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Numerical simulation results are presented for the displacement of a drop in a porous medium. The
drop is surrounded by a more viscous fluid with which it is fully miscible. The simulations are based
on a set of augmented Hele—Shaw equations that account for nonconventional, so-called Korteweg
stresses resulting from locally steep concentration gradients. Globally, these stresses tend to stabilize
the displacement. However, there are important distinctions between their action and the effects of
surface tension in an immiscible flow. Since the Korteweg stresses depend on the concentration
gradient field, the effective net force across the miscible interface region is not just a function of the
drop’s geometry, but also of the velocity gradient tensor. Locally high strain at the leading edge of
the drop generates steep concentration gradients and large Korteweg stresses. Around the rear of the
drop, the diffusion layer is much thicker and the related stresses smaller. The drop is seen to form
a tail, which can be explained based on a pressure balance argument similar to the one invoked to
explain tail formation in Hele—Shaw flows with surfactant. The dependence of such flows on the
Peclet number is complex, as steeper concentration gradients amplify the growth of the viscous
fingering instability, while simultaneously generating larger stabilizing Korteweg force20@1
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I. INTRODUCTION shapegTanveet9), as well as their stability propertié$an-
veer and Saffmdf) on the basis of the Hele—Shaw equa-

The displacement of a drop of one fluid surrounded by &jons. These authors were able to demonstrate that surface
different fluid in a porous environment represents a problemension removes the degeneracy of the earlier Taylor—
of fundamental interest. At the same time, it is of importanceSaffman zero surface tension solutiond@aylor and
in a variety of environmental as well as technological situa-Saffmart). Tanveer observed that for larger bubbles, the
tions ranging from groundwater contamination and enhancefkading front tends towards the solutions found by McLean
oil recovery to biomedical applications. Much of the researchand Saffmalf for fingers. A second branch exhibits nearly
in this area has exploited the analogy between displacemenggrcular bubbles for small, and flattened bubbles for larger
in true porous media and those in Hele—Shaw cells, as de&urface tension values. Interestingly, for a certain bubble size
scribed in the reviews provided by HomsYprtsos? as well  of about one quarter of the cell width, he finds an extraordi-
as McCloud and MaherWith regard to the motion of drops nary, or Tanveer, shape with negative curvature at the leading
and bubbles in Hele-Shaw flows, it appears thaniscible  front. A wide range of propagation velocities is observed,
displacements have received far more attention thieible  however all of them are faster than the velocity of the sur-
ones, see the experimental investigations by Eck an@ounding fluid. Thus some, but not all of the shapes found
Siekmanrf, Maxworthy? Kopf-Sill and Homsy, as well as  experimentally by Kopf-Sill and Homsy are explained. These
Park et al” The observations by these authors demonstratguthors record six types of bubble shapes, termed near
that the combination of viscous and surface tension forces iﬁircles, flattened, elongated, long-tail, short-tail, and Tanveer
conjunction with three-dimensional effects can lead to a vapubbles, with propagation velocities ranging from one fifth
riety of striking and unexpected shapes. to twice that of the surrounding fluid. The follow-up work by

These findings in turn stimulated theoretical efforts toparket al.” suggests that surfactant contamination may have
explain, as a function of the dimensionless surface tensioplayed a role in some of the shapes observed by Kopf-Sill
parameter and the bubble size, both the multitude of experiand Homsy. In the absence of surfactant effects, they exclu-
mentally observed and numerically computed steady bubblsively find bubble velocities larger than that of the surround-
ing fluid. In the presence of surfactants, on the other hand,
9Author to whom all correspondence should be addressed: electronic mal€ry small bubble velocities and shapes similar to those
meiburg@engineering.ucsb.edu found by Kopf-Sill and Homsy are observed. Patkal. ar-
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gue that if the bubble moves more slowly that the fluid, A’
surfactant accumulates at the front and locally lowers the U=l
surface tension. In order to balance the pressure forces acting 4
on the bubble, an elongated shape with a more strongly
curved tip must form. A corresponding argument applies to
the formation of the “tailed bubble,” if the bubble velocity is g d=1
greater than that of the fluid. At the same time, three-
dimensional effects are also known to be important for the
motion of bubbles and droplets in tubes and Hele—Shaw _¥
cells, see Brethertdf as well as Park and Hom$$.How-

ever, by themselves they cannot explain the multitude of
shapes observed by Kopf-Sill and HoMMeiburgl5). FIQ. 1.. Principal sketch. In a rectangular dpmain, an init?ally circular drop-

The above results for immiscible displacements are O*et is displaced by a surrounding fluid of different viscosity.

renewed interest in light of recent findings regarding the ef4,ont. Fernandezt al3* perform comparisons between ex-
fects of nonconventional stressessciblefluid flows with eriments and three-dimensional direct numerical simula-

steep concentration gradients. Such stresses were first pOSisns of the density driven instability between miscible fluids
lated by Kor_tewebﬁ who, on the basis of aad hocconsti-  j, yertical Hele—Shaw cells, in order to identify effective
tutive equation, suggested that they may result in dynamig,face tension effects.

surface tension-like effects, or an “effective surface ten- As the above references show, there is substantial evi-
sion.” More recently, experimental observations by Jo%;'éph dence that miscible flows can give rise to stresses that are not
rekindled interest in Korteweg’_s or_|g|nal work and stimu- 5.counted for by the model of a Newtonian fluid. At the

lated a host of further research in this area. Joseph found thah e time, the physical and mathematical nature of these
drops of water rising in glycerine exhibit sharp interfaces antsyresses, as well as their magnitude and even their sign, are
are characterized by shapes that resemble those commonly| hoorly understood. There are suggestions, most notably

seen in imrlT;iscibIe flows. Already several years earlieryy joseph and coauthors, regarding the mathematical form of
Kojima et al. had found that the behavior of toroidal drops gqgitional stress terms to be incorporated into the Navier—

falling in a surrounding liquid could be predicted by theoret-gyokes equations, in order to account for Korteweg forces.

ical arguments only under the assumption of & small, timeyypjje those terms have been proposed on somewhat empiri-
dependent interfacial tension across the drop ?nterface. They grounds, and a derivation from first principles is not yet
work of Joseph and coauthors also drew attention to the fac yijaple, they nevertheless open up new avenues for inves-
that the velocity field of a miscible fluid flow may not be (igating these nonconventional stresses. It appears worth-
solenoidal, even if the fluids are incompressible. Further exghije to conduct careful numerical simulations based on the
amples that h'l%h“ght and discuss these effects are pzrlov'de&oposed augmented equations against which corresponding
by Galdiet al,'® Joseph and Renardy.and Joseplet al. experiments can be compared, in order to establish or dis-
Over the years, there have been numerous attempts {Qoye the validity of the additional terms. Furthermore, the

obtain dyngsmic surface tension values. Quiﬁ’kas cited by - mechanisms by which the proposed additional stress terms
Freundlich;” measured the dynamic tension of ethyl alcohol; s ,ence the flow can be analyzed by means of the numeri-
with a salt solution. He observed the value to lie between 0.8 5 simulations as well. Miscible droplets in a Hele—Shaw

and 3><1(_)73 N/m. Smithet al** reported @ maximum Sur- gisplacement represent a highly suitable focus for such an
face tension value of 16 N/m at the time of initial contact  jnyestigation, as surface tension forces are known to give rise
between silicone oils of 1 and 2000 cSt. Comparison betq very pronounced effects in their immiscible equivalents,
tween the mISCIE|e capillary tube experiments of Petitieansyhich have been studied in great detail. This, in conjunction
and Maxworthy® and earlier immiscible experiments by \ith the importance of miscible porous media flows in their
Taylor?® suggests an effective surface tension value betweegn right, is the motivation behind the simulations to be
glycerine and water of about G&L0 3 N/m, see also the discussed below.
correspon.dmg n.umencal yvqu by Chen and MeibtfrGub- The presentation is structured as follows. The physical
sequent g,lmulatlons of miscible capillary flows by Chen a”%roblem will be setup in Sec. II, along with the governing
Melbgrgz that account for Korteweg stresses, show that gqations and the computational technique. In Sec. I, we
negative stress constant can substantially slow down the leg§| establish and interpret the flow features as function of
viscous finger that travels along the centerline of the tubey,e governing dimensionless control parameters, such as the
Based on theoretical arguments, Dﬁ‘\’/tsalculqte_s values for - g4,y rate, viscosity ratio, and Korteweg stress constant. Fi-
mixtures of hydrocarbons up to ION/m. Similar effects 4y Sec. IV will provide a discussion of the results, as well
were observed by Kurowski and Misb&hPetitieans’ as  4< some conclusions
well as Petitieans and Kurowsk. '

Hu and Josepti consider effective surface tension and Il. PHYSICAL PROBLEM AND GOVERNING
divergence effects for miscible displacements in a Hele-EQUATIONS
Shaw cell. These authors formulate gap averaged equations Consider the time-dependent displacement of an incom-
that account for both of these phenomena, and they subspressible miscible drop by a uniform Hele—Shaw flow of
quently perform a linear stability analysis for a rectilinearfinite lateral extentFig. 1). Hu and JosepH propose exten-

surrounding fluid
u=1
c=1

A\ 4

A

L
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sions to Darcy’s law that account for velocity divergence IW, AW,
effects as well as dynamic Korteweg stresses in a homoge- w= v (8
neous porous medium of permeability Thus, the governing y
equations take the form Ay P
We=—0, Wy=——", ©
V-lu— Vc) =0 (1) Y
1-¢c ’ so that we obtain
u . Viy=—w, (10)
V[p+Q(c)]=—u+V-[a(Ve)(Ve)T], 2
K RV Vor 5 &c( a3 +&3c)
. W= Ve = = S T 3
_8[(ac\? [ac\?] 2y[dc  dc p X\ X%y dy
Q=3I oyl "3l a2 m( % +(93c) "
T oo w2 T 3] |
L 2uld( D ﬁc) L ( D ac) . Iy \ oxay*®  ox
I\ 1—¢c axl “avl1—zgc av) |’ ac 1
3 |ox\1—-écox) ay\l—écay L W-Ve= — V2. (12)
Jc at Pe
E+V-(uc)=V~<1_§CVc>. (4)  Here the Peclet number Pe and the dimensionless Korteweg

Here u denotes the velocity; the concentration of the sur-
rounding fluid, and is the normalized density difference of
the two fluids
Ps™ Pd

Ps

where the subscripts and d denote the surrounding and
droplet fluids, respectivel\D represents the diffusion coef-
ficient, p the pressureu the viscosity, and) indicates the

additional pressure due to the Korteweg stresseand y

&= ©)

denote the two Korteweg stress coefficients, which in the

following are assumed to be constant. As mentioned abov:
only rough estimates exist as far as the magnitudé arfid y

is concerned, and even their respective signs are unknown.
Consequently, we will have to vary these coefficients in the
simulations, in order to assess their influence on the dro

displacements. The above set of equations expresses the ¢

servation of mass, momentum, and species. Here, the a$

sumption of a constant, scalar diffusion coeffici@ntepre-
sents a relatively crude approximation of the
mechanisms responsible for dispersion in a porous mediu

or even in a Hele—Shaw cell, cf. the discussion and refer-

ences given by Petitjearet al*® Nevertheless, for lack of a
better model we employ this approach here.

In order to render the governing equations dimension

less, we take the droplet diametdras the characteristic
length scale, ank as a typical permeability value. The
nominal displacement velocity of the surrounding fluid
serves as the velocity scale, thereby providing us with cha
acteristic values of timed/U, and pressurepUd/k. We
furthermore scale viscosity witphg and assume a viscosity-
concentration relationship of the forifTan and Homsy®
Chen and Meiburdf/8

w(c)=eRl=9), (6)
By introducing the solenoidal velocity/, we can recast the
momentum equation into a vorticityw) and streamfunction
() formulation (Ruith and Meiburg® Camhiet al*%):
éD
1-éc

W=u— Ve, (7)

true
m

constants are of the form
Uud ko
D' 7 uUd®

Note that as a result of employing the stream function-
vorticity formulation, the additional pressure componént
and with it the second Korteweg stress constaate elimi-
nated, so tha® is the only additional parameter resulting
from the nonconventional stress terms.

Boundary conditions are prescribed as follog®uith
and Meiburg®® Camhiet al*9):

Pe= ) (13

e, x=+E: W_o, 2 E=O (14
2 X )¢ Tox ]
H_ H oJc
yZiE. l’b:tf’ @:0 (15

the initial conditions assume a circular droplet shape

ounded by a steep concentration gradient. Rotly, and s

are expanded in a cosine series in the streamwise direction.
In the normal direction, discretization is accomplished by
sixth order compact finite differencésele*)). Time integra-

tion is fully explicit and utilizes a third order Runge—Kutta
procedure(Wray*?). The evaluation of the nonlinearity at
each time level is performed in a pseudospectral maf@er
nuto et al*). The simulations to be discussed below typi-
cally employ a discretization afx=Ay= 35 except for the
cases of the highest viscosity ratio and Peclet number, where
we useAx=Ay=st:. The results have been validated by
rgrid refinement tests. The numerical code is largely identical
to one used earlier for investigating planar fro(fRuith and
Meiburg3® Camhi et al*%, which had been validated by
comparing growth rates of small perturbations with linear
stability results. More detailed information on the implemen-
tation is provided by Meiburg and Ch¥nas well as Ruith

and Meiburg®®

lll. RESULTS

We begin by describing a reference case, in order to
identify the mechanisms that dominate the temporal and spa-
tial evolution of the displacement. Subsequently, the values
of the governing parameters will be varied individually.
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FIG. 2. Pe=2000, R=—2.5, and(@ 6=0, (b) &
—107% (c) 6=—1075. Concentration contours are
shown for timest=0.2, 1, 2.5, and 3(a) Reference
case: In the absence of Korteweg stresses, a fingering

instability develops. The long-time evolution of the

flow is characterized by a pair of a decaying fingébs.
Small Korteweg stresses lead to slower growth and
fewer fingers overall, without stabilizing the droplet
completely.(c) Larger Korteweg stresses suppress vis-
cous fingering entirely.
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A. Reference case

Figure 2a) depicts the motion of a droplet foR=
—2.5, Pe=2000, andH=2 in the absence of Korteweg
stresses. The computational domain extends over the ran
(—2,6), and the droplet is initially centered at {,0). The
R value indicates that the droplet is moving within an envi-
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ronment that is approximately 12 times more viscous. This
viscosity ratio results in a locally unstable situation at the
front of the drop, where the growth of a vigorous fingering

%éstability is observed. In the absence of symmetry breaking

erturbations, the droplet remains symmetrical with respect
to the center line, with matching pairs of fingers forming on
each side. These fingers initially display some of the dy-
namic behavior familiar from investigations of nominally
plane fronts, such as merging and shielding, cf. Tan and
Homsy?® Due to the finite supply of the less viscous fluid,
however, the long time behavior is characterized by the
propagation of a pair of fading fingers. This evolution is also
reflected by the corresponding streamfunction and vorticity
data(Fig. 3). While initially substantial fine scale structure
exists, the long term evolution displays two fairly uniform
channels along which most of the droplet fluid transport

500
4507}
400}
350t
300}
3 2501
200t

150}
100}
50t

time

FIG. 4. Reference case: Maximum absolute vorticity as a function of time.
After an initial transient, the vorticity maximum grows rapidly, which re-

FIG. 3. Reference case: Vorticity and perturbation stream function fields aflects the growth of the viscous fingering instability at the leading edge. For

timest=1 and 2.5.

long times, saturation occurs as a result of nonlinear effects.
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FIG. 5. Reference case: The temporal evolution of the weighted velocity|g 6. Temporal evolution of the interfacial length(t) for Pe=200

Ug . Initially it increases sharply to a maximum of about 1.9, thereafter it (gash—dgt 500 (solid), 1000 (dot), 2000 (bold), 4000 (dash. L(t) in-

declines. creases with Pe, reflecting the destabilizing influence of Pe in the absence of
Korteweg stresses.

takes place. Figure 4 shows the growth of the maximum
absolute vorticity value in the flow field. After a brief initial after it drops rapidly. Around=2.1, U4 rebounds slightly as
transient during which the droplet deforms slightly from its a result of a merging process, before decreasing further.
original circular shape, the vorticity shows a distinct time A further quantity of practical interest, for example if
interval of sharp growth, which reflects the emergence otthemical reactions between the two miscible fluids are to be
several pairs of vorticity dipoles near the drop’s tip, whereconsidered, is the length of the interfacial region separating
subsequently the formation of fingers is triggered. As thes¢he two components. Chen and Meibtlrdefine an equiva-
fingers evolve, large vorticity peaks appear in regions wheréent interfacial length_(t) for miscible fluids as
mergings take place. At the same time, the overall growth PRERNPRE
(5
IX ay

becomes saturated. Very little vorticity emerges in the stable | (t)= J' f
region near the rear of the droplet.

The overall droplet propagation velocity, represents a  For the present flow, the growth of this interfacial length is
quantity of significant practical interest. Kopf-Sill and shown in Fig. 6. During the startup transient, when the drop-
Homsy as well as Parket al.” measure the steady state |et modifies its shape only weakly, the initial value- 7 is
propagation velocities of immiscible bubbles in different pa-nearly maintained. Subsequently howevergrows rapidly
rameter ranges, and they report values oy between 0.2 to a maximum of more than three times its original value,
and 2. For the current, miscible drops, a steady state does n@hich it reaches at about the time whely peaks. This re-
evolve. As a result, it is most appropriate to define an instanflects the vigorous fingering, which increases the contact area

1/2

dx dy:. (17)

taneous mass-weighted droplet velodity as between the two fluids. Subsequently, the decay of the drop-
[fW,c dx dy let structure into a pair of decaying fingers cauké€s) to
Ugy(t)= =< (16 decrease, due to the diffusive decay of the concentration gra-
JJedxdy dients.

which is plotted in Fig. 5. We observe that for the present  One-dimensional profiles of the concentration averaged
viscosity ratio, after a brief initial transient the velocity lev- across the width of the Hele—Shaw cedl(x,t), can be

els off at a value of about 1.57. Subsequently the onset of themployed to extract further global features of the flow, see
fingering instability causes it to rise to a peaklf~1.9, Fig. 7. Att=0.2 the original droplet shape is still largely
which is close to the value of 2 for an immiscible circular preserved. For later times, theg profiles near the trailing
bubble without surface tension in an infinite domain. There-edge of the droplet display a largely monotonic character,

1 g T T T = o . | g—— 7
\ / R aaiattar - .
N 2 W FIG. 7. Reference case: The average concentration pro-

05 T 02| files c,(x,t) at the same times as those shown in Fig.
—_—t 2(a). The initially circular shape becomes increasingly
or s 1225 |1 stretched. While the rear of the droplet is governed by
05 . . ; . ) ! - o8 diffusive effects, the front is convectively dominated.
-2 -1 0 1 2 3 4 5 8
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4 ' " ' Hele—Shaw flows the Korteweg stress constahas to have

a negative value in order to avoid Hadamard instability, or
ill-posedness of the problem. For miscible displacements in a
capillary tube, Chen and Meibiffjemployed negative val-
ues ofé and found them to be stabilizing, as they reduced the
propagation velocity of the finger tip.

Figure 2b) depicts the evolution of a droplet with
=—10"° for the same times as the reference case discussed
above. While an exact value of the Korteweg stress constant
between typical fluids is unknown at this time, the above
value is suitable for demonstrating the nature of the influence
that this stress can have in the flow. In comparison to the
reference case, a clearly stabilizing effect is noticeable.
While the fingering instability is not suppressed entirely,
fewer and wider fingers evolve later in time. If the magnitude

4 of the Korteweg stresses is further increased by setfing
time =—105, the front of the drop becomes completely stabi-
FIG. 8. Reference case: After an initial transient, the dispersed droplel‘zed [Flg. 2(0)] and a tail evolves that resembles some of the

lengthly grows nearly linearly with time. shapes observed by Kopf-Sill and Homsy as well as Park
et al. However, there is a fundamental difference between

S S ) the miscible displacement and its immiscible counterpart, in
indicating that diffusion is dominant. In contrast, near theihat the immiscible flow can acquire a truly steady state, if
front they resemble the convection dominated profiles obyiewed in a reference frame moving with the droplet. This
served earlier by Tan and HoniSyfor nominally plane possibility does not exist in the miscible case as a conse-
fronts, with plateau-like regions separated by steep gradientgyence of the actions of diffusion. At the leading edge of the
A dispersed droplet lengthy can then be defined as the dis- grop diffusion and strain can balance locally and thereby
tance between the points at whichreaches a certain value create a quasisteady state. However, such a balance cannot
close to one. Here, we take this value to be 0.98. Figure 8¢ 5chieved around the entire circumference of the drop, so
shows that after the initial transiemj increases approxi- hat diffusion results in a continuous leakage of drop fluid
mately linearly with time, which reflects the continuous elon-in+s the wake.
gation of the droplet. L . A related effect of diffusion is that it spreads out the

It should be mentioned that the above initial condition of o te\eq stresses over a zone of finite thickness, whereas, at
a perfectly symmetric drop may appear somewhat artificialig s in a continuum sense, the surface tension forces in the
For this reason, we also carried out simulations of slightlyjmiscible case are perfectly localized at the interface. Fur-
perturbed drops. While they evolved into an asymmetriGpermore, since the magnitude of the Korteweg stresses de-
shape, the general observations and conclusions arrived gl s on the square of the concentration gradient, the size of
above for the symmetric drop still hold. Furthermore, we will {hoc6 stresses is to a large extent determined by the local
in the following limit ourselves to relatively large droplets pajance of strain and diffusion. This influence is absent in the
whose initial diameter is half the width of the Hele—Shaw;mniscible case. From these considerations, it is obvious that
cell. While both Kopf-Sill and Homsyas well as Tanve&f analogy between the surface tension forces in an immis-

made interesting observations also for much smaller immisgipie flow and the Korteweg stresses in a miscible flow has
cible bubble sizes, we found such small miscible droplets tG |imitations.

decay very rapidly at numerically accessitte values, so The local features of the velocity field thus prevent the
that not much could be learned from those simulations. 5 mation of a well-defined, thin diffusion layer around the
trailing section of the droplet. As a result, the Korteweg
stresses are quite weak here, which renders them unable to
maintain a quasisteady droplet shape in the same way as
In the following, we will keepR and Pe at the values surface tension forces did in the investigations of Kopf-Sill
employed in the reference case, while exploring the effectand Homs$ and Parket al.” However, an impression of the
of nonzerod values. Hu and Josephpointed out that in  time-dependent droplet shape can be obtained by drawing

B. Displacements in the presence of Korteweg
stresses

1 T T T T T T T
0.5F R )
FIG. 9. Pe=2000, R=—2.5 and§=—10"°. Shown
ok E are the droplet shapes at tintes0.4, 1.2, 2, and 3.2 by
means of thec=0.99 contours. The formation of a
-0.51 T droplet tail is clearly visible.
-1 L I 1 il L 1 1
-2 -1 0 1 2 3 4 5 6
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Pe=4,000 Pe=6,000
1 1
0.5 r 05
N ]
10 T °
-05 = -05 )
FIG. 10. Concentration contours fét=—2.5 and ¢
- o y 2 3 =, 3 =0: (8 Pe=4000, timest=1.2 and 2.8;(b) Pe
] 1 =6000, timeg=0.6 and 1. In the absence of Korteweg
stresses, larger Pe values lead to increased fingering,
0.5 05 and more frequent tip splitting events.
g o I o
-0.5 -0.5
1 3 4 5 2 -1 0 1 2
a) b)

the c=0.99 contour at various times, cf. Fig. 9. The shapeFor this reason, the balance of pressure forces requires the
thus obtained again exhibits similarity with those observedcurvature at the tip of the tail to be much larger than at the
by Kopf-Sill and Homsy as well as Pagk al. droplet front, which results in the long and narrow tail shape
There is an interesting similarity between the effects ofobserved by Kopf-Sill and Homsy and by Pakal. In mis-

Korteweg stresses and diffusion in miscible flows, and thoseible displacements with Kortewg stresses, the local balance
of a surfactant in immiscible ones. As Pagkal. explain, if  of diffusion and strain creates a narrow concentration layer at
the bubble/droplet moves faster than the surrounding fluidthe droplet’s front, which results in locally strong Korteweg
the surfactant will be swept to the rear of the droplet. As astresses. Near the rear of the droplet, the strain field does not
result, surface tension forces will be strong at the leadingounteract diffusion in the same way, so that a thick concen-
edge of the droplet and much weaker near the trailing edgeration layer results, with the result of locally weak Korteweg
stresses. Applying Park’s argument of a pressure balance
across the droplet, these locally weak Korteweg stresses then
necessitate a strongly curved concentration front, thereby re-

sulting in a narrow tail with a pronounced tip.
0 C. Effects of Pe

For a certain droplet size, the value of Pe is directly
'11 2 3 4 5 proportional to the global displacement rate, and inversely
proportional to the diffusion coefficient. As a result, the
thickness of the concentration layer along the circumference
of the drop, and with it the strength of the Korteweg stresses,
depends on Pe. Higher Pe values generally lead to sharper
concentration fronts, and consequently to larger Korteweg

1 2 3 4 5

] 2
1.9}
*

1 18' ¥

1 2 3 4 5 5

* *
1 1.7+ *
0 1.6
-1 15 RS
1 2 3 4 5 0 1000 2000 3000 4000 5000

Pe
FIG. 11. R=—2.5 and§=—10"% Shown are the droplet shapes for Pe

=200, 500, 1000, and 4000 at tim@&.2. For low Pe values, the bubble falls FIG. 12. R=—2.5 andé=—10"%: The quasisteady droplet velocity’ is

into the elongated group, whereas at higher Pe values, there is an increasgitbwn as a function of Pe. For large Pe, the droplets appear to move at an
tendency towards tail formation. asymptotic velocity near 1.7.
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55 : - T the velocity with which thec=0.5 concentration contour at
the droplet tip propagates. Figure 12 shows that this quasi-
steady velocityU’ decreaseswith increasing Pe, towards
what appears to be an asymptotic value near 1.7.
| The dependence of the interfacial lendtft) on Pe is
45¢ I 1 depicted in Fig. 13. The decay &f with time for Pe=200
/ reflects the fact that for strong diffusion our measure of an
] effective interfacial length is of limited use. However, for
i larger Pe values we notice a more rapid growth of the inter-
! facial length, which results from both the tip splitting as well
’ as the tendency to form a tail.

gl o =s. ] D. Effects of the viscosity parameter R

T~ The interplay of the viscosity ratio with the Korteweg
' stresses is even more difficult to predict than that of P& as
affects the steepness of the concentration gradients, and
thereby the Korteweg stresses, only indirectly. It does so
mainly by influencing the stability properties of the drop. In
the absence of Korteweg stresses, an increased viscosity con-
trast generally renders the drop more unstablg. 14). Thus
an enhanced production of small scales results, which leads
stresses, which should stabilize the droplet. At the same timd® locally steeper concentration gradients. Interestingly, when
sharper concentration fronts enhance the fingering instabilitgonsidering more viscous drops embedded in a less viscous
along the droplet's leading edge, as shown in Fig. 10 foienvironment we never observed an instability localized along
Pe=4000 and 6000, and=0. This in turn results in a com- the trailing edge of the drop, not even for the large values of
plex small scale structure of the advancing front, and in alR=5 and Pe=-4000, which create a strongly unfavorable
increased growth rate fdr(t) for larger Pe value$Fig. 6). mobility ratio. A possible explanation may be that instability
Consequently, the overall effect of Pe on miscible drops igvaves originating near the rear of the droplet are swept to-
difficult to predict, and it will depend on the value of the wards more stable regions of the interface by the faster sur-
Korteweg stress constant rounding fluid. Furthermore, their wavelength would be in-

Figure 11 shows concentration plots and droplet shapegreased during this process, as a result of the local strain
(as defined by the=0.99 contouy for =—10° and Pe field. However, similar arguments should then hold for the
values of 200, 500, 1000, and 4000tat3.2. We recognize instability waves originating near the tip of the droplet when
the transition from an elongated droplet, see Kopf-Sill andthe droplet fluid is the less viscous one. A more likely expla-
Homsy? to one with a pronounced tail as Pe grows. Thisnation may be found in the stabilizing influence of the shear
indicates that, as the Korteweg stresses along the front of thecross the interface, as analyzed by Rogerson and
droplet increase with Pe, a stronger curvature in the tail sedMeiburg>4°
tion evolves in order to achieve a pressure balance, in agree- Even in the absence of an instability, the Korteweg
ment with the argument by Parit al.” At the highest Pe stresses affect the droplet propagation velocity, and thereby
value, the drop develops an instability at the front. This in-the strain field along the surface of the drop, which in turn
dicates that, at least for the present value of the Korteweinfluences the steepness of the concentration gradients. Fig-
stress constant, the destabilizing effects of higher Pe outire 15 shows the droplet shapes for the viscosity raios
weigh the stabilizing ones. =—1, —2, and —3.5, ands=—10"°. A larger viscosity

For these droplets with stable leading edges, it is usefutontrast is seen to enhance the droplet migration velocity
to define an alternate quasisteady propagation velbdtitas  U’, cf. Fig. 16. It thereby steepens the concentration field

FIG. 13. R=—2.5 and6=—10"%: The interfacial length_ is shown as a
function of time for Pe=200 (dash—dot 500 (solid), 1000 (dot), 2000
(bold), and 4000(dash.

=1 =-3 R=-3.5
1 1 1
N N N
1° 5° T°
=, 0 2 Tl 0 PP 0 2 FIG. 14. Pe-2000 ands=0: Concentration contours

for (a) R=-1, (b) R=—3, and(c) R=—-3.5. In the
absence of Korteweg stresses, a higher mobility con-
trast renders the flow more unstable.
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1 T g g IV. DISCUSSION AND CONCLUSIONS
0.5¢ 1 The above simulations are intended to clarify the dis-
placement dynamics, in a porous medium, of a drop embed-
or ded in a miscible environment. In the absence of Korteweg
_05} ] stresses, such drops initially show a behavior in line with
earlier investigations of unstable planar fronts. For larger Pe
-1 ‘ values and viscosity contrasts, they become increasingly un-
1 2 3 4 5 . .
stable and develop more and more fine scale structure. In this
1 - . process, interfacial length is generated at a faster rate. Sooner
or later, however, these unstable drops evolve into a small
0.5¢ number of fading fingers, as a result of the limited supply of
ol ] less viscous fluid.
Our main interest focused on the influence of noncon-
-0.5} 1 ventional, so-called Korteweg stresses that act in regions of
steep concentration gradients. We accounted for those
'11 2 3 4 5 stresses by basing our simulations on a set of augmented

Hele—Shaw equations as proposed by Hu and JoSeph.
1 i ' These stresses were seen to have a globally stabilizing effect
on the drop behavior. However, important differences were

03 observed between the action of these Korteweg stresses and
o} : those of surface tension in an immiscible displacement. Ko-
rteweg stresses depend on the local concentration gradient
-0.5 ] field, so that the effective net force across the miscible inter-
-1 , , . face region is not just a function of the drop’s geometry, but
1 2 3 4 5 also of the velocity gradient tensor. In all of our simulations,

FIG. 15. Pe-2000 andd— —10-%: Droplet shapes foR——1, —2, and the drop moveq faster. than the surroundmg. fluid, so that a

~3.5 att=3.2. Larger mobilty ratios result in an increased tendency to-10c@l compression region forms at the leading edge of the

wards tail formation. drop, which in turn results in a steep concentration gradient
and large Korteweg stresses. Around the rear of the drop, the
diffusion layer is much thicker, and consequently the Ko-

near the leading edge, which locally enhances the Kortewe&eweg stresses are smaller. _A balancg of the pressure forces
stresses, so that the need to balance the pressure forces agting on the drO_F_J then requires a region of very strong cur-
sults in a longer, narrower tail, as seen in Fig. 15. It is diffi-Vature at the trailing edge, which in turn results in the for-
cult to compare the computational observations on the influation of a tail. In this sense, the Korteweg stresses cause
ence ofR with either theory or experiments, since all of the droplet behavior similar to that seen in the immiscible flows

L - . 7
investigations by Tanveer, Kopf-Sill, and Homsy, and byW'th surfactants studied by Parét al.” and, presumably,

Park etal. considered inviscid or essentially inviscid KOPf-Sill and Hgmsﬁ , _
bubbles. The dimensionless flow rate in the form of Pe is seen to

affect the drop’s behavior in complex ways. On one hand, the
sharper concentration layer renders the drop more unstable
with respect to the viscous fingering instability, but at the

2 i same time it results in larger stabilizing Korteweg stresses.
19t ] Which one of these effects wins out must depend on the size
of the Korteweg stress constant. Perhaps the competition and
1.8} 4 balance of these two effects could be exploited to evaluate
* the magnitude of this constant, which is so far unknown.
1.71 T However, it is to be kept in mind that the form of the Ko-
= * rteweg stress terms proposed by Hu and Jos&ph, which
1.6¢ ] the present investigation is based, has not yet been derived
151 from first principles, and that their validation remains an im-
portant problem.
1.4+ *
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