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A suspension drop is a swarm of particles that are suspended in initially still fluid. When settling
under the influence of gravity a suspension drop may undergo a complex shape evolution including
the formation of a torus and eventual disintegration. In the present work the settling process of
initially spherical suspension drops is investigated numerically for low and moderate drop Reynolds
numbers Rg In the simulations a pseudospectral method is used for the liquid phase combined with
a Lagrangian point-particle model for the particulate phase. In the case of low Reynolds numbers
(Rey< 1) the suspension drop retains a roughly spherical shape while settling. A few particles leak
away into a tail emanating from the rear of the drop. Due to the use of periodic boundaries a
hindered settling effect is observed: the drop settling velocity is decreased compared to a suspension
drop in infinite fluid. In the Reynolds number range Re;< 100 the suspension drop deforms into

a torus that eventually becomes unstable and breaks up into a number of secondary blobs. This
Reynolds number range has not been investigated systematically in previous studies and is the focus
of the present work. It is shown that the number of secondary blobs is primarily determined by the
Reynolds number and the particle distribution inside the initial drop. An increased number of
particles making up the suspension, i.e., a finer drop discretization, may result in a delayed torus
disintegration with a larger number of secondary blobs. The influence of the initial particle
distribution as a source dhatura) perturbations and the effect of initially imposédttificial) shape
perturbations on the breakup process are examined in detail. To gain a better understanding of the
substructural effecténside the suspensipteading to torus breakup, the particle field is analyzed
from a spectral point of view. To this end, the time evolution of the Fourier coefficients associated
with the particle distribution in the azimuthal direction of the torus is studie®085 American
Institute of Physic§ DOI: 10.1063/1.1851428

I. INTRODUCTION two-phase flows are still poorly understood including funda-
mental aspects of particle-fluid interaction.

Particle suspensions are a special class of multiphase A simple yet fundamental example of particle sedimen-
flow systems that are frequently encountered in nature agtion is the behavior of a suspension drop settling in a fluid
well as in engineering applications. Natural occurrencegnder the influence of gravity. A suspension drop is an ini-
range from large-scale phenomena such as particle sedimefiy|ly spherical swarm of small particles that are suspended
tation in river beds or dust particle transport in the atmo-j, initially quiescent fluid(the term “drop” is used as a syn-
sphere, to small-scale phenomena such as atherosclerotic Qfﬁym for “suspension drop” throughout this papednly
posits in human blood vessels. Engineering applications arleecently the phenomena observed when a suspension drop
numerous in the chemical and pharmaceutical industries ins'ettles under gravity have gained an increased interest.

cluding mixing, drying, and transport processes. Due to thI%Iitsche and Batchelgrnumerically investigated spherical

wide variety of applications a considerable effort has been . . . .
suspension drops falling under creeping flow conditions. In

directed to developing numerical methods for the simulationhis case the drop essentially retains its spherical shape while
of particle-laden flows. Examples include the trajectory and P y P P

the two-fluid approactiCrowe et all), Stokesian dynamics a few particles leak from the drop into a tail. Nitsche and

simulations(Brady and BossR, lattice Boltzmann methods Batchelor focused on the substructural effects of hydrody-

(Chen and Dooleh, statistical approaches using particle "@mic diffusion and dispersion. In their paper they give a

probability density functiongReeké), as well as direct nu- theoretical argument for the drop settling velocity and pro-

merical simulationsPan et al,® Glowinski® Glowinski et vide a semiempirical correlation for the rate of particle leak-

y 3 9 . . .

al.’). However, many phenomena observed in particulaté9€e from the blob. Machet al.” did computer simulations

and experiments of single suspension drops and pairs of trail-

Ipresent address: General Electric Global Research—Europe, Munich, GJDQ drops. They point out the cru<_:i.al role Of_ the initial drc_)p
many. shape. Under Stokes flow conditions an initially pearlike
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shape, for example, causes the suspension drop to deforfa Governing equations
Into a torus that eventually becomes unstablt_a and b_reaks UP" e consider a dilute particle suspension, in which the
into secondary blobs. These blobs deform into tori them-

S _particle concentration is small enough for interparticle colli-
selves resulting in a cascade process of blob deformatio

d break This behavi ¢ ion d : | ons to be neglected. Moreover, the particles are assumed to
and preakups. 1Nis behavior ol SUSpension drops 1S anaigs, i, ,ch smaller than the smallest relevant scales of the fluid
gous to that of liquid drops settling in a fluid of smaller

[notion. This allows for the particles to be modeled as point

denS|tyt. Afs opposid to kSl:]SpeES'On gropts,dat CODS'?erabgrces without resolving their finite size. The trajectory of a
amount of research work has been devoted to single an ngle particle is given by

trailing liquid drops and fluid rings including theoretical
studies(e.g., Kojimaet al’®), numerical investigationte.g., dY(t)

Koh and Leal* Pozrikidis), and experimentse.g., Bau- ——=u(1), (1)
mannet al’3). For a comprehensive review of previous work dt

:2 this field tﬁ%reaci‘er is r((jafe_rreclj tg Macl??:;tlIIZWalther a”‘?' whereY;(t) is the particle positiony;(t) the particle velocity,
oumoutsakos performed simulations of falling suspension (Ii(O):Yi(O) its initial position, and=1,2,3denotes the three

drops using a particle vortex method. Their results serve patial directions. The particle motion is governed by the

primarily for validation purposes of their numerical method. . . 5 . L
: 9 equation derived by Maxey and Rif&yin 1983, simplified
Nitsche and BatchelBras well as Machwet al® used feor small heavy particles,

Stokeslets in their simulations to represent the particles. Th
fIQW field was assembled as a ;uperposition of Stol_<es_ fI_ow do; (1) .

disturbances caused by the particles. This approach is limited - m,=_ == Brur (ULY(1),t] = vi(t) + (M, —my)g; (2
to the Stokes flow regime with vanishing drop Reynolds

numbers(Re;<1). The primary objective of our research with m, being the particle massy the mass of the fluid

work presented in this paper is to systematically inveStigat%isplaced by a particlex the dynamic viscosityr the par-
the settling behavior of suspension drops in a range of modt-. | di Y(t) 1] the fluid velocity at the instant
erate Reynolds numbefd <Re;<100. We aim at clarify- icle radius,u[¥(t), ] the fluid velocity at the instantaneous

ing the Reynolds number dependence of the instability Ie::xdE.)""rtiCIe position, andy; the gra\_/itational aqceleration. The
ing to torus breakup. Moreover, we examine in detail the roI(-:fS'rtStk""m?j secon(cji tertm on.ttflg rlglhft-hand side gorrle saond 0
of the (initial) particle distribution and the number of par- ; OKes drag and net gravitational force, respectively. Assum-
ticles inside the drop, as well as the effect of initial shapeIng very small partlcles_ anql_relatwely Iong fluid tw_ne s_cale_s,
perturbations. These issues have not been addressed in p g.(2) can fulrther be simplified by neglecting particle inertia
axeyet al.™). In this case the particle motion is governe
( yetal®). Inth the particle mot g d

vious studies. b istead librium bet drag f h
The paper is organized as follows. In Sec. Il, the gov- _ya,qua5|s eady equilibrium between drag forces on the par-
|§:Ie s surface and forces due to gravity,

erning equations are presented, along with the dimensionleé
parameters and the basic features regarding the numerical

simulation approach. In Sec. Ill validation results for the vi(t):ui(\?(t),t)+7pgi<1—£>. (3
case of Reynolds numbers much smaller than unity are Gp

given. In Sec. IV, we will at first focus on unraveling the

physics of suspension drops for Reynolds numbers up to thg]ir(fahj—i%zgg’r/] Sisgﬂezge?r?éeSatrTiilszzlﬁzls?t;esponse tinge,
. ) : 0 3
order of 100, which represents the primary goal of the The fluid motion is governed by the continuity equation,

present investigation. However, in the course of this analysis,
a number of questions arise that are intimately linked to the |
features of the numerical simulation technique. Therefore, — =0, (4)
these numerical issues will be addressed in a brief manner as %

well. Towards the end of Sec. IV the results of a spectral

analysis of the settling drop and torus are presented, whicﬁndatgoeu'rr;gotr:fr;ersz?Leseﬁ?i\é'er,;lsetozertsicfzeqslj'?gggbzggT:rgteed
provide additional insight into the time evolution of the par- y P 9 P '

ticle field. Section V summarizes our findings and provides au o 1ap . 2u

the main conclusions of the investigation. Uy — =

1
p + P, (5)

14
(7Xm o &Xi (?Xmﬁxm o
with the two-way coupling term

II. SIMULATION APPROACH d

n
BTl 0~ -
; - fiP == === (uy(Y) — v ) 8% = Y; ). (6)
The numerical method employed to solve the governing my =1

equations is known as the Eulerian—-Lagrangian approach for

particulate flows. The fluid equations are solved in an EuleHere,v=pu/ 0 is the kinematic viscosityag is the number of
rian framework using a Fourier pseudospectral method(rea) particles. The Diracs function indicates that the feed-
whereas the particles are individually tracked along their traback force of particle] is applied as a point force at the
jectories. instantaneous particle positiof ;(t).
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B. Dimensionless parameters Uq
, i ) N Fr=—. (10
There is a total of seven independent physical quantities VgR

that uniquely describe the properties of a suspension droR
settling in a fluid under gravity. The fluid is characterized by
its densityp and its dynamic viscosity. A single spherical
particle is characterized by two quantities, e.g., the partlcled
massm, and the particle radius Alternatively, one or both
of these two could be replaced by the particle dengjyand
the particle volume/,,. The drop is also characterized by two

quantities, e.g., the bulk density and the drop radiug. locit d lenath | i
Alternatively, in the same way as for a single patrticle, theerence velocity and length scale, respectivelfres
=Uy,L=R). For the sake of completeness the governing

drop mass and the drop volume could be used instead. The
uations are restated in dimensionless form. All variables

force accelerating the suspension drop is characterized by s idered di ol ithouah not ificall
gravitational acceleratiog. From these seven quantities any are now considered dimensioniess, aithough not specitically

: ; . r labeled as such. The nondimensional particle equation of
others can be derived, i.e., the number(refal) partlclesnp,

the ratio of particle radius to drop radiksr/R, the initial motion reads

particle volume fractiond=n{e?, as well as the different dvi(t) 1

dimensionless numbers discussed below. According to the —t _( WLY().1] - vi(®) - |:,2<
BuckinghamlIl Theorem the number of independent dimen-

sionless groupings fully characterizing the system is thredvith gravity pointing in negative; direction. For inertialess
less than the total number of variabl@gven mass, length, particles Eq(11) assumes the form

and time as base dimensign$hus, we have to specify at 0

least four dimensionless parameters. All others can be de- v;(t) = u(t) - Fr2< —)5,3. (12
rived from those. S

The drop Reynolds number is based on a characteristith several preliminary simulations both Eq4.1) and (12)

very large Froude number means that inertia dominates
over gravity on the macroscopic scale of the suspension

For the numerical treatment the governing equations, Eq.
(1)—(5), are cast in nondimensional form by relating the vari-
ables to some reference quantities. A reasonable choice is to
use the drop settling velocity and the drop radius as the ref-

e
- =8, (11
Q)s (11

p

drop settling velocityJ4 and the drop radiuR, were used alternatively with only negligible differences
U.R found in the results. Unless otherwise mentioned @Q)
Re = - (7)  Wwas used in the simulations presented. The nondimensional
4 Navier—Stokes equation reads
and reflects the ratio of inertial to viscous forces on the mac-  du, au; p 1 Py ®)
roscopic length scal® of the suspension drop. Here, we 5 " UYm =7 ¥ oo o o T f (13)
— m | ed m¥im
follow Machu et al® who defineUy:= (0 - @)R%g/(ov) in
analogy to the terminal settling velocity of a solid particle With the particle source term
with densityo and radiusR. L
The particle Reynolds number is based on the terminal fi(p) - _QE_E (U (V) = v; ) 8% Yi ) (14)

settling velocity of a single particle),=7,9(1-¢/¢), and
the particle radius,
As mentioned above it is sufficient to specify four dimen-
Re. = Upr _ 26_3 R g sionless parameters to fully characterize the settling suspen-
%= y  9d &- (8) sion drop. We generally choose to specifyyR8t, Fr, and
0p/ 0 or @. If Eq. (12) is used only the dimensionless settling
The particle Reynolds number is required to be much |eS$eIocny St/F# needs to be given. In some cases we provide

than unity for the equation of motion, E(R), to be valid  additional parameters such as the number of particles for
(Maxey and R|Ie§75) It should be noted that, since the di- clarity.

mensionless parameters are coupled among each other, the
drop Reynolds number cannot be made arbitrarily large with€. Numerical implementation
out violating the particle Reynolds number restriction.

The Stokes number is the ratio of the particle respons
time to a characteristic time scale of the fluid motion.
accordance with Machat al. we define

In order to solve the governing fluid equations a Fourier
pseudospectral method is employ@ee, e.g., Orszéﬁand
Schumanret al!®). Each term in Eq(13) is Fourier trans-
formed. The resulting ordinary differential equation is dis-
cretized and numerically solved using a combined Runge—
Kutta Crank—Nicolson scheme for the time integration. In
this scheme the nonlinear terms are discretized according to
In consequence of our assumption of very small particles, tha third-order Runge—Kutta scheme whereas the linear terms
Stokes number was kept well below unity throughout theare implicitly treated using a second-order Crank—Nicolson

St=r1, 5R% 9

pR

simulations. scheme. The time step is computed according to a Courant—
The Froude number reflects the ratio of inertial to gravi-Friedrichs—Levy criterion(CFL). Continuity is ensured by
tational forces and is defined here as projecting the wvelocity Fourier coefficients onto a

Downloaded 25 Feb 2005 to 128.111.70.70. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



037101-4 Bosse et al. Phys. Fluids 17, 037101 (2005)

divergence-free basis. In order to avoid computationally ex- t=57.30 t=57.30
pensive convolution sums the nonlinear terms are computed ]
in real space rather than in Fourier space. Dealiasing accord-
ing to the 3/2 rule is used to minimize errors associated with
the nonlinear computatiofsee Canutet al.lg). The compu- 12t ; .
tational domain is a box of side length with periodic fr
boundaries. In each direction;,X,,%;, N equidistant grid _14t
points are used to compose the Eulerian mesh. The particle
equations, Eqs(11) or (12), are solved in real space using
the same Runge—Kutta scheme as for the fluid equation.
Since the computational domain contains no solid (A)
boundarles there Is .no echaniSmitnatvallid p_revgnt thEIG. 1. Suspension drop settling atf&®.1. (A) Particles leak away into a
partlc!es and th? fluid frqm gver more acgelerat!r_lg .'n thQail emanating from the rear of the drof®) Streamlines ir(x;,X;) plane at
direction of gravity. To maintain the system in equilibrium a x,=0 computed in a coordinate system moving with the drop’s center of
uniform pressure gradient is imposed in positkgedirection mfsqzoomed in. St=0.035, Fr=1.414p=0.02,n=n;=320,L/R=8, and
balancing the net weight of the particles per unit volumeN=54
(Maxey and Patéf). Settling velocities are computed with
respect to the mean fluid velocity x},-dlrgcnon. . the particles and the fluid being initially at rest. Unless oth-
To compute the Stokes drag term in the particle equa- . . . :
. . o . erwise mentioned the ratio of the box side lengtho the
tion, the fluid velocity is to be evaluated at the instantaneous ... . S . .
initial drop radiusR wasL/R=15 in all simulations for mod-

particle locations. In most cases trilinear interpolation was
erate Reynolds numbers.

used to this end. In order to study the influence of interpola- In the figures presented in the subsequent sections the

tion, fourth-order accurate Lagrangian polynomials as well__ . . . U
. . particles’ size may be larger than their actual size in the
as spectral summation were used alternativefy Sec. I\). : . S :

o S : X simulations and, ifn;>2000, no more than 2000 particles
Interpolation is also needed to distribute the particles’ feed- . P . . .
back forces onto the Eulerian mesh. Unless otherwise mer\{ym be shown for clarity. Also, the particle positions will be
tioned the feedback force of a articie was distributed to thed isplayed with respect to a fixed coordinate syst@wnpe-

. . : : P .. _tiodic xz-coordinatg to indicate the distance traveled by the
surrounding eight grid points by second-order accurate trilin-

. : . . . suspension drop. The initial position of the drop’s center of
ear interpolation. Alternatively, top hat interpolation was P P b P

used meaning that the full feedback force of a particle iSmass coincides with the origin of this coordinate system.

entirely attributed to the closest grid point.

The simulation of a very large number of particles can!!l: VALIDATION: LOW REYNOLDS NUMBERS
be computationally too expensive to be accomplished. TéRes<1)
circumvent this problem the point-particle approximation For drop Reyno|ds numbers much less than unity the
was augmented by introducing computational particles. EacBuspension drop as a whole settles under creeping flow con-
computational particle is considered a representative of gitions. Nitsche and Batchefbr(hereafter referred to as
cloud of particles, which are supposed to be in uniform moN&B) examined this case both numerically and theoretically.
tion with the computational particle. The number of compu-Here we use their results for comparison and validation of
tational particles can be chosen much smaller than that adur numerical method. N&B found that the drop retains a
real particles thus ensuring an acceptable computationgbughly spherical shape while settling. Only a few particles
time. The ratio of real to computational particles is denotedeak away into a tail emanating from the rear of the drop.
by Inside the drop the particles undergo a circulatory motion
similar to Hill's vortex. This behavior was exactly repro-

-4 =2 0 2 4

r

M = Ny (15) duced in our simulations. Figure 1 shows a suspension drop
gy’ settling at Rg=0.1 (Reynolds numbers Rec0.1 did not

show any different resultsThe parameters were matched to

where M=1. With the concept of computational particles one of the cases given by N&B in their Table I, i.&b,
included the numerical algorithm described changes onI)t0.0Z,n;:n[):320,e:0.0397(c0rresponding to St=0.035,
slightly. Each computational particle is tracked along its tra-Fr=1.414. The drop still has a coherent, roughly spherical
jectory according to Eq(l) and Eq.(11) or (12). The two-  structure and the tail of particles is clearly visible. This drop
way coupling term is altered such that the right-hand side otan be compared with that in Fig(k) of N&B for T=10
Eq. (14) is multiplied byM and the sum is evaluated over all (note their different definition of the dimensionless timk
computational particles; rather than all real particles,.  shows good qualitative agreement. Sectional streamlines at
For a more detailed discussion of computational particles th&,=0 (vertical box center planeare also provided in Fig. 1.
reader is referred to Elghobaélnbr Druzhinin?? The fluid is subject to a circulatory motion directed down-

At the beginning of a simulation the suspension drop isward near the drop’s vertical center line and upward in the
composed by randomly distributingfJ computational par- outer parts of the drop.
ticles within a spherical boundary of radil&s The drop is In the simulations of N&B the number of particles is
placed in the center of the periodic computational box withconfined to a maximum of 320, probably due to computer
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}\;\\b\
b))l .
il N

FIG. 2. Streamlines irix;,X;) plane atx,=0. Velocity computed ifA) a FIG. 3. Hindered settling of suspension drops. The drop settling velogity
fixed coordinate system ar{®) a coordinate system moving with the par- is shown as a function of the drop volume concentratibi Circles indi-
ticles’ center of mass. Re0.01, St=0.001, Fr=0.447p=0.02, ngzn; cate simulations performed. Dashed line extrapolates data @
=2095,L/R=8, andN=64.

settling effect, see, e.g., Sangani and Acri@nd Zick and

Homsy?*
limitations. A clearer picture of the underlying flow field The hindered settling of suspension drops is demon-
structure is obtained when a larger numbe«sshalle) par-  strated in Fig. 3, where the dimensionless drop settling ve-
ticles is used. The larger number of particles results in a finejocity vq/ U, is shown as a function of the drop volume frac-
discretization of the excess mass of the drop and a smooth€ibn c=4/37R%/L3. The parameters for the simulations were
drop “surface” (interface between clear fluid and suspen-matched to the N&B case witlP=0.02, n"°=nl =160, €
sion). Figure 2 shows an example of a suspension drop witk=0.05. Additionally, we specified Re0.1 (yielding St
2095 particles setting at Re0.01 (St=0.001,Fr =0.056, Fr=1.4140,/¢=1000. With increasing box size
=0.447 0,/©=1000. The streamline plot of the velocity (decreasing) the number of grid points was augmented ac-
field is shown in both a fixed coordinate system and a relacordingly in order to keep the flow field resolution inside the
tive one attached to the drop’s center of mass. Here, therop constant, i.e., the same ratio of grid points per drop
theoretical streamline pattern given by N&B in their Fig. 2 is radius in each direction. The larger the drop volume fraction
very well reproduced. As long as a particle stays inside thehe smaller is the distance between adjacent drops in the
region of closed streamlines it remains within the cohesiveeriodic array, which enhances the effect of decreasing ve-
structure of the drop. However, if a particle settles close tdocity. For example, increasing the drop volume fraction
the vertical center line it may get outside this region. Whenfrom c'/3=0.1 toc'/3=0.2 causes the settling velocity to de-
reaching the drop’s lower boundary the particle may becrease by=15%. In Fig. 3 it is seen that the decrease in
pulled outside the region of closed streamlines as a result dfettling velocity is nearly linear for small drop volume frac-
fluid drag forces pulling it sideways and upwaifdllowing  tions c*3. In the case of an array of solid spheres it can be
the streamlingsand gravity pulling it downward. Once out- shown analytically that, for smalkpher¢ volume fractions,
side the enclosing streamlines the particle is swept towardghe settling velocity depends roughly linearly o3
the rear stagnation point at the upper boundary and Ieal«(ﬂasimoto?5 Sangani and Acriv&é), Assuming that the
away into the tail due to its reduced settling velocity outsidesame linear dependence applies to hindered settling of sus-
the cohesive ensemble of partickke settling velocity of a pension drops, the data in Fig. 3 is linearly extrapolated to
single particle is typically several orders of magnitudec=0, which corresponds to a suspension drop in infinite
smaller than the settling velocity of the dpop fluid. This yields a settling velocityglupzloj, which is in

For a quantitative validation of our numerical approachgood agreement with the result by N&Bee Table)L

we examined the drop settling velocity. It is important to The drop settling velocity as a function of time is shown
recall that our numerical domain has periodic boundariesin Fig. 4 for the case o€/3=0.2. The drop is rapidly accel-
i.e., a regular three-dimensional array of suspension drops israted from rest to reach a quasistationary settling velocity
simulated rather than a single suspension drop in infinitéor a short period of time betwedn= 10 andt=~ 25 (it is this
fluid. As shown above the periodicity has essentially no eftime that was taken for the plot in Fig).3As soon as par-
fect on the principal features of the settling process and eveficles start leaking away into the tail the settling velocity
the details, such as the internal circulatory fluid motion, areslowly decreases.
well reproduced. However, we found that the periodic
boundaries do affect the drop’s settling velocity. Each drop
displaces fluid when settling downwards, which creates aRABLE I. Comparison of drop settling velocity with Nitsche and Batchelor
upward flow in its vicinity affecting the neighboring drops. (ref. 8.
The overall effect is a decrease in settling velocity. A similar
decrease in the settling velocity of irregular particle suspen- N&B: theory ~ N&B: simulation  extrapolatedFig. 3
sions and regular arrays of solid particles has been reporteq)glU
in the literature and is usually referred to as the hindered

o 10.6 10.5:0.1 10.7
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t=0.00 t=0.00
8 4
— -5 5
6 4
S of o of o
S~
S 4
5 -5
2 -5 0 5 -5 0 5
t=401.00 t=401.00
0 : ; .
0 20 40 60 80 -5
t/UA; =75
ot ° @
FIG. 4. Drop settling velocity as a function of time for .1 andL/R -80r
=8 (c'?*=0.2, cf. Fig. 3. 5
-85
-5 1] 5 -5 [ 5
Figure 5 shows a comparison between hindered settling/ (= 86400 o =864
rising of suspension drops, solid particles, and bubbles of the -5
same size. In order to be independent of the individual drop 18
(or particle/bubblg properties, the settling/rise velocities o o =
have been normalized by the corresponding terminal veloci- _1sob
ties in the limiting case of=0. Thus, in principle, the curve 5
for suspension drops shown in Fig. 5 should be independent — % x = % x
of specific particle and drop properties as long agR@.1. = 955.00 = 955.00
Some spurious effects may be present due to the coarse drop
discretization in terms of the number of particl@§=160). -5 .
The principal observation is that the hindered settling of a
regular array of suspension drops is less pronounced than o O el L
that of solid particles and more pronounced than the hindered
rising of bubbles. The analytical results for hindered settling 3 _igd
of liquid drops and porous particles can be found in -5 0 s = 0 B
Sangarfi®° and Mo and Sangafl.Based on the formula for =105000 t=1050.00
liguid drops (including the limiting case of bubblggpre- i
. h . = -165]
sented in the former work, the hindered settling of suspen-
sion drops can be approximated for small drop volume frac- o c ol A
tions by
v U 5| -175
S=1-176"7, (16)
Vg Uqg -5 0 5 - 0 5
. . . . t=1141.00 t=1141.00
where the terminal velocity of a solid particle of the same o
size as the suspension drop 4=(2/9 Uy=(2/9(p £ 175 f“'\
-0)R?g/ n. Equation(16) is also plotted in Fig. 5 and found i
of M il ‘ 'S
1 N 3 -185]
N -5 0 5 -5 0 5
. 08 X
=) NOSS FIG. 6. Typical sequence of deformations and breakup of a suspension drop
= N NG settling at Rg=1 (St=0.0076, Fr=4.47¢,/¢=1000, n;=n,=100 096,N
o';“ 0.6 1 ___. bubbles \\\ N =128). Left, top view; right, side view.
\..U ——- solid particles ™\ ) ) ) )
® 0.4 { — asymptote, Bq.(16) . to accurately describe the asymptotic behavior of suspension
o—o susponsion drops ™ drops for drop volume fractions'3<0.2.
R S Y IV. RESULTS: MODERATE REYNOLDS NUMBERS
cl/3 (1=Re, =<100)

FIG. 5. Hindered settling/rising of suspension drops, solid particles, an
bubbles. The drop settling velocityy is normalized by the extrapolated
settling velocityvg. The particle and bubble velocitiesare normalized by
their corresponding termin&Stokes velocitiesU; in infinite fluid. The as-
ymptote is an approximation for smallaccording to Eq(16).

- Reynolds number dependence

At drop Reynolds numbers Re 1 the suspension drop
undergoes a complex shape evolution with eventual breakup
into a number of secondary blobs. Figure 6 shows a typical
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t “.l T2
i £ t3
‘| i\ 1
‘.' \ 3 =2 -1 o0 1 2 3
'S 1
FIG. 7. Disintegrated suspension drdpft) and liquid drop(right) in an 0
experiment by Machet al. (Ref. 9.
T3 -1
. . -2 t2
sequence of deformations and breakup of a drop settling at t1 t3
Rey=1 (St=0.0076, Fr=4.47,0,/0=1000. The initially -3
spherical drop flattens into an oblate shape featuring a grow- 3 2 1 o0 1 2 3
ing dimple at its reaffor t=<280, not shown in the figuye 1

The dimple is formed because the fluid inside the drop below
the particles at the rea!tuppeb boundary is accelerated F!G. 9. Trajectories of three particlétl ,t2,t3) inside the suspension drop

. S shown in Fig. 6(Re;=1). The circle indicates the initial drop. The trajecto-
downwarq by Partlde drag, whereas t_he fluid in front of theries are computed in a coordinate system attached to the particles’ center of
drop is still quiescent. Thus, the particles at the rear settlghass.
faster than those at the leading front, which creates the

dimple shape. The dimple keeps growing inside the drop
such that the latter deforms into a torus. The torus grows

larger in diameter while traveling, before it eventually be-

t =358.00 comes unstable and disintegrates into two secondary blobs.
The last sample of the sequence in Fig. 6 looks remarkably
similar to two photographs of experiments at low Reynolds
numbers given by Machat al,, which are shown in Fig. 7.
In the experiments the initial conditions were certainly dif-
ferent from a spherical suspension drop with all particles at
rest. However, the key feature of the breakup process, the
formation of a torus as found in our simulation, was ob-
served in the experiments as well. A detailed discussion of
the influence of initial conditions will be given later in Sec. I.

Figure 8 shows a visualization of the flow field inside
and outside the settling torus from Fig. 6. The streamlines,
displayed on a vertical plane through the center of the com-
putational box(x,=0), reveal a ring vortex growing in diam-
eter over time. The ring vortex coincides with the particles
forming the settling torus. Att=358 the ring vortex is closed
in the sense that no streamlines pass from the ftlomtier)
stagnation point through its center to the ragppe) stagna-
tion point. At t=477, due to the growing ring hole, fluid
starts penetrating the torus from the front stagnation point. At
t=597 an open ring vortex is observed with streamlines pass-
ing through the center hole. This marks the beginning of
torus disintegration. The transition from a closed to an open
torus was observed by Macleti al. in both their experiments
and simulations. The difference is that they considered a low
Reynolds number case, jRe1, with an initially bell-shaped
drop whereas here, the same phenomenon occurs fpr Re
=1 and an initially spherical drop. As will be shown later in
this section, the transition from a closed to an open torus is
not observed for Reynolds numbers of about 100.

Figure 9 shows the trajectories of three particles in a
frame moving with the particles’ center of mass for the same

3 . _ case of Rg=1 discussed above. At the beginning the par-
FIG. 8. Transition from closed to open torus forjR&. Same simulation as ticles undergo a circulatory motion essentially the same as
shown in Fig. 6. The streamlines are computed in a coordinate system mov-

V- . . . . .
ing with the drop’s center of mass and are displayed on a vertical plane dnat ”’!d'cated by the_ Strea_‘m“nes in Fig. 8. As long as the
X,=0. For clarity only 300 particles are shown. torus is stable the circulation continues and, as seen in the
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t=1373.00 t=1373.00 t=382.00 t=382.00

Res=1 0

-5

=5

-5 0 5 -5 0 5

FIG. 11. Side and top view of the torus spanned by a “membrane” of dilute
particles at Rg=100.

Red =10 °

5 In order to study the Reynolds number dependence of
the disintegration process, the Reynolds numbej Was
successively increased while keepit@mos) all other pa-
rameters constant. We chose St=0.01, Fr=06,0.02, ng
~108 000,M =7, and the same initial particle distribution in
all cases. From Eq9) it is clear that the density ratio has to
be decreased accordingly if the Stokes number is to remain
constant with increasing ReThe grid resolution was set to
N=128.

Figure 10 shows disintegrated suspension drops for
Rey=1, 10, 20, 40, 60, 80, and 100. It is observed that the
number of secondary blobs increases with increasing Rey-
nolds number. For Re=1 two secondary blobs are obtained,
for Re;=100 the torus breaks up into seven major and one
minor secondary blobs. The shape evolution of the initially
spherical drop and the torus before breakup is similar to that
shown in Fig. 6 in all cases. However, for Rel the torus is
usually spanned by a “membrane” of dilute particles as
shown in Fig. 11.

Red =20 °

-5

Red =40 °

-5

Reg = 60 A comparison of th&€nondimensionaldrop settling ve-
locities for different Reynolds numbers is provided in Fig.
12. It must be emphasized that the settling velocities are
inherently affected by the hindered settling effect discussed
in the previous section. Therefore, the velocities have been
e{f a S 2 normalized by the maximum settling velocity for RRel.
2 ? AW This allows for a relative comparison between different Rey-
Req =80 ¢ é‘ 41 &'ﬁ 3 nolds numbers. It is seen that the higher the Reynolds num-
. Ly o . ber the smaller are the settling velocities. After reaching a
& peak value shortly after the particles are released the settling
D oo T s velocities decrease gradually as the torus is forming and ex-
panding. This decrease is stronger and occurs at increasingly
5 ?ﬁrﬁ@-,_k 20 shorter times for larger Reynolds numbers reflecting a faster
Rey;=100 %5 .~ -
%ir.: .-"m 1
K aid -2
-5 0 5 -5 0 5

1)

(A) (B)
FIG. 10. Disintegrated suspension drops at different drop Reynolds num-
bers. (A) Top view, (B) side view. S$4=0.01, Fr=10,$=0.02, andnfJ
~108 000.

U4 / v (Red

top view of Fig. 9, the particles are not displaced in azi-
muthal direction of the torus. This indicates that the flow
field remains axisymmetric with respect to tkeaxis. Only

when the bUIgeS form and the torus starts dlsmtegre(mflg FIG. 12. Comparison of drop settling velocities for different Reynolds num-

F:955' Fig. 2, _partides are entrained towards the blobs beyers rg=1,5,10,20,40,60,80, 10Re, successively increasing from top
ing formed(trajectoryt2). down). Same simulations as in Fig. 10.
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11 torus. This keeps the torus and the membrane a compact
14 structure. When the ring vortex detaches from the torus,
however, the membrane of particles starts bulging towards
0.9 1 _ o . .
. the rear(t=286). This is due to the smaller settling velocity
§ o8y [/ Reg= of single particles within the membrane compared to the set-
0.7 ] ——— Rey=5 tling velocity of the compact torus. In the further course of
—— Reg=10 the settling process the ring vortex gradually dissipdtes
06 — Reg>10 =382). Since the particle torus and the ring vortex no longer
05 : : coincide, there is no particle-fluid interaction that could sus-
0 200 ¢/ 400 600 tain the vortex and the latter eventually disappears com-
Ua

pletely (t=477).

FIG. 13. Time evolution of the mean radial particle distance from the center ~ AS pointed out by Machet al. and otherde.g., Joseph
of mass RY for different Reynolds numbers, Rel,5,10,20,40,60, and Renard) the disintegration of the suspension torus is
80,100. Same simulations as in Fig. 10. due to a Rayleigh—Taylor-type instability. In fact, in a first
approximation the suspension can be considered a pseudolig-
uid of increased densitg. In this case small perturbations of
the interface between the heavier pseudoliquid making up

e torus and the lighter clear fluid will amplify and eventu-
ally lead to breakup. For a detailed discussion of the classic
a%ayleigh—Tay;)Pr instability the reader is referred to
. . . handrasekhdr. In the case of a “real” suspension, i.e., a
asymptotlc behawor for Re0(100. In orde_r o determine particle-fluid mixture as in our simulations, r'[Jhere is no dis-
the time required for the drop to deform into a torus, we;. ; . .

) e m . . tinct interface between torus and clear fluid, but the instabil-

define a radiu®;' as the mean distance of the particles to the.

. . : ity mechanism works in a similar way as for two fluids of
center of mass in théx,,x;) plane. The timeTq., required g o qansiny A not perfectly uniform particle distribution
for Rg" to reach the initial drop radiuR is taken as a char- Y. P y P

P . : results in a locally varying mixture density of the suspension,
acteristic measure for the deformation of the drop into a .

; : ) . which causes some parts of the torus to settle faster than
torus. Figure 13 shows the time evolution EE“/R until

R,T/Rzl for different Reynolds numbers. The corresponding?the,fs' Th|.s creates p_erturb.atlons of t.he tory.s shape an_d sur-
characteristic timesT, ., normalized byT, (Re,=1), are ace” and is the.startmg. point of the instability mec_:hanlsm.
T d-v T =t ’ In the following sections we address the question: What
given in Table Il. The principal observation is that the defor- . . .
determines the breakup behavior of a suspension drop at a

mation of the drop into a torus occurs the faster the higher . 5 : .
the Reynolds number. Again, towards 400 an given Reynolds number? To this end we study the influence

. - . of the initial particle positions, the effect of initially imposed
asymptotlc beﬂawor IS fount_j. In the case oRe the_t|me drop shape perturbations, as well as the influence of the drop
evolution of R} reveals a slightly pulsating expansion and

. . . mass discretization in terms of the number of particles. With
contraction of the torus. This behavior was also observed b¥es ect to the instability leading to torus breakuo we trv to
Machuet al. for vanishing Reynolds number and a pearlike b y 9 b y

A distinguish as clearly as possible between perturbations of a
initial drop shape. “physical” nature, which are our primary interest, and those
Figure 14 shows the time evolution of the flow field for bhy ' P y '

. : . of a “numerical” nature. The former can also be present in a
a suspension drop settling at Re100. The streamlines are . .

. ) . . .~ _real-world experiment, whereas the latter are inherent to the
computed in a coordinate system moving with the particles

. numerical procedure. It is important to distinguish between
center of mass. They are shown on a vertical center plane at

~ . physical” and “numerical” sources of perturbations because
X,=0. As opposed to the case of {2 the particle torus and both may affect the breakup behavior of a suspension drop in

the ring vortex do not coincide and the corresponding tran; umerical simulations. Therefore, in order to demonstrate

sition from a closed to an open torus is not observed. Inste . . .
. S . . at our results are not tainted by numerical effects, the in-
the circulatory motion inside the initial drop starts extending . : o )
fluence of the grid resolution, the periodic boundaries, and

towards the rear of the flattening drop shortly after the re-, . . . . )

" . the interpolation used in the computation of the particle feed-
lease(t=95). As the drop deforms into a torus spanned by ay : : .

. . ack force will be discussed briefly.

membrane of particles, the ring vortex moves completely
outside the torus and the streamline structure looks similar to _ ) o
the wake of a circular flat plat=191). As long as the torus 1. Influence of the initial particle distribution
and the ring vortex coincide at least partially, the streamlines  The crucial role of the initial conditions has been pointed

at the rearn(upper boundaryof the torus point towards the out by several author&.g., Machuet al.’ Kojima et alld),

disintegration. For Rg=1 the decrease of the settling veloc-
ity is considerably weaker than in the other cases. This is du
to a relatively slow deformation of the drop into a torus,
which then remains stable for a long period of time. Toward
Re ;=100 the velocity curves become similar suggesting

TABLE II. Characteristic timed 'y, for the deformation of the drop into a torus.

Rey 1 5 10 20 40 60 80 100

Tt/ Te(Rey=1) 1 0.278 0.190 0.154 0.146 0.144 0.146 0.149
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FIG. 14. Evolution of the flow field for a suspension drop settling at Re
=100. The streamlines are computed in a coordinate system moving with the
drop’s center of mass and are displayed on a vertical plaxg=a. From

Phys. Fluids 17, 037101 (2005)

t=1265.00 t=1218.00

-180 ﬁ 175 ,?ﬁ‘&
(A) =18y J ‘ 180 b a

—190] —185[
Red =1 N t= 1;65.00 ’ ” t=l:ls.00 ’
5 5|
(B) 0 6:";9 0 f
-5 5|
i3 0 5 -5 0 5
t="716.00 t=716.00
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a) |
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Req = 100
5
(B) 9
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FIG. 15. Disintegrated blobs for different initial particle positiots) Side
view, (B) top view. Top, Rg=1, St=0.01, Fr=4.5¢,/0=1000; bottom,
Re;=100, St=0.01, Fr=44.79,/¢=1000.N=64 in both cases.

primarily with respect to the initial drop shape. Macéiual.
showed that even at very low Reynolds numberg<Re an
initial shape different from a sphere, for example, a bell-
shaped drop, deforms into a torus with subsequent breakup.
We found that the particle positions within the initial drop
also affect the details of the breakup process and may even
yield a different number of secondary blobs. Figure 15 shows
two examples of simulations with different initial particle
positions. The initial distribution was uniformly random in
all cases. For Rg=1 the number of secondary blobs did not
vary for different initial particle positions, but the location of
the blobs was different. For Re100 the details of the par-
ticular breakup pattern were different for different initial par-
ticle positions and even the number of secondary blobs var-
ied between five and seven. These results demonstrate that
the instability is very sensitive to the details of the initial
conditions, and corroborate the idea of the particle distribu-
tion being the primary source of perturbations.

In order to shed more light on the role of the particle
distribution, a set of simulations was performed with initially
perturbed drop shapes. Perturbations due tdithigal) par-
ticle distribution are termed “natural” in the following,
whereas the initial shape variations are called “imposed arti-
ficial” perturbations. Starting from a spherical shape with a
uniformly random particle distribution, the particles’ radial
position with respect to the drop center line in the vertical

top to bottom the view frame zooms out of the expanding suspension toruglirection was shifted according to
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t=0.00 t=0.00 1=716.00 1t=716.00 1=716.00

1 1 )

o o (A) =

-1 -1 =5

o0 1 o0 1

FIG. 16. Initially perturbed suspension drop. Top viéleft), side view ]
(right). A;=0.00FR, |=6. (B) o
|

Ar = A cogl40). (17)

Here Ar is the radial shift of the particle position in the
(x1,%) plane with respect to the drop center link, is the
perturbation amplitudd is the number of periods along the
circumference, and is the azimuthal angle. Figure 16 dis- (A)
plays an initially perturbed suspension drop. Clearly, this is
only one possibility to introduce controllédrtificial) pertur-
bations allowing us to trigger a certain breakup behavior of
the suspension drop.

Figure 17 shows disintegrated, artificially perturbed s
drops withls=6 (Rey=100, St=0.01, Fr=44)7 The pertur-
bation amplitudeA; was varied between (Rland 0.00R. (B) 9
The last drop shown in the lower two rows is an unperturbed
reference case. The number of particles w§1529433 re- =
sulting in an initial mean particle spacing ¢t 0.05R [de- (d) (e) (f)
fined asd=(4/3nf)'R]. If the artificial perturbation level
is large enough, the forced perturbations dominate the disin=g. 17. Disintegrated initially perturbed drops. 400, St=0.01, Fr
tegration process and the drop breaks up into six equally44.7,0,/0=1000,n5=29433,M=2251,N=64, andl;=6. (A) Side view,
spaced secondary blobdirst and second case with,  (B)top view;(a A=0.1R, (b) A;=0.0%R, (c) A;=0.02R, (d) A;=0.0R, (¢)
=0.1R andA.=0.0R). If the artificial perturbation _amplitudg Qs:gggﬁ and(f) unperturbed reference case. Initial mean particle spacing
drops well below the order of the mean particle spacing
(As=0.00R), the natural perturbations clearly predominate

and the disintegrated structure differs only little from the .\ this drop discretization affects the breakup behavior of
unperturbed reference case. Between these two cases, i@ syspension drop by varying the number of particles. The
natural and the artificial perturbation level are apparently ofgme integral drop properties, such as the bulk density and
about the same order and none clearly prevdls=0.01R). e particle volume fraction, can be realized by either a large
Here, as in other parts of the paper also, we rely on visughymper of small particles or a smaller number of larger par-

judgment only, primarily for lack of measurable quantitiesicies. Thus, a different drop discretization in terms of the

that better characterize the entire breakup process. number of real particles involves different particle properties,

~ Aslong as the artificial perturbations are large enoughe g the Stokes number increases with the particle radius
e, of the order of the mean particle spacing, differentnqer otherwise same conditions. For the case gERE0 a

breakup patter_ns can be triggered depending on the paramga; of simulations was performed with an increasing number
eterls. For Rg=100 any number between three and ten SeCqf req| (and computationalparticles. Since for Re=100,
ondary blobs could be forcddame parameters as in Fig. 17,

A;=0.09R). Three examples are shown in Fig. 18. These re-
sults further illustrate the crucial role of the particle distribu- 1=716.00 1=71600

-5

tion as a source of perturbations. The interplay of natural and B
artificial perturbations will be revisited within the spectral )
analysis of the settling torus in Sec. IV B. 0 0 . :‘xg
-] -5 &""59’
2. Influence of the number of particles e = 0

The excess mass of the suspension drop with respect to
the surrounding clear fluid is concentrated into the points o
where the particles are located. In this sense the drop can [5&- 18- Forced number of secondary blobs(atificially) perturbed sus-

. . . . Eensmn drops, Re100, St=0.01, Fr=44.79,/¢=1000; (a) 1s=4, (b) I¢
regarded as discretized in terms of the number of particlesg () 1s=10; A;=0.0FR in all cases. Naturaunperturbegibreakup into six

making up the suspension. Now we focus on the questiomajor secondary blobs as in Fig.(1)7 N=64.
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TABLE I1l. Number of computational and real particles and Stokes numberrefined drop discretization. Instead of choosing a fixed ratio
fgr:g'g;'?r?dﬁ:wl'g'ovary'”g drop mass discretization4Re00, Fr=44.7,  \1 the number of computational particles can be augmented
' : while keeping the number of real particles constant. The ratio
c 509 645 1P 4% 108 M has to be adjusted accordingly. In this case the particle
properties do not change and it is obvious that this situation
could not be reproduced in a real-world experiment. How-
ever, the effect of a finer drop mass discretization as “seen by
the fluid” can as well be studied this way. We conducted a set
of simulations with the number of computational particles
St=<0.01, andP=0.02 the resulting numbers of real particles successively increased from aboux %0 to 4x 10° and a
are very largeof order 1§) we chose a fixedM=130. The fixed number of real particles[)z6.625>< 10" (Regy=100,
Froude number was Fr=44.7 in all cases. Table Il shows th&t=0.01, Fr=44.7N=128. The results revealed the same
different parameters. effect of a refined drop discretization as shown before. The
Figure 19 shows the results. It is observed that the numtorus disintegration is delayed resulting in an increased num-
ber of secondary blobs increases with an increasing numbévser of secondary blobs.
of particles used in the simulation. There are two effects of a  The findings discussed above necessitate a comment on
finer initial drop discretization{(i) the excess mass of the the comparison between experiments and simulations. In a
suspension is more uniformly distributed throughout thereal-world experiment, in which a suspension drop is re-
drop, and(ii) the (natura) perturbations introduced by the leased intdroughly) quiescent fluid, the initial perturbations
discrete particle distribution extend to a smaller length scal@re not known. The particle distribution inside the suspen-
due to a decreased mean particle spacing. Consequently, thi®n drop will certainly not be perfectly uniform and the drop
torus remains stable for a longer period of time, the visiblewill not have a perfectly well defined shape. Moreover, it is
breakup sets in at a later tinfieote the times given in Fig. 19 likely that other perturbations introduced by the apparatus to
for the fully disintegrated drops Comparison of the top release the suspension drofpghatsoever its functional de-
views of caseqa) and (c) in Fig. 19 also reveals that the tails) will be present. Thus, it is virtually impossible to match
diameter of the disintegrated torus is larger in c@$ewhich ~ experimental and numerical conditions. Numerical simula-
provides additional room for a larger number of secondarytions can predict a range of secondary blobs to be expected
blobs. It is concluded that for Ge100 an increased number and possible breakup patterns. For example, in the case of
of real (and computationalparticles, i.e., a finer drop dis- Re;=100 it is likely to obtain approximately six secondary
cretization, results in a larger number of secondary blobs dublobs. This number, however, may vary significantly in a

n’ ~66X 10° 260x 10° 520% 10°
St 0.01 0.004 06 0.002 53

to a delayed torus breakup. real-world experiment due to unknown perturbations and dif-
A similar set of simulations with an increasing number ferent initial conditions.
of computational particles was performed foryRé. In this The strong sensitivity of the instability to the details of

case the torus always breaks up into only two secondarthe initial conditions is a notable characteristic of the drop
blobs independently of the number of particles. This suggestdisintegration process. As already mentioned the growing
that the range of possible disintegration patterns featuring perturbations in our simulations may not only be of a “physi-
certain number of secondary blobs increases with increasincal” nature, such as a not perfectly homogeneous particle
Reynolds number. distribution, but also due to numerical effects. In the remain-
It is worth noting that the concept of computational par-ing part of this section numerical influences are shown to be
ticles offers a second possibility to examine the effect of anegligible thus confirming the results presented above.

t=668.00 t=764.00 t=773.00 3. Influence of the periodic boundaries

As has been shown for the low Reynolds number case,
Rey=0.1, the periodic boundaries have a considerable effect
on the drop settling velocityfhindered settling Thus, it
might be expected that they affect the breakup process in
some general way such that, for example, the number of
secondary blobs is influenced by the periodic boundaries. On
the other hand, the substructural effects of the particle-fluid
interaction, the internal circulating motion, was well repro-
duced in the low Reynolds number case despite the periodic
boundaries. This would suggest only a minor influence of the
periodicity on the disintegration process. Figure 20 shows
disintegrated drops from two simulations with different in-
(a‘) (b) (c) terdrop spacings under otherwise same conditiORs,

= o N B c_ S
FIG. 19. Influence of the number of computational particlég. Side view, =100, 5t=0.01, Fr=44.%,/ 0= 1000,n,~ 10°, same initial

(B) top view of disintegrated dropsa) ng:509645,(b) n‘;:zx 108, (c) partiC|e d|Str|bUt|0l)| In the first case 12';89r|d pOintS were
n5=4x 10F. Rg=100, Fr=44.7M=130, andN=128 in all cases. used withL/R=15, in the second case Z5@rid points with

(B)

-5

Downloaded 25 Feb 2005 to 128.111.70.70. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



037101-13  Numerical simulation of finite Reynolds number Phys. Fluids 17, 037101 (2005)
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FIG. 20. Influence of periodic boundaries. Two simulations a§=R€0  FIG. 21. Influence of interpolation(A) trilinear fluid interpolation,(B)
(St=0.01, Fr=44.7¢p=0.02 with the same initial particle distributions but fourth-order Lagrange-polynomial fluid interpolation, afj spectral sum-

different interdrop spacingA) Side view,(B) top view. Left,L/R=15,N mation. In all cases trilinear interpolation of the particle feedback force was
=128; right,L/R=30,N=256. The ratio of grid points per drop radius was used. Rg=100, St=0.01, Fr=44.7¢,/ =1000, n,=7337, M=9030, and
equal in both simulations. N=64.

L/R=30. The higher grid resolution in the second case entral interpolation, respectively, are negligible. In the linear
sures a fixed drop resolution in terms of grid points per drocase(a) the number of secondary blobs is the same ab)n
radius. The disintegrated torus looks very similar in bothand (c), however, their location is somewhat different. The
cases. Not only is the same number of secondary blobs olprincipal features of the settling process, such as torus for-
tained, but also the details are very similar. It is concludedmation and breakup, are well captured in all three cases.
that the periodic boundaries have a negligible effect on th&siven the increased computational cost of Lagrange polyno-
breakup pattern of the suspension drop. Thus, the Reynoldaial interpolation and spectral summation, it is reasonable to
number dependence and the role of the particle distributionesort to linear interpolation. It should be noted that the in-
discussed above should as well apply to the general case offi@ence of interpolation is significantly reduced if higher grid

single suspension drop in infinite fluid. resolutions are used, e.@=128 as in the simulation shown
in Fig. 6.
4. Influence of interpolation We also used first-order top hat interpolation to distrib-

ute the particle feedback force between the grid points. Here,

. Interpolation is _used o ppmpute the flu!d v_elocny at thethe full feedback force of a particle is attributed to the closest
instantaneous particle positions and to distribute the par-

ticles’ feedback force from the particle positions to the gridg.rld point in its vicinity. The reSl.Jlts Q'd not show any major

) . . .g_|fferences to those presented in Fig. 21.
points of the Eulerian mesh. There are several studies avai
able in the literature that examine the influence of interpola- ) )
tion in detail, primarily in turbulent particle-laden flows 2- /nfluence of the grid resolution
(e.g., Yeung and Poﬁ'@, Balachandar and Maxe?z, In numerical simulations reliable results are generally
Sundaram and Collin& Kitagawaet al>%. Here, we confine  required to be independent of the grid resolutigrid con-
ourselves to demonstrating that the use of different interpovergencé To find a grid resolution fine enough to capture all
lation methods does not significantly alter our results of susrelevant details of the disintegration process, a set of simu-
pension drop disintegration at moderate Reynolds numbersations with different numbers of grid points was performed.
For the fluid interpolation three different methods were em-Figure 22 shows examples for Re100. It was found that a
ployed: (i) trilinear interpolation,(ii) fourth-order Lagrange resolution of 64 grid points is sufficient to capture all char-
polynomials, andiii) spectral summation. These were usedacteristic features of the settling and disintegration process,
alternatively in a set of simulations with otherwise same pai.e., torus formation and breakup into a certain number of
rameters (Re;=100, St=0.01, Fr=44.70,/0=1000, n; blobs depending on the Reynolds number. However, it is
=7337,M=9030. The grid resolution was set fd=64. In  worth noting that grid convergence in a strict sense is not
all cases linear interpolation was used to distribute the pargiven. The instability is very sensitive to only small pertur-
ticle feedback force to the surrounding grid points. In thebations of the suspension torus. A different grid resolution
case of spectral summation a third-order accurate Rungenvolves different relative positions between particles and
Kutta scheme was employed for both the linear and nonlingrid points resulting in a slightly different particle feedback
ear terms(instead of a combined Runge—Kutta Crank—force. This small difference is sufficient to produce different
Nicolson scheme Thus, the overall accuracy of the time details of the disintegrating torus. For example, the location
integration was augmented from second to third order. of the secondary blobs along the torus’ circumference may

The results are shown in Fig. 21. The hardly visible dif- be slightly different in one simulation withN=64 and an-

ferences between caséy and(c), i.e., Lagrange and spec- other one withN=128 and otherwise same parameters. Also,
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1=716.00 1=716.00 t=71600

=5}

w o © @

FIG. 22. Disintegrated blobs computed with different grid resolutions. From 10° -
left to right: N=16, N=32, N=64, andN=128. Rg=100.

107 45
10
the disintegration process tends to evolve a little more slowly N,
when using 62 grid points compared to 138
FIG. 24. Mean number of particles per segn@mnd standard deviation
as a function of the number of segmentsfor initial suspension drogny
and o are normalized by the total number of particlﬂ@. Re;=100, N

The initial particle distribution has been identified as the=64: andn;=509 645.
primary source of perturbations, which are crucial to the in-
stability developing during the drop settling process. To gain S )
a deeper understanding of the particle dispersion processi €nsure thaty; is a measure of the local particle number

involved, the particle field inside the settling drop and torusdensity. Figure 24 shows the mean number of particles per

was analyzed from a spectral point of view. To this end the®®9Mentn;(Ny and the corresponding standard deviation

p . . .
particle field was divided intd\, radially symmetric seg- ¢(Ns for a simulation with nj=509 645 (Re;=100, St
ments in thex,,X,) plane according to the sketch in Fig. 23.

B. Spectral analysis of settling drop and torus

=0.01, Fr=44.7,0,/¢=1000. In this case the suspension

The segments are similar to the slices of an orange. ThidroP breaks up into six secondary blobs. Thus, critefion

segmentation served as a tool to study the time evolution di¢duires the number of segmeis to be much Ia_rsger than
the particle distribution. the order of 10. Criterioriii) requires the ratlcnlnp to be

The idea is to define a measurable quandty.,t) as a rr_1uch smaller than unit{Fig. 24). For the subsequent analy-
function of the(discreté segmentation anglé, and timet SIS Ns=128 was chosen. o _
and to study the time evolution of the Fourier coefficients | "€ guantityq(és,t) is decomposed into its Fourier co-
associated with this quantity. Each segment contains a nunfficients according to
ber of particlesn’(6s,t) that may change during the disinte- . 1 _
gration process.pAs will be demonstrated in the following, it~ Akt = ﬁz q(6s e, (18
is instructive to use this number as the time-dependent quan- S Y
tity, q(6s,t):= ng(as,t). The number of particles per segment where ¢(k,t) is the Fourier coefficient associated with the
indicates whether particles accumulate in certain azimuthazimuthal wavenumbeée=-N,/2, ... Ng/2-1.Sinceq(fs,t)
regions. Another choice would be to use the mean particlés a real quantity, the coefficienigk,t) andg(—k,t) are com-
settling velocity per segmenty( 6s,t) :=v3(6s,t), which may  plex conjugates. Therefore, the time evolution of the magni-
indicate whether particles settle faster in certain regions. tude|q(k,t)|? needs to be studied for positikeonly.

A reasonable number of segmerts must meet two Figure 2%a) shows the time evolution of the Fourier
criteria: (i) the size of a segment should be much smallercoefficients associated with the number of particles per seg-
than the smallest scale of particle clustering to be capturement[q(as,t):ng(as,t)]. Fromt=100 on all Fourier coeffi-
along the torus’ circumferencéj) a segment should contain cients start growing. For 168t=<400 the increase is ap-
enough particles such thaj does not change significantly if proximately linear in the logarithmic-linear plot indicating an
the segment is slightly shifted in azimuthal direction. This isexponentially growing instability. The Fourier coefficient as-
sociated with wavenumbéi=6 clearly predominates. This
reflects a torus breakup into sfrajor secondary blobs, as
shown in Fig. 26c). The second-strongest mode is associated
with k=8 corresponding to the two additionahinor) sec-
ondary blobs in Fig. 2@). It is worth noting that only at
=~ 480 the formation of bulges becomes visible when observ-
ing the settling torugFig. 26b)]. The wavenumber selec-
tion, i.e., the onset of exponential growth with a certain
mode predominating, occurs at a much earlier stége
~150), when it is clearly impossible to predict the number
of secondary blobs by visual judgment onkig. 26a)].

Figure 2%b) shows the time evolution of the Fourier
FIG. 23. Axisymmetric segmentation of particle field(ix,X,) plane. The coefficients associated with the mean particle settling veloc-

) T .
dashed circle indicates the initial suspension drop. The amgles Y P€r _segmen[q(&s,t)—u3(¢9,.t)]. The overall picture ob-
=1,... N; denotes the azimuthal location of the segments’ center. served is the same as that in Fig.(&5 The predominant

Sa

- -
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10° o—o k=1
*—x k;2 (a)
10° |
o o
= =
£ 10 <
10°
10° Y
0 200 400 600 0 200 400 600
t t
o—o k=1 FIG. 27. Time evolution of the Fourier coefficients associated with the
(b)
10° | number of particles per segment for an initially perturbed suspension drop.
Same parameters as in Fig. 26 ahg0.01R, |;=4.
= 7
= 107
=3
b . in the unperturbed cag€ig. 25. As the instability develops,
10 the sixth mode “catches up” with the fourth mode such that
at t=716 the corresponding Fourier coefficients reach the
10™ ; same level. This results in a disintegrated drop with six sec-
0 200 400 600

ondary blobs as shown in Fig. 28. If the artificial perturba-
tion level is increase@A;>0.01R) the predominance of the
FIG. 25. Time evolution of the Fourier coefficients associated wdithe  fourth mode is more pronounced yielding only four second-
number of particles per segmenjy 4,1, and(b) the mean particle setting  ary blobs. IfA;<0.01R the fourth Fourier coefficient in Fig.
velocity vy(é,t). Same simulation as in Fig. 26. 27 drops below the sixth mode and the disintegrated drop
looks almost like the unperturbed one in Fig. 26.

mode is associated with wavenumbks6, the second-

strongest wittk=8, however only fot=500. Also, the point \, s MMARY AND CONCLUSIONS

in time when the wavenumber selection occurs cannot be

identified as clearly as in Fig. 28. The settling and breakup of suspension drops was inves-

Imposing artificial perturbations on the initial drop, as tigated numerically using a pseudospectral method for the

discussed in Sec. IV A, affects the time evolution of the Foudiquid phase and Lagrangian point-particle tracking for the

rier coefficients. This is shown in Fig. 27. Here, the initial particulate phase. The focus of the present investigation was

drop shape was perturbed according to Eh7) with A;  on the physical processes affecting the instability and subse-

=0.01R andls=4. The shape perturbation causes the fourthquent drop disintegration for moderate drop Reynolds num-

mode,k=4, to grow rapidly shortly after the drop is released bers.

and then prevail during the entire settling process. The sixth  The case of low drop Reynolds numbersyR®.1, was

modek=6, which is due to the natural perturbations causedised for validation purposes. Here, the suspension drop re-

by the particle distribution, starts growing in the same way agains a roughly spherical shape while settling under gravity.
A few particles leak away into a tail emanating from the rear
of the drop. The theoretical streamline pattern provided by

Ll St 1571600 Nitsche and BatchelBrwas very well reproduced in our

» simulations. Due to periodic boundaries in the pseudospec-
tral method a hindered settling effect was observed: the drop
(A) oy o settling velocity of a regular, three-dimensional array of sus-
i pension drops implied by our simulations may be consider-
o —— ably decreased compared with a single drop in infinite fluid.
t=172.00
5]
t=716.00 t=716.00
® 1 @ ,
-5
0}
-5 o 5 -5 o 5 -5 o 5
(a) (b) (c) .

-5 [1] 5 -5 [ 5
FIG. 26. Suspension drop &h) t=172, (b) t=480, and(c) t=716. Rg
=100, St=0.01, Fr=44.7;=509 645,M=130, andN=64. (A) Side view, FIG. 28. Initially perturbed suspension drop. Top viéleft), side view
(B) top view. (right). Same parameters as in Fig. 26 akhg0.01R, |;=4.
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