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The question is addressed as to whether Korteweg stresses and/or divergence effects can potentially
account for discrepancies observed between conventional Stokes flow simuld@ioes and
Meiburg and experimentsPetitjeans and Maxworthyfor miscible flows in capillary tubes. An
estimate of the vorticity and stream function fields induced by the Korteweg stresses is presented,
which shows these stresses to result in the formation of a vortex ring structure near the tip of the
concentration front. Through this mechanism the propagation velocity of the concentration front is
reduced, in agreement with the experimental observations. Divergence effects, on the other hand, are
seen to be very small, and they have a negligible influence on the tip velocity. As a result, we can
conclude that they are not responsible for the discrepancies between experiments and conventional
Stokes simulations. €002 American Institute of Physic§DOI: 10.1063/1.148150Q7

I. INTRODUCTION fluid, and for long times the case of Poiseuille flow and Tay-
lor dispersion(Taylor’) will be approached. Nevertheless,
Displacements in capillary tubes have long served agoth simulations and experiments show that for large values
paradigm flows for the investigation of mechanisms governof Pe, typically aboveO(10°-10%), a quasisteady finger
ing two-phase flows. In the immiscible case the studies byorms. In this parameter regime, the experimentally and nu-
Taylor® and Cox} as well as the corresponding calculations merically observed amount of displaced fluid left behind on
by Reinelt and Saffman,represent classical examples, cf. the tube walls for At>1 matches Taylorimmiscible data.
also the fundamental theoretical investigation by Breth€rtonOn the other hand, the largest discrepancy between the ex-
for long bubbles. Taylor measures the amount of fluid disperiments of Petitieans and Maxworthgnd the Stokes
placed by injecting air into a horizontal capillary tube, ini- simulations of Chen and Meiburgs observed at small val-
tially filled with a viscous fluid, in order to calculate the ues of Pe, in that a quasisteady finger emerges for signifi-
thickness of the film of displaced fluid left behind on the wall cantly smaller values of Pe in the simulations, as compared
of the tube as a function of the capillary number Ca. How-to the experiments. At these low Pe values, the experimen-
ever, in Taylor's experiment the flow in the interior of the tally observed diffusive front between the injected, less vis-
finger is dynamically unimportant because of the large viscous fluid, and the resident more viscous phase hence ap-
cosity ratios. The numerical simulations by Reinelt andpears to be less prone to the strong deformation needed to
Saffman? based on the Stokes equations, agree very closeliorm a finger, as compared to the numerically simulated flow
with these experiments. Unfortunately, no comparable exbased on the conventional Stokes equations. The present,
periments have been conducted for finite viscosity ratios. computational investigation takes a step towards identifying
Petitieans and Maxwortfly as well as Chen and the reasons behind this discrepancy by addressing the influ-
Meiburg" carry out a corresponding collaborative investiga-ence of various physical mechanisms not contained in the
tion for miscible fluids. In these flows, a cutoff length is setstandard set of Stokes equations.
by diffusive effects rather than surface tension, so that in  |n miscible flows involving fluids of different densities,
some sense the Blet number Pe takes the place of Ca.phenomena are present that frequently are not accounted for
These authors also address finite viscosity ratios by varyingh theoretical or computational analyses. Even if the two flu-
the Atwood number At, as well as the role of density differ-ids are incompressible, the usual mass-averaged velocity is
encesexpressed by a further dimensionless paranfetdry  not divergence free in the mixing region, cf. Hu and Joséph.
conducting experiments and simulations in vertical tubesHowever, numerical simulations of such fluid flows routinely
The miscible and immiscible cases differ fundamentally inassume this effect to be sméithout providing a quantita-
that the miscible flow can never become truly steady. Soonegve estimate for its size and employ a solenoidal velocity
or later, diffusion will cut off the supply of fresh displacing field. It is hence important to establish the range of validity
of this approach. In addition, as discussed by Daws; and

dAuthor to whom all correspondence should be addressed. Electronic ma"JOS'epHg, 1\lloseph _ _and Renardy, and Chen, Wang, and
chingyao@mail.dyu.edu.tw Meiburg; additional  so-called Korteweg stresses
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(Kortewed?) can potentially be important in regions of large equations expressing the balance of mass, momentum and
concentration gradients. While a first principles derivation,species for simple binary mixtures in a vertical capillary tube
or even a detailed model, for the action of such stresses is nteke the form
yet available, there exist proposals in the literature for their

mathematical formulation, cf. Galdéet al,"®> Joseph and _C+V.(uc)zv.( Vc), 1)
Renardy° and Joseplet al** However, the magnitude of the at 1-¢c

coefficients in the expressions for these stresses is presently D

unknown. Interestingly, there exists information regarding V- u—l_—&:Vc):O, 2

the sign of the Korteweg stress constant based on the work

by Hu and Jqsepﬁ,who point out that irj m'iscible Hele- ~ V(P+Q(c))=V-(2uD[u]+ 51(Ve) (Vo) +pg. (3
Shaw flows this constant has to be negative in order to avoid ) )
Hadamard instability, or mathematical ill posedness of the 1€reu denotes the conventional, mass-averaged velacity,

problem. This represents important information, as it allowsN® concentration of the lighter fluid, the normalized den-

us to determine if the action of the postulated KortewegSly difference,D the constant diffusion coefficient, arml
the pressure. The viscosity is indicated goywhile Q repre-

stresses points in the right direction in order to possibly ac- o
count for discrepancies between experiments and numericFNtS @n additional pressure component due to Korteweg
resses, as explained by Josébh, denotes the coefficient

simulations that do not consider these stresses. Scaling arg%lt— - ' )
ments regarding the magnitude of the stresses are providéﬁthe Korteweg stresses related to concentration gradients in
by Davis? while Petitieans and MaxwortRyarrive at an es- the flow. _ _ , ,
timate of 5104 N/m, based on a comparison with the In order to render the governing equations dimension-
immiscible observations by TayldrFurther efforts in this €SS, We take the tube diameters the characteristic length

direction have been undertaken by Petitieans and coauthopS@le and define a characteristic time scaleugsgdap.
(Petitieand® Petitieans and KurowsRP Kurowski and Here uy, indicates the viscosity of the heavier fluid, ang
Misbaht?). represents the density difference driving the instability. Fol-

Due to the present lack of detailed experimental mealowing standard assumptions employed in the literature on
we employ viscosity-

surements, the current investigation represents a first, somBliscible  porous media flows, we _ ,
what qualitative step intended to shed light on the nature angoncentration and density-concentration relationships of the

potential magnitude of the above effects in miscible capillaryo™m

flows. The goal is to obtain information as to whether  , (c)=eR¢ (4)
Korteweg stresses and divergence effects modify the pure

Stokes flow results in a direction consistent with the ob- p(C)Zﬂ—C. (5)

served experimental/numerical discrepancies alluded to Ap

above. In this context, it should be pointed out that cylindri-_, . .
._This type of dependence on the concentration is commonly
cal tubes represent only one of the fundamental geometries. . . - . :
o . assumed in the literature on miscible fluids, and it closely
Another one of great practical importance is the plane, nar- : ) ) . 4
. : approximates the behavior of the fluids used in the experi-
row gap between two plates, i.e., the classical Hele-Shaw

configuration, cf. the review by Homs§.Here many of the :’nen.ts of Petitjeans and Maxwortﬁ)By introducing the so-
. . " ; . noidal volume averaged velocity/,
same phenomena arise, but in addition there is the issue oef

the length scale selection in the spanwise direction, or in the &D

circumferential direction for the case of a localized injection. W=u- 1— gCVC’ ©)
A recent comparison between experiments of the density

driven instability between miscible fluids in a vertically ar- _1ay 1oy

ranged Hele-Shaw celFernandeet al*®) and a correspond- =rarr WETr 0

ing linear stability analysis based on the three-dimensional

Stokes equationéGraf, Meiburg, and FiaeP®) shows sys- we can reformulate the governing equations in terms of a

tematic discrepancies for low values of the Rayleigh numberc,tream function

Ra that may have their origin in similar physical phenomena 4 2ré
as the above mentioned low Pe differences. Vi=G(Rzr.¢.0)- 5o f(Rzr,0)
ro r dc
Il. PHYSICAL PROBLEM AND GOVERNING ——h(Rzr.c)———, ®
EQUATIONS K K
The present. computqtional inv_estig_atipn fc_)cuses on Fhe &—C-I—W-VC: iVZC, 9)
temporal evolution of axisymmetric miscible interfaces in ot Pe

horizontal and vertical capillary tubes. Our goal is t0 cOm-yyhere the Peclet number Pe and dimensionless Korteweg

pare with the experiments of Petitieans and Maxwofthy, constants take the forms
which the Reynolds number is small and inertial terms are

negligible. According to Joseph and Rendfdgs well as b gd®Ap 0 10
Josephet al,'* under these circumstances the governing & upD - gdiAp” (10
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Here the functionG indicates the viscous terms, cf. Chen o5
and Meiburg! and the last term on the right-hand side ac- .
counts for gravitational effects, whilé and h capture the 0 1 2 2 4 g 8

t=0.5
effects of divergence and the Korteweg stresses, respectivel’

0.5
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1d%cdc 1 9% 9c 2 dc dc 93¢ dc FIG. 1. Temporal evolution of a passive concentration field in axisymmetric

= — 5 + — = Poiseuille flow for Pe-2000 at timeg¢=0.5, 1.5, 2.5, and 3.5.
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In the derivation of Eq.8) we have assumed/(1— &c) Pe=U—d (14)
~¢. In this way ¢ effects are considered only to leading D’
order in the momentum balance. This assumption s in closg hereU is the center line velocity of the Poiseuille flow with

agreement with the experiments of Petijeans an he same volumetric flow rate. For sufficiently large values
5 . . . .
<0.1. i e
Maxworthy;” in which £<0.1. By employing the above f Pe, the less viscous fluid is seen to propagate along the

stream-function-based formulation, the appearance of the ad’

" . S center line, while a film of the resident fluid is left behind on
d|t|0n.e.1I pressure terr@ In £q. (3) is eliminated. Boundary the tube wall. The thickness of this film depends on Pe, as
conditions are prescribed as

well as on the viscosity ratio of the two fluids. Numerical

d%c Py At simulations based on the Stokes equations showed close
=02 527 0, 02 0, P 0, (11) agreement with the experiments for large values of Pe. How-
ever, for small Peclet numbers a clear discrepancy was ob-
Jc Yy served, in that the simulations showed the emergence of qua-
r=0: —-=0, ¢=0, —-=0, (120 sisteady fingers for PeO(10%), whereas in the experiments
such fingers did not appear until PO(10%). The question
Jc Yy & dc then arises as to whether Korteweg-type stresses, which were
r=05: —-=0, ¢=0, —-=->5 —. (13 1ot accounted for in the simulations, may be responsible for

] o delaying the appearance of the quasisteady fingers in the ex-
The stream-function equation is solved by means of a mulpariments.

tigrid technique based on second order central differencing | order to address the question as to whether the action
discretization. An ADI scheméFletchef?) in conjunction  of the Korteweg stresses points in the right direction in order
with third order upwind differencing is used to advance thetg account for the observed difference between experiments
concentration equation in time. and simulations, we numerically tracked the spatiotemporal
evolution of apassiveconcentration field under the action of
diffusion in an axisymmetric Poiseuille flow. Initially, the
IIl. RESULTS concentration field is uniform across the tube diameter and
has a steep, error function-like profile in the axial direction.
This is the classical case of Taylor dispersi@aylor’). For a
Pe value of 2000, the concentration field at different times is
Before focussing on the unstably stratified flow in a ver-shown in Fig. 1. Its overall features are similar to the con-
tical capillary tube, we will address the related situation anacentration field that would emerge in a variable viscosity
lyzed by Petitieans and MaxwortAyas well as Chen and flow, cf. Chen and Meiburd.Consequently, it is well suited
Meiburg? Here a less viscous fluid is injected into a horizon-for evaluating qualitatively the nature of the effects that
tal capillary tube initially filled with a more viscous one, i.e., Korteweg stresses would have in such a flow, if they were
a net flow rate is present. If the cross section of the tube isaken into account. To this end, we calculate the Korteweg
small, gravitational effects do not affect the flow in a signifi- stresses from the concentration field shown in Fig. 1, up to
cant way and can be neglected. The fluids are again fullghe unknown coefficient that multiplies the Korteweg stress
miscible, and a suitable Blet number is now defined as term in Eq.(8). We subsequently solve the equation

A. Miscible displacement in a horizontal capillary
tube
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FIG. 2. Vorticity distribution that would be generated as a result of theFIG. 3. Stream-function distribution corresponding to the vorticity fields
Korteweg stresses by the concentration fields shown in Fig. 1. The vorticityghown in Fig. 2. A ring-like vortex structure is seen to emerge at the tip of
field is determined up to a constant factor, which is related to the unknowrthe concentration front. For negative Korteweg stress coefficients, as postu-
Korteweg stress coefficient. lated by Hu and JosepRef. 8, this vortex ring causes an upstream velocity
at the center line of the tube, thereby slowing the front down and stabilizing
it.

4 2 ro
V*=-V°wo=—-—h(R,zr,c), (15
M 1. Flow behavior for different Peclet numbers and

in order to obtain the distribution of the vorticity and stream- V/SCOSIty ratios

function fields that these stresses would generate if they were  Figure 4 shows the temporal evolution of the flow for
taken into account. This information is presented in Figs. Zpe=2x 10° andR= —2.5, in the absence of divergence ef-
and 3. The formation of a ring-like vortex near the tip of thefects or Korteweg stresses. The interface is initially per-
concentration front is clearly visible. If the unknown coeffi- turbed in such a fashion that it is slightly elevated in the
cient 5 has a negative value, as postulated by Hu andenter of the tube compared to near the tube walls. It should
JosepH, the vorticity in this ring is oriented such that the pe pointed out that we are mostly interested in the

flow is retarded near the aXiS, while it is bEing acceleratefhsymptotic |0ng-term features of the flow, which test calcu-
near the tube wall. In this way, a negativevalue acts to

slow the kind of frontal deformation that leads to the emer-

gence of a finger propagating along the tube axis. This re- 19— 10
flects the fact that at the tip of the front, the normal stress
component is8(dc/9z)?, which for negative values of al- of - 9
ways opposes the spreading of the front. Thus we find that
the effect of the postulated Korteweg stresses on the present  sf - 8
flow has the correct sign in order to potentially explain the
discrepancy between the experiments of Petitieans and 7 7
Maxworthy’ and the Stokes simulations of Chen and
Meiburg! However, when we included this Korteweg stress 6 6r
in the governing equations, we could never achieve the com-
plete stabilization of the front that appears to take place in 5 d
the experiments of Petitjieans and Maxwofthy comparable
Pe values, even if we employed Korteweg stress coefficients ~ * 4
that were several orders of magnitude larger than available
estimates in the literature. We plan to undertake a more de- 8 3
tailed investigation, in order to resolve this discrepancy. ) ok
B. Unstable density stratification in a vertical : ;
capillary tube

In the following, the focus is on the temporal evolution 005 0 05 % o5 005

of an axisymmetric miscible interface formed by placing a =200 1=300 =400 t=500
heavier and more viscous fluid above a lighter and less vis-

cous one in a vertically oriented capillary tube. PreliminaryF'G' 4.‘ Unstable gvolut_lon of the a_)(lsymmetrlc_ miscible interface formed
by placing a heavier fluid above a lighter one, in the absence of Korteweg

resglts for this coanfiguration were reported by Chen,gyesses and divergence effects=Re< 10° andR= —2.5. A bubble of the
Meiburg, and Wané. lighter fluid is seen to pinch off and rise at a nearly constant velocity.
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FIG. 5. The tip velocityVy;, as a function of Pe foR= —2.5, in the absence
of Korteweg stresses and divergence effects. With increasinyRés seen 1 1 1
to asymptotically approach a plateau.

0 0 0
0 05 0 05 0 05

. . . t=200 t=300 =400
lations showed to be independent of the precise form of the

initial conditions. An |nstab|||ty is seen to de\/e|op, which FIG. 6. Unstable evolution of the interface f'OI’:PEX 10t andR=—4.5, in
leads to the rise of the Iighter fluid along the tube axis, Whilethe absence of Korteweg stresses and divergence ef_fects. Fc_>r these flow
. . . parameters, a bubble does not form. Rather, a continuous finger of the

the heavier fluid flows downwards at larger radii. Soon, hOW-jighter and less viscous fluid rises along the tube center line.

ever, the heavier fluid separates from the wall and forms a

downward propagating finger along the axis of the tube. The

bubble of lighter fluid thus formed pinches off and continues  This stabilizing effect of the Korteweg stresses can be

to rise along the tube center, while additional light fluid be-understood on the basis of the governing equations from the

gins to rise near the outer walls. The bubble continues to ristnformation provided in Fig. 9. Figures(® and 9b) show

in a quasisteady fashion with a nearly constant velocity. Athe concentration and stream-function distributions for Pe

the present viscosity ratio, a qualitatively similar evolution of =10° and R=—2.5 in the absence of Korteweg stresses.

the flow is observed over a large range of Pe, with numeriFigures 9c) and 9d) present the corresponding distributions

cally observed bubble rise velociti®, as shown in Fig. 5. in the presence of Korteweg stresses for a value of
At larger viscosity ratios, an identical initial perturbation §=—10"4. In addition, for this flow Fig. ) displays the

does not lead to the pinchoff of a rising bubble. Instead, th&omponent of the stream function due to the Korteweg

lighter fluid continues to rise along the tube center line, sastresses only. Near the tip of the bubble, these stresses are

that a well developed finger forms that remains connected to

the body of lighter fluid in the lower portion of the tube, cf.

the case oR=—4.5 shown in Fig. 6. Figure 7 shows the tip x107°

velocity Vy, as a function of the viscosity ratio for P& '

X 10*. For infinite viscosity ratios it asymptotes towards a

plateau that is close to the value of 0.0102 reported by CIift,

Grace, and Web#&t for the immiscible situation of a long air 9

slug in a tube filled with water.

8 L
&

2. Influence of Korteweg stresses z 7t

In order to evaluate the effects of the postulated 6
Korteweg stresses on the tip propagation velocity, we carried
out simulations for various magnitudes of the dimensionless 5
parameters. The range ofs was selected on the basis of the
values provided by Davi$In agreement with the findings of 4

6 -5 -4 -3 -2 - 0

Hu and Josephonly negative values were employed. There A

are no divergence effects present in the flow, and the values

of Pe andR are kept at 19and — 2.5, respectively. Figure 8 FIG. 7. Tip velocity vs viscosity ratio: Asymptotic values for large Pe, in the

shows the tip velocity/- to decrease by as much as 10% asabsence of Korteweg stresses and divergence effects. For large viscosity
tip ; . contrasts, the tip velocity asymptotically approaches a level that is close to

the Korteweg stresses grow in strength, which demonstratgge vaiue of 0.0102 measured by Clift, Grace, and WeBef. 24 for a

their stabilizing effect. long air bubble in a tube filled with water.
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FIG. 8. Tip velocity vs Korteweg stress constadtfor Pe=10> and R FIG. 10. Tip velocity vs divergence coefficiert for Pe=10° and R
=—2.5, in the absence of divergence effects. In line with the findings of Hu= —2 5, in the absence of Korteweg stresses. Divergence effects are seen to
and JosepliRef. 8, only negative values are considered #rThe corre- have a negligible effect on the tip velocity, even for large valueg o to
sponding Korteweg stresses are seen to slow down the tip of the rising fingey, 25,

of lighter fluid. The horizontal line indicates the value obtained §er0.

Korteweg stress coefficient, as the rise velocity shows the

. L L ronoun nsitivi it.
again seen to generate a ring-like vorticity distribution thatp onounced sensitivity to it

induces a downward velocity on the tube axis, similar to the o )

case of the horizontal tube discussed above. In this way, the Eects of nonvanishing divergence

Korteweg stresses slow down the rising bubble. Unlike for  In order to assess the influence of the divergence term
the case of the horizontal capillary tube discussed above, wgenerated in the mass-averaged velocity field by the density
do not at present have experimental data for the vertical tubdifference between the fluids, we carried out simulations for
to compare with. The availability of such experimental dataa range ofé values, with Pe 10° andR=—2.5, and in the
might allow us to obtain estimates for the magnitude of theabsence of Korteweg stresses. Figure 10 presents the tip ve-
locity data as a function . It is evident that for the present
range of parameters the influence of the density difference on
the quasisteady tip velocityy, is negligible. This is true
even for fairly large values of up t6=0.25. Furthermore,
the detailed distribution of the concentration field also looks
quite similar with and without divergence effects, so that, at
least for the current flow, this effect does not appear to be
very influential.

(a) (b) () (d) (e)
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IV. CONCLUSIONS
6 6f 6
@ The present investigation addresses the question as to
5 5 5r 4 whether Korteweg stresses and/or divergence effects could
| potentially be responsible for discrepancies observed be-
¢ 4 70 tween Stokes flow simulations and experiments for miscible
5 . gh &l flows in capillary tubes. Conventional Stokes flow simula-
Q tions that do not account for these effects show the emer-
2k 2 2|0 gence of quasisteady fingers for Pe values that are an order

of magnitude smaller than the corresponding experimental
T values. We present an estimate of the effects of Korteweg
stresses, and of the vorticity and stream-function fields in-
005 duced by them, for net flow displacements in horizontal cap-
FIG. 9. Unstable evolution of the axisymmetric miscible interface. Pelllary tubes and density driven instabilities in vertical tubes.
=10° andR= —2.5. (a) and(b) show the concentration and stream-function For bC.)th of these .cases, the KorFewe.g stresses are seen to
distributions in the absence of Korteweg stresses, wijland (d) present  result in the formation of a vortex ring-like structure near the
the corresponding information if the effects of Korteweg stresses are incortip of the concentration front. Based upon the finding by Hu

porated with6=—10"*. For this case(e) displays the component of the -
stream function that is due to the Korteweg stresses alone. Near the bubbf’}end Josepgnthat the Korteweg stress coefficient has to be

tip, these stresses are seen to generate a ring-like structure that induced'gdative, we find that in Fhe horizonta}l tu_be_this vortex ring
downward velocity along the tube center, thereby slowing the bubble downslows down the propagating front, which indicates that these

0 0

0 05 0 05 0 05
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