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Abstract

Using high resolution numerical simulations of the two-dimensional Navier—Stokes equations, we evaluate a conceptually simple
approach to modeling gravity currents traveling over a bottom boundary of varying slope. We consider a rectangular computational
domain, which allows for simple and efficient implementation of the equations and boundary conditions. Rather than implementing
a complete coordinate transformation, the varying slope is modeled through the introduction of a spatially varying gravity vector.
Our methodology is validated through studies of mass and energy conservation. The propagation velocity of the current and qual-
itative features of the flow are also found to be consistent with experimental observations of gravity currents traveling down con-

stant or varying slopes.
© 2005 Elsevier Ltd. All rights reserved.

1. Introduction

Gravity currents are formed when a mass of relatively
heavy fluid intrudes laterally into a lighter ambient fluid.
Density-driven currents are due to compositional, salin-
ity or temperature variations and find applications in
rivers flowing into the sea, lava flows and storms in
the atmosphere (see [1]). Suspended particles may also
be responsible for the density difference between heavy
and ambient fluid, giving rise to so-called particle-driven
currents or turbidity currents. The particles then settle
relative to the fluid and deposit at the bottom surface.
Such currents arise mostly in geophysical contexts. For
example, the maximal distance traveled by air masses
laden with volcanic ash constitutes a great security con-
cern [2]. Also, the deposits left by underwater turbidity
currents may indicate the presence of oil and gas fields
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[3,4]. Recent studies of particle clouds have furthermore
underlined the importance of particle-laden gravity cur-
rents in the context of the dumping of waste into rivers
and oceans [5].

Numerical simulations of particle-laden gravity cur-
rents have been performed using the shallow-water
equations by, among others, Garcia [6] and Bonnecaze
et al. [7]. Such simulations consider layer-averaged
quantities and rely on a number of empirical relations
to estimate the effects of pressure, turbulence and
bottom friction. More recently, direct numerical simula-
tions of two- and three-dimensional density and particle-
driven gravity currents have been performed by Hartel
et al. [8] and Necker et al. [9], thus eliminating the need
for such empirical coefficients. However, these simula-
tions are still limited to relatively low Reynolds number
(Re ~ 0(10%) and simple geometries.

Several experimental studies of density or particle-
driven gravity currents have been performed in the last
half century. In particular, Britter and Linden [10]
studied the progression of a constant flux of heavy fluid
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traveling down a constant slope and Beghin et al. [11]
investigated the evolution of finite volume releases in
the same context. Both sets of authors noted that larger
slope angles caused increased mixing between light and
heavy fluid and slightly faster propagation of the cur-
rent’s front. They also observed that the head of the cur-
rent was slightly raised above the bottom surface when
traveling over an inclined plane. Finite volume releases
of particle-laden currents were studied in a shallow
ambient by Rottman and Simpson [12] and later Bon-
necaze et al. [7] who noted, among other things, that a
bore could form from the reflection of the light fluid
on the back wall. This bore was seen to overtake the
head of the current and to alter significantly the dynam-
ics of the flow. Experiments on particle-laden currents
flowing down slopes of varying angles were conducted
by Garcia and Parker [13] and Garcia [14]; these authors
used a constant inflow of particle-laden fluid and fo-
cused mostly on the particle deposition patterns.

Many physical applications of gravity currents in-
volve irregular bottom boundaries. Turbidity currents
often travel down continental shelves with varying
slopes [15]. Bores may form as gravity currents run over
sizable obstacles [16]. Also, in order to provide an accu-
rate description of deposits left by repeated gravity cur-
rents, the geometry of earlier deposits must be taken
into account in simulations of latter currents [17]. Such
currents may be eroding or depositing, depending on the
geometry of the boundary, and may be responsible for
certain geological structures such as the formation of
underwater canyons and levees [15].

Our objective is to develop a conceptually simple ap-
proach which allows to simulate complex geometries,
but still uses fast, highly accurate numerical methods.
We focus here on two-dimensional simulations of the
Navier-Stokes equations applied to gravity currents
propagating over a lower boundary of varying slope
angle. In most applications, the bottom geometry is
slowly varying. We use the fact that the curvature of
the topography is usually small to develop simulations
that are simpler and faster than full mappings of the
Navier-Stokes equations and which do not require
structured meshes or grid generation. We first review
the governing equations of motion in Section 2. We then
introduce the numerical model used to simulate the flow
in Section 3 before discussing the validity of our simula-
tions in Section 4. Our conclusions are presented in
Section 5.

2. Governing equations

We consider situations where the density difference
between heavy and light fluid is relatively small (<5%).
We may therefore use the Boussinesq approximation
and consider density variations in the buoyancy term

only. We assume that the density of the fluid is linearly
related to the concentration, C, of either a solute or sus-
pended particles, p = p,(1 + aC), where o = (p, — py)/
Py, where p, and p, are the fluid and particle density
respectively, and the bars denote dimensional quantities.
When simulating turbidity currents, we consider small
Reynolds number particles with settling speed U,. We
restrict our study to dilute suspensions, i.e. C S 5%,
where particle—particle interactions may be neglected
and the settling speed may be considered constant. We
denote by 4, the initial heavy fluid height and by Cy,
the initial solute or particle concentration. We restrict
our study to high Reynolds number flows, Re = iih/
v ~ O(10%), where @, is a characteristic velocity and v
is the viscosity of the current. Buoyancy forces are
therefore balanced by inertial forces and a typical value
of uy 1s

Uy = \/gda()il

where g is the gravitational acceleration.

In order to keep the computational time manageable,
we consider two-dimensional gravity currents. The
velocities parallel and perpendicular to the bottom sur-
face are denoted by u; and u,, respectively, and the cor-
responding coordinates by x; and x,. We introduce a
stream function y such that u; = 0,,} and u, = —0,,{
and a vorticity field o = 0,,u, — O,,u;. The angle be-
tween the bottom surface, x, = 0, and the horizontal is
denoted by 6, as shown in Fig. 1. We non-dimensional-
ize the Navier—Stokes equations using the height of the
heavy fluid, %, the buoyancy velocity, i, and the initial
concentration Cy and obtain

Vi =—-o (1)

1
010 + 110y, 0 + U0y, 00 = EVZQ) — 0y, (Ccosb)
— 0,,(Csin0) (2)

--1

Fig. 1. Schematic of the coordinate system used in the simulations.
The angle 0 between the x;-axis and the horizontal is allowed to vary
with x; to model varying slopes. The dark region corresponds to the
initial position of heavy fluid and is constrained by 0 < x; < X,
0 < x, < 1. The height and length of the computational domain are H
and L, respectively.
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1
0,C+ 0y (1 + Ussin0)C] + 0, (2 = Uscos0) €] = 5-V*C
3)

where U, = U,/u, and Pe = u,h /i is the Péclet number,
with # the diffusion constant associated with C. To facil-
itate numerical convergence [8], we set Pe = Re, or
equivalently ¥ = v. The diffusion of C is not expected
to be dynamically significant and this overestimate of
K only has a negligible impact.

In order to simulate turbidity currents over a broad
range of topographies, we allow the angle between the
horizontal and the bottom surface, 0, to depend on Xx;.
Our coordinate system (x1,x5), illustrated in Fig. 1, is
therefore related to Cartesian coordinates, x in the hor-
izontal and y in the vertical, through

x= / cos 0(x}) dx| + x, sin O(x;) 4)
0

y= —/ sin 0(x}) dx| + x, cos 0(x;) (5)
0

For the sake of simplicity, we have neglected corrections
to Egs. (1)—(3) resulting from the curvilinear nature of
this coordinate system. These corrections are of order
x,d0/dx; and we therefore restrict our study to systems
where ¢ = Hd0/dx; < 1, where H is the height of the
computational domain, to ensure that the neglected
terms are everywhere small. Note that here ¢ represents
the ratio of the height of the computational domain to
the radius of curvature of the bottom surface; our simu-
lations are expected to be valid only for relatively large
curvature radii. Effectively, we thus consider a spatially
varying gravity vector and use a rectangular computa-
tional domain.

Initially, the fluid is at rest, y =w =0, and C=0
everywhere except in a rectangle in the bottom left cor-
ner, 0 < x; < X, 0<xo <1 where C=1, see Fig. 1.
The initial length of the current, xg, and the height of
the computational domain may be specified arbitrarily.
We use a no-slip boundary condition at the top and bot-
tom walls and a slip boundary condition at the left and
right walls to allow for the use of a Fourier transform of
Y along x.

Y=0,y=0 atx,=0H
O =y =0 atx; =0,L
where L is the length of the computational domain.

The concentration flux at the boundary, F, is set to 0
at the top and left walls
1
F:CUSCOSH—i—P—aXZC:O atx, = H (6)
e

1
F=—CUssin9+}7e(9xlC=0 atx; =0 (7)

However, particles are allowed to deposit at the bottom
and right wa}ls so that F =k -nU,C at x, =0 and
x1 =L, with k = (—sin0,cos0), a vertical unit vector

and 7, the unit outer normal at the boundary. The
boundary conditions on C are therefore equivalent to
setting the diffusive flux to 0:

8X2C:0 atx2:0, 3XIC:O ath:L (8)

The accumulation of particles at the bottom boundary
may be found by integrating in time the particle flux
out of suspension. Details of the deposits left by turbid-
ity currents are investigated in a companion paper [18].

2.1. Energy balance

From the velocity and concentration fields, we com-
pute an energy budget of the flow, in a manner similar
to that of Necker et al. [19]. Consistent with the Bous-
sinesq approximation, density variations influence the
potential energy, E,,, but not the kinetic energy, K,

. 1
Ep:/f-deV, K:/EﬁiidV
v 14

where V' is the domain of the simulations and ¥, the po-
sition vector so that the vertical height of a point is
y =X k. The time-derivative of E, satisfies

dE, Di .. DC

:/ [ﬁ~1}C+V~ <y<U51}C+1vc>>
v Pe
— <U5C+LIQ-VC)}dV
Pe

:/ﬁ-deVJrfdeS—/USCdV
4 4

N
1l
N

where S is the surface bounding V. Similarly, the time-
derivative of the kinetic energy is (see [20]).
dk [ 1Dii-u

dr J,2 D¢ a

O
:/V [—V~(Pu)+R—eu-V u—u-kC}dV
2
v Re
where 5 = (1/2)(Vi + (Vii)"). Therefore, the total en-
ergy present in the system is

Ey +K|z:0 =E, +K
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The term (I) accounts for the loss of potential energy
through particle deposition; (II) indicates the variation
in potential energy due to diffusion of C and is typically
negative as larger concentrations diffuse upward; (III)
reflects the loss of potential energy as particles in sus-
pension travel downward, and (IV) measures viscous
dissipation.

3. Numerical approach

Our numerical method has several advantages over
previous numerical simulations of gravity currents.
First, the use of highly resolved numerical simulations
rather than layer averaged equations allows for direct
measurements of quantities such as the bottom stress,
dissipated energy and front velocity. Moreover, using
a streamfunction-vorticity formulation satisfies the con-
tinuity equation exactly and does not require any
approximation of the pressure field. In contrast, previ-
ous simulations aimed at modeling gravity currents have
either assumed a hydrostatic pressure directly [21] or
through layer averaged equations [14,22]. Third, the
use of a varying gravitational vector in a rectangular
computational domain allows for a simple, flexible and
efficient implementation of the governing equations
and boundary conditions for any bottom surface, pro-
vided ¢ <« 1. In particular, spectral methods may be
used, thereby improving the accuracy of the simulations
at little computational cost. Although an exact mapping
between the physical and computational domains is pos-
sible, its implementation is comparatively cumbersome
and computationally extensive [23]. We investigate the
importance of the neglected curvature terms by track-
ing conserved quantities such as mass and energy in
Section 4.

The numerical integration of Egs. (1)—(3) is per-
formed in a manner similar to that of Hértel et al. [8].
We use sixth order compact finite differences for C
everywhere and for y along x, and a Fourier transform
for i in the x;-direction; near the boundaries, the deriv-
atives are accurate to third order [24]. A third order
Runge-Kutta integrator is used to march Egs. (2) and
(3) forward in time [8]. Eq. (1) is then solved by taking
a Fourier transform of the vorticity in the x-direction
and using 5-point compact finite differences in x, [24].
The velocity field is obtained by differentiating y. We
use an adaptive time-step to satisfy the CFL and diffu-
sive stability criteria while minimizing computation
time.

4. Numerical results

A sample of the concentration (at three different
times) and vorticity fields obtained via our numerical
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Fig. 2. (a) Concentration field of a density-driven gravity current at
t=2(a),t= 14 (b)and ¢t = 30 (c). The dark regions correspond to high
solute concentration. (d) Vorticity field of the same current, the dark
regions correspond to negative (clockwise) vorticity and the pale
regions to positive vorticity. The current displayed here traveled down
a complex geometry: 0 = 5° for x; < 7, 0 = 0° for x; <9 and 0 varying
linearly in the intermediate region. Other governing parameters are
Re = Pe=2200, H=3, L =32 and x; = 4.

simulations is shown in Fig. 2a-d, respectively. Here
the current is initially propagating down a 5° slope,
Fig. 2a, before reaching a horizontal region, Fig. 2b
and eventually losing its structure, Fig. 2c. At early
times, we observe a well defined current, with a head sig-
nificantly higher than the trailing fluid. Vortices are
being shed above and behind the head, mostly rotating
counterclockwise. These vortices are seen to entrain
ambient fluid and the concentration within them is re-
duced relative to that of the main current. The head of
the current is here slightly overhanging, trapping a re-
gion of clear fluid below heavy fluid, a typical feature
of gravity currents traveling down an incline [10,11].
The vorticity is greatest in the vortices shed above the
head and near the bottom, no-slip wall. Clockwise vor-
tices of lesser intensity are also seen to form within the
current. It should be pointed out that the two-dimen-
sional nature of our simulations is likely to enhance
the strength of these vortices in comparison to three-
dimensional flows where vortices may be stretched
across the width of the current.

4.1. Convergence

We first verify the numerical convergence of our sim-
ulations by tracking the total energy of the system, using
Eq. (11), while varying the grid size. We fix the geometry
of the domain to 8 = 10° for x; <7, 6 =0° for 9 < x,,
and 0 linearly varying in the intermediate region. We
set H =1 and L = 32 and denote by n,, and n,, the num-
ber of points along the x;- and x,-axes, respectively.

Numerical instabilities are generated near the front of
the current and along the most vigorous vortices when
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relatively coarse grids are used (n,, < 257, n,, < 33 for
Re = Pe = 2200). However, increasing slightly the reso-
lution ensures that the flow remains numerically stable.
The number of grid points required to avoid the forma-
tion of instabilities is seen to increase with Re, but as a
general rule, instabilities may be avoided provided the
smaller structures of the flow, which scale as Re 2,
can be resolved.

Fig. 3 shows the total energy as a function of time for
various mesh sizes. It may be seen that doubling n,, pro-
vides only slightly better energy conservation. In con-
trast, the number of points along the x;-axis (n,,) is
determinant in avoiding the generation of an energy sur-
plus. As the grid is refined, the error progressively drops
below 1%, even after 40 time units when the current has
lost most of its structure. For n,, > 1025 and n,, > 193,
the error on the total energy improves only slightly with
further mesh refinement. The qualitative features of the
current also remain virtually unchanged: vortices appear
well resolved and the structure and velocity of the cur-
rent are independent of mesh size.

4.2. Influence of the radius of curvature

We now investigate the influence of ¢ = Hdf/dx, on
the conservation of the total mass of the heavy fluid
present in our simulations. In order to focus on the im-
pact of the corner geometry, we vary only the transition
length, i.e. the length over which the bottom slope de-
creases from 0 =10° to 6 =0°. Fig. 4 shows the time
evolution of the total mass of heavy fluid present in
the computational domain for different values of &. At
early times, ¢ < 3.9, the current overlies a region of con-
stant slope angle and the mass is conserved nearly ex-

* nx2=49
1150 v Me=83
o nx2=129
o n,=193
B 1f| + M7
[0]
[
(0]
=
2 1.05}

Fig. 3. Time dependence of the total energy present in the system for
different grid sizes. The initial energy is normalized to 1. The number
of points in the streamwise and perpendicular directions are denoted
by n,, and n,,, respectively. The geometry modeled here is that of a
varying slope: 0 =10° for 0 < x; <7, 0=0° for 9 < x; <32, and 0
decreasing linearly in the intermediate region. These computations
simulate density-driven currents (U; =0) and were performed with
Pe= Re=2200, H=1, L =32 and x; = 4.
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Fig. 4. Time dependence of the total mass of heavy fluid for corners of
various sharpness. The ratio of the height of the domain to the
curvature radius is denoted by ¢ = Hd0/dx,. For all cases shown, the
initial and final angles are 10° and 0°, respectively, except for & =0
where the slope angle is constant at 6 = 10°. These computations
simulate density-driven currents (Us; =0) and were performed with
Pe=Re=2200, H=1, L=16 and xq = 4.

actly. As the current reaches the corner region, mass is
effectively lost due to the neglect of curvature terms.
As the transition from sloping to horizontal bottom oc-
curs more abruptly (larger &), larger mass losses are ob-
served. Because mass losses are mostly restricted to the
region overlying the bottom corner, the local error,
which may be approximated as the total mass loss di-
vided by the approximate mass of fluid in the corner, in-
creases even more abruptly with ¢. However, the total
mass of the system remains greater than 99% of its initial
value due to the opposing effects of increased curvature
and reduced transition length.

For transition lengths comparable to the initial length
of the heavy fluid, xg, the local error is estimated to re-
main of the order of a few percent, e.g. 3% for £ =0.09
and 1% for £ = 0.04. Once the head has reached the hor-
izontal region, the total mass of heavy fluid fluctuates
between its initial value and the minimum observed in
Fig. 4, as vortices crossover to the horizontal region.
At later times, the quantity of heavy fluid overlying
the curved region decreases and the total mass returns
to a value close to the initial mass.

4.3. Front velocity

Fig. 5 shows the time-dependence of the front veloc-
ity of currents traveling over a horizontal surface, a con-
stant slope angle 0 =10° and a varying slope where
0 =10° for x; < 3.5 and 0 =0° for x; > 5.5. After a
brief acceleration period, currents traveling over a bot-
tom surface of constant angle (6 =0° or 6=10°)
quickly achieve a constant velocity. As expected, cur-
rents traveling down an inclined slope propagate faster
than those spreading on a horizontal surface. The veloc-
ity of the current propagating along a varying slope is



F. Blanchette et al. | Computers & Fluids 35 (2006) 492-500 497

0.45 T
04 r O
| |
| | |
0.35
= I I
[5]
% | |
| Il =~ flat bottom 6 = 0°
025/ l Il +— constant angle 6 = 10° |
l l —B— broken slope
0.2 L. = : :
0 5 10 15 20 25
time

Fig. 5. Time dependence of the velocity of gravity currents propagat-
ing over a horizontal surface (O), varying slope with initial angle
0=10° and & =0.06 (k) and constant slope angle 6 = 10° (+). The
dashed lines indicate the time when the nose of the varying slope
current overlies the curved bottom. These computations simulate
density-driven currents and were performed with Re = Pe = 2200,
H=1,L=16and x; = 2.

initially equal to that of a current traveling down a 10°
slope. As the current reaches the corner, shown as the
first dashed line in Fig. 5, its velocity is reduced. By
the time the head of the current overlies a horizontal
surface, second dashed line, its velocity approaches that
of a current traveling along a horizontal bottom. How-
ever, the velocity of the current traveling down a varying
slope remains slightly larger than its horizontal counter-
part. The inertia of the current thus affects its velocity
over a significant time period and both the final and ini-
tial slope angles must be considered to determine the
instantaneous velocity of the current.

At longer times, the velocity of all currents decreases
as the height of the head is reduced. When observing
animations of our simulations, a bore caused by the
reflection of the light fluid on the left wall is seen to
propagate downstream. Similar bores have been ob-
served experimentally by Bonnecaze et al. [7] and were
seen to travel faster than the head of the current.
Although the presence of large vortices in the wake of
the current renders the systematic tracking of the bore
difficult, it is usually seen to overtake the head (at
t = to). This significantly reduces the height of the front
of the current, which in turn causes the front velocity to
decrease. Along an inclined bottom, the bore catches up
with the head earlier, 7, = 17, than along a horizontal
surface, to = 25, allowing the horizontal current to travel
faster than its inclined counterpart for 7> 18. For the
varying slope current, the bore velocity appears to be al-
most unchanged as the current reaches the horizontal re-
gion. The bore therefore also overtakes the head near
t =17, well before it overtakes the horizontal current.

It should be noted that such bores only overtake the
head for certain initial lengths of the heavy fluid, i.e.

1 < xg < 3. For other values of xg., the vortices shed be-
hind the head appear to disperse the bore before it has
time to reach the head of the current. Because the
strength of the vortices is greater in two-dimensional
flows than in three-dimensional flows, the reflected bore
is expected survive longer in three-dimensional simula-
tions and experiments. However, if the height of the
computational domain is increased to H > 2, the back-
flow of light fluid is weaker and no bores are observed
either numerically or experimentally [25].

Fig. 6 compares the progression of gravity currents in
three different geometries: horizontal surface, varying
and constant slope. As is to be expected, the current
traveling down a varying slope initially resembles that
traveling down a constant slope (Fig. 6a). In particular,
the vortices shed behind the head are more vigorous
than for currents propagating over a horizontal surface,
thereby increasing the amount of mixing between light
and heavy fluid. However, as it reaches the horizontal
region, the varying slope current is progressively modi-
fied and begins to resemble a horizontal current. Smaller
vortices are shed behind the head and the velocity is re-
duced, in agreement with the behavior of horizontal cur-
rents (Fig. 6b and c). At long times, it may be seen that
vigorous mixing has occurred in the inclined regions;
however, very little heavy fluid has been transported
into the upper half of the computational domain in re-
gions overlying a horizontal surface (Fig. 6d). The bore
caused by the reflection of the light fluid, indicated with
black arrows, may be seen to trail the head of the in-
clined and varying slope currents in Fig. 6¢ and has al-
ready overtaken the head at ¢+ =25 (Fig. 6d). We also
note that currents travelling down an inclined slope
become completely detached from the left wall while
horizontal currents do not, in good agreement with pre-
vious studies [26].

4.4. Energy distribution

Fig. 7 shows the different terms of the energy budget
(Eq. (11)) of particle-driven currents traveling down a
constant or varying slope. In Fig. 7a, the potential en-
ergy, shown as (o) is calculated relative to the lowest
point of the computational domain, thus giving an ini-
tial energy three times larger to the current traveling
down a constant slope than to that on a varying slope.
Particles reaching the bottom boundary retain their po-
tential energy (*), which therefore is no longer available
to the gravity current. A large fraction of the total initial
energy is lost through this mechanism, particularly for
constant slope currents, rendering the conversion of po-
tential to kinetic energy rather inefficient. In the hori-
zontal section of the varying slope current, deposited
particles have zero potential energy.

In Fig. 7b, we plot the kinetic, dissipated and settling
energy for the same two currents. Initially, the varying
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slope current travels over an inclined region and the en-
ergy distribution is the same for both currents. As the
varying slope current reaches the horizontal region, its
velocity is reduced and its kinetic energy is seen to be-
come significantly smaller than that of the inclined cur-
rent. Similarly, the dissipated energy of the varying slope
current increases more slowly once the current overlies
the horizontal region, the vortices shed behind the head
being weaker in that region. However, the potential
energy lost through particle settling within the current
is virtually unaffected by the geometry, as particles
travel approximately the same distance relative to the

fluid. The energy gained by the system through the
action of particle diffusion is not shown here as it re-
mained less than 1.2% of the total energy throughout
the simulations.

5. Discussion

We have performed two-dimensional numerical simu-
lations of gravity currents propagating over slopes of
varying angle. Our computations were seen to be consis-
tent with numerical results obtained by previous authors
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in simpler geometries [8,9]. The main qualitative features
of the flow observed in our simulations also agree well
with experimental descriptions of gravity currents, such
as the formation of a bore [7], the speed variation of the
nose of the current as it reaches the horizontal region
and the entrainment of ambient fluid by currents travel-
ing over an inclined bottom [11]. Provided the radius of
curvature of the bottom surface is much larger than the
height of the computational domain, ie. &= Hd0/
dx; < 1, our approach allows the simulation of an arbi-
trary bottom geometry. Despite neglecting the curvature
terms, our simulations were seen to conserve mass with-
in 1% and energy within 3% for & < 0.09. Complex
three-dimensional geometries may also be modeled
through the use of a spatially varying gravity vector
and will be the subject of future research. In particular,
currents traveling through channels may be simulated
using a three-dimensional extension of the approach
presented here.

To the best of our knowledge, the influence of particle
resuspension in turbidity currents has not yet been inves-
tigated via highly resolved numerical simulations. Our
model may easily be extended to include a non-zero par-
ticle flux at the bottom boundary, and future research
will focus on characterizing the influence of particle reen-
trainment on the dynamics of gravity currents. We antic-
ipate from observations of the bottom shear stress that
the angle of inclination will be a dominant factor in
determining whether a current is predominantly eroding
or depositing. Direct numerical simulations of particle
resuspension in complex three-dimensional geometries
will hopefully allow for a more complete and realistic
description of gravity currents and their deposits.

The advantage of high resolution numerical simula-
tions over layer averaged models lies in the absence
of empirical relations characterizing the effects of
dissipation, turbulence or fluid entrainment. Precise esti-
mates of quantities such as the bottom shear stress, fluid
entrainment and turbulent dissipation may be computed
directly from our simulations. However, numerical sta-
bility considerations render exceedingly slow the simula-
tion of very high Reynolds number currents (Re ~ 107)
such as those appropriate in geophysical contexts. A
possible avenue for future research would be to combine
these two approaches, using high resolution numerical
simulations for Re ~ 2000 to determine the coefficients
needed in layer-averaged simulations or turbulence
models. Such simplified models may then be used to sim-
ulate high Reynolds number flows.
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