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A suspension drop is a swarm of particles that are suspended in initially still fluid. When settling
under the influence of gravity a suspension drop may undergo a complex shape evolution including
the formation of a torus and eventual disintegration. In the present work the settling process of
initially spherical suspension drops is investigated numerically for low and moderate drop Reynolds
numbers Red. In the simulations a pseudospectral method is used for the liquid phase combined with
a Lagrangian point-particle model for the particulate phase. In the case of low Reynolds numbers
sRed,1d the suspension drop retains a roughly spherical shape while settling. A few particles leak
away into a tail emanating from the rear of the drop. Due to the use of periodic boundaries a
hindered settling effect is observed: the drop settling velocity is decreased compared to a suspension
drop in infinite fluid. In the Reynolds number range 1øRedø100 the suspension drop deforms into
a torus that eventually becomes unstable and breaks up into a number of secondary blobs. This
Reynolds number range has not been investigated systematically in previous studies and is the focus
of the present work. It is shown that the number of secondary blobs is primarily determined by the
Reynolds number and the particle distribution inside the initial drop. An increased number of
particles making up the suspension, i.e., a finer drop discretization, may result in a delayed torus
disintegration with a larger number of secondary blobs. The influence of the initial particle
distribution as a source ofsnaturald perturbations and the effect of initially imposedsartificiald shape
perturbations on the breakup process are examined in detail. To gain a better understanding of the
substructural effectssinside the suspensiond leading to torus breakup, the particle field is analyzed
from a spectral point of view. To this end, the time evolution of the Fourier coefficients associated
with the particle distribution in the azimuthal direction of the torus is studied. ©2005 American
Institute of Physics. fDOI: 10.1063/1.1851428g

I. INTRODUCTION

Particle suspensions are a special class of multiphase
flow systems that are frequently encountered in nature as
well as in engineering applications. Natural occurrences
range from large-scale phenomena such as particle sedimen-
tation in river beds or dust particle transport in the atmo-
sphere, to small-scale phenomena such as atherosclerotic de-
posits in human blood vessels. Engineering applications are
numerous in the chemical and pharmaceutical industries in-
cluding mixing, drying, and transport processes. Due to this
wide variety of applications a considerable effort has been
directed to developing numerical methods for the simulation
of particle-laden flows. Examples include the trajectory and
the two-fluid approachsCrowe et al.1d, Stokesian dynamics
simulationssBrady and Bossis2d, lattice Boltzmann methods
sChen and Doolen3d, statistical approaches using particle
probability density functionssReeks4d, as well as direct nu-
merical simulationssPan et al.,5 Glowinski,6 Glowinski et
al.7d. However, many phenomena observed in particulate

two-phase flows are still poorly understood including funda-
mental aspects of particle-fluid interaction.

A simple yet fundamental example of particle sedimen-
tation is the behavior of a suspension drop settling in a fluid
under the influence of gravity. A suspension drop is an ini-
tially spherical swarm of small particles that are suspended
in initially quiescent fluidsthe term “drop” is used as a syn-
onym for “suspension drop” throughout this paperd. Only
recently the phenomena observed when a suspension drop
settles under gravity have gained an increased interest.
Nitsche and Batchelor8 numerically investigated spherical
suspension drops falling under creeping flow conditions. In
this case the drop essentially retains its spherical shape while
a few particles leak from the drop into a tail. Nitsche and
Batchelor focused on the substructural effects of hydrody-
namic diffusion and dispersion. In their paper they give a
theoretical argument for the drop settling velocity and pro-
vide a semiempirical correlation for the rate of particle leak-
age from the blob. Machuet al.9 did computer simulations
and experiments of single suspension drops and pairs of trail-
ing drops. They point out the crucial role of the initial drop
shape. Under Stokes flow conditions an initially pearlike
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shape, for example, causes the suspension drop to deform
into a torus that eventually becomes unstable and breaks up
into secondary blobs. These blobs deform into tori them-
selves resulting in a cascade process of blob deformations
and breakups. This behavior of suspension drops is analo-
gous to that of liquid drops settling in a fluid of smaller
density. As opposed to suspension drops, a considerable
amount of research work has been devoted to single and
trailing liquid drops and fluid rings including theoretical
studiesse.g., Kojimaet al.10d, numerical investigationsse.g.,
Koh and Leal,11 Pozrikidis12d, and experimentsse.g., Bau-
mannet al.13d. For a comprehensive review of previous work
in this field the reader is referred to Machuet al.Walther and
Koumoutsakos14 performed simulations of falling suspension
drops using a particle vortex method. Their results served
primarily for validation purposes of their numerical method.

Nitsche and Batchelor8 as well as Machuet al.9 used
Stokeslets in their simulations to represent the particles. The
flow field was assembled as a superposition of Stokes flow
disturbances caused by the particles. This approach is limited
to the Stokes flow regime with vanishing drop Reynolds
numberssRed!1d. The primary objective of our research
work presented in this paper is to systematically investigate
the settling behavior of suspension drops in a range of mod-
erate Reynolds numberss1øRedø100d. We aim at clarify-
ing the Reynolds number dependence of the instability lead-
ing to torus breakup. Moreover, we examine in detail the role
of the sinitiald particle distribution and the number of par-
ticles inside the drop, as well as the effect of initial shape
perturbations. These issues have not been addressed in pre-
vious studies.

The paper is organized as follows. In Sec. II, the gov-
erning equations are presented, along with the dimensionless
parameters and the basic features regarding the numerical
simulation approach. In Sec. III validation results for the
case of Reynolds numbers much smaller than unity are
given. In Sec. IV, we will at first focus on unraveling the
physics of suspension drops for Reynolds numbers up to the
order of 100, which represents the primary goal of the
present investigation. However, in the course of this analysis,
a number of questions arise that are intimately linked to the
features of the numerical simulation technique. Therefore,
these numerical issues will be addressed in a brief manner as
well. Towards the end of Sec. IV the results of a spectral
analysis of the settling drop and torus are presented, which
provide additional insight into the time evolution of the par-
ticle field. Section V summarizes our findings and provides
the main conclusions of the investigation.

II. SIMULATION APPROACH

The numerical method employed to solve the governing
equations is known as the Eulerian–Lagrangian approach for
particulate flows. The fluid equations are solved in an Eule-
rian framework using a Fourier pseudospectral method,
whereas the particles are individually tracked along their tra-
jectories.

A. Governing equations

We consider a dilute particle suspension, in which the
particle concentration is small enough for interparticle colli-
sions to be neglected. Moreover, the particles are assumed to
be much smaller than the smallest relevant scales of the fluid
motion. This allows for the particles to be modeled as point
forces without resolving their finite size. The trajectory of a
single particle is given by

dYistd
dt

= vistd, s1d

whereYistd is the particle position,vistd the particle velocity,
Yis0d=Yi

s0d its initial position, andi =1,2,3denotes the three
spatial directions. The particle motion is governed by the
equation derived by Maxey and Riley15 in 1983, simplified
for small heavy particles,

mp
dvistd

dt
= 6pmrsuifYW std,tg − vistdd + smp − mfdgi s2d

with mp being the particle mass,mf the mass of the fluid
displaced by a particle,m the dynamic viscosity,r the par-

ticle radius,uifYW std ,tg the fluid velocity at the instantaneous
particle position, andgi the gravitational acceleration. The
first and second term on the right-hand side correspond to
Stokes drag and net gravitational force, respectively. Assum-
ing very small particles and relatively long fluid time scales,
Eq. s2d can further be simplified by neglecting particle inertia
sMaxeyet al.16d. In this case the particle motion is governed
by a quasisteady equilibrium between drag forces on the par-
ticle’s surface and forces due to gravity,

vistd = uisYW std,td + tpgiS1 −
%

%p
D . s3d

Here tp=mp/ s6pmrd denotes the particle response time,%
the fluid density, and%p the particle density.

The fluid motion is governed by the continuity equation,

]ui

]xi
= 0, s4d

and the incompressible Navier–Stokes equation augmented
by a source term representing the particles’ feedback force,

]ui

]t
+ um

]ui

]xm
= −

1

%

]p

]xi
+ n

]2ui

]xm]xm
+

1

%
f i

spd, s5d

with the two-way coupling term

f i
spd = −

6pmr%p

mp
o
j=1

np
r

sui,jsYW jd − vi,jddsxi − Yi,jd. s6d

Here,n=m /% is the kinematic viscosity,np
r is the number of

sreald particles. The Diracd function indicates that the feed-
back force of particlej is applied as a point force at the
instantaneous particle positionYi,jstd.
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B. Dimensionless parameters

There is a total of seven independent physical quantities
that uniquely describe the properties of a suspension drop
settling in a fluid under gravity. The fluid is characterized by
its density% and its dynamic viscositym. A single spherical
particle is characterized by two quantities, e.g., the particle
massmp and the particle radiusr. Alternatively, one or both
of these two could be replaced by the particle density%p and
the particle volumeVp. The drop is also characterized by two
quantities, e.g., the bulk density%̄ and the drop radiusR.
Alternatively, in the same way as for a single particle, the
drop mass and the drop volume could be used instead. The
force accelerating the suspension drop is characterized by the
gravitational accelerationg. From these seven quantities any
others can be derived, i.e., the number ofsreald particlesnp

r ,
the ratio of particle radius to drop radiuse=r /R, the initial
particle volume fractionF=np

r e3, as well as the different
dimensionless numbers discussed below. According to the
BuckinghamP Theorem the number of independent dimen-
sionless groupings fully characterizing the system is three
less than the total number of variablessgiven mass, length,
and time as base dimensionsd. Thus, we have to specify at
least four dimensionless parameters. All others can be de-
rived from those.

The drop Reynolds number is based on a characteristic
drop settling velocityUd and the drop radiusR,

Red =
UdR

n
, s7d

and reflects the ratio of inertial to viscous forces on the mac-
roscopic length scaleR of the suspension drop. Here, we
follow Machu et al.9 who defineUdª s%̄−%dR2g/ s%nd in
analogy to the terminal settling velocity of a solid particle
with density%̄ and radiusR.

The particle Reynolds number is based on the terminal
settling velocity of a single particle,Up=tpgs1−% /%pd, and
the particle radius,

Rep =
Upr

n
=

2

9

e3

F
Red. s8d

The particle Reynolds number is required to be much less
than unity for the equation of motion, Eq.s2d, to be valid
sMaxey and Riley15d. It should be noted that, since the di-
mensionless parameters are coupled among each other, the
drop Reynolds number cannot be made arbitrarily large with-
out violating the particle Reynolds number restriction.

The Stokes number is the ratio of the particle response
time to a characteristic time scale of the fluid motion. In
accordance with Machuet al. we define

St =tp
Ud

R
=

2

9

%p

%
e2 Red. s9d

In consequence of our assumption of very small particles, the
Stokes number was kept well below unity throughout the
simulations.

The Froude number reflects the ratio of inertial to gravi-
tational forces and is defined here as

Fr =
Ud

ÎgR
. s10d

A very large Froude number means that inertia dominates
over gravity on the macroscopic scale of the suspension
drop.

For the numerical treatment the governing equations, Eq.
s1d–s5d, are cast in nondimensional form by relating the vari-
ables to some reference quantities. A reasonable choice is to
use the drop settling velocity and the drop radius as the ref-
erence velocity and length scale, respectively,sUref

=Ud,Lref=Rd. For the sake of completeness the governing
equations are restated in dimensionless form. All variables
are now considered dimensionless, although not specifically
labeled as such. The nondimensional particle equation of
motion reads

dvistd
dt

=
1

St
suifYW std,tg − vistdd −

1

Fr2
S1 −

%

%p
Ddi3, s11d

with gravity pointing in negativex3 direction. For inertialess
particles Eq.s11d assumes the form

vistd = uistd −
St

Fr2
S1 −

%

%p
Ddi3. s12d

In several preliminary simulations both Eqs.s11d and s12d
were used alternatively with only negligible differences
found in the results. Unless otherwise mentioned Eq.s12d
was used in the simulations presented. The nondimensional
Navier–Stokes equation reads

]ui

]t
+ um

]ui

]xm
= −

]p

]xi
+

1

Red

]2ui

]xm]xm
+ f i

spd s13d

with the particle source term

f i
spd = −

%p

%

1

Stoj=1

np
r

sui,jsYW d − vi,jddsxi − Yi,jd. s14d

As mentioned above it is sufficient to specify four dimen-
sionless parameters to fully characterize the settling suspen-
sion drop. We generally choose to specify Red, St, Fr, and
%p/% or F. If Eq. s12d is used only the dimensionless settling
velocity St/Fr2 needs to be given. In some cases we provide
additional parameters such as the number of particles for
clarity.

C. Numerical implementation

In order to solve the governing fluid equations a Fourier
pseudospectral method is employedssee, e.g., Orszag17 and
Schumannet al.18d. Each term in Eq.s13d is Fourier trans-
formed. The resulting ordinary differential equation is dis-
cretized and numerically solved using a combined Runge–
Kutta Crank–Nicolson scheme for the time integration. In
this scheme the nonlinear terms are discretized according to
a third-order Runge–Kutta scheme whereas the linear terms
are implicitly treated using a second-order Crank–Nicolson
scheme. The time step is computed according to a Courant–
Friedrichs–Levy criterionsCFLd. Continuity is ensured by
projecting the velocity Fourier coefficients onto a
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divergence-free basis. In order to avoid computationally ex-
pensive convolution sums the nonlinear terms are computed
in real space rather than in Fourier space. Dealiasing accord-
ing to the 3/2 rule is used to minimize errors associated with
the nonlinear computationssee Canutoet al.19d. The compu-
tational domain is a box of side lengthL with periodic
boundaries. In each direction,x1,x2,x3, N equidistant grid
points are used to compose the Eulerian mesh. The particle
equations, Eqs.s11d or s12d, are solved in real space using
the same Runge–Kutta scheme as for the fluid equation.

Since the computational domain contains no solid
boundaries there is no mechanism that would prevent the
particles and the fluid from ever more accelerating in the
direction of gravity. To maintain the system in equilibrium a
uniform pressure gradient is imposed in positivex3-direction
balancing the net weight of the particles per unit volume
sMaxey and Patel20d. Settling velocities are computed with
respect to the mean fluid velocity inx3-direction.

To compute the Stokes drag term in the particle equa-
tion, the fluid velocity is to be evaluated at the instantaneous
particle locations. In most cases trilinear interpolation was
used to this end. In order to study the influence of interpola-
tion, fourth-order accurate Lagrangian polynomials as well
as spectral summation were used alternativelyscf. Sec. IVd.
Interpolation is also needed to distribute the particles’ feed-
back forces onto the Eulerian mesh. Unless otherwise men-
tioned the feedback force of a particle was distributed to the
surrounding eight grid points by second-order accurate trilin-
ear interpolation. Alternatively, top hat interpolation was
used meaning that the full feedback force of a particle is
entirely attributed to the closest grid point.

The simulation of a very large number of particles can
be computationally too expensive to be accomplished. To
circumvent this problem the point-particle approximation
was augmented by introducing computational particles. Each
computational particle is considered a representative of a
cloud of particles, which are supposed to be in uniform mo-
tion with the computational particle. The number of compu-
tational particles can be chosen much smaller than that of
real particles thus ensuring an acceptable computational
time. The ratio of real to computational particles is denoted
by

M =
np

r

np
c , s15d

where M ù1. With the concept of computational particles
included the numerical algorithm described changes only
slightly. Each computational particle is tracked along its tra-
jectory according to Eq.s1d and Eq.s11d or s12d. The two-
way coupling term is altered such that the right-hand side of
Eq. s14d is multiplied byM and the sum is evaluated over all
computational particlesnp

c rather than all real particlesnp
r .

For a more detailed discussion of computational particles the
reader is referred to Elghobashi21 or Druzhinin.22

At the beginning of a simulation the suspension drop is
composed by randomly distributingnp

c computational par-
ticles within a spherical boundary of radiusR. The drop is
placed in the center of the periodic computational box with

the particles and the fluid being initially at rest. Unless oth-
erwise mentioned the ratio of the box side lengthL to the
initial drop radiusR wasL /R=15 in all simulations for mod-
erate Reynolds numbers.

In the figures presented in the subsequent sections the
particles’ size may be larger than their actual size in the
simulations and, ifnp

c .2000, no more than 2000 particles
will be shown for clarity. Also, the particle positions will be
displayed with respect to a fixed coordinate systemsnonpe-
riodic x3-coordinated to indicate the distance traveled by the
suspension drop. The initial position of the drop’s center of
mass coincides with the origin of this coordinate system.

III. VALIDATION: LOW REYNOLDS NUMBERS
„Red™1…

For drop Reynolds numbers much less than unity the
suspension drop as a whole settles under creeping flow con-
ditions. Nitsche and Batchelor8 shereafter referred to as
N&B d examined this case both numerically and theoretically.
Here we use their results for comparison and validation of
our numerical method. N&B found that the drop retains a
roughly spherical shape while settling. Only a few particles
leak away into a tail emanating from the rear of the drop.
Inside the drop the particles undergo a circulatory motion
similar to Hill’s vortex. This behavior was exactly repro-
duced in our simulations. Figure 1 shows a suspension drop
settling at Red=0.1 sReynolds numbers Red,0.1 did not
show any different resultsd. The parameters were matched to
one of the cases given by N&B in their Table I, i.e.,F
=0.02, np

c=np
r =320, e=0.0397scorresponding to St=0.035,

Fr=1.414d. The drop still has a coherent, roughly spherical
structure and the tail of particles is clearly visible. This drop
can be compared with that in Fig. 1sbd of N&B for T=10
snote their different definition of the dimensionless timed. It
shows good qualitative agreement. Sectional streamlines at
x2=0 svertical box center planed are also provided in Fig. 1.
The fluid is subject to a circulatory motion directed down-
ward near the drop’s vertical center line and upward in the
outer parts of the drop.

In the simulations of N&B the number of particles is
confined to a maximum of 320, probably due to computer

FIG. 1. Suspension drop settling at Red=0.1. sAd Particles leak away into a
tail emanating from the rear of the drop.sBd Streamlines insx1,x3d plane at
x2=0 computed in a coordinate system moving with the drop’s center of
massszoomed ind. St=0.035, Fr=1.414,F=0.02,np

c=np
r =320,L /R=8, and

N=64.
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limitations. A clearer picture of the underlying flow field
structure is obtained when a larger number ofssmallerd par-
ticles is used. The larger number of particles results in a finer
discretization of the excess mass of the drop and a smoother
drop “surface” sinterface between clear fluid and suspen-
siond. Figure 2 shows an example of a suspension drop with
2095 particles settling at Red=0.01 sSt=0.001,Fr
=0.447,%p/%=1000d. The streamline plot of the velocity
field is shown in both a fixed coordinate system and a rela-
tive one attached to the drop’s center of mass. Here, the
theoretical streamline pattern given by N&B in their Fig. 2 is
very well reproduced. As long as a particle stays inside the
region of closed streamlines it remains within the cohesive
structure of the drop. However, if a particle settles close to
the vertical center line it may get outside this region. When
reaching the drop’s lower boundary the particle may be
pulled outside the region of closed streamlines as a result of
fluid drag forces pulling it sideways and upwardsfollowing
the streamlinesd and gravity pulling it downward. Once out-
side the enclosing streamlines the particle is swept towards
the rear stagnation point at the upper boundary and leaks
away into the tail due to its reduced settling velocity outside
the cohesive ensemble of particlessthe settling velocity of a
single particle is typically several orders of magnitude
smaller than the settling velocity of the dropd.

For a quantitative validation of our numerical approach
we examined the drop settling velocity. It is important to
recall that our numerical domain has periodic boundaries,
i.e., a regular three-dimensional array of suspension drops is
simulated rather than a single suspension drop in infinite
fluid. As shown above the periodicity has essentially no ef-
fect on the principal features of the settling process and even
the details, such as the internal circulatory fluid motion, are
well reproduced. However, we found that the periodic
boundaries do affect the drop’s settling velocity. Each drop
displaces fluid when settling downwards, which creates an
upward flow in its vicinity affecting the neighboring drops.
The overall effect is a decrease in settling velocity. A similar
decrease in the settling velocity of irregular particle suspen-
sions and regular arrays of solid particles has been reported
in the literature and is usually referred to as the hindered

settling effect, see, e.g., Sangani and Acrivos23 and Zick and
Homsy.24

The hindered settling of suspension drops is demon-
strated in Fig. 3, where the dimensionless drop settling ve-
locity vd/Up is shown as a function of the drop volume frac-
tion c=4/3pR3/L3. The parameters for the simulations were
matched to the N&B case withF=0.02, np

c=np
r =160, e

=0.05. Additionally, we specified Red=0.1 syielding St
=0.056, Fr=1.414,%p/%=1000d. With increasing box size
sdecreasingcd the number of grid points was augmented ac-
cordingly in order to keep the flow field resolution inside the
drop constant, i.e., the same ratio of grid points per drop
radius in each direction. The larger the drop volume fraction
the smaller is the distance between adjacent drops in the
periodic array, which enhances the effect of decreasing ve-
locity. For example, increasing the drop volume fraction
from c1/3=0.1 toc1/3=0.2 causes the settling velocity to de-
crease by<15%. In Fig. 3 it is seen that the decrease in
settling velocity is nearly linear for small drop volume frac-
tions c1/3. In the case of an array of solid spheres it can be
shown analytically that, for smallssphered volume fractions,
the settling velocity depends roughly linearly onc1/3

sHasimoto,25 Sangani and Acrivos23d. Assuming that the
same linear dependence applies to hindered settling of sus-
pension drops, the data in Fig. 3 is linearly extrapolated to
c=0, which corresponds to a suspension drop in infinite
fluid. This yields a settling velocityvd

0/Up=10.7, which is in
good agreement with the result by N&Bssee Table Id.

The drop settling velocity as a function of time is shown
in Fig. 4 for the case ofc1/3=0.2. The drop is rapidly accel-
erated from rest to reach a quasistationary settling velocity
for a short period of time betweent<10 andt<25 sit is this
time that was taken for the plot in Fig. 3d. As soon as par-
ticles start leaking away into the tail the settling velocity
slowly decreases.

TABLE I. Comparison of drop settling velocity with Nitsche and Batchelor
sRef. 8d.

N&B: theory N&B: simulation extrapolatedsFig. 3d

vd
0/Up 10.6 10.5±0.1 10.7

FIG. 2. Streamlines insx1,x3d plane atx2=0. Velocity computed insAd a
fixed coordinate system andsBd a coordinate system moving with the par-
ticles’ center of mass. Red=0.01, St=0.001, Fr=0.447,F=0.02, np

r =np
c

=2095,L /R=8, andN=64.

FIG. 3. Hindered settling of suspension drops. The drop settling velocityvd

is shown as a function of the drop volume concentrationc1/3. Circles indi-
cate simulations performed. Dashed line extrapolates data toc=0.
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Figure 5 shows a comparison between hindered settling/
rising of suspension drops, solid particles, and bubbles of the
same size. In order to be independent of the individual drop
sor particle/bubbled properties, the settling/rise velocities
have been normalized by the corresponding terminal veloci-
ties in the limiting case ofc=0. Thus, in principle, the curve
for suspension drops shown in Fig. 5 should be independent
of specific particle and drop properties as long as Redø0.1.
Some spurious effects may be present due to the coarse drop
discretization in terms of the number of particlessnp

c=160d.
The principal observation is that the hindered settling of a
regular array of suspension drops is less pronounced than
that of solid particles and more pronounced than the hindered
rising of bubbles. The analytical results for hindered settling
of liquid drops and porous particles can be found in
Sangani26 and Mo and Sangani.27 Based on the formula for
liquid drops sincluding the limiting case of bubblesd pre-
sented in the former work, the hindered settling of suspen-
sion drops can be approximated for small drop volume frac-
tions by

vd

vd
0 = 1 − 1.76c1/3Ut

vd
0 , s16d

where the terminal velocity of a solid particle of the same
size as the suspension drop isUt=s2/9d Ud=s2/9ds%̄
−%dR2g/m. Equations16d is also plotted in Fig. 5 and found

to accurately describe the asymptotic behavior of suspension
drops for drop volume fractionsc1/3&0.2.

IV. RESULTS: MODERATE REYNOLDS NUMBERS
„1ÏRedÏ100…

A. Reynolds number dependence

At drop Reynolds numbers Redù1 the suspension drop
undergoes a complex shape evolution with eventual breakup
into a number of secondary blobs. Figure 6 shows a typical

FIG. 4. Drop settling velocity as a function of time for Red=0.1 andL /R
=8 sc1/3=0.2, cf. Fig. 3d.

FIG. 5. Hindered settling/rising of suspension drops, solid particles, and
bubbles. The drop settling velocityvd is normalized by the extrapolated
settling velocityvd

0. The particle and bubble velocitiesv are normalized by
their corresponding terminalsStokesd velocitiesUt in infinite fluid. The as-
ymptote is an approximation for smallc according to Eq.s16d.

FIG. 6. Typical sequence of deformations and breakup of a suspension drop
settling at Red=1 sSt=0.0076, Fr=4.47,%p/%=1000, np

c=np
r =100 096,N

=128d. Left, top view; right, side view.
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sequence of deformations and breakup of a drop settling at
Red=1 sSt=0.0076, Fr=4.47,%p/%=1000d. The initially
spherical drop flattens into an oblate shape featuring a grow-
ing dimple at its rearsfor t&280, not shown in the figured.
The dimple is formed because the fluid inside the drop below
the particles at the rearsupperd boundary is accelerated
downward by particle drag, whereas the fluid in front of the
drop is still quiescent. Thus, the particles at the rear settle
faster than those at the leading front, which creates the
dimple shape. The dimple keeps growing inside the drop

such that the latter deforms into a torus. The torus grows
larger in diameter while traveling, before it eventually be-
comes unstable and disintegrates into two secondary blobs.
The last sample of the sequence in Fig. 6 looks remarkably
similar to two photographs of experiments at low Reynolds
numbers given by Machuet al., which are shown in Fig. 7.
In the experiments the initial conditions were certainly dif-
ferent from a spherical suspension drop with all particles at
rest. However, the key feature of the breakup process, the
formation of a torus as found in our simulation, was ob-
served in the experiments as well. A detailed discussion of
the influence of initial conditions will be given later in Sec. I.

Figure 8 shows a visualization of the flow field inside
and outside the settling torus from Fig. 6. The streamlines,
displayed on a vertical plane through the center of the com-
putational boxsx2=0d, reveal a ring vortex growing in diam-
eter over time. The ring vortex coincides with the particles
forming the settling torus. Att=358 the ring vortex is closed
in the sense that no streamlines pass from the frontslowerd
stagnation point through its center to the rearsupperd stagna-
tion point. At t=477, due to the growing ring hole, fluid
starts penetrating the torus from the front stagnation point. At
t=597 an open ring vortex is observed with streamlines pass-
ing through the center hole. This marks the beginning of
torus disintegration. The transition from a closed to an open
torus was observed by Machuet al. in both their experiments
and simulations. The difference is that they considered a low
Reynolds number case, Red!1, with an initially bell-shaped
drop whereas here, the same phenomenon occurs for Red

=1 and an initially spherical drop. As will be shown later in
this section, the transition from a closed to an open torus is
not observed for Reynolds numbers of about 100.

Figure 9 shows the trajectories of three particles in a
frame moving with the particles’ center of mass for the same
case of Red=1 discussed above. At the beginning the par-
ticles undergo a circulatory motion essentially the same as
that indicated by the streamlines in Fig. 8. As long as the
torus is stable the circulation continues and, as seen in the

FIG. 7. Disintegrated suspension dropsleftd and liquid dropsrightd in an
experiment by Machuet al. sRef. 9d.

FIG. 8. Transition from closed to open torus for Red=1. Same simulation as
shown in Fig. 6. The streamlines are computed in a coordinate system mov-
ing with the drop’s center of mass and are displayed on a vertical plane at
x2=0. For clarity only 300 particles are shown.

FIG. 9. Trajectories of three particlesst1,t2,t3d inside the suspension drop
shown in Fig. 6sRed=1d. The circle indicates the initial drop. The trajecto-
ries are computed in a coordinate system attached to the particles’ center of
mass.
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top view of Fig. 9, the particles are not displaced in azi-
muthal direction of the torus. This indicates that the flow
field remains axisymmetric with respect to thex3 axis. Only
when the bulges form and the torus starts disintegratingscf.
t=955, Fig. 2d, particles are entrained towards the blobs be-
ing formedstrajectoryt2d.

In order to study the Reynolds number dependence of
the disintegration process, the Reynolds number Red was
successively increased while keepingsalmostd all other pa-
rameters constant. We chose St=0.01, Fr=10,F=0.02, np

c

<108 000,M =7, and the same initial particle distribution in
all cases. From Eq.s9d it is clear that the density ratio has to
be decreased accordingly if the Stokes number is to remain
constant with increasing Red. The grid resolution was set to
N=128.

Figure 10 shows disintegrated suspension drops for
Red=1, 10, 20, 40, 60, 80, and 100. It is observed that the
number of secondary blobs increases with increasing Rey-
nolds number. For Red=1 two secondary blobs are obtained,
for Red=100 the torus breaks up into seven major and one
minor secondary blobs. The shape evolution of the initially
spherical drop and the torus before breakup is similar to that
shown in Fig. 6 in all cases. However, for Red.1 the torus is
usually spanned by a “membrane” of dilute particles as
shown in Fig. 11.

A comparison of thesnondimensionald drop settling ve-
locities for different Reynolds numbers is provided in Fig.
12. It must be emphasized that the settling velocities are
inherently affected by the hindered settling effect discussed
in the previous section. Therefore, the velocities have been
normalized by the maximum settling velocity for Red=1.
This allows for a relative comparison between different Rey-
nolds numbers. It is seen that the higher the Reynolds num-
ber the smaller are the settling velocities. After reaching a
peak value shortly after the particles are released the settling
velocities decrease gradually as the torus is forming and ex-
panding. This decrease is stronger and occurs at increasingly
shorter times for larger Reynolds numbers reflecting a faster

FIG. 10. Disintegrated suspension drops at different drop Reynolds num-
bers. sAd Top view, sBd side view. Std=0.01, Fr=10,f=0.02, andnp

c

<108 000.

FIG. 11. Side and top view of the torus spanned by a “membrane” of dilute
particles at Red=100.

FIG. 12. Comparison of drop settling velocities for different Reynolds num-
bers, Red=1,5,10,20,40,60,80,100sRed successively increasing from top
downd. Same simulations as in Fig. 10.
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disintegration. For Red=1 the decrease of the settling veloc-
ity is considerably weaker than in the other cases. This is due
to a relatively slow deformation of the drop into a torus,
which then remains stable for a long period of time. Towards
Red=100 the velocity curves become similar suggesting an
asymptotic behavior for Red=Os100d. In order to determine
the time required for the drop to deform into a torus, we
define a radiusRp

m as the mean distance of the particles to the
center of mass in thesx1,x2d plane. The timeTd−t required
for Rp

m to reach the initial drop radiusR is taken as a char-
acteristic measure for the deformation of the drop into a
torus. Figure 13 shows the time evolution ofRp

m/R until
Rp

m/R=1 for different Reynolds numbers. The corresponding
characteristic timesTd−t, normalized byTd−tsRed=1d, are
given in Table II. The principal observation is that the defor-
mation of the drop into a torus occurs the faster the higher
the Reynolds number. Again, towards Red=100 an
asymptotic behavior is found. In the case of Red=1 the time
evolution of Rp

m reveals a slightly pulsating expansion and
contraction of the torus. This behavior was also observed by
Machuet al. for vanishing Reynolds number and a pearlike
initial drop shape.

Figure 14 shows the time evolution of the flow field for
a suspension drop settling at Red=100. The streamlines are
computed in a coordinate system moving with the particles’
center of mass. They are shown on a vertical center plane at
x2=0. As opposed to the case of Red=1 the particle torus and
the ring vortex do not coincide and the corresponding tran-
sition from a closed to an open torus is not observed. Instead
the circulatory motion inside the initial drop starts extending
towards the rear of the flattening drop shortly after the re-
leasest=95d. As the drop deforms into a torus spanned by a
membrane of particles, the ring vortex moves completely
outside the torus and the streamline structure looks similar to
the wake of a circular flat platest=191d. As long as the torus
and the ring vortex coincide at least partially, the streamlines
at the rearsupper boundaryd of the torus point towards the

torus. This keeps the torus and the membrane a compact
structure. When the ring vortex detaches from the torus,
however, the membrane of particles starts bulging towards
the rearst=286d. This is due to the smaller settling velocity
of single particles within the membrane compared to the set-
tling velocity of the compact torus. In the further course of
the settling process the ring vortex gradually dissipatesst
=382d. Since the particle torus and the ring vortex no longer
coincide, there is no particle-fluid interaction that could sus-
tain the vortex and the latter eventually disappears com-
pletely st=477d.

As pointed out by Machuet al. and othersse.g., Joseph
and Renardy28d the disintegration of the suspension torus is
due to a Rayleigh–Taylor-type instability. In fact, in a first
approximation the suspension can be considered a pseudoliq-
uid of increased density%̄. In this case small perturbations of
the interface between the heavier pseudoliquid making up
the torus and the lighter clear fluid will amplify and eventu-
ally lead to breakup. For a detailed discussion of the classic
Rayleigh–Taylor instability the reader is referred to
Chandrasekhar.29 In the case of a “real” suspension, i.e., a
particle-fluid mixture as in our simulations, there is no dis-
tinct interface between torus and clear fluid, but the instabil-
ity mechanism works in a similar way as for two fluids of
different density. A not perfectly uniform particle distribution
results in a locally varying mixture density of the suspension,
which causes some parts of the torus to settle faster than
others. This creates perturbations of the torus shape and “sur-
face” and is the starting point of the instability mechanism.

In the following sections we address the question: What
determines the breakup behavior of a suspension drop at a
given Reynolds number? To this end we study the influence
of the initial particle positions, the effect of initially imposed
drop shape perturbations, as well as the influence of the drop
mass discretization in terms of the number of particles. With
respect to the instability leading to torus breakup we try to
distinguish as clearly as possible between perturbations of a
“physical” nature, which are our primary interest, and those
of a “numerical” nature. The former can also be present in a
real-world experiment, whereas the latter are inherent to the
numerical procedure. It is important to distinguish between
“physical” and “numerical” sources of perturbations because
both may affect the breakup behavior of a suspension drop in
numerical simulations. Therefore, in order to demonstrate
that our results are not tainted by numerical effects, the in-
fluence of the grid resolution, the periodic boundaries, and
the interpolation used in the computation of the particle feed-
back force will be discussed briefly.

1. Influence of the initial particle distribution

The crucial role of the initial conditions has been pointed
out by several authorsse.g., Machuet al.,9 Kojima et al.10d,

TABLE II. Characteristic timesTd−t for the deformation of the drop into a torus.

Red 1 5 10 20 40 60 80 100

Td−t /Td−tsRed=1d 1 0.278 0.190 0.154 0.146 0.144 0.146 0.149

FIG. 13. Time evolution of the mean radial particle distance from the center
of mass Rp

m for different Reynolds numbers, Red=1,5,10,20,40,60,
80,100. Same simulations as in Fig. 10.
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primarily with respect to the initial drop shape. Machuet al.
showed that even at very low Reynolds numbers Red!1 an
initial shape different from a sphere, for example, a bell-
shaped drop, deforms into a torus with subsequent breakup.
We found that the particle positions within the initial drop
also affect the details of the breakup process and may even
yield a different number of secondary blobs. Figure 15 shows
two examples of simulations with different initial particle
positions. The initial distribution was uniformly random in
all cases. For Red=1 the number of secondary blobs did not
vary for different initial particle positions, but the location of
the blobs was different. For Red=100 the details of the par-
ticular breakup pattern were different for different initial par-
ticle positions and even the number of secondary blobs var-
ied between five and seven. These results demonstrate that
the instability is very sensitive to the details of the initial
conditions, and corroborate the idea of the particle distribu-
tion being the primary source of perturbations.

In order to shed more light on the role of the particle
distribution, a set of simulations was performed with initially
perturbed drop shapes. Perturbations due to thesinitiald par-
ticle distribution are termed “natural” in the following,
whereas the initial shape variations are called “imposed arti-
ficial” perturbations. Starting from a spherical shape with a
uniformly random particle distribution, the particles’ radial
position with respect to the drop center line in the vertical
direction was shifted according to

FIG. 14. Evolution of the flow field for a suspension drop settling at Red

=100. The streamlines are computed in a coordinate system moving with the
drop’s center of mass and are displayed on a vertical plane atx2=0. From
top to bottom the view frame zooms out of the expanding suspension torus.

FIG. 15. Disintegrated blobs for different initial particle positions.sAd Side
view, sBd top view. Top, Red=1, St=0.01, Fr=4.5,%p/%=1000; bottom,
Red=100, St=0.01, Fr=44.7,%p/%=1000.N=64 in both cases.
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Dr = As cosslsud. s17d

Here Dr is the radial shift of the particle position in the
sx1,x2d plane with respect to the drop center line,As is the
perturbation amplitude,ls is the number of periods along the
circumference, andu is the azimuthal angle. Figure 16 dis-
plays an initially perturbed suspension drop. Clearly, this is
only one possibility to introduce controlledsartificiald pertur-
bations allowing us to trigger a certain breakup behavior of
the suspension drop.

Figure 17 shows disintegrated, artificially perturbed
drops with ls=6 sRed=100, St=0.01, Fr=44.7d. The pertur-
bation amplitudeAs was varied between 0.1R and 0.001R.
The last drop shown in the lower two rows is an unperturbed
reference case. The number of particles wasnp

c=29433 re-
sulting in an initial mean particle spacing ofd<0.052R fde-
fined asd=s4p /3np

cd1/3Rg. If the artificial perturbation level
is large enough, the forced perturbations dominate the disin-
tegration process and the drop breaks up into six equally
spaced secondary blobssfirst and second case withAs

=0.1R andAs=0.05Rd. If the artificial perturbation amplitude
drops well below the order of the mean particle spacing
sAs=0.001Rd, the natural perturbations clearly predominate
and the disintegrated structure differs only little from the
unperturbed reference case. Between these two cases, the
natural and the artificial perturbation level are apparently of
about the same order and none clearly prevailssAs=0.01Rd.
Here, as in other parts of the paper also, we rely on visual
judgment only, primarily for lack of measurable quantities
that better characterize the entire breakup process.

As long as the artificial perturbations are large enough,
i.e., of the order of the mean particle spacing, different
breakup patterns can be triggered depending on the param-
eter ls. For Red=100 any number between three and ten sec-
ondary blobs could be forcedssame parameters as in Fig. 17,
As=0.05Rd. Three examples are shown in Fig. 18. These re-
sults further illustrate the crucial role of the particle distribu-
tion as a source of perturbations. The interplay of natural and
artificial perturbations will be revisited within the spectral
analysis of the settling torus in Sec. IV B.

2. Influence of the number of particles

The excess mass of the suspension drop with respect to
the surrounding clear fluid is concentrated into the points
where the particles are located. In this sense the drop can be
regarded as discretized in terms of the number of particles
making up the suspension. Now we focus on the question

how this drop discretization affects the breakup behavior of
the suspension drop by varying the number of particles. The
same integral drop properties, such as the bulk density and
the particle volume fraction, can be realized by either a large
number of small particles or a smaller number of larger par-
ticles. Thus, a different drop discretization in terms of the
number of real particles involves different particle properties,
e.g., the Stokes number increases with the particle radius
under otherwise same conditions. For the case of Red=100 a
set of simulations was performed with an increasing number
of real sand computationald particles. Since for Red=100,

FIG. 16. Initially perturbed suspension drop. Top viewsleftd, side view
srightd. As=0.005R, ls=6.

FIG. 17. Disintegrated initially perturbed drops. Red=100, St=0.01, Fr
=44.7,%p/%=1000,np

c=29433,M =2251,N=64, andls=6. sAd Side view,
sBd top view; sad As=0.1R, sbd As=0.05R, scd As=0.025R, sdd As=0.01R, sed
As=0.001R, andsfd unperturbed reference case. Initial mean particle spacing
d<0.052R.

FIG. 18. Forced number of secondary blobs ofsartificiallyd perturbed sus-
pension drops, Red=100, St=0.01, Fr=44.7,%p/%=1000; sad ls=4, sbd ls
=8, scd ls=10;As=0.05R in all cases. Naturalsunperturbedd breakup into six
major secondary blobs as in Fig. 17sfd. N=64.
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Stø0.01, andF=0.02 the resulting numbers of real particles
are very largesof order 108d we chose a fixedM =130. The
Froude number was Fr=44.7 in all cases. Table III shows the
different parameters.

Figure 19 shows the results. It is observed that the num-
ber of secondary blobs increases with an increasing number
of particles used in the simulation. There are two effects of a
finer initial drop discretization:sid the excess mass of the
suspension is more uniformly distributed throughout the
drop, andsii d the snaturald perturbations introduced by the
discrete particle distribution extend to a smaller length scale
due to a decreased mean particle spacing. Consequently, the
torus remains stable for a longer period of time, the visible
breakup sets in at a later timesnote the times given in Fig. 19
for the fully disintegrated dropsd. Comparison of the top
views of casessad and scd in Fig. 19 also reveals that the
diameter of the disintegrated torus is larger in casescd, which
provides additional room for a larger number of secondary
blobs. It is concluded that for Red=100 an increased number
of real sand computationald particles, i.e., a finer drop dis-
cretization, results in a larger number of secondary blobs due
to a delayed torus breakup.

A similar set of simulations with an increasing number
of computational particles was performed for Red=1. In this
case the torus always breaks up into only two secondary
blobs independently of the number of particles. This suggests
that the range of possible disintegration patterns featuring a
certain number of secondary blobs increases with increasing
Reynolds number.

It is worth noting that the concept of computational par-
ticles offers a second possibility to examine the effect of a

refined drop discretization. Instead of choosing a fixed ratio
M, the number of computational particles can be augmented
while keeping the number of real particles constant. The ratio
M has to be adjusted accordingly. In this case the particle
properties do not change and it is obvious that this situation
could not be reproduced in a real-world experiment. How-
ever, the effect of a finer drop mass discretization as “seen by
the fluid” can as well be studied this way. We conducted a set
of simulations with the number of computational particles
successively increased from about 53105 to 43106 and a
fixed number of real particlesnp

r <6.6253107 sRed=100,
St=0.01, Fr=44.7,N=128d. The results revealed the same
effect of a refined drop discretization as shown before. The
torus disintegration is delayed resulting in an increased num-
ber of secondary blobs.

The findings discussed above necessitate a comment on
the comparison between experiments and simulations. In a
real-world experiment, in which a suspension drop is re-
leased intosroughlyd quiescent fluid, the initial perturbations
are not known. The particle distribution inside the suspen-
sion drop will certainly not be perfectly uniform and the drop
will not have a perfectly well defined shape. Moreover, it is
likely that other perturbations introduced by the apparatus to
release the suspension dropsswhatsoever its functional de-
tailsd will be present. Thus, it is virtually impossible to match
experimental and numerical conditions. Numerical simula-
tions can predict a range of secondary blobs to be expected
and possible breakup patterns. For example, in the case of
Red=100 it is likely to obtain approximately six secondary
blobs. This number, however, may vary significantly in a
real-world experiment due to unknown perturbations and dif-
ferent initial conditions.

The strong sensitivity of the instability to the details of
the initial conditions is a notable characteristic of the drop
disintegration process. As already mentioned the growing
perturbations in our simulations may not only be of a “physi-
cal” nature, such as a not perfectly homogeneous particle
distribution, but also due to numerical effects. In the remain-
ing part of this section numerical influences are shown to be
negligible thus confirming the results presented above.

3. Influence of the periodic boundaries

As has been shown for the low Reynolds number case,
Red=0.1, the periodic boundaries have a considerable effect
on the drop settling velocityshindered settlingd. Thus, it
might be expected that they affect the breakup process in
some general way such that, for example, the number of
secondary blobs is influenced by the periodic boundaries. On
the other hand, the substructural effects of the particle-fluid
interaction, the internal circulating motion, was well repro-
duced in the low Reynolds number case despite the periodic
boundaries. This would suggest only a minor influence of the
periodicity on the disintegration process. Figure 20 shows
disintegrated drops from two simulations with different in-
terdrop spacings under otherwise same conditionssRed

=100, St=0.01, Fr=44.7,%p/%=1000,np
c <105, same initial

particle distributiond. In the first case 1283 grid points were
used withL /R=15, in the second case 2563 grid points with

TABLE III. Number of computational and real particles and Stokes number
for simulations with varying drop mass discretization. Red=100, Fr=44.7,
F=0.02, andM =130.

np
c 509 645 23106 43106

np
r <663106 2603106 5203106

St 0.01 0.004 06 0.002 53

FIG. 19. Influence of the number of computational particles.sAd Side view,
sBd top view of disintegrated drops;sad np

c=509645,sbd np
c=23106, scd

np
c=43106. Red=100, Fr=44.7,M =130, andN=128 in all cases.
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L /R=30. The higher grid resolution in the second case en-
sures a fixed drop resolution in terms of grid points per drop
radius. The disintegrated torus looks very similar in both
cases. Not only is the same number of secondary blobs ob-
tained, but also the details are very similar. It is concluded
that the periodic boundaries have a negligible effect on the
breakup pattern of the suspension drop. Thus, the Reynolds
number dependence and the role of the particle distribution
discussed above should as well apply to the general case of a
single suspension drop in infinite fluid.

4. Influence of interpolation

Interpolation is used to compute the fluid velocity at the
instantaneous particle positions and to distribute the par-
ticles’ feedback force from the particle positions to the grid
points of the Eulerian mesh. There are several studies avail-
able in the literature that examine the influence of interpola-
tion in detail, primarily in turbulent particle-laden flows
se.g., Yeung and Pope,30 Balachandar and Maxey,31

Sundaram and Collins,32 Kitagawaet al.33d. Here, we confine
ourselves to demonstrating that the use of different interpo-
lation methods does not significantly alter our results of sus-
pension drop disintegration at moderate Reynolds numbers.
For the fluid interpolation three different methods were em-
ployed: sid trilinear interpolation,sii d fourth-order Lagrange
polynomials, andsiii d spectral summation. These were used
alternatively in a set of simulations with otherwise same pa-
rameters sRed=100, St=0.01, Fr=44.7,%p/%=1000, np

c

=7337,M =9030d. The grid resolution was set toN=64. In
all cases linear interpolation was used to distribute the par-
ticle feedback force to the surrounding grid points. In the
case of spectral summation a third-order accurate Runge–
Kutta scheme was employed for both the linear and nonlin-
ear terms sinstead of a combined Runge–Kutta Crank–
Nicolson schemed. Thus, the overall accuracy of the time
integration was augmented from second to third order.

The results are shown in Fig. 21. The hardly visible dif-
ferences between casessbd and scd, i.e., Lagrange and spec-

tral interpolation, respectively, are negligible. In the linear
casesad the number of secondary blobs is the same as insbd
and scd, however, their location is somewhat different. The
principal features of the settling process, such as torus for-
mation and breakup, are well captured in all three cases.
Given the increased computational cost of Lagrange polyno-
mial interpolation and spectral summation, it is reasonable to
resort to linear interpolation. It should be noted that the in-
fluence of interpolation is significantly reduced if higher grid
resolutions are used, e.g.,N=128 as in the simulation shown
in Fig. 6.

We also used first-order top hat interpolation to distrib-
ute the particle feedback force between the grid points. Here,
the full feedback force of a particle is attributed to the closest
grid point in its vicinity. The results did not show any major
differences to those presented in Fig. 21.

5. Influence of the grid resolution

In numerical simulations reliable results are generally
required to be independent of the grid resolutionsgrid con-
vergenced. To find a grid resolution fine enough to capture all
relevant details of the disintegration process, a set of simu-
lations with different numbers of grid points was performed.
Figure 22 shows examples for Red=100. It was found that a
resolution of 643 grid points is sufficient to capture all char-
acteristic features of the settling and disintegration process,
i.e., torus formation and breakup into a certain number of
blobs depending on the Reynolds number. However, it is
worth noting that grid convergence in a strict sense is not
given. The instability is very sensitive to only small pertur-
bations of the suspension torus. A different grid resolution
involves different relative positions between particles and
grid points resulting in a slightly different particle feedback
force. This small difference is sufficient to produce different
details of the disintegrating torus. For example, the location
of the secondary blobs along the torus’ circumference may
be slightly different in one simulation withN=64 and an-
other one withN=128 and otherwise same parameters. Also,

FIG. 20. Influence of periodic boundaries. Two simulations at Red=100
sSt=0.01, Fr=44.7,F=0.02d with the same initial particle distributions but
different interdrop spacing.sAd Side view,sBd top view. Left,L /R=15, N
=128; right,L /R=30, N=256. The ratio of grid points per drop radius was
equal in both simulations.

FIG. 21. Influence of interpolation:sAd trilinear fluid interpolation,sBd
fourth-order Lagrange-polynomial fluid interpolation, andscd spectral sum-
mation. In all cases trilinear interpolation of the particle feedback force was
used. Red=100, St=0.01, Fr=44.7,%p/%=1000, np=7337, M =9030, and
N=64.
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the disintegration process tends to evolve a little more slowly
when using 643 grid points compared to 1283.

B. Spectral analysis of settling drop and torus

The initial particle distribution has been identified as the
primary source of perturbations, which are crucial to the in-
stability developing during the drop settling process. To gain
a deeper understanding of the particle dispersion processes
involved, the particle field inside the settling drop and torus
was analyzed from a spectral point of view. To this end the
particle field was divided intoNs radially symmetric seg-
ments in thesx1,x2d plane according to the sketch in Fig. 23.
The segments are similar to the slices of an orange. This
segmentation served as a tool to study the time evolution of
the particle distribution.

The idea is to define a measurable quantityqsus,td as a
function of thesdiscreted segmentation angleus and timet
and to study the time evolution of the Fourier coefficients
associated with this quantity. Each segment contains a num-
ber of particlesnp

ssus,td that may change during the disinte-
gration process. As will be demonstrated in the following, it
is instructive to use this number as the time-dependent quan-
tity, qsus,tdªnp

ssus,td. The number of particles per segment
indicates whether particles accumulate in certain azimuthal
regions. Another choice would be to use the mean particle
settling velocity per segment,qsus,tdªv3

ssus,td, which may
indicate whether particles settle faster in certain regions.

A reasonable number of segmentsNs must meet two
criteria: sid the size of a segment should be much smaller
than the smallest scale of particle clustering to be captured
along the torus’ circumference;sii d a segment should contain
enough particles such thatnp

s does not change significantly if
the segment is slightly shifted in azimuthal direction. This is

to ensure thatnp
s is a measure of the local particle number

density. Figure 24 shows the mean number of particles per
segmentn̄p

ssNsd and the corresponding standard deviation
ssNsd for a simulation with np

c=509 645 sRed=100, St
=0.01, Fr=44.7,%p/%=1000d. In this case the suspension
drop breaks up into six secondary blobs. Thus, criterionsid
requires the number of segmentsNs to be much larger than
the order of 10. Criterionsii d requires the ratios / n̄p

s to be
much smaller than unitysFig. 24d. For the subsequent analy-
sis Ns=128 was chosen.

The quantityqsus,td is decomposed into its Fourier co-
efficients according to

q̂sk,td =
1

Ns
o
us

qsus,tde−ikus, s18d

where q̂sk,td is the Fourier coefficient associated with the
azimuthal wavenumberk=−Ns/2 , . . . ,Ns/2−1.Sinceqsus,td
is a real quantity, the coefficientsq̂sk,td andq̂s−k,td are com-
plex conjugates. Therefore, the time evolution of the magni-
tude uq̂sk,tdu2 needs to be studied for positivek only.

Figure 25sad shows the time evolution of the Fourier
coefficients associated with the number of particles per seg-
ment fqsus,td=np

ssus,tdg. From t<100 on all Fourier coeffi-
cients start growing. For 100& t&400 the increase is ap-
proximately linear in the logarithmic-linear plot indicating an
exponentially growing instability. The Fourier coefficient as-
sociated with wavenumberk=6 clearly predominates. This
reflects a torus breakup into sixsmajord secondary blobs, as
shown in Fig. 26scd. The second-strongest mode is associated
with k=8 corresponding to the two additionalsminord sec-
ondary blobs in Fig. 26scd. It is worth noting that only att
<480 the formation of bulges becomes visible when observ-
ing the settling torusfFig. 26sbdg. The wavenumber selec-
tion, i.e., the onset of exponential growth with a certain
mode predominating, occurs at a much earlier stagest
<150d, when it is clearly impossible to predict the number
of secondary blobs by visual judgment onlyfFig. 26sadg.

Figure 25sbd shows the time evolution of the Fourier
coefficients associated with the mean particle settling veloc-
ity per segmentfqsus,td=v3

ssu ,tdg. The overall picture ob-
served is the same as that in Fig. 25sad. The predominant

FIG. 22. Disintegrated blobs computed with different grid resolutions. From
left to right: N=16, N=32, N=64, andN=128. Red=100.

FIG. 23. Axisymmetric segmentation of particle field insx1,x2d plane. The
dashed circle indicates the initial suspension drop. The angleus, s
=1, . . . ,Ns denotes the azimuthal location of the segments’ center.

FIG. 24. Mean number of particles per segmentn̄p
s and standard deviations

as a function of the number of segmentsNs for initial suspension dropsn̄p
s

and s are normalized by the total number of particlesnp
cd. Red=100, N

=64, andnp
c=509 645.
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mode is associated with wavenumberk=6, the second-
strongest withk=8, however only fort*500. Also, the point
in time when the wavenumber selection occurs cannot be
identified as clearly as in Fig. 25sad.

Imposing artificial perturbations on the initial drop, as
discussed in Sec. IV A, affects the time evolution of the Fou-
rier coefficients. This is shown in Fig. 27. Here, the initial
drop shape was perturbed according to Eq.s17d with As

=0.01R and ls=4. The shape perturbation causes the fourth
mode,k=4, to grow rapidly shortly after the drop is released
and then prevail during the entire settling process. The sixth
modek=6, which is due to the natural perturbations caused
by the particle distribution, starts growing in the same way as

in the unperturbed casesFig. 25d. As the instability develops,
the sixth mode “catches up” with the fourth mode such that
at t=716 the corresponding Fourier coefficients reach the
same level. This results in a disintegrated drop with six sec-
ondary blobs as shown in Fig. 28. If the artificial perturba-
tion level is increasedsAs.0.01Rd the predominance of the
fourth mode is more pronounced yielding only four second-
ary blobs. IfAs!0.01R the fourth Fourier coefficient in Fig.
27 drops below the sixth mode and the disintegrated drop
looks almost like the unperturbed one in Fig. 26.

V. SUMMARY AND CONCLUSIONS

The settling and breakup of suspension drops was inves-
tigated numerically using a pseudospectral method for the
liquid phase and Lagrangian point-particle tracking for the
particulate phase. The focus of the present investigation was
on the physical processes affecting the instability and subse-
quent drop disintegration for moderate drop Reynolds num-
bers.

The case of low drop Reynolds numbers, Redø0.1, was
used for validation purposes. Here, the suspension drop re-
tains a roughly spherical shape while settling under gravity.
A few particles leak away into a tail emanating from the rear
of the drop. The theoretical streamline pattern provided by
Nitsche and Batchelor8 was very well reproduced in our
simulations. Due to periodic boundaries in the pseudospec-
tral method a hindered settling effect was observed: the drop
settling velocity of a regular, three-dimensional array of sus-
pension drops implied by our simulations may be consider-
ably decreased compared with a single drop in infinite fluid.

FIG. 25. Time evolution of the Fourier coefficients associated withsad the
number of particles per segmentnp

ssus,td, andsbd the mean particle settling
velocity v3

ssus,td. Same simulation as in Fig. 26.

FIG. 26. Suspension drop atsad t=172, sbd t=480, andscd t=716. Red
=100, St=0.01, Fr=44.7,np

c=509 645,M =130, andN=64. sAd Side view,
sBd top view.

FIG. 27. Time evolution of the Fourier coefficients associated with the
number of particles per segment for an initially perturbed suspension drop.
Same parameters as in Fig. 26 andAs=0.01R, ls=4.

FIG. 28. Initially perturbed suspension drop. Top viewsleftd, side view
srightd. Same parameters as in Fig. 26 andAs=0.01R, ls=4.
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The settling velocity in the limiting case of vanishing drop
volume concentration was found to be in good agreement
with the result by Nitsche and Batchelor.

In the case of moderate drop Reynolds numbers, 1
øRedø100, the suspension drop deforms into a torus that
eventually becomes unstable and breaks up into a number of
secondary blobs. The particular way the torus breaks up is
primarily determined by the drop Reynolds number and the
distribution of the particles inside the drop and torus. With a
fixed initial particle distribution an increasing Reynolds
number leads to a larger number of secondary blobs. The
deformation of the drop into a torus occurs at increasingly
shorter times with increasing Reynolds number. The instabil-
ity developing during the settling process was found to be
very sensitive to the initial conditions, i.e., the initial distri-
bution of particles, the initial drop shape, and the number of
particles making up the suspension drop. In particular, the
following observations were made: The random particle dis-
tribution was identified as the primary source ofsnaturald
perturbations, which are crucial to the instability leading to
torus breakup. Different initial particle positions affect the
details of the disintegration process. They may even result in
a different number of secondary blobs. If the number of real
and/or computational particles is increased with otherwise
fixed parameters, the particle distribution becomes more ho-
mogeneous. The natural perturbation level is decreased,
which causes the settling torus to remain stable for a longer
period of time and to break up into a larger number of sec-
ondary blobs. The crucial role of perturbations was further
illustrated by initially perturbing the shape of the suspension
drop. If the level of these artificial perturbations is large
enough, a particular number of secondary blobs can be
forced.

A grid resolution ofNù64 was sufficient to capture all
relevant features of the disintegration process in the param-
eter range investigated. The periodic boundaries and the in-
terpolation method used in the computation of the particle
feedback force were shown to have a negligible influence.

To gain a deeper insight into the substructural effects
leading to torus breakup, the particle field was analyzed from
a spectral point of view. The time evolution of the Fourier
coefficients in azimuthal direction of the torus associated
with the local particle number density and the mean particle
settling velocity was studied. The instability is characterized
by exponentially growing modes associated with the wave-
numbers in azimuthal direction. The fastest growing modes
determine the number of secondary blobs obtained during
breakup. The wavenumber selection, i.e., the onset of expo-
nential growth with a certain mode predominating, was
found to occur at an early stage during the torus formation
long before the visible breakup sets in.

ACKNOWLEDGMENTS

Some of the results discussed in this paper were previ-
ously presented at the second International Conference on
Computational Methods in Multiphase FlowsBosseet al.34d.
The simulations were performed on the supercomputer NEC

SX-5 at the Swiss Center of Supercomputing CSCS in
Manno, Switzerland.

1C. T. Crowe, M. Sommerfeld, and Y. Tsuji,Multiphase Flows with Drop-
lets and ParticlessCRC, Boca Raton, 1998d.

2J. F. Brady and G. Bossis, “Stokesian dynamics,” Annu. Rev. Fluid Mech.
20, 111 s1988d.

3S. Chen and G. D. Doolen, “Lattice Boltzmann method for fluid flow,”
Annu. Rev. Fluid Mech.30, 329 s1998d.

4M. W. Reeks, “On a kinetic equation for the transport of particles in
turbulent flows,” Phys. Fluids A3, 446 s1991d.

5T. W. Pan, D. D. Joseph, and R. Glowinski, “Modelling Rayleigh-Taylor
instability of a sedimenting suspension of several thousand circular par-
ticles in a direct numerical simulation,” J. Fluid Mech.434, 23 s2001d.

6R. Glowinski, “Finite element methods for incompressible viscous flow,”
in Handbook of Numerical Analysis, edited by P. G. Ciarlet and J. L. Lions
sNorth-Holland, Amsterdam, 2003d, Chaps. 8 and 9.

7R. Glowinski, T. W. Pan, T. I. Hesla, D. D. Joseph, and J. Periaux, “A
fictitious domain approach to the direct numerical simulation of incom-
pressible viscous flow past moving rigid bodies: Application to particulate
flow,” J. Comput. Phys.169, 363 s2001d.

8J. M. Nitsche and G. K. Batchelor, “Break-up of a falling drop containing
dispersed particles,” J. Fluid Mech.340, 161 s1997d.

9G. Machu, W. Meile, L. C. Nitsche, and U. Schaflinger, “Coalescence,
torus formation and breakup of sedimenting drops: experiments and simu-
lations,” J. Fluid Mech.447, 299 s2001d.

10M. Kojima, E. J. Hinch, and A. Acrivos, “The formation and expansion of
a toroidal drop moving in a viscous fluid,” Phys. Fluids27, 19 s1984d.

11C. J. Koh and L. G. Leal, “The stability of drop shapes for translation at
zero Reynolds number through quiescent fluid,” Phys. Fluids A1, 1309
s1989d.

12C. Pozrikidis, “The instability of a moving viscous drop,” J. Fluid Mech.
210, 1 s1990d.

13N. Baumann, D. D. Joseph, P. Mohr, and Y. Renardy, “Vortex rings of one
fluid in another in free fall,” Phys. Fluids A4, 567 s1992d.

14J. H. Walther and P. Koumoutsakos, “Three-dimensional vortex methods
for particle-laden flows with two–way coupling,” J. Comput. Phys.167,
39 s2001d.

15M. R. Maxey and J. J. Riley, “Equation of motion for a small rigid sphere
in a non-uniform flow,” Phys. Fluids26, 883 s1983d.

16M. R. Maxey, B. K. Patel, E. J. Chang, and L.-P. Wang, “Simulations of
dispersed turbulent multiphase flow,” Fluid Dyn. Res.20, 143 s1997d.

17S. A. Orszag, “Numerical simulation of incompressible flows within
simple boundaries: I. Galerkinsspectrald representations,” Stud. Appl.
Math. 50, 293 s1971d.

18U. Schumann, G. Grötzbach, and L. Kleiser, “Direct numerical simulation
of turbulence,” inPrediction Methods for Turbulent Flows, edited by W.
Kollmann sHemisphere, New York, 1980d, p. 123.

19C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang,Spectral Meth-
ods in Fluid DynamicssSpringer, Berlin, 1988d.

20M. R. Maxey and B. K. Patel, “Localized force representations for par-
ticles sedimenting in Stokes flow,” Int. J. Multiphase Flow27, 1603
s2001d.

21S. Elghobashi, “On predicting particle-laden turbulent flows,” Appl. Sci.
Res. 52, 309 s1994d.

22O. A. Druzhinin, “The influence of particle inertia on the two-way cou-
pling and modification of isotropic turbulence by microparticles,” Phys.
Fluids 13, 3738s2001d.

23A. S. Sangani and A. Acrivos, “Slow flow through a periodic array of
spheres,” Int. J. Multiphase Flow8, 343 s1982d.

24A. A. Zick and G. M. Homsy, “Stokes flow through periodic arrays of
spheres,” J. Fluid Mech.115, 13 s1982d.

25H. Hasimoto, “On the periodic fundamental solutions of the Stokes equa-
tions and their application to viscous flow past a cubic array of spheres,”
J. Fluid Mech. 5, 317 s1959d.

26A. S. Sangani, “Sedimentation in ordered emulsions of drops at low Rey-
nolds numbers,” ZAMP38, 542 s1987d.

27G. Mo and A. S. Sangani, “A method for computing Stokes flow interac-
tions among spherical objects and its application to suspensions of drops
and porous media,” Phys. Fluids6, 1637s1994d.

28D. D. Joseph and Y. Y. Renardy,Fundamentals of Two-Fluid Dynamics
sSpringer, Berlin, 1993d, Vol. 2, Chapt. 9.

29S. Chandrasekhar,Hydrodynamic and Hydromagnetic StabilitysClaren-

037101-16 Bosse et al. Phys. Fluids 17, 037101 ~2005!

Downloaded 25 Feb 2005 to 128.111.70.70. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



don, Oxford, 1961d.
30P. K. Yeung and S. B. Pope, “An algorithm for tracking fluid particles in

numerical simulations of homogeneous turbulence,” J. Comput. Phys.79,
373 s1988d.

31S. Balachandar and M. R. Maxey, “Methods for evaluating fluid velocities
in spectral simulations of turbulence,” J. Comput. Phys.83, 96 s1989d.

32S. Sundaram and L. R. Collins, “A numerical study of the modulation of
isotropic turbulence by suspended particles,” J. Fluid Mech.379, 105

s1999d.
33A. Kitagawa, Y. Murai, and F. Yamamoto, “Two-way coupling of

Eulerian-Lagrangian model for dispersed multiphase flows using filtering
functions,” Int. J. Multiphase Flow27, 2129s2001d.

34T. Bosse, C. Härtel, E. Meiburg, and L. Kleiser, “Simulation of settling
and break-up of suspension drops in a fluid,” inComputational Methods in
Multiphase Flows II, Advances in Fluid Mechanics, edited by A. A. Mam-
moli and C. A. BrebbiasWIT, Southampton, 2003d, p. 149.

037101-17 Numerical simulation of finite Reynolds number Phys. Fluids 17, 037101 ~2005!

Downloaded 25 Feb 2005 to 128.111.70.70. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp


