacle is located at x/d = 6. The flux is approximately constant
from the obstacle to the neighborhood of the current head far downstream of the obstacle, i.e.
q2 = g4 and ugdg = ’LL4d4.
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FIGURE 8. Temporal variation of g :/+/g’d® at the obstacle location (x/d = 6) for no-slip (a)
and slip (b) bottom boundaries, and for different obstacle sizes D/d: D/d = 0.3 (solid lines), 0.8
(dashed lines) and 1.2 (dash-dotted lines). Note that beyond the impact stage, the flux remains
approximately constant with time during the quasisteady stage.

approximately constant flux with time in the Navier-Stokes simulations suggests that we
take a closer look at the relationship between front velocity and thickness for constant
flux currents.

4.4. Constant-fluz gravity currents

Consider a rectangular channel of length L and height H, in which a denser fluid is being
injected into a quiescent ambient fluid through a slot of height d <« H, cf. figure 9. Note
that the slot height in this flow in a sense corresponds to half the lock height in the
problem described in section 2, as both represent approximate measures of the gravity
current height. We assume the inlet velocity V;, to be constant across the slot. The flow
that forms some distance downstream from the inlet is referred to as a constant-flux
gravity current or starting plume. We neglect the entrainment of ambient fluid, so that
the volume flux per unit width ¢ = dV},, is preserved downstream. The momentum flux,
on the other hand, varies in the streamwise direction, as it is affected by the horizontal
gradient of the hydrostatic pressure. Didden & Maxworthy (1982) analyzed such flows
and showed that, when gravitational and inertial forces are in balance (Simpson (1997)),
their front velocity V.y and thickness d.; follow the relationships
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FIGURE 9. Schematic of the flow configuration for constant-flux gravity current simulations. A
denser fluid is injected through a slot of height d into a rectangular channel of length L and
height H containing a quiescent ambient fluid.

Ve = Cld'9)"? (4.9)
1 q2 1/3

The inviscid theory of Benjamin (1968), based on Bernoulli’s principle, yields Fr =

Ver/ /9 dey = V2 and C = 21/3.

4.5. Model predictions

We can now compute the front speed Vi//g’dy and thickness dy/dy of partially ob-
structed currents as functions of D/dy and Frg. To do so, we close the system of equa-
tions given by (4.1)-(4.4), (4.7) and (4.8) with equations (4.9) and (4.10). This approach
holds for partially obstructed currents whose front speed is constant with time, i.e., gov-
erned by a balance of gravitational and inertial forces (Simpson (1997)). Initially, we
will employ Benjamin’s value for C' Benjamin (1968). Further below, we will also explore
the strategy of employing empirical values for C' obtained from simulations, in order to
improve the accuracy of the model predictions.

For C = 21/3, the model predictions for the flux qa/+/g'd3, front speed Vy/\/g’dy and
thickness dy/dy of the gravity current downstream of the obstacle are shown in figures 10
and 11. Figure 10 shows a noticeable decrease of the flux as the obstacle height increases.
This reduced flux renders the downstream current both slower and thinner, as shown in
figure 11, consistent with equations (4.9) and (4.10). Note in figure 11b that the decrease
of dy/dp with D/dy is approximately linear.

5. Comparison of model predictions and Navier-Stokes simulations

For the purpose of comparing predictions of the above model with Navier-Stokes simu-
lation results, we set ug and dy equal to the front speed V' and thickness of the oncoming
current, respectively. These quantities are obtained from simulations of unobstructed
gravity currents as follows. The current front speed V/y/¢g’d is calculated as described
in section 3, while the thickness dy is evaluated by spatially averaging d; from z = 0
to the front location z = zy. For Re = 707 and H/h = 5, we find V/\/¢’d = 0.83
(1.00) for no-slip (slip) bottom boundaries. This result for the slip bottom is within 5%
of the relationship V/v/g’d = (1 — d/H)"® given by Shin et al. (2004). Furthermore,
we observe do/d = 0.88 (0.82) for no-slip (slip) bottom walls. Hence, for the Froude
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FIGURE 10. Effect of D/do on the over-passing flux g1/+/g’d3 of partially obstructed currents
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FIGURE 11. Effect of D/dg: (a) on the front speed Vi/y/g’do; and (b) on the thickness da4/do
of partially obstructed currents for different values of Fro: 0.7 (solid line), 0.9 (dashed line),
1.1 (dashed-dotted line), and 1.3 (dotted line). Results using the shallow water model with

Benjamin’s value C = 2/3 are shown. The isolated obstacle reduces the speed and height of the
downstream gravity current by reducing its flux.

number F'rg = uo/v/g’do of the unobstructed current we obtain Fry = 0.88 (1.11) for
no-slip (slip) bottom walls. By comparison, past experiments show Frg = 0.86 — 1.08 for
H/h = 5, though dy is defined in different ways (using the data of figures 13 and 14 for
H/h = 0.17 in Shin et al. (2004) and equation (2.1) of Huppert & Simpson (1980)). Note
that for a no-slip bottom the inflow conditions are subcritical (F'rg < 1), while for a slip
bottom they are supercritical (F'rg > 1).

The front speed V} of the gravity current downstream of the obstacle is calculated by
tracking the front of the current, as described in section 3, over a time interval during
which the speed is seen to be approximately constant. The height d4 of this current is
found by spatially averaging d, ; from z/d = 10 to the front, at a time when it is located
near the end of the computational domain (x/d ~ 44).

Figure 12 compares model predictions (employing the Benjamin value of C' = 21/3)
and Navier-Stokes simulation results for the influence of D/dy on V4//g'dy and dy/dp.
While most of the simulation data are for Req; = 707, a few data for Re; = 3,535
are included for no-slip boundaries. Overall, for no-slip boundaries the current velocity
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FIGURE 12. Effect of D/dy on the front speed Vi/v/¢’do (a and b) and thickness ds4/do (¢ and
d) of partially obstructed currents with no-slip (a and c) or slip (b and d) bottom boundaries.
Results using the shallow water model with Benjamin’s value for C are shown (solid lines),
along with results from the simulations at Req = 707 (crosses) and Req = 3,535 (plus signs).
For slip walls, we observe good agreement between the model prediction and the simulation
results, whereas for no-slip walls the model overpredicts (underpredicts) the velocity (height) of
the current.

is overpredicted by about 40%, while the height is underpredicted by about 30%. The
slightly larger values of V4//¢’dy, and smaller values of ds/dy, for the larger Re, reflect
the larger value of Frg = 0.93 at Req = 3,535, as compared to 0.88 at Rey = 707.
In general, the model predictions do not improve notably by increasing Rey from 707
to 3,535. On the other hand, for slip boundaries the model predictions agree closely
with the Navier-Stokes results over the entire range of obstacle heights. In summary, the
inviscid model predicts the speed and height of the downstream current quite accurately
for slip boundaries, whereas substantial discrepancies are observed for the case of no-slip
boundaries.

We now explore the idea of improving the model predictions for no-slip boundaries by
employing empirical values of C, in place of Benjamin’s value of 21/3. Towards this end,
we conducted a series of Navier-Stokes simulations of constant flux currents in order to
determine C-values for a variety of different flow conditions.

The computational approach is similar to that explained in section 2, with the following
differences. The flow configuration used is that shown in figure 9. The slot width d is
now used as the length scale, and the buoyancy velocity +/¢’d as the velocity scale. At
the left boundary (z = 0), a uniform inflow is prescribed for 0 < y < d, while the region
d < y < H is treated as a no-slip wall. The length and height of the computational domain
are L/d = 40 and H/d = 10, respectively. The following values for the independent
parameters Req and V;,/\/¢’d are considered: Rey = 100, 707, 1,000, and 10,000, and
Vin/v/g'd = 0.625, 1, and 1.2. Note that the inflow velocity is varied to consider both sub-
and supercritical inlet conditions. Furthermore, both no-slip and slip bottom boundary
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FIGURE 13. Effect of Req on C (circles) and Fr (triangles) of constant-flux gravity currents
with no-slip (dashed lines) and slip (solid lines) bottom boundaries for V;,/v/g’d = 0.625. The
theoretical values for C' and Fr by Benjamin (1968) are also indicated. The values for C' and
F'r found here are consistent with previous theoretical and experimental findings.

conditions are considered. The front speed is calculated by tracking the front of the
current, as described in section 3, and d,¢ is found by averaging d, ; from x/d = 5 to the
front position at t/\/d/g’ = 24.

For the parameter range investigated, the effect of V;,, //g’d on C and Fr was observed
to be less than 2%, so that it could be neglected. For V;,/v/¢'d = 0.625, figure 13
shows the effect of Re on C' and F'r, for both no-slip and slip bottom boundaries. For
Regq > 707 and a slip bottom boundary, the values of C' and F'r are within 10% of those
given by Benjamin’s theory. The difference between the theoretical and simulation results
can be attributed to the finite values of Req and H/d in the simulations, while these
parameters are infinite in Benjamin’s theory. For no-slip bottom boundaries, the values
of C' and Fr obtained from the simulations are consistent with experimental observations
for Req = O(10%) and higher, where Keulegan (1958) and Wood (1966) found C' = 1.06
and Fr = 1.07 — 1.09. They also agree with experiments for Reg = O(10%) and less,
for which Braucher (1950), Britter & Linden (1980) and Hogg et al. (2005) measured
C =0.65—-0.9 and Fr = 0.8 — 0.9 (cf. the data given in Britter & Linden (1980) for
a zero slope, and in Hogg et al. (2005) from their experiments 5, 7-9, 16 and 20 for
vanishing ambient flow and a source of saline fluid.)

As a next step, we calculate values of C and F'ry for currents forming downstream of
obstacles, using simulation data for Vj, d4, and q4. The effect of D/dy on C and Fr is
observed to be small, and does not follow any trend. This is notable, since at large values
of D/dy the current can be considerably distorted, cf. figure 4. More importantly, the
mean values of C and Fr, as D/dy is varied, are close to those given by simulations of
constant-flux currents at the same Rey (Req = 707), cf. table 1. This observation further
supports the approach of modeling the current downstream of the obstacle as a constant
flux current.

We note that the uncertainties in calculating Vy, d4 and ¢4 enter into the final calcu-
lation of C' and F'r. These uncertainties result from the choice of intervals over which
spatial and temporal averages are taken, and they may explain the small difference of
the C' and Fr-values for constant-flux and partially obstructed currents shown in table
1. Furthermore, the lower F'r seen in partially obstructed currents with no-slip bottom
boundaries may to some extent be due to the smaller thickness dy4/dy seen in these
currents, for which the retarding effect of friction becomes more important.
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C Fr

no slip, constant-flux 0.92 0.94
no slip, partially obstructed 0.92 0.85

slip, constant-flux 1.12 1.27
slip, partially obstructed 1.22 1.26
Benjamin (1968) 1.26 1.41

TABLE 1. Comparison of the values for C' and F'r obtained from Navier-Stokes simulations of
constant-flux and partially obstructed currents, respectively, with either no-slip or slip bottom
boundary conditions at Req = 707. Partially obstructed and constant-flux gravity currents are
seen to give rise to approximately identical values of C' and F'r, which confirms that the former
can be treated as constant-flux currents in the present analysis.
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FI1GURE 14. Effect of D/do on the front speed Vi/+/¢’do (a) and thickness d4/do (b) of partially
obstructed currents with no-slip bottom boundaries. Model results using empirical values for
C' are shown (solid lines), along with results from the simulations at Req = 707 (crosses). The
value for C' employed is 0.92 and corresponds to that found for constant-flux gravity currents
at Req = 707, cf. table 1. By selecting a value of C of 0.92 instead of 2'/3 (cf. table 1), which
reflects the effect of bottom friction, the model predictions for no-slip currents improve notably.

By selecting a value of C' of 0.92 instead of 2!/3 (cf. table 1), which reflects the effect of
bottom friction, the model predictions for no-slip currents improve notably, cf. figure 14.
We note that employing Frg-values from Shin et al. (2004), rather than from simulations
of unobstructed currents, generally leads to good agreement with the simulation results
as well, although the discrepancy is somewhat larger than that in figures 12 and 14,
especially for dy/dp.

To conclude, for slip bottom boundaries Benjamin’s theoretical C-value results in ac-
curate predictions of both the velocity and the height of the current downstream of the
obstacle. On the other hand, for no-slip boundaries and the values for Rey considered
here, an empirical value for C leads to a substantially more accurate prediction. Alterna-
tively, in order to avoid the use of an empirical C-value, a semi-empirical theory could be
developed along the lines of Ermanyuk & Gavrilov (2007), taking into account frictional
losses. Such objective is, however, outside the scope of the present work. Besides, at very
large Reg the values for C' and F'r for no-slip boundaries are expected to approach those
for slip boundaries.

Figure 14 shows that both V4/\/¢’dy and dy/dy decrease with D/dy, and that, as
expected, currents flowing over a no-slip bottom wall are slower than those flowing over
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FIGURE 15. Temporal evolution of the drag Fp (thick solid lines) and the pressure force on the
obstacle upstream face Fy, (thin solid lines) for D/d = 0.3 (a) and D/d = 1.2 (b), with slip
bottom boundaries. The maximum drag approximately equals the maximum value of F,, and
hence is not affected by the wake drag. Furthermore, the value of F,, during the quasisteady
state (t/(d/g") > 17) approximately equals that at the time of the first maximum drag. This
observation allows us to use steady shallow water theory to obtain, indirectly, an estimate for
the maximum drag.

a slip wall. The good agreement shown in figure 14 between the simulation results and
the predictions from the theory indicates that the isolated obstacle reduces the speed
and height of the current downstream of the obstacle by reducing its flux.

The effect of the obstacle on the mixing processes at the interface of the gravity current
can be recognized to some extent in figure 2. We note that the concentration contours
for the current downstream of the obstacle (figure 2d) are generally spaced farther apart
than for the incoming current upstream of the obstacle (figure 2a). This wider spacing
of the concentration contours indicates that the downstream current is more diluted. In
spite of the fact that our model neglects any mixing between the fluids, its predictions
for the front speed height are fairly accurate. Hence we conclude that the effect of mixing
on those quantities is small for the parameters considered here.

6. Estimate of the maximum drag

For small viscous forces (Gonzalez-Juez et al. (2008a)), the overall flow force on the
obstacle can be obtained with good accuracy by integrating the pressure distribution
over the obstacle surface. The drag Fp represents the streamwise component of this flow
force. Figure 15 shows the temporal evolution of the drag for two values of D/d, and
for slip bottom boundaries. After increasing exponentially towards a first maximum, the
drag fluctuates for a while, and eventually settles around a quasisteady value. Also shown
in figure 15 is the temporal evolution of the pressure force F,, on the upstream face. A
number of similar simulations for both no-slip and slip boundary conditions show that
for D/d < 1.2 the drag reaches a maximum when the current first meets the obstacle,
while for D/d > 1.2 the drag maximum typically occurs when the bore is being reflected
upstream.

Figure 15 shows that the maximum drag approximately equals the maximum value of
F,,, which indicates that the maximum drag is determined by the level of hydrostatic
pressure upstream of the obstacle and by the deceleration of fluid as it encounters the
obstacle. At the same time, the contribution to the maximum drag from the formation
of a wake is small, cf. also Gonzalez-Juez et al. (2008a). The negligible influence of the
wake drag on the overall drag maximum suggests that hydraulic theory can be employed
for estimating the maximum drag. We furthermore note that no waves are observed at
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F1GURE 16. Effect of D/dp on the first drag maximum (crosses) and the overall drag maximum
(circles), from Navier-Stokes simulations. Corresponding shallow water estimates of the drag
maximum are indicated by solid lines. Data are provided for both no-slip (a) and slip (b)
bottom boundaries. The theoretical estimate is seen to be close to the simulation data for the
maximum drag, as long as the obstacle height is much larger than the thickness of the boundary
layer at the bottom wall.

the interface between the current and the ambient fluid, so that the wave component of
the drag is negligible.

The impact of the current on the obstacle may be modeled with unsteady hydraulic
theory, by combining the ideas in Greenspan & Young (1978) and Rottman & Simpson
(1983) for example, but this would require the numerical solution of the nonlinear shallow
water equations, and the resulting numerical model would be considerably less accurate
than that described in section 2. For the purpose of obtaining an estimate of the maximum
drag, the use of unsteady hydraulic theory can be circumvented by noting in figure 15
that the quasisteady value of F,, approximately equals the drag maximum. This holds
both for small obstacles with D/d < 1.2, when the drag maximum is reached during
the impact stage, and for larger obstacles with D/d > 1.2, where the drag maximum is
reached later, but still lies within 15% of the quasisteady value of F,. These observations
result from the rather constant value of dy throughout the interaction (also observed by
Rottman et al. (1985)), except during a transient period after impact. They suggest that
the pressure force on the upstream face of the obstacle calculated with steady hydraulic
theory could be used to accurately estimate the first drag maximum, and with some loss
of accuracy, also the overall drag maximum for obstacles with D/d > 1.2. We note that
these observations hold for the entire parameter range considered in this work.

To calculate the quasisteady value of Fy,, we supplement equations (4.1)-(4.4) and
(4.7) by the conservation of momentum between regions 1 and 2

1g'd% +uld; = lg’d% +uldy + fv . (6.1)

2 2 w
The estimate of the maximum drag using the above relation for both no-slip and slip
bottom boundaries is shown in figure 16. The largest discrepancy between this estimate
and results from numerical simulations occurs for small obstacles and no-slip walls, when
the ratio of boundary layer thickness to obstacle height is O(1). Larger obstacles are
increasingly exposed to the higher velocity outside the boundary layer (Gonzalez-Juez
et al. (2008a)), and the maximum drag estimate becomes increasingly more accurate.
For flows with slip boundaries the maximum drag estimate is reasonably accurate for
all obstacle sizes, with the largest discrepancy of O(10%). Note that the model provides
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a better estimate for the first drag maximum than the overall drag maximum, as the
former is more closely approximated by F,, during the quasisteady state, cf. above.

7. Summary and Conclusions

In summary, we consider the problem of a partial-depth lock-exchange gravity current
flowing past an isolated surface-mounted obstacle. For such partially obstructed gravity
currents we extend the steady shallow water models of Lane-Serff et al. (1995) and
Rottman et al. (1985), in order to predict the height d4 and constant front speed Vj
of the current downstream of the obstacle, along with the maximum drag. The model
predictions for these quantities as functions of the Froude number Frq of the oncoming
current, and of the ratio D/dy of obstacle to current height, are compared with two-
dimensional direct numerical simulations.

Based on observations from simulations of partially obstructed and constant-flux grav-
ity currents, we treat the current downstream of the obstacle as a constant-flux current
whose flux ¢4 equals the flux passing over the obstacle. We calculate this flux from the
shallow water model, and subsequently use both theoretical (Benjamin (1968)) and em-
pirical values for C' = Vy/(¢’q4)"/?, in order to predict the front speed and height of the
downstream current. For Benjamin’s value of C' the model predictions agree well with
results from slip wall simulations. On the other hand, for no-slip walls, empirical values
of C substantially improve the agreement between model and simulation data. As D/dy
increases, Vi /v/g'do and dy /dy decrease. Hence, the obstacle reduces the speed and height
of the downstream current by reducing its flux.

The simulations show that the maximum drag is approximately equal to the pressure
force on the upstream face of the obstacle during the quasisteady state. Based on this
observation, we use the present steady shallow water model to calculate this pressure
force, thereby obtaining an estimate for the maximum drag. This estimate agrees well
with the maximum drag calculated from the simulations for cases in which the obstacle
height is much larger than the thickness of the boundary layer at the bottom wall.

Further work is required to analyze flows over obstacles involving larger, non-Boussinesq
density differences (Lowe et al. (2005); Birman et al. (2005)), sloping bottom walls (Bir-
man et al. (2007)) or obstacles that are small compared to the current height.
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