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Numerical simulation results are presented for the displacement of a drop in a porous medium. The
drop is surrounded by a more viscous fluid with which it is fully miscible. The simulations are based
on a set of augmented Hele–Shaw equations that account for nonconventional, so-called Korteweg
stresses resulting from locally steep concentration gradients. Globally, these stresses tend to stabilize
the displacement. However, there are important distinctions between their action and the effects of
surface tension in an immiscible flow. Since the Korteweg stresses depend on the concentration
gradient field, the effective net force across the miscible interface region is not just a function of the
drop’s geometry, but also of the velocity gradient tensor. Locally high strain at the leading edge of
the drop generates steep concentration gradients and large Korteweg stresses. Around the rear of the
drop, the diffusion layer is much thicker and the related stresses smaller. The drop is seen to form
a tail, which can be explained based on a pressure balance argument similar to the one invoked to
explain tail formation in Hele–Shaw flows with surfactant. The dependence of such flows on the
Peclet number is complex, as steeper concentration gradients amplify the growth of the viscous
fingering instability, while simultaneously generating larger stabilizing Korteweg forces. ©2001
American Institute of Physics.@DOI: 10.1063/1.1387468#
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I. INTRODUCTION

The displacement of a drop of one fluid surrounded b
different fluid in a porous environment represents a prob
of fundamental interest. At the same time, it is of importan
in a variety of environmental as well as technological situ
tions ranging from groundwater contamination and enhan
oil recovery to biomedical applications. Much of the resea
in this area has exploited the analogy between displacem
in true porous media and those in Hele–Shaw cells, as
scribed in the reviews provided by Homsy,1 Yortsos,2 as well
as McCloud and Maher.3 With regard to the motion of drop
and bubbles in Hele–Shaw flows, it appears thatimmiscible
displacements have received far more attention thanmiscible
ones, see the experimental investigations by Eck
Siekmann,4 Maxworthy,5 Kopf-Sill and Homsy,6 as well as
Park et al.7 The observations by these authors demonst
that the combination of viscous and surface tension force
conjunction with three-dimensional effects can lead to a
riety of striking and unexpected shapes.

These findings in turn stimulated theoretical efforts
explain, as a function of the dimensionless surface tens
parameter and the bubble size, both the multitude of exp
mentally observed and numerically computed steady bub

a!Author to whom all correspondence should be addressed; electronic
meiburg@engineering.ucsb.edu
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shapes~Tanveer8,9!, as well as their stability properties~Tan-
veer and Saffman10! on the basis of the Hele–Shaw equ
tions. These authors were able to demonstrate that sur
tension removes the degeneracy of the earlier Tayl
Saffman zero surface tension solutions~Taylor and
Saffman11!. Tanveer observed that for larger bubbles, t
leading front tends towards the solutions found by McLe
and Saffman12 for fingers. A second branch exhibits near
circular bubbles for small, and flattened bubbles for larg
surface tension values. Interestingly, for a certain bubble
of about one quarter of the cell width, he finds an extraor
nary, or Tanveer, shape with negative curvature at the lea
front. A wide range of propagation velocities is observe
however all of them are faster than the velocity of the s
rounding fluid. Thus some, but not all of the shapes fou
experimentally by Kopf-Sill and Homsy are explained. The
authors record six types of bubble shapes, termed n
circles, flattened, elongated, long-tail, short-tail, and Tanv
bubbles, with propagation velocities ranging from one fi
to twice that of the surrounding fluid. The follow-up work b
Parket al.7 suggests that surfactant contamination may h
played a role in some of the shapes observed by Kopf-
and Homsy. In the absence of surfactant effects, they ex
sively find bubble velocities larger than that of the surroun
ing fluid. In the presence of surfactants, on the other ha
very small bubble velocities and shapes similar to tho
found by Kopf-Sill and Homsy are observed. Parket al. ar-
il:
7 © 2001 American Institute of Physics
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2448 Phys. Fluids, Vol. 13, No. 9, September 2001 Chen, Wang, and Meiburg
gue that if the bubble moves more slowly that the flu
surfactant accumulates at the front and locally lowers
surface tension. In order to balance the pressure forces a
on the bubble, an elongated shape with a more stron
curved tip must form. A corresponding argument applies
the formation of the ‘‘tailed bubble,’’ if the bubble velocity i
greater than that of the fluid. At the same time, thre
dimensional effects are also known to be important for
motion of bubbles and droplets in tubes and Hele–Sh
cells, see Bretherton13 as well as Park and Homsy.14 How-
ever, by themselves they cannot explain the multitude
shapes observed by Kopf-Sill and Homsy~Meiburg15!.

The above results for immiscible displacements are
renewed interest in light of recent findings regarding the
fects of nonconventional stresses inmisciblefluid flows with
steep concentration gradients. Such stresses were first p
lated by Korteweg16 who, on the basis of anad hocconsti-
tutive equation, suggested that they may result in dyna
surface tension-like effects, or an ‘‘effective surface te
sion.’’ More recently, experimental observations by Josep17

rekindled interest in Korteweg’s original work and stim
lated a host of further research in this area. Joseph found
drops of water rising in glycerine exhibit sharp interfaces a
are characterized by shapes that resemble those comm
seen in immiscible flows. Already several years earl
Kojima et al.18 had found that the behavior of toroidal drop
falling in a surrounding liquid could be predicted by theor
ical arguments only under the assumption of a small, tim
dependent interfacial tension across the drop interface.
work of Joseph and coauthors also drew attention to the
that the velocity field of a miscible fluid flow may not b
solenoidal, even if the fluids are incompressible. Further
amples that highlight and discuss these effects are prov
by Galdi et al.,19 Joseph and Renardy,20 and Josephet al.21

Over the years, there have been numerous attemp
obtain dynamic surface tension values. Quinke,22 as cited by
Freundlich,23 measured the dynamic tension of ethyl alcoh
with a salt solution. He observed the value to lie between
and 331023 N/m. Smith et al.24 reported a maximum sur
face tension value of 1023 N/m at the time of initial contact
between silicone oils of 1 and 2000 cSt. Comparison
tween the miscible capillary tube experiments of Petitje
and Maxworthy25 and earlier immiscible experiments b
Taylor26 suggests an effective surface tension value betw
glycerine and water of about 0.531023 N/m, see also the
corresponding numerical work by Chen and Meiburg.27 Sub-
sequent simulations of miscible capillary flows by Chen a
Meiburg28 that account for Korteweg stresses, show tha
negative stress constant can substantially slow down the
viscous finger that travels along the centerline of the tu
Based on theoretical arguments, Davis29 calculates values fo
mixtures of hydrocarbons up to 1024 N/m. Similar effects
were observed by Kurowski and Misbah,30 Petitjeans,31 as
well as Petitjeans and Kurowski.32

Hu and Joseph33 consider effective surface tension an
divergence effects for miscible displacements in a He
Shaw cell. These authors formulate gap averaged equa
that account for both of these phenomena, and they su
quently perform a linear stability analysis for a rectiline
Downloaded 22 May 2004 to 128.111.70.70. Redistribution subject to AIP
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front. Fernandezet al.34 perform comparisons between e
periments and three-dimensional direct numerical simu
tions of the density driven instability between miscible flui
in vertical Hele–Shaw cells, in order to identify effectiv
surface tension effects.

As the above references show, there is substantial
dence that miscible flows can give rise to stresses that are
accounted for by the model of a Newtonian fluid. At th
same time, the physical and mathematical nature of th
stresses, as well as their magnitude and even their sign
still poorly understood. There are suggestions, most nota
by Joseph and coauthors, regarding the mathematical for
additional stress terms to be incorporated into the Navi
Stokes equations, in order to account for Korteweg forc
While those terms have been proposed on somewhat em
cal grounds, and a derivation from first principles is not y
available, they nevertheless open up new avenues for in
tigating these nonconventional stresses. It appears wo
while to conduct careful numerical simulations based on
proposed augmented equations against which correspon
experiments can be compared, in order to establish or
prove the validity of the additional terms. Furthermore, t
mechanisms by which the proposed additional stress te
influence the flow can be analyzed by means of the num
cal simulations as well. Miscible droplets in a Hele–Sha
displacement represent a highly suitable focus for such
investigation, as surface tension forces are known to give
to very pronounced effects in their immiscible equivalen
which have been studied in great detail. This, in conjunct
with the importance of miscible porous media flows in th
own right, is the motivation behind the simulations to
discussed below.

The presentation is structured as follows. The physi
problem will be setup in Sec. II, along with the governin
equations and the computational technique. In Sec. III,
will establish and interpret the flow features as function
the governing dimensionless control parameters, such as
flow rate, viscosity ratio, and Korteweg stress constant.
nally, Sec. IV will provide a discussion of the results, as w
as some conclusions.

II. PHYSICAL PROBLEM AND GOVERNING
EQUATIONS

Consider the time-dependent displacement of an inco
pressible miscible drop by a uniform Hele–Shaw flow
finite lateral extent~Fig. 1!. Hu and Joseph33 propose exten-

FIG. 1. Principal sketch. In a rectangular domain, an initially circular dro
let is displaced by a surrounding fluid of different viscosity.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp



ce
g

-
f

d
f-

th
ov

w
th
ro
c
a

ue
iu
fe

on

e

a

-

weg

n-

g

pe

tion.
by

a
t

i-

ere
y

ical

y
ar
n-

to
pa-

ues

2449Phys. Fluids, Vol. 13, No. 9, September 2001 Miscible droplets in a porous medium
sions to Darcy’s law that account for velocity divergen
effects as well as dynamic Korteweg stresses in a homo
neous porous medium of permeabilityk. Thus, the governing
equations take the form

¹•S u2
jD

12jc
¹cD50, ~1!

¹@p1Q~c!#52
m

k
u1¹•@ d̂~¹c!~¹c!T#, ~2!

Q~c!5
d̂

3 F S ]c

]xD 2

1S ]c

]yD 2G1
2g

3 S ]2c

]x2 1
]2c

]y2D
1

2jm

3 F ]

]x S D

12jc

]c

]xD1
]

]y S D

12jc

]c

]yD G , ~3!

]c

]t
1¹•~uc!5¹•S D

12jc
¹cD . ~4!

Here u denotes the velocity,c the concentration of the sur
rounding fluid, andj is the normalized density difference o
the two fluids

j5
rs2rd

rs
, ~5!

where the subscriptss and d denote the surrounding an
droplet fluids, respectively.D represents the diffusion coe
ficient, p the pressure,m the viscosity, andQ indicates the
additional pressure due to the Korteweg stresses.d̂ and g
denote the two Korteweg stress coefficients, which in
following are assumed to be constant. As mentioned ab
only rough estimates exist as far as the magnitude ofd̂ andg
is concerned, and even their respective signs are unkno
Consequently, we will have to vary these coefficients in
simulations, in order to assess their influence on the d
displacements. The above set of equations expresses the
servation of mass, momentum, and species. Here, the
sumption of a constant, scalar diffusion coefficientD repre-
sents a relatively crude approximation of the tr
mechanisms responsible for dispersion in a porous med
or even in a Hele–Shaw cell, cf. the discussion and re
ences given by Petitjeanset al.35 Nevertheless, for lack of a
better model we employ this approach here.

In order to render the governing equations dimensi
less, we take the droplet diameterd as the characteristic
length scale, andk as a typical permeability value. Th
nominal displacement velocityU of the surrounding fluid
serves as the velocity scale, thereby providing us with ch
acteristic values of time,d/U, and pressure,msUd/k. We
furthermore scale viscosity withms and assume a viscosity
concentration relationship of the form~Tan and Homsy,36

Chen and Meiburg37,38!

m~c!5eR(12c). ~6!

By introducing the solenoidal velocityW, we can recast the
momentum equation into a vorticity~v! and streamfunction
~c! formulation ~Ruith and Meiburg,39 Camhiet al.40!:

W5u2
jD

12jc
¹c, ~7!
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v5
]Wy

]x
2

]Wx

]y
, ~8!

Wx5
]c

]y
, Wy52

]c

]x
, ~9!

so that we obtain

¹2c52v, ~10!

v52R¹c•¹c1
d

m F]c

]x S ]3c

]x2]y
1

]3c

]y3D
2

]c

]y S ]3c

]x]y2 1
]3c

]x3D G , ~11!

]c

]t
1W•¹c5

1

Pe
¹2c. ~12!

Here the Peclet number Pe and the dimensionless Korte
constantd are of the form

Pe5
Ud

D
, d5

kd̂

msUd3 . ~13!

Note that as a result of employing the stream functio
vorticity formulation, the additional pressure componentQ,
and with it the second Korteweg stress constantg are elimi-
nated, so thatd is the only additional parameter resultin
from the nonconventional stress terms.

Boundary conditions are prescribed as follows~Ruith
and Meiburg,39 Camhiet al.40!:

x56
L

2
:

]c

]x
50,

]v

]x
50,

]c

]x
50, ~14!

y56
H

2
: c56

H

2
,

]c

]y
50. ~15!

The initial conditions assume a circular droplet sha
bounded by a steep concentration gradient. Bothc, v, andc
are expanded in a cosine series in the streamwise direc
In the normal direction, discretization is accomplished
sixth order compact finite differences~Lele41!. Time integra-
tion is fully explicit and utilizes a third order Runge–Kutt
procedure~Wray42!. The evaluation of the nonlinearity a
each time level is performed in a pseudospectral manner~Ca-
nuto et al.43!. The simulations to be discussed below typ
cally employ a discretization ofDx5Dy5 1

128, except for the
cases of the highest viscosity ratio and Peclet number, wh
we useDx5Dy5 1

256. The results have been validated b
grid refinement tests. The numerical code is largely ident
to one used earlier for investigating planar fronts~Ruith and
Meiburg,39 Camhi et al.40!, which had been validated b
comparing growth rates of small perturbations with line
stability results. More detailed information on the impleme
tation is provided by Meiburg and Chen44 as well as Ruith
and Meiburg.39

III. RESULTS

We begin by describing a reference case, in order
identify the mechanisms that dominate the temporal and s
tial evolution of the displacement. Subsequently, the val
of the governing parameters will be varied individually.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 2. Pe52000, R522.5, and ~a! d50, ~b! d
521026, ~c! d521025. Concentration contours are
shown for timest50.2, 1, 2.5, and 3.~a! Reference
case: In the absence of Korteweg stresses, a finge
instability develops. The long-time evolution of th
flow is characterized by a pair of a decaying fingers.~b!
Small Korteweg stresses lead to slower growth a
fewer fingers overall, without stabilizing the drople
completely.~c! Larger Korteweg stresses suppress v
cous fingering entirely.
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A. Reference case

Figure 2~a! depicts the motion of a droplet forR5
22.5, Pe52000, andH52 in the absence of Kortewe
stresses. The computational domain extends over the r
(22,6), and the droplet is initially centered at (21,0). The
R value indicates that the droplet is moving within an en

FIG. 3. Reference case: Vorticity and perturbation stream function field
times t51 and 2.5.
Downloaded 22 May 2004 to 128.111.70.70. Redistribution subject to AIP
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ronment that is approximately 12 times more viscous. T
viscosity ratio results in a locally unstable situation at t
front of the drop, where the growth of a vigorous fingerin
instability is observed. In the absence of symmetry break
perturbations, the droplet remains symmetrical with resp
to the center line, with matching pairs of fingers forming
each side. These fingers initially display some of the d
namic behavior familiar from investigations of nominal
plane fronts, such as merging and shielding, cf. Tan a
Homsy.36 Due to the finite supply of the less viscous flui
however, the long time behavior is characterized by
propagation of a pair of fading fingers. This evolution is al
reflected by the corresponding streamfunction and vortic
data ~Fig. 3!. While initially substantial fine scale structur
exists, the long term evolution displays two fairly unifor
channels along which most of the droplet fluid transp

at

FIG. 4. Reference case: Maximum absolute vorticity as a function of ti
After an initial transient, the vorticity maximum grows rapidly, which re
flects the growth of the viscous fingering instability at the leading edge.
long times, saturation occurs as a result of nonlinear effects.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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2451Phys. Fluids, Vol. 13, No. 9, September 2001 Miscible droplets in a porous medium
takes place. Figure 4 shows the growth of the maxim
absolute vorticity value in the flow field. After a brief initia
transient during which the droplet deforms slightly from
original circular shape, the vorticity shows a distinct tim
interval of sharp growth, which reflects the emergence
several pairs of vorticity dipoles near the drop’s tip, whe
subsequently the formation of fingers is triggered. As th
fingers evolve, large vorticity peaks appear in regions wh
mergings take place. At the same time, the overall gro
becomes saturated. Very little vorticity emerges in the sta
region near the rear of the droplet.

The overall droplet propagation velocityUd represents a
quantity of significant practical interest. Kopf-Sill an
Homsy6 as well as Parket al.7 measure the steady sta
propagation velocities of immiscible bubbles in different p
rameter ranges, and they report values forUd between 0.2
and 2. For the current, miscible drops, a steady state doe
evolve. As a result, it is most appropriate to define an inst
taneous mass-weighted droplet velocityUd as

Ud~ t !5
**Wxc dx dy

**c dx dy
, ~16!

which is plotted in Fig. 5. We observe that for the pres
viscosity ratio, after a brief initial transient the velocity le
els off at a value of about 1.57. Subsequently the onset of
fingering instability causes it to rise to a peak ofUd'1.9,
which is close to the value of 2 for an immiscible circul
bubble without surface tension in an infinite domain. The

FIG. 5. Reference case: The temporal evolution of the weighted velo
Ud . Initially it increases sharply to a maximum of about 1.9, thereafte
declines.
Downloaded 22 May 2004 to 128.111.70.70. Redistribution subject to AIP
f

e
re
h
le

-

not
-

t

e

-

after it drops rapidly. Aroundt52.1, Ud rebounds slightly as
a result of a merging process, before decreasing further.

A further quantity of practical interest, for example
chemical reactions between the two miscible fluids are to
considered, is the length of the interfacial region separa
the two components. Chen and Meiburg37 define an equiva-
lent interfacial lengthL(t) for miscible fluids as

L~ t !5E E F S ]c

]xD 2

1S ]c

]yD 2G1/2

dx dy. ~17!

For the present flow, the growth of this interfacial length
shown in Fig. 6. During the startup transient, when the dr
let modifies its shape only weakly, the initial valueL5p is
nearly maintained. Subsequently however,L grows rapidly
to a maximum of more than three times its original valu
which it reaches at about the time whenUd peaks. This re-
flects the vigorous fingering, which increases the contact a
between the two fluids. Subsequently, the decay of the d
let structure into a pair of decaying fingers causesL(t) to
decrease, due to the diffusive decay of the concentration
dients.

One-dimensional profiles of the concentration averag
across the width of the Hele–Shaw cell,ca(x,t), can be
employed to extract further global features of the flow, s
Fig. 7. At t50.2 the original droplet shape is still largel
preserved. For later times, theca profiles near the trailing
edge of the droplet display a largely monotonic charac

ty
t
FIG. 6. Temporal evolution of the interfacial lengthL(t) for Pe5200
~dash–dot!, 500 ~solid!, 1000 ~dot!, 2000 ~bold!, 4000 ~dash!. L(t) in-
creases with Pe, reflecting the destabilizing influence of Pe in the absen
Korteweg stresses.
ro-
ig.
ly
by
FIG. 7. Reference case: The average concentration p
files ca(x,t) at the same times as those shown in F
2~a!. The initially circular shape becomes increasing
stretched. While the rear of the droplet is governed
diffusive effects, the front is convectively dominated.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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indicating that diffusion is dominant. In contrast, near t
front they resemble the convection dominated profiles
served earlier by Tan and Homsy36 for nominally plane
fronts, with plateau-like regions separated by steep gradie
A dispersed droplet lengthl d can then be defined as the di
tance between the points at whichca reaches a certain valu
close to one. Here, we take this value to be 0.98. Figur
shows that after the initial transientl d increases approxi
mately linearly with time, which reflects the continuous elo
gation of the droplet.

It should be mentioned that the above initial condition
a perfectly symmetric drop may appear somewhat artific
For this reason, we also carried out simulations of sligh
perturbed drops. While they evolved into an asymme
shape, the general observations and conclusions arrive
above for the symmetric drop still hold. Furthermore, we w
in the following limit ourselves to relatively large drople
whose initial diameter is half the width of the Hele–Sha
cell. While both Kopf-Sill and Homsy6 as well as Tanveer8,9

made interesting observations also for much smaller imm
cible bubble sizes, we found such small miscible droplets
decay very rapidly at numerically accessiblePe values, so
that not much could be learned from those simulations.

B. Displacements in the presence of Korteweg
stresses

In the following, we will keepR and Pe at the value
employed in the reference case, while exploring the effe
of nonzerod values. Hu and Joseph33 pointed out that in

FIG. 8. Reference case: After an initial transient, the dispersed dro
length l d grows nearly linearly with time.
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Hele–Shaw flows the Korteweg stress constantd has to have
a negative value in order to avoid Hadamard instability,
ill-posedness of the problem. For miscible displacements
capillary tube, Chen and Meiburg28 employed negative val-
ues ofd and found them to be stabilizing, as they reduced
propagation velocity of the finger tip.

Figure 2~b! depicts the evolution of a droplet withd
521026 for the same times as the reference case discu
above. While an exact value of the Korteweg stress cons
between typical fluids is unknown at this time, the abo
value is suitable for demonstrating the nature of the influe
that this stress can have in the flow. In comparison to
reference case, a clearly stabilizing effect is noticeab
While the fingering instability is not suppressed entire
fewer and wider fingers evolve later in time. If the magnitu
of the Korteweg stresses is further increased by settind
521025, the front of the drop becomes completely sta
lized @Fig. 2~c!# and a tail evolves that resembles some of
shapes observed by Kopf-Sill and Homsy as well as P
et al. However, there is a fundamental difference betwe
the miscible displacement and its immiscible counterpart
that the immiscible flow can acquire a truly steady state
viewed in a reference frame moving with the droplet. Th
possibility does not exist in the miscible case as a con
quence of the actions of diffusion. At the leading edge of
drop, diffusion and strain can balance locally and there
create a quasisteady state. However, such a balance ca
be achieved around the entire circumference of the drop
that diffusion results in a continuous leakage of drop flu
into the wake.

A related effect of diffusion is that it spreads out th
Korteweg stresses over a zone of finite thickness, wherea
least in a continuum sense, the surface tension forces in
immiscible case are perfectly localized at the interface. F
thermore, since the magnitude of the Korteweg stresses
pends on the square of the concentration gradient, the siz
these stresses is to a large extent determined by the
balance of strain and diffusion. This influence is absent in
immiscible case. From these considerations, it is obvious
the analogy between the surface tension forces in an imm
cible flow and the Korteweg stresses in a miscible flow h
its limitations.

The local features of the velocity field thus prevent t
formation of a well-defined, thin diffusion layer around th
trailing section of the droplet. As a result, the Kortew
stresses are quite weak here, which renders them unab
maintain a quasisteady droplet shape in the same wa
surface tension forces did in the investigations of Kopf-S
and Homsy6 and Parket al.7 However, an impression of the
time-dependent droplet shape can be obtained by draw

et
FIG. 9. Pe52000, R522.5 andd521025. Shown
are the droplet shapes at timest50.4, 1.2, 2, and 3.2 by
means of thec50.99 contours. The formation of a
droplet tail is clearly visible.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 10. Concentration contours forR522.5 andd
50: ~a! Pe54000, times t51.2 and 2.8; ~b! Pe
56000, timest50.6 and 1. In the absence of Kortewe
stresses, larger Pe values lead to increased finger
and more frequent tip splitting events.
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the c50.99 contour at various times, cf. Fig. 9. The sha
thus obtained again exhibits similarity with those observ
by Kopf-Sill and Homsy as well as Parket al.

There is an interesting similarity between the effects
Korteweg stresses and diffusion in miscible flows, and th
of a surfactant in immiscible ones. As Parket al. explain, if
the bubble/droplet moves faster than the surrounding fl
the surfactant will be swept to the rear of the droplet. A
result, surface tension forces will be strong at the lead
edge of the droplet and much weaker near the trailing ed

FIG. 11. R522.5 andd521025: Shown are the droplet shapes for P
5200, 500, 1000, and 4000 at time53.2. For low Pe values, the bubble fal
into the elongated group, whereas at higher Pe values, there is an incr
tendency towards tail formation.
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For this reason, the balance of pressure forces requires
curvature at the tip of the tail to be much larger than at
droplet front, which results in the long and narrow tail sha
observed by Kopf-Sill and Homsy and by Parket al. In mis-
cible displacements with Kortewg stresses, the local bala
of diffusion and strain creates a narrow concentration laye
the droplet’s front, which results in locally strong Kortewe
stresses. Near the rear of the droplet, the strain field does
counteract diffusion in the same way, so that a thick conc
tration layer results, with the result of locally weak Kortewe
stresses. Applying Park’s argument of a pressure bala
across the droplet, these locally weak Korteweg stresses
necessitate a strongly curved concentration front, thereby
sulting in a narrow tail with a pronounced tip.

C. Effects of Pe

For a certain droplet size, the value of Pe is direc
proportional to the global displacement rate, and invers
proportional to the diffusion coefficient. As a result, th
thickness of the concentration layer along the circumfere
of the drop, and with it the strength of the Korteweg stress
depends on Pe. Higher Pe values generally lead to sha
concentration fronts, and consequently to larger Kortew

sed
FIG. 12. R522.5 andd521025: The quasisteady droplet velocityU8 is
shown as a function of Pe. For large Pe, the droplets appear to move
asymptotic velocity near 1.7.
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stresses, which should stabilize the droplet. At the same t
sharper concentration fronts enhance the fingering instab
along the droplet’s leading edge, as shown in Fig. 10
Pe54000 and 6000, andd50. This in turn results in a com
plex small scale structure of the advancing front, and in
increased growth rate forL(t) for larger Pe values~Fig. 6!.
Consequently, the overall effect of Pe on miscible drops
difficult to predict, and it will depend on the value of th
Korteweg stress constantd.

Figure 11 shows concentration plots and droplet sha
~as defined by thec50.99 contour! for d521025 and Pe
values of 200, 500, 1000, and 4000 att53.2. We recognize
the transition from an elongated droplet, see Kopf-Sill a
Homsy,6 to one with a pronounced tail as Pe grows. Th
indicates that, as the Korteweg stresses along the front o
droplet increase with Pe, a stronger curvature in the tail s
tion evolves in order to achieve a pressure balance, in ag
ment with the argument by Parket al.7 At the highest Pe
value, the drop develops an instability at the front. This
dicates that, at least for the present value of the Kortew
stress constant, the destabilizing effects of higher Pe
weigh the stabilizing ones.

For these droplets with stable leading edges, it is us
to define an alternate quasisteady propagation velocityU8 as

FIG. 13. R522.5 andd521025: The interfacial lengthL is shown as a
function of time for Pe5200 ~dash–dot!, 500 ~solid!, 1000 ~dot!, 2000
~bold!, and 4000~dash!.
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the velocity with which thec50.5 concentration contour a
the droplet tip propagates. Figure 12 shows that this qu
steady velocityU8 decreaseswith increasing Pe, towards
what appears to be an asymptotic value near 1.7.

The dependence of the interfacial lengthL(t) on Pe is
depicted in Fig. 13. The decay ofL with time for Pe5200
reflects the fact that for strong diffusion our measure of
effective interfacial length is of limited use. However, fo
larger Pe values we notice a more rapid growth of the in
facial length, which results from both the tip splitting as we
as the tendency to form a tail.

D. Effects of the viscosity parameter R

The interplay of the viscosity ratio with the Kortewe
stresses is even more difficult to predict than that of Pe, aR
affects the steepness of the concentration gradients,
thereby the Korteweg stresses, only indirectly. It does
mainly by influencing the stability properties of the drop.
the absence of Korteweg stresses, an increased viscosity
trast generally renders the drop more unstable~Fig. 14!. Thus
an enhanced production of small scales results, which le
to locally steeper concentration gradients. Interestingly, w
considering more viscous drops embedded in a less visc
environment we never observed an instability localized alo
the trailing edge of the drop, not even for the large values
R55 and Pe54000, which create a strongly unfavorab
mobility ratio. A possible explanation may be that instabili
waves originating near the rear of the droplet are swept
wards more stable regions of the interface by the faster
rounding fluid. Furthermore, their wavelength would be
creased during this process, as a result of the local st
field. However, similar arguments should then hold for t
instability waves originating near the tip of the droplet wh
the droplet fluid is the less viscous one. A more likely exp
nation may be found in the stabilizing influence of the sh
across the interface, as analyzed by Rogerson
Meiburg.45,46

Even in the absence of an instability, the Kortew
stresses affect the droplet propagation velocity, and ther
the strain field along the surface of the drop, which in tu
influences the steepness of the concentration gradients.
ure 15 shows the droplet shapes for the viscosity ratioR
521, 22, and 23.5, andd521025. A larger viscosity
contrast is seen to enhance the droplet migration velo
U8, cf. Fig. 16. It thereby steepens the concentration fi
n-
FIG. 14. Pe52000 andd50: Concentration contours
for ~a! R521, ~b! R523, and ~c! R523.5. In the
absence of Korteweg stresses, a higher mobility co
trast renders the flow more unstable.
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near the leading edge, which locally enhances the Korte
stresses, so that the need to balance the pressure forc
sults in a longer, narrower tail, as seen in Fig. 15. It is di
cult to compare the computational observations on the in
ence ofR with either theory or experiments, since all of th
investigations by Tanveer, Kopf-Sill, and Homsy, and
Park et al. considered inviscid or essentially invisc
bubbles.

FIG. 15. Pe52000 andd521025: Droplet shapes forR521, 22, and
23.5 at t53.2. Larger mobility ratios result in an increased tendency
wards tail formation.

FIG. 16. Pe52000 andd521025: Quasisteady droplet velocityU8 as
function of R. Larger viscosity contrasts result in higher droplet velocitie
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IV. DISCUSSION AND CONCLUSIONS

The above simulations are intended to clarify the d
placement dynamics, in a porous medium, of a drop emb
ded in a miscible environment. In the absence of Kortew
stresses, such drops initially show a behavior in line w
earlier investigations of unstable planar fronts. For larger
values and viscosity contrasts, they become increasingly
stable and develop more and more fine scale structure. In
process, interfacial length is generated at a faster rate. So
or later, however, these unstable drops evolve into a sm
number of fading fingers, as a result of the limited supply
less viscous fluid.

Our main interest focused on the influence of nonco
ventional, so-called Korteweg stresses that act in region
steep concentration gradients. We accounted for th
stresses by basing our simulations on a set of augme
Hele–Shaw equations as proposed by Hu and Josep33

These stresses were seen to have a globally stabilizing e
on the drop behavior. However, important differences w
observed between the action of these Korteweg stresses
those of surface tension in an immiscible displacement. K
rteweg stresses depend on the local concentration grad
field, so that the effective net force across the miscible in
face region is not just a function of the drop’s geometry, b
also of the velocity gradient tensor. In all of our simulation
the drop moved faster than the surrounding fluid, so tha
local compression region forms at the leading edge of
drop, which in turn results in a steep concentration gradi
and large Korteweg stresses. Around the rear of the drop
diffusion layer is much thicker, and consequently the K
rteweg stresses are smaller. A balance of the pressure fo
acting on the drop then requires a region of very strong c
vature at the trailing edge, which in turn results in the fo
mation of a tail. In this sense, the Korteweg stresses ca
droplet behavior similar to that seen in the immiscible flo
with surfactants studied by Parket al.7 and, presumably,
Kopf-Sill and Homsy.6

The dimensionless flow rate in the form of Pe is seen
affect the drop’s behavior in complex ways. On one hand,
sharper concentration layer renders the drop more unst
with respect to the viscous fingering instability, but at t
same time it results in larger stabilizing Korteweg stress
Which one of these effects wins out must depend on the
of the Korteweg stress constant. Perhaps the competition
balance of these two effects could be exploited to evalu
the magnitude of this constant, which is so far unknow
However, it is to be kept in mind that the form of the Ko
rteweg stress terms proposed by Hu and Joseph,33 on which
the present investigation is based, has not yet been der
from first principles, and that their validation remains an im
portant problem.
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