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Direct numerical simulations are employed to investigate the coupling between the
viscous fingering instabilty and permeability heterogeneities for miscible displacements
in quarter five-spot flows. Even moderate inhomogeneities are seen to have a strong
effect on the flow, which can result in a complete bypass of the linear growth phase
of the viscous fingering instability. In contrast to their homogeneous counterparts
(cf. Part 1, Chen & Meiburg 1998), heterogeneous quarter five-spot flows are seen
to exhibit a more uniform dominant length scale throughout the entire flow domain.
In line with earlier findings for unidirectional displacements, an optimal interaction
of the mobility and permeability related vorticity modes can occur when the viscous
length scale is of the same order as the correlation length of the heterogeneities. This
resonance mechanism results in a minimal breakthrough recovery for intermediate
correlation lengths, at fixed dimensionless flow rates in the form of a Péclet number
Pe. However, for a constant correlation length, the recovery does not show a minimum
as Pe is varied.

Confirming earlier observations, the simulations show a more rapid breakthrough
as the variance of the permeability variations increases. However, this tendency is far
more noticeable in some parameter regimes than in others. It is furthermore observed
that relatively low variances usually cannot change the tendency for a dominant finger
to evolve along the inherently preferred diagonal direction, especially for relatively
small correlation lengths. Only for higher variances, and for larger correlation lengths,
are situations observed in which an off-diagonal finger can become dominant. Due to
the nonlinear nature of the selection mechanisms at work, a change in the variance
of the heterogeneities can result in the formation of dominant fingers along entirely
different channels.

1. Introduction

Part 1 of the present investigation (Chen & Meiburg 1998) addressed the dynam-
ical evolution of homogeneous miscible quarter five-spot flows by means of direct
numerical simulations. The numerical technique, introduced by Meiburg & Chen
(1997) achieves high accuracy by employing the compact finite difference expressions
described by Lele (1992). The simulations provide a detailed account of displacement
processes for mobility ratios up to 150, and Pe values up to 2000. They clearly
demonstrate that both of these parameters strongly affect the flow, although in some
parameter regimes certain integral measures such as the breakthrough time may show
only a weak dependence on Pe. Among the main findings is a clear separation in
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space and time of the large and small scales in the flow. While smaller scales occur
predominantly during the early stages near the injection well, and at late times near
the production well, the central domain is dominated by larger scales.

The heterogeneous nature of many porous environments immediately raises the
question as to how some of the above observations for homogeneous displacements
may be altered by the presence of permeability heterogeneities. Numerical simulations
addressing heterogeneous displacements date back to the finite difference investigation
of unidirectional displacements by Peaceman & Rachford (1962). Darlow, Ewing &
Wheeler (1984) develop a mixed finite element technique and present first results for
heterogeneous quarter five-spot flows. However, the resolution of their calculations is
too coarse to resolve any fingering, which also applies to the simulations of Douglas
et al. (1984). The detailed simulations by Christie (1989) as well as by Ewing, Russell
& Young (1989), on grids of up to 150 x 150 and 200 x 200 points, respectively,
are the first ones to produce individual fingers. Christie’s simulations employ an
explicit flux-corrected transport method (FCT, Christie & Bond 1985) with first-
order time accuracy. He points out that even at this resolution, grid orientation
effects are still noticeable in his simulations. In spite of this, the calculations are
able to demonstrate the stabilization of the displacement process by the simultaneous
injection of water and solvent. The simulations by Ewing et al. reveal a growing
statistical uncertainty in the recovery data with increasing heterogeneity. Nevertheless,
the authors see a tendency for the recovery to increase as heterogeneity increases
from zero to relatively small amplitudes, whereas it tends to decrease for even
larger heterogeneities. Furthermore, they observe a decrease in the recovery as the
correlation length increases, with the standard deviation of the heterogeneities kept
constant. Overall, their simulations show that, in the parameter range investigated, the
effect of viscous fingering usually dominates that of the permeability heterogeneities.
In general, the relative importance of these effects is, of course, expected to depend on
the viscosity ratio and the degree of heterogeneity of the porous medium. The authors
point out the need for additional investigations, especially for heterogeneities of small
correlation lengths. Furthermore, they emphasize the importance of anisotropy, see
also Zimmerman & Homsy (1991, 1992a). Neither Christie nor Ewing et al. attempt
to systematically evaluate the effect of the mobility ratio and the dimensionless flow
rate on the overall dynamics of the displacement process.

Tchelepi et al. (1993) employ a random walk particle tracking method to carry out
two-dimensional simulations of unidirectional heterogeneous displacements. They find
that these simulations capture the essential fingering behaviour of three-dimensional
experiments, as far as size and growth of fingers are concerned. Nevertheless, they
suggest that for heterogeneous media with significant correlation lengths, three-
dimensional simulations may be necessary. More recently, Batycky, Blunt & Thiele
(1996) utilize mapping of numerical solutions along streamlines in order to simu-
late miscible displacements. Their simulations, which take into account gravitational
forces as well, exhibit vigorous viscous fingering. The method furthermore allows
big improvements in efficiency, although in the absence of physical diffusion or dis-
persion, numerical diffusion sets the short-wave cutoff length scale and hence has a
substantial effect on the results. This last point also applies to the calculations of
Sorbie et al. (1992), who let numerical diffusion set the small-scale cutoff length in
their simulations of miscible heterogeneous porous media displacements.

From a fundamental point of view, some insight into the effects of permeabil-
ity heterogeneities can be gained from investigations of passive tracer dispersion in
constant density and viscosity flows through heterogeneous porous media. Under
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such conditions, the variations in the permeability of the porous medium result in
time-independent velocity fluctuations, which in turn lead to a dispersive spreading of
the concentration front. The qualitative and quantitative properties of this dispersion
process depend on the ratio of the length scales that characterize the permeability
fluctuations and those that describe the macroscopic features of the transport pro-
cess. Phrased differently, the nature of the dispersion process depends on the ratio
of the tracer’s residence time and the convective time scale formed by the average
velocity and the correlation length of the permeability field (Koch & Brady 1988).
The stochastic analysis by Gelhar & Axness (1983) demonstrates that the dispersion
process will be of Fickian nature only if this ratio is large, i.e. after long displacement
distances. Dagan (1984) takes a Lagrangian point of view in investigating the disper-
sive mixing due to weak permeability heterogeneities of a given correlation length.
He finds that the tracer concentration profiles can have Gaussian shapes even if the
dispersion process in non-Fickian. Koch & Brady (1987), on the other hand, develop
a non-local theory to calculate the average mass flux. This theory allows them to
capture the complete spatio-temporal evolution of the averaged concentration field
due to a source input. Application of their theory to heterogeneous porous media
displacements demonstrates how concentration fluctuations of a scale larger than that
of the characteristic velocity fluctuations are mechanically dispersed on an advective
time scale, whereas small-scale concentration fluctuations decay on a slower diffusive
time scale due to molecular diffusion. In a subsequent paper (Koch & Brady 1988),
the same authors analyse dispersive behaviour that cannot be described by Fick’s
law even at asymptotically long residence times, so-called anomalous diffusion. This
occurs when the correlation length of the permeability field diverges. They show that
non-Gaussian, bimodal profiles of the average concentration are more typical under
these conditions.

While the above results were derived for constant density and viscosity flows,
our present interest focuses on miscible displacements of fluids characterized by
different viscosities and/or densities. In these flows, the spatio-temporal evolution
of the concentration and density fields results in a time-varying velocity field, so
that the above analysis can no longer provide a full description of the ensuing
dispersion process. For rectilinear flows, this issue has been addressed in recent years
by several authors. Araktingi & Orr (1988) perform random walk simulations of
unstable displacements in heterogeneous porous media. For permeability distributions
characterized by small variances, they obtain results that are similar to those for
the homogeneous case. However, for sufficiently large variances and correlation
lengths, they find permeability effects to become dominant. The authors discuss
the role of a heterogeneity index in the form of the product of the variance and
the dimensionless correlation length, in order to characterize the transition between
these two regimes, cf. also the earlier analysis by Gelhar & Axness (1983) for unit
mobility flows. Waggoner, Castillo & Lake (1992) refer to mobility-induced bypassing
as fingering, whereas permeability related bypassing is termed channelling. They
investigate the latter by performing numerical simulations of unit mobility ratio
displacements, and then focus on the additional effect of the former by varying the
viscosities. Their computational results, which are based on the vertical equilibrium
concept (Lake 1989) allow them to distinguish flow regimes that are dominated
by the effects of fingering, dispersion, and channelling. The mixing zone, ie. the
dimensionless width of the averaged concentration profile, displays distinctly different
growth characteristics in these respective regimes. It grows with the square root of time
if dispersion dominates, whereas the growth is linear for displacements dominated
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by fingering or channelling. The transitions between these different flow regimes are
further investigated by Sorbie et al. (1992) by means of numerical simulations that
employ numerical diffusion to establish a small-scale cutoff length. In a more recent
study, Klempers & Haas (1994) focus on the mixing zone between fluids of different
densities and visocities in heterogeneous porous media, both experimentally as well
as by means of numerical simulations. They observe the dispersion zone to grow with
the square root of the displacement distance, even in the presence of density and
viscosity contrasts. However, the dispersivity of the medium now strongly depends
on the displacement velocity, as well as on the viscosity and density contrasts,
which indicates a strong coupling between the flow features and the permeability
field. Lenormand (1995) proposes somewhat simplified transport equations on which
to base numerical simulations in these different parameter regimes. His approach
combines the calculation of streamtubes for constant viscosity displacements with the
stochastic calculation of the displacement inside these streamtubes.

Very accurate spectral simulations were recently performed by Tan & Homsy
(1992). Confirming the above findings, they clearly demonstrate the existence of
strong coupling mechanisms between mobility and permeability related effects. The
authors interpret these coupling mechanisms in terms of the interaction of a ‘viscosity
vorticity mode’ with a ‘permeability vorticity mode, cf. also de Josselin de Jong
(1960). They show that a resonance-like behaviour can result, if the length scale
characterizing the viscous fingering instability is comparable to the correlation length
of the permeability inhomogeneities. This point is investigated in more detail by
De Wit & Homsy (1997a), who analyse the linear stability behaviour of rectilinear
displacements in porous media with spatially periodic heterogeneity fluctuations. The
authors identify both subharmonic and sideband resonant interactions. These findings
are confirmed by subsequent, fully nonlinear simulations (De Wit & Homsy 1997b).

It is to be kept in mind that all of the above investigations dealt with rectilinear
displacements, whereas our present study focuses on the non-uniform base flow
characteristic of quarter five-spot displacements. While for this reason the above
findings and observations will not immediately translate quantitatively to the present
case, it is clear that the issue of the coupling between permeability properties and flow
features is of central importance in quarter five-spot displacements as well. However,
in the light of the spatial separation of scales observed for homogeneous quarter
five-spot flows in Part 1, it is not obvious, for example, that a resonance phenomenon
like the one described by Homsy and coworkers can occur in this configuration as
well. In the unidirectional displacements studied by earlier authors, the length of a
growing viscous fingering instability wave remains constant as the flow evolves. In a
quarter five-spot configuration, on the other hand, the vicinity of the injection well
is characterized by a nearly radially symmetric source flow. Here, an instability wave
has a constant wavenumber in the circumferential direction, so that its wavelength
grows proportionally to the average radius of the displacement front. As a result, the
ratio of the mobility related length scale to the correlation length of the permeability
field changes continuously. The question as to whether a resonance phenomenon can
occur in quarter five-spot displacements represents one of the central issues to be
addressed here.

In summary, the present investigation aims at exploring the dynamics of mis-
cible displacement processes, for a variety of mobility ratios and over a range of
dimensionless flow rates, in porous media characterized by heterogeneities of different
amplitudes and correlation lengths. The goal is to employ highly accurate direct nu-
merical simulations in order to gain a fundamental understanding of the interaction
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among mobility and permeability related effects as well as diffusion, in displacements
characterized by non-uniform base flows.

2. Characterization of the permeability distribution

In generating the desired statistical distribution of the permeability field, we em-
ploy an algorithm provided by Shinozuka & Jen (1972). This approach, successfully
employed by Tan & Homsy (1992) in their numerical simulations of rectilinear het-
erogeneous flows, yields the permeabilty field k(x) in terms of a random function f,
whose Gaussian distribution is characterized by the variance s and the covariance
Rys. Ryy in turn depends on the spatial correlation scales I, and [,, which may or may
not be identical. We thus obtain

k(x) = /™, (2.1)
(f.f) = S"Rys(x), (2.2)

Ry; = exp (—n l(f)z + (Zﬂ) , (2.3)

where (,) indicates the autocovariance. The present investigation addresses quarter
five-spot flows with dimensionless correlation lengths ranging from 0.01 to 0.2, and
variances up to s = 1. At this value, the ratio of maximum to minimum permeability
is typically larger than O(100), with the exact value of this ratio depending on the
individual realization.

Special care has to be taken in order to satisfy the symmetry boundary conditions
for the permeability distribution at the edges of the quarter five-spot domain. These
conditions ensure that the overall flow field is built up of many identical quarter five-
spot elements. They are enforced by adding a suitable term to the original distribution
for f(x), and by letting this additional term die out with increasing distance from the
boundary. For example, near the x = 0 boundary, we take

2

) = 1)+ 0 = 0) = Fllenp 5 ) 24)
The permeability distribution k(x) obtained from f'(x) instead of f(x) has a van-
ishing x-derivative at the boundary. The effect of this artificial modification of the
permeability distribution dies out over a distance of approximately one half of the
correlation length, so that its influence in the interior of the the flow field is negligi-
ble. Typical contour plots of the permeability distribution are shown in figure 1 for
Iy =1,=1=0.01,0.02, 0.05, and 0.2.

3. Results

The quarter five-spot simulations to be described in the following aim at elucidating
the influence of the various governing parameters, which are the dimensionless flow
rate in the form of the Péclet number Pe, the mobility ratio R, the correlation lengths
Iy, 1,, and the variance s. To this end, we vary the parameter values within the following
intervals: Pe € [50,800], R € [0,3.5], I, [, € [0.01,0.2], and s € [0, 1]. In the following,
if [, = I, we will simply refer to the correlation length [. Our interest focuses both on
the detailed spatio-temporal evolution of the flow, and on such global measures as
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FIGURE 1. Random permeability fields for I, = I, = (a) 0.01, (b) 0.02, (c) 0.05, and (d) 0.2.
Lighter regions indicate higher permeability.

the breakthrough recovery #, defined in Part 1 as

tpm
=" (3.
where t;, is the breakthrough time, i.e. the time when the displacing fluid reaches a
concentration level of 0.1 at the production well.

We will begin by describing a representative ‘reference case’, and then discuss the
effects of changes in the values of the individual parameters. Our reference case is
characterized by Pe = 800, R = 2.5, [ = 0.02, and s = 0.5. This value of s results
in a ratio of maximum to minimum permeability of approximately 5, with the exact
value of this ratio varying from one individual realization to another. As explained
in Part 1, the calculation is initiated with the radially symmetric similarity solution
for the concentration profile in a homogeneous environment (Tan & Homsy 1987)
at time t; = 0.02, and it can be directly compared to its homogeneous counterpart
described in Part 1. It needs to be pointed out that the initial condition of a radially
symmetric, self-similar concentration profile is of course not as good an approximation
for heterogeneous flows as it was for the homogeneous case. However, as will be seen
below, the rapid generation of small scales due to the heterogeneities reduces the time
interval over which the exact form of the initial conditions will be felt by the flow,
as compared to the homogeneous case. Consequently, we expect the results to show
little influence of the value of t;, or of the initial shape of the concentration front.

By the early time of t = 0.05, a vigorous fingering activity is visible in a plot of
the concentration contours, figure 2. This is in marked contrast to the homogeneous
case, which at this stage still displays a nearly radially symmetric front. Hence for
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FIGURE 2. Reference case: Pe = 800, R = 2.5, [ = 0.02, and s = 0.5. Shown are the concentration
contours at times (a) 0.05, (b) 0.15, (¢) 0.2, and (d) 0.2402, which represents the time of breakthrough.
Vigorous fingering sets in considerably earlier than in the homogeneous case (Chen & Meiburg
1998).

the present parameter values the permeability inhomogeneity plays a crucial role in
the evolution of the flow, and the ‘channelling’ effect observed by Araktingi & Orr
(1988), Waggoner et al. (1992), Sorbie et al. (1992) and Lenormand (1995) clearly has
a strong effect on the evolution of the displacement. At the same time, it is not the
only mechanism resulting in the bypassing of fluid, as the simulations in Part 1 for
Pe =800 and R = 2.5 had shown strong fingering in the homogeneous environment
as well. The role of the viscously driven instability in determining the growth rate
or the length scales of the emerging fingers will be discussed below on the basis
of additional simulations. Compared to the homogeneous case, the initial number
of emerging fingers is somewhat smaller in the heterogeneous flow. Their nonlinear
evolution is characterized by a sequence of tip splitting, shielding, and merging events
that qualitatively resemble some of the patterns observed earlier in both rectilinear
(Tan & Homsy 1988) and quarter five-spot (Part 1) homogeneous flows at higher
Pe-values. The heterogeneities are thus seen to encourage these mechanisms already
at lower Péclet numbers. Furthermore, in the heterogeneous environment the fingers
display an increased tendency to develop ‘side bumps’, i.e. small lateral bulges, at
locations where the displacing, less viscous fluid begins to enter a high permeability
region, only to be shielded soon thereafter by the growing main finger. Hence these
side bumps are different in origin from the sidefingering observed by Rogerson &
Meiburg (1993), which were due to a secondary instability.

In contrast to its homogeneous counterpart, the heterogeneous case gives rise to
the emergence of fairly large-amplitude fingers also near the boundaries, and not just
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FiGURE 3. Reference case: perturbation streamfunction (a,b) and overall streamfunction (c,d) at
t = 0.15 (a,c) and t = 0.2402 (b,d). Dominant vortical structures form near the main diagonal,
thereby setting up the preferred flow channels in this area.

near the main diagonal. In this sense, the heterogeneities are thus seen to result in a
certain ‘homogenization’ of the flow, i.e. in a statistically more uniform distribution
of the fingers, cf. also the discussion by Ewing et al. (1989). The earlier onset of
fingering triggered by the permeability field also leads to the more rapid emergence
of a few dominant fingers near the main diagonal. In contrast to the homogeneous
displacement, these fingers undergo several more splitting events before one of them
eventually wins and leads to the breakthrough of the less viscous fluid at time
t = 0.2402. This breakthrough time is approximately 10% smaller than for the
homogeneous case, indicating a correspondingly reduced breakthrough recovery #
due to the presence of heterogeneities.

Figure 3 shows the perturbation streamfunction as well as the overall streamfunction
at times 0.15 and 0.2402. As for the homogeneous case, the dominant vortical
structures of the perturbation field are located near the diagonal. However, due to the
permeability variations, the streamfunction now has a much less regular structure. Still,
the overall streamfunction clearly shows the existence of several preferred ‘channels’,
through which the majority of the fluid transport occurs.

The vorticity field, shown in figure 4 for times 0.15 and 0.2402, exhibits a strong
qualitative difference when compared to the homogeneous case. Due to its central
importance, we repeat here the vorticity equation given earlier in Part 1:

1
o =—R(Vy-Vc)— va - Vk. (3.2)
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FIGURE 4. Reference case: vorticity field for t = 0.15 (a) and t = 0.2402 (b). The permeability field
leads to the formation of large-amplitude vorticity distributions near the injection and production
wells. By the time of breakthrough, however, the viscosity related vorticity component has outgrown
its counterpart due to the permeability heterogeneities. Note that the scaling is different in the two
figures.

It shows that in homogeneous displacements the presence of vorticity is limited to
those regions with non-vanishing concentration gradients, i.e. to the neighbourhood
of the front. In the present, heterogeneous case, on the other hand, the additional
term proportional to the relative permeability gradient becomes important. As a
result, in a random permeability field we expect strong vorticity in regions of large
velocities. This is confirmed by figure 4, which at t = 0.15 indeed shows large
vorticity amplitudes near the injection and production wells. By t = 0.2402, however,
the viscosity-related vorticity component has reached substantially larger amplitudes
than its permeability-related counterpart.

Regarding the global importance of the regions with strong permeability related
vorticity near the injection and production wells, it is important to realize that this
vorticity component has the same correlation length as the permeability field, and
that strong positive and negative vorticity amplitudes may appear close together. To a
certain extent, these will cancel each other with respect to their long-range influence.
As a result, the immediate importance of small-scale permeability heterogeneities may
lie more in their ability to encourage locally the growth of viscous fingers on the
scale of the correlation length, rather than in a direct global modification of the
flow. This enhanced fingering, in turn, can of course lead to large-scale changes in
the flow, so that indirectly the permeability field can very well have a sizeable effect
on the overall features of the displacement. It should furthermore be pointed out
that the strongly localized concentration of permeability related vorticity near the
injection and production wells is characteristic of the present, non-uniform base flow.
This feature is not present in the rectilinear base flows analysed by Araktingi & Orr
(1988), Waggoner et al. (1992), Sorbie et al. (1992), or Tan & Homsy (1992).

It is quite instructive to analyse the viscosity and permeability related components
of the vorticity field separately, see figure 5. As expected, the figures for times 0.15
and 0.2402 show the former to be confined to the frontal regions. The permeability
induced component, on the other hand, displays some interesting features. Initially it
is most prominent in the high-velocity regions near the wells. Later in time, however,
additional high-velocity regions emerge inside the fingers, thereby leading to an
increase in the permeability related vorticity there, too. We can hence identify a two-
way coupling and amplification mechanism between the two vorticity components:
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FIGURE 5. Reference case: viscosity related vorticity (a,b) and permeability related vorticity (c,d)
separately for t = 0.15 (a,c) and t = 0.2402 (b,d). The permeability related vorticity encourages the
formation of fingers, within which high-velocity regions emerge. This increase in the velocity, in
turn, enhances the production of permeability related vorticity, thereby closing the feedback loop.

The initial vorticity distribution generated by the potential velocity field in conjunction
with the permeability inhomogeneities provides large-amplitude perturbations that
trigger the rapid emergence of fingers. These, in turn, result in the formation of
strong viscosity related vorticity layers along their edges. For an unfavourable mobility
ratio, the sign of the vorticity in these layers is such that they lead to an additional
acceleration of the fluid down the centre of the finger, thereby increasing the local
velocity. This increased velocity now enhances the strength of the permeability related
vorticity field, thereby closing the feedback loop, figure 6. This coupling mechanism
is also clearly identifiable in the spatially periodic permeability fields investigated by
De Wit & Homsy (1997a,b).

The initial acceleration of the finger growth by the permeability heterogeneities is
clearly demonstrated by figure 7, which shows the maximum value of the viscosity
related vorticity component as a function of time for both the homogeneous and the
heterogeneous cases. While the homogeneous case displays a well-defined region of
algebraic increase (Part 1), indicating the growth of the viscous fingering instability
with time, no such region exists for the heterogeneous case. Here, fairly large vorticity
values are produced almost instantaneously after the start of the simulation, indi-
cating that the presence of permeability heterogeneities allows the viscous fingering
instability to bypass the transitional period of linear growth. Similar ‘bypass transi-
tion’” phenomenona are well known from other flows such as plane boundary layers,
e.g. Morkovin (1969) as well as Breuer & Landahl (1990).
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FIGURE 6. Sketch of the feedback mechanism between the mobility vorticity and the permeability
vorticity modes for unfavourable mobility ratios.
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FIGURE 7. Maximum of the viscosity related vorticity as a function of time, both for the homogeneous
case (solid line) and the heterogeneous reference case (x). The heterogeneities almost immediately
trigger large values of the viscosity related vorticity, effectively bypassing the transitional period of
linear growth of the viscous fingering instability.

3.1. Influence of the Péclet number

Figure 8 shows the evolution of the flow for Pe = 50, with all other parameters left
unchanged from the case described above. At these low flow rates (or, alternatively,
increased values of molecular diffusion), the front develops quite differently. While
it still displays a somewhat irregular shape as early as t = 0.05, these fluctuations
do not undergo any substantial growth, so that clearly identifiable fingers never
develop. Rather, the shape of the front at breakthrough resembles that observed in
the homogeneous case for Pe values up to 200 (Part 1). Near the x =0 and y =0
borders, the front arranges itself in a nearly perpendicular direction. Along the main
diagonal, it propagates in a stable fashion, until breakthrough occurs at t = 0.316.
From the concentration contour plots, we can estimate the thickness of the front
as being 0(0.1) during most of the flow. This value is considerably larger than
the correlation length | = 0.02. As a result, the length scale of typical viscosity-
induced vorticity dipoles is much larger than that of the permeability related ones.
Consequently, the two-way coupling mechanism between the two vorticity components
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FIGURE 8. Pe = 50, R = 2.5, 1 = 0.02, and s = 0.5: concentration contours at times (a) 0.05,
(b) 0.15, (c) 0.25, and (d) 0.316. The diffusive length scale is considerably larger than the correlation
length of the permeability field, causing the flow to develop in a fashion that is very similar to its
homogeneous counterpart.

described above, which led to positive feedback and mutual amplification in the
reference case, is unable to have much of an effect on the current flow. Formulated
differently, there is no mechanism by which the permeability vorticity field with its
small correlation length can strongly affect the concentration field (and thereby the
viscosity field) with its much larger length scales. In other words, the ‘resonance’
mechanism referred to by Tan & Homsy (1992) cannot work here, because the
length scales of viscosity and permeability related vorticities are too disparate. We
can conclude that, if the correlation length of the permeability field is significantly
smaller than the viscous fingering instability length scale of the concentration field,
the effect of the permeability heterogeneities decreases, and the flow approaches the
homogeneous case. In the terminology of Sorbie et al. (1992), Waggoner et al. (1992),
and Lenormand (1995), the flow in figure 8 is dominated by dispersive effects.
Figure 9 demonstrates the effect of raising the Péclet number to 200, while all
other parameters are held constant. The diminished importance of diffusive effects
at this larger Péclet number results in a steeper front, whose thickness now becomes
comparable to the correlation length of the permeability field. While the homogeneous
case did not show any fingering for Pe = 200, a few well-defined large-scale fingers
evolve in the present heterogeneous case, although they do not display the richer fine-
scale structure observed earlier for Pe = 800. Nevertheless, the large-scale features
of the two flow fields are already quite similar, and the breakthrough times differ
only by about 4%. The corresponding simulation for Pe = 400, shown in figure 10,
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FIGURE 9. Pe = 200, R = 2.5, | = 0.02, and s = 0.5: concentration contours at times (a) 0.15 and
(b) 0.2508. The decreased diffusive length scale enables a stronger interaction between the perme-
ability and viscosity related vorticity components.
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FIGURE 10. Pe = 400, R = 2.5, [ = 0.02, and s = 0.5: concentration contours at times (a) 0.15 and
(b) 0.243. The increased Pe-value implies a further reduced diffusive length scale, which allows the
formation of additional fine-scale structure.

displays even more, but still not all, of the small-scale structure seen in the Pe =
800 case. The above series of simulations covering the range from Pe = 50 to
Pe = 800 demonstrates the transition from a displacement regime dominated by
diffusion/dispersion to one in which both fingering and channelling are important.
The fact that channelling is important can easily be recognized by comparing the
present flows to the homogeneous case of Pe = 800 and R = 2.5, see Part 1. On the
other hand, replacing R = 2.5 with R = 0 results in a fairly uniform front with little
structure (not shown), which indicates the importance of viscous fingering effects in
the present simulations.

The comparison of the Pe = 200, 400, and 800 flows nicely illustrates how, in
certain parameter regimes, changing levels of diffusion merely result in relatively
minor quantitative modifications of the flow, without bringing about qualitative
changes. This is the main reason why sometimes low-order numerical simulations
with large amounts of artificial diffusion, i.e. a significantly reduced effective Péclet
number, are still able to capture some of the dominant large-scale fingering structures.
In this way, they may even predict global features such as the breakthrough time
in rough agreement with the correct value. However, the design and assessment of
strategies for enhanced reservoir performance (cf., for example, Manickam & Homsy
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FiGURE 11. Concentration contours (a) at time 0.2 for Pe = 400, R = 2.5, 1 = 0.2, and s = 0.5, and
(b) at time 0.204 for Pe = 800, R = 2.5, 1 = 0.2, and s = 0.5. At the larger correlation length, the
Pe-value increase has a very small effect on the flow.

1993, 1994 ; Pankiewitz & Meiburg 1998) clearly requires the accurate representation
of very localized phenomena, which can only be obtained by means of high-fidelity
numerical simulations.

From the above discussion it follows that the degree to which a change in the Péclet
number affects the fingering pattern depends on the ratio of the diffusive length scale,
i.e. the characteristic thickness of the concentration front, and the correlation length
of the permeability field. For the small correlation length of [ = 0.02, the simulations
demonstrate that an increase in the Péclet number from 400 to 800 adds significantly
to the small-scale structure of the flow. Figure 11 compares the same Péclet numbers
for I = 0.2. At this larger value of the correlation length, the fingering patterns
for the two different Pe values are much more similar. This reflects the fact that
for both Péclet number values the viscous fingering instability length scale, which is
determined by diffusion, is much smaller than the length scale of the permeability
field. As a result, there is not much interaction between the vorticity generated by
the viscous fingering mechanism and the permeability related vorticity, for either
Pe = 400 or 800. This level of interaction had been different for the earlier case of
I = 0.02. There, changing the Péclet number from 400 to 800 had brought the two
length scales much closer together, which in turn had caused a much tighter coupling
between the two vorticity modes. We can hence conclude that in flows governed
by strong permeability gradients, relatively minor changes in the Péclet number can
trigger significant modifications in the fingering pattern, provided the diffusive and
permeability length scales are of the same order of magnitude.

Figure 12 summarizes the effect of the Péclet number on the overall breakthrough
recovery #. For any given correlation length, the value of  decreases uniformly with
increasing Péclet number. However, there are pronounced differences in the # vs. Pe
relationships for different values of [, causing the individual curves to intersect. This
observation, which reflects the effect of the correlation length on the dynamics of the
displacement process, will be discussed in detail in §3.3.

3.2. Influence of the mobility ratio

In order to elucidate the influence of the mobility ratio R on the global and local
features of the displacement process, we carried out a series of simulations for which
Pe, I, and s were held fixed at the values of 400, 0.05, and 0.5, respectively. In
addition, the same random realization of the permeability field was employed in all



Miscible quarter five-spot displacements. Part 2 283

55 T T T T
50_ @ _
X
*
45| o §
X
0 L 4
7 (%) 40 ®
0©
+
35k 4 x % .
X
30F * .
*
25

0 0.005 0.010 0.015 0.020 0.025
1/Pe

FIGURE 12. Breakthrough recovery n as a function of Pe for R = 2.5, s = 0.5 and o, [ = 0.02;
%, 0.05; %, 0.1; and +, 0.2. While n decreases monotonically with Pe for a given [-value, the slopes
of these relationships depend on .

simulations. In this way, by comparing displacements at increasing values of R with
the case R = 0, we can study the effects of fingering on a flow that gives rise to
dispersion and channelling only. Figure 13 shows the constant mobility case R = 0.
The concentration front is seen to proceed in a fashion that is qualitatively similar to
its homogeneous counterpart (Part 1). The heterogeneous permeability field, in spite
of its relatively large variation between values of 0.42 and 2.37, merely causes slight
wiggles in the front, which do not develop into pronounced fingers. The breakthrough
for this dispersion-dominated flow occurs at time 0.4538, a value that is very close
to that for the homogeneous, potential flow (¢, = 0.4570 in the absence of diffusion,
cf. Morel-Seytoux 1965, 1966). This observation sheds additional light on a question
raised earlier, regarding the influence of the permeability related vorticity, which for
the present unit mobility ratio flow is independent of time, cf. figure 13. As expected
from the velocity—permeability terms in the vorticity equation, this figure shows regions
of strong vorticity where large velocities exist, i.e. near the injection and production
wells. Since there are approximately equal amounts of positive and negative vorticity
in close proximity to each other, however, partial cancellation significantly reduces
the long-range effects of this vorticity, so that the global flow features remain similar
to those of the homogeneous, potential case.

Figure 14 displays the flow for R = 1.5. As described above, the interaction between
viscosity and permeability related vorticity distributions now leads to the formation
of pronounced fingers, which in turn result in the substantially reduced breakthrough
time of t = 0.2623. The global features of the concentration front remain similar as the
mobility ratio is increased to R = 2.5, figure 15, although fingering sets in somewhat
more rapidly, and the amount of fine-scale structure increases. The breakthrough time
is further reduced to 0.1918.

A further increase in the value of R to 3.5 again significantly shortens the time
until breakthrough, as shown in figure 16. Somewhat surprisingly, however, the frontal
shape is quite different now from the earlier situations for lower R-values. For the
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FIGURE 13. Pe =400, | = 0.05, s = 0.5, and R = 0: concentration contours at times (a) t = 0.20 and
(b) t = 0.4538. Also shown is the time-independent vorticity field (c). In spite of regions of strong
vorticity near the injection and production wells, the overall flow is similar to the homogeneous
case, indicating a cancellation of positive and negative vorticity effects.
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FIGURE 14. Pe =400, [ = 0.05, s = 0.5, and R = 1.5: concentration contours at times
(a) 0.15 and (b) 0.2623.

present, larger R, the dominant finger evolves along a different path and undergoes
several additional bifurcations. This indicates an interesting nonlinear effect of the
viscosity contrast on the overall displacement. A higher mobility ratio does not just
result in a more rapid selection of the same preferred flow channels, but rather it can
lead to the selection of entirely different channels. This behaviour is clearly reflected
by the corresponding streamline patterns for the R = 2.5 and R = 3.5 cases, shown in
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FIGURE 15. Pe = 400, | = 0.05, s = 0.5, and R = 2.5: concentration contours at times 0.15 and
0.1918. the increase in R leads to a more rapid growth of the fingers, and to slightly more fine scale
structure, although the overall shape of the front remains similar to the R = 1.5 case.
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FIGURE 16. Pe = 400, [ = 0.05, s = 0.5, and R = 3.5: concentration contours at times (a) 0.1 and
(b) 0.176. The further increase in R leads to a qualitatively different flow pattern, with a dominant
finger evolving fairly far from the diagonal.

figure 17. It indicates that the flow field at larger R-values cannot be obtained reliably
by simply applying a ‘boost factor’ to the velocity field found for a lower value of R,
as has sometimes been attempted in the past (King et al. 1993).

3.3. Influence of the permeability field
3.3.1. Effect of the correlation length

The effect of the correlation length on the displacement process is demonstrated
by means of a series of simulations for which Pe = 800, R = 2.5, and s = 0.5, with [
taking the values 0.2, 0.1, 0.05, and 0.02. The last case was discussed earlier in figure 2.
For | = 0.2, figure 18, the length scale of the permeability field is somewhat larger
than that of the viscous fingering instability, and it dominates the evolution of the
concentration front. This is typical for the channelling regime.

At | = 0.1, significantly more fine-scale structure is generated, figure 19, as the
difference between the diffusive and permeability length scales is reduced and the
interaction between the two vorticity modes intensifies. In this way, breakthrough is
achieved considerably earlier. This tendency continues as [ is further reduced to 0.05,
figure 20. As we proceed to even smaller values of the correlation length, the above
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FIGURE 17. Pe =400, | = 0.05, s = 0.5: the difference in the streamline patterns at breakthrough
for (a) R = 2.5 and (b) 3.5 demonstrates the selection of different paths by the dominant fingers.
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FIGURE 18. Pe = 800, R = 2.5, s = 0.5, and [ = 0.2: concentration contours at times (a) 0.124 and
(b) 0.204. At this large value of the correlation length, the front develops little fine-scale structure.

trend of a monotonically decreasing breakthrough time is reversed, cf. the simulation
for [ = 0.02 depicted in figure 2. In comparison to [ = 0.05, vigorous fingering sets
in somewhat later, and more fingers continue to compete for a longer time, so that
breakthrough occurs approximately 25% later. The reason for this behaviour again
lies in the ratio of the diffusive, i.e. fingering and permeability, length scales which
determine the level of coupling between the two vorticity modes. The correlation
length has now become significantly smaller than the viscous fingering instability
length scale, so that the permeability variations cannot easily act to amplify the
most unstable wavelengths of the viscous fingering instability. While the permeability
heterogeneities still provide a substantial level of ‘background noise’, which helps to
speed up the initial growth of the fingers, they fail to provide the continued strong
amplification observed for the [ = 0.05 case.

While we did not carry out further simulations for even smaller values of the corre-
lation length, the trend to be expected for those cases is obvious: As the permeability
length scale becomes progressively smaller compared to the diffusive length scale,
the porous medium will look increasingly like a homogeneous environment to the
concentration field. As a result, we expect the fingering activity to gradually diminish
to the level of the equivalent homogeneous case with the same value of R.
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FIGURE 19. Pe = 800, R = 2.5, s = 0.5, and [ = 0.1: concentration contours at times (a) 0.15 and
(b) 0.1962. At this reduced correlation length, significantly more fine-scale structure is generated,
and breakthrough occurs much earlier.
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FIGURE 20. Pe = 800, R = 2.5, s = 0.5, and [ = 0.05: concentration contours at times (a) 0.15
and (b) 0.17. The production of small-scale structures is enhanced again, triggering an even earlier
breakthrough.

Figure 21, which summarizes the breakthrough recovery data for a variety of
Pe-values and correlation lengths, demonstrates the occurrence of a minimal break-
through time at intermediate correlation lengths for the entire Pe-range investigated
here. On the basis of the above discussion, we expect to observe this minimal break-
through recovery when the correlation length of the permeability field is comparable
to the viscous fingering instability length scale of the concentration field. Conse-
quently, for larger Pe-values the minimal breakthrough time should occur at smaller
values of [. While we did not carry out enough simulations with sufficiently closely
spaced [-values to conclusively confirm this trend, our data do not disagree with this
expectation. It should be kept in mind that the recovery data will vary somewhat
with individual realizations of the permeability field. For this reason, the observed
minimum in the recovery rate may be less pronounced for different permeability fields,
or it may shift to a slightly different correlation length. These issues will be addressed
in more detail below. However, it will be seen that even recovery rates averaged
over a moderate number of permeability field realizations display a minimum at
intermediate values of the correlation length.

The above simulations demonstrate a further important point regarding the partic-
ular geometrical nature of the quarter five-spot pattern, which inherently encourages
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FIGURE 21. R = 2.5, s = 0.5: breakthrough recovery 5 as function of the correlation length for
Pe = 50 (x), 400 (+), and 800 (x). Also shown are the breakthrough recovery data for homogeneous
flows at Pe = 50 (solid line) and Pe = 400 (dashed line). n attains a minimum for intermediate
values of [.

the formation of a dominant finger along the main diagonal. Permeability fields char-
acterized by small correlation lengths will contain a fairly large number of potential
flow paths of similar overall resistance, some of which are expected to be in the
favoured region near the main diagonal. Consequently, the dominant finger is likely
to develop not too far from the diagonal. For larger correlation lengths, on the other
hand, there are only very few potential flow paths to begin with, and if none of them
happens to be near the diagonal, a large-scale deviation of the flow may occur quite
easily. As a result, the evolution of a dominant finger far from the main diagonal is
much more likely to occur for large correlation lengths.

Figure 22 shows a simulation in which the correlation length of the permeability
field has different values in the x- and y-directions. In this anisotropic case, [, = 0.2
and [, = 0.05, with Pe = 400, R = 2.5, and s = 0.5. The larger correlation length
in the x-direction makes it more likely to find extended contiguous regions of high
permeability aligned in this direction. Consequently, we observe the formation of
fingers that initially are predominantly oriented in the x-direction. Only fairly late do
they become reoriented towards the sink. Again, this behaviour can be understood in
terms of the permeability related vorticity field, shown in figure 22 as well for time
0.15. The layered structure of the permeability field is reflected in the vorticity field,
with neighbouring layers of vorticity of opposite sign propelling the fingers through
their middle.

3.3.2. Effect of the correlation variance

Changing the value of the correlation variance s corresponds to modifying the
amplitude of the permeability heterogeneity, i.e. its deviation from the average value,
while leaving its shape function unchanged. The effect this has on the displacement
process is investigated by means of a series of simulations for Pe = 400, R = 2.5,
and | = 0.1, with s taking the values 0, 0.5, 0.8, and 1. This series of simulations
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FIGURE 22. Pe = 400, R = 2.5, s = 0.5, [ = 0.2 and [, = 0.05: concentration contours at time
(a) 0.15 and (b) 0.2289. Also shown is the permeability field (c¢) and the permeability related vorticity
at t =0.15 (d).

will demonstrate the transition from a fingering dominated flow to one dominated by
channelling.

For the homogeneous case s = 0 (figure 23a), the viscous fingering instability results
in a single splitting of the finger emerging along the main diagonal, and breakthrough
occurs at the relatively late time of 0.303. The presence of vorticity is limited to those
regions in which the concentration varies.

Even for the small value of s = 0.5, the permeability heterogeneities modify the
displacement process substantially, figure 23(b). The permeability now varies between
a minimum of 0.5 and a maximum of 2.1. As discussed above, these deviations
generate vorticity that creates flow features on the scale of the correlation length,
which subsequently are further amplified by the viscous fingering instability. In this
way, vigorous bypassing sets in at an early time, and breakthrough is achieved by
t =0.2228.

For s = 0.8 (figure 23c) and s = 1 (figure 23d), this effect of the permeability
heterogeneities becomes progressively stronger, without however inducing a qualitative
change in the overall features of the displacement process. While the bypassing sets
in earlier, the frontal shape remains quite similar, and the dominant length scales that
characterize the shape of the concentration front are comparable. The breakthrough
time is further reduced to 0.1776 and 0.166, respectively.

A second series of simulations, for which Pe = 400, R = 2.5, and | = 0.2, shows
a somewhat different picture when the cases s = 0.5 and s = 0.8 are compared,
figure 24. Here the increase in the permeability heterogeneity leads to the dominance
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FIGURE 23. Pe = 400, R = 2.5, | = 0.1: concentration contours for (a) s = 0 at t = 0.3028. The
homogeneous case is characterized by a single late splitting event. (b) s = 0.5 at t = 0.2228. Even
a relatively small amount of heterogeneity changes the flow pattern dramatically. (¢) s = 0.8 at
t = 0.1774. While the overall shape of the front remains similar to the s = 0.5 case, fingering
sets in earlier and more vigorously at this higher level of heterogeneity, prompting an even earlier
breakthrough. (d) s = 1.0 at t = 0.166. Increased levels of permeability heterogeneity further
reduce the breakthrough time, reducing the breakthrough recovery by nearly 50% compared to the
homogeneous case.

of a different finger, farther away from the diagonal. This observation represents an
important potential effect of the variance of the permeability heterogeneities on the
quarter five-spot flow: if the area around the main diagonal happens to be populated
by below-average permeability values, a large-scale redirection of the flow away from
the diagonal may occur, if the heterogeneity amplitudes are relatively large. Small
permeability heterogeneities, on the other hand, will not be able to overcome the
inherent tendency of the flow to form a dominant finger near the main diagonal, even
if on average they lower the permeability in this region.

Figure 25 shows the breakthrough recovery as a function of the correlation variance
s for different values of . We observe a general trend by which an increase in s lowers
the recovery, although the slope of this relationship can depend somewhat on I.

3.3.3. Different random realizations of the permeability field

To a certain extent, the particular random realization of the permeability field will
determine the features of the displacement process. In order to assess the magnitude
of this effect, we carried out several additional simulations in which Pe, R, [, and
s were kept constant, with permeability fields generated by different sets of random
numbers. One particularly easy way to accomplish this is to simply rotate the original
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FIGURE 24. Pe = 400, R = 2.5, | = 0.2: concentration contours for (a) s = 0.5 at t = 0.2323.
(b) s = 0.8 at t = 0.1925. The increased level of permeability heterogeneities has led to the
emergence of a different dominant flow path, farther away from the diagonal.
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FIGURE 25. Pe = 400 and R = 2.5: breakthrough recovery 5 as function of correlation variance s
for correlation lengths 0.5 (%), 0.2 (x), 0.1 (4), and 0.05 (o). The efficiency generally declines with
increasing s, although the details of the #, s-relationship depend on the correlation variance.

permeability field. Figure 26 shows two such cases for Pe = 400, R = 2.5, [ = 0.2,
and s = 0.5, i.e. for the same parameter values as the flow shown in figure 24a.
A comparison shows that approximately the same number of fingers develop, and
that the concentration front is dominated by similar length scales. However, the
breakthrough times now are near 0.2141 and 0.2245, which indicates that for the
present parameter values the random features of the permeability field can affect the
breakthrough recovery by up to 10%. This substantial difference is mostly due to the
fact that for the relatively large value of [ = 0.2, the entire quarter five-spot domain
contains only a small number of fairly large regions of high or low permeability,
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FIGURE 26. Same parameters as in figure 24(a) (Pe = 400, R = 2.5, | = 0.2, s = 0.5), but different
random realizations. Concentration contours are shown near the breakthrough times of (a) 0.2141
and (b) 0.2245. While the dominant features of the flow remain quite similar, the breakthrough time
is reduced, indicating a fairly substantial influence of the random features of the permeability field
at these large correlation lengths.
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FIGURE 27. Same parameters as in figure 10 (Pe = 400, R = 2.5, [ = 0.02, s = 0.5), but different
random realizations. Concentration contours are shown at the breakthrough times of (a) 0.2558 and
(b) 0.2363. At these smaller correlation lengths, the front is more likely to always have a dominant
finger evolving near the main diagonal.

whose random placement can easily lead to a large-scale redirection of the main flow
away from the diagonal, thereby substantially delaying breakthrough. At the same
time, at this relatively large value of the correlation length only a small number of
potential flow paths exists, of which one is usually clearly preferred over the others.
This means that typically only one dominant flow structure will develop for these large
correlation lengths, which limits the variations between different random realizations.

For small values of I, on the other hand, the correlated regions of high or low
permeability are of small extent. Hence, they will not be able to shift the dominant
flow direction far away from the inherently preferred route along the main diagonal.
This behaviour is demonstrated by figure 27, which shows two additional simulations
for Pe = 400, R = 2.5, | = 0.02, and s = 0.5, and should be compared with
the flow shown earlier in figure 10. This inability of the small-scale permeability
heterogeneities to change the dominant flow direction by much, again results in
relatively small variations of the breakthrough recovery between individual random
runs.
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FIGURE 28. Pe =400, R = 2.5, and s = 0.5: breakthrough recovery 5 as a function of [ for different
random realizations and different correlation lengths. o, Individual runs; «, average value for a given
correlation length. The data show the largest variations between individual runs at intermediate
correlation lengths.

In our limited number of simulations, we find that these variations between dif-
ferent random realizations are largest at intermediate correlation lengths. The reason
again lies in the interaction between the fingering instability and the permeability het-
erogeneities. For intermediate values of [, the inhomogeneities are of a large enough
spatial extent to redirect the dominant finger(s) by a substantial amount. However,
they are still small enough so that in different random realizations different numbers
of dominant fingers can compete over substantial lengths of time. Figure 28 summa-
rizes the breakthrough recovery data for several random realizations each at different
correlation length.

4. Discussion and conclusions

The highly accurate direct numerical simulations described above for miscible
displacements in quarter five-spot flows shed some light on the complex interplay
between moblity induced effects and those created as a result of the permeability
heterogeneities. Especially by comparing the present results with our earlier ones
for homogeneous flows (Part 1), we obtain insight into the mechanisms by which
the non-uniformities in the porous medium modify and often amplify the fingering
process caused by an adverse mobility ratio. We have found the vorticity variable
to be particularly well suited for analysing the flow-field evolution, since it contains
two components that can be directly linked to viscosity and permeability effects,
respectively.

The permeability heterogeneities, characterized by a correlation length [ and a
variance s, are seen to have a strong effect on the flow. Even moderate inhomogeneities
provide perturbations that are sufficiently strong to result in a complete bypass
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of the linear growth phase of the viscous fingering instability. The permeability
heterogeneities have the tendency to generate flow features predominantly at the scale
of the correlation length. Whether or not they can succeed in this depends on the ratio
of I to the diffusive/dispersive length scale, which in turn determines the scales of
the fingering instability. If this ratio is very small, any flow features generated by the
heterogeneities will be smoothed out by diffusion or dispersion, so that an effective
coupling between permeability related effects and mobility induced fingering will not
occur. In other words, if the front thickness is much larger than the correlation length
of the porous medium, the medium will appear homogeneous to the flow. A similar
observation holds for the opposite case, i.e. when the correlation scale is much larger
than the scale of the mobility induced fingering. Again, an effective coupling between
the two different vorticity modes cannot take place, and the ensuing flow will be close
to the homogeneous case.

In Part 1, we had observed a clear separation of the large and small scales for ho-
mogeneous displacement processes. While smaller scales appear predominantly near
the injection and production wells, the central regions of the domain typically exhibit
larger scales. This separation of the viscosity related length scales raised the question
as to whether a resonance phenomenon, as observed by Tan & Homsy (1992) as well
as De Wit & Homsy (1997a,b) for unidirectional heterogeneous flows, could occur in
quarter five-spot flows. The calculations for heterogeneous displacements described
above show that, at least for the parameter regimes investigated here, the separation
of scales is not as pronounced as for the corresponding homogeneous cases. Rather,
even moderate permeability non-uniformities result in a flow characterized by a more
uniform length scale throughout the entire flow domain. This dominant length scale
is set by the scales characterizing the fingering instability and the permeability dis-
tribution. The most interesting flow regime is observed when these two length scales
are comparable, i.e. when the front thickness is of the same order of magnitude as
the correlation length of the permeability heterogeneities. In this case, mobility and
permeability effects strongly interact with each other, and the permeability hetero-
geneities can cause an intense amplification of the mobility induced fingering. As a
result, we can conclude that the resonance phenomenon observed in the unidirec-
tional calculations by Homsy and coworkers can occur in quarter five-spot flows as
well. As is clearly demonstrated by our simulations, this resonance can lead to large
overall changes in the displacement process and its breakthrough recovery. In some
sense, the minimal recovery at intermediate values of the correlation length [ of the
heterogeneities can be interpreted as indicating the transition from the small-/ regime,
which is dominated by dispersion and fingering effects, to the large-/ regime, where
channelling becomes dominant.

A particularly important consequence of the resonant coupling between the mobil-
ity and permeability vorticity modes is the minimal breakthrough recovery that we
observe at intermediate correlation lengths of the permeability field, if the dimension-
less flow rate in the form of Pe is held constant. In addition, the variations between
individual random realizations become largest at intermediate correlation lengths as
well. In particular the earlier effect is due to the optimal amplification of the viscous
fingering instability mechanism by the permeability related vorticity when the viscous
length scale is comparable to the correlation length of the permeability field. In this
context, there is a further interesting and perhaps somewhat counterintuitive aspect
that needs to be pointed out: If the diffusive length scale is held fixed, and the cor-
relation length is varied from values much larger all the way to values much smaller
than the diffusive length scale, the resonance phenomenon is observed at intermediate
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values of the correlation length. However, if the correlation length is held constant,
and the diffusive length scale, i.e. the Péclet number, is varied from very small to large
values, no ‘optimal behaviour’ occurs, as the above (5, Pe)-curves show. This discrep-
ancy can be explained as follows. If Pe is held fixed, identical homogeneous flows will
be generated in the asymptotic limits of very large and very small correlation lengths.
On the other hand, if the correlation length is held constant, different flows emerge
for very large and very small Pe-values. A thick front with little small-scale structure
will form for low Pe-values, whereas strong fingering with a tendency towards early
breakthrough will ensue for large Pe-values.

The above observations regarding the importance of the ratio of correlation length
to diffusive/dispersive length scale strongly suggest that accurately capturing the front
dynamics requires accounting for both of these correctly. This applies both to direct
simulations such as the ones reported here, and to calculations based on a model of
the small scales. Allowing for the proper interaction between these two length scales
will be essential in any attempt to accurately predict displacement processes in which
the interaction of mobility and permeability effects is important.

As expected, and in line with the observations by Tan & Homsy (1992) for
unidirectional flow, the simulations display a decrease of the breakthrough recovery,
ie. an earlier breakthrough time, as the variance s of the permeability variations
increases. This confirms earlier observations by Ewing et al. (1989). However, this
tendency towards earlier breakthrough is far more noticeable in some parameter
regimes than in others. Surprisingly, for weak mobility contrasts, we have even
identified some cases in which permeability variations have very little influence on the
breakthrough recovery. We furthermore observe that lower values of s usually cannot
change the tendency for a dominant finger to evolve along the diagonal direction,
especially for relatively small correlation lengths. Only for higher variances, and for
larger correlation lengths, do we observe situations in which an off-diagonal finger can
become dominant. It is important to emphasize the nonlinear nature of the selection
processes at work. This allows the flow to develop dominant fingers along entirely
different channels as s is raised, instead of fingers that merely propagate faster along
the same channels.

Figure 29 shows the development of the mixing length, defined in Part 1, as a
function of the governing parameters. For Pe = 400, s = 0.5, and [ = 0.1, we
observe the growth to switch from an approximately ¢'/> behaviour for the dispersion-
dominated displacement at R = 0 to faster than ¢ for larger R-values. Similar trends
are found as well when we vary the other parameters: as the flow transitions from
the diffusion/dispersion regime to one in which fingering and/or channelling are
dominant, the growth rate increases to faster than linear with time. Keeping in mind
the goal of predictive capabilities, it is also of interest to revisit the heterogeneity
index (Gelhar & Axness 1983; Araktingi & Orr 1988; Waggoner et al. 1992)

H =51 (4.1)

in the light of the above findings. The hope is that this index will account for the
effects of both the variance and the correlation length, so that recovery data, for
example, will depend on H only, and not on s and [ separately. Figure 30 depicts
the recovery data for our simulations at Pe = 400 and R = 2.5, for a variety of
s- and [-values. While there is significant statistical scatter in our data, it does not
appear that H is well suited for reducing the number of independent parameters. If
the recovery data depended on H only, the simulations for (s,1) = (0.5,0.5), (0.8,0.2),
and (1,0.1) should result in similar values, which obviously is not the case. This does
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FIGURE 29. Mixing length growth with time. As the flow transitions from the diffusion/dispersion
regime to one in which fingering and/or channelling are dominant, the growth rate increases

from approximately t'/? to faster than linear with time. (a) Pe = 400,l, = 0.1,s = 0.5;
(b)) R=2.5,1, =0.02,s =0.5; (¢) Pe =400,R = 2.5,1, =0.1;(d)Pe = 400,R = 2.5,5 = 0.5.

not come as a surprise, considering that earlier we found the recovery to decline
uniformly with increasing permeability variance, while at the same time it depends
non-uniformly on the correlation length.

It should be mentioned that there are several directions in which the scope of the
present investigation should be extended. One such extension concerns accounting for
the effects of anisotropic dispersion, cf. Ewing et al. (1989) as well as the unidirectional
simulations by Zimmerman & Homsy (1991, 1992a). While in the present investigation
only molecular diffusion is accounted for, velocity-induced dispersion is known to
be an important mechanism in realistic porous media flows, and its effect on the
conclusions reached above will have to be evaluated in detail. The above authors
based their anisotropic dispersion model on the analysis of constant viscosity flows
by Taylor (1953). However, more recent investigations for flows involving viscosity
contrasts (Petitjeans & Maxworthy 1996; Chen & Meiburg 1996; Yang & Yortsos
1997) should allow for a more realistic modelling of Taylor dispersion effects. A second
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topic of interest concerns the effects of three-dimensionality (Zimmerman & Homsy
1992b). For unidirectional flows, these authors report the interesting finding that, in
the absence of gravity and correlated heterogeneities, the presence of a third dimension
does not lead to a qualitative change of the mechanisms observed in two dimensions.
These observations are in line with findings by Tchelepi et al. (1993) and Christie,
Muggeridge & Barley (1993). Zimmerman & Homsy trace this behaviour to the
equation governing the vorticity, which does not contain a vortex stretching-like term.
This term commonly causes strong qualitative differences between two- and three-
dimensional flows governed by the Navier—Stokes equations. Finally, modifications to
the dynamics of the displacement process due to non-monotonic viscosity profiles will
be of interest (Hickernell & Yortsos 1986; Manickam & Homsy 1993, 1994). This
issue is addressed in Part 3 of the current investigation (Pankiewitz & Meiburg 1998).

There also remains the question as to how the dynamics of the displacement
process is affected by gravity. This issue is addressed by Christie et al. (1993) as well
as by Tchelepi & Orr (1994). The simulations indicate that gravitational override
can have a significant effect on the breakthrough time even at moderate density
differences. Tchelepi & Orr (1994) show that the transition between fingering and
gravity-dominated flow occurs at smaller dimensionless density differences in three
dimensions as compared to two-dimensional flow. It will again be instructive to
analyse flows with density gradients in the presence of gravity on the basis of their
vorticity fields, by high-accuracy direct numerical simulations. An additional term will
now appear in the vorticity equation, and the dynamical evolution of the flow will be
the result of three interacting vorticity modes, as opposed to the two accounted for
in the present investigation.
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