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Abstract

This paper presents a simple, but effective, design method for decentralized PI control systems with guaranteed closed-loop sta-

bility. Nyquist stability conditions are used to derive the stability region for each PI controller in terms of the controller parameters.
A detuning factor for each loop is specified based on a diagonal dominance index. Then appropriate controller settings are deter-
mined using this index and the stability region. Simulation results for a variety of 2 � 2, 3 � 3, and 4 � 4 systems demonstrate that
the proposed design method guarantees closed-loop stability and provides good set-point and load responses. # 2002 Elsevier

Science Ltd. All rights reserved.
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1. Introduction

Despite the development of advanced process control
techniques, proportional-integral (PI) control is still the
most commonly used control technique in the process
industries. The main reasons for this popularity are that
PI controllers are often effective and are easy to imple-
ment and maintain by plant personnel. Decentralized
(or multi-loop) PI control systems are widely used for
MIMO control problems in spite of the development of
multivariable control strategies such as Model Pre-
dictive Control. The design and tuning of single loop PI
controllers have been extensively researched [1–3]. But
most of these techniques cannot be directly applied to
design decentralized MIMO control systems. The latter
problem is a much more complicated problem due to
process and control loop interactions.
One way to compensate for loop interactions is to use

a detuning factor for each control loop. If a MIMO
process model is available, several detuning schemes for
decentralized PI controllers are available based on fre-
quency domain analysis. Perhaps the most well-known
method is the biggest log modulus tuning (BLT) method
proposed by Luyben [4–6]. In the BLT method, indivi-
dual PI controllers are first designed using the Ziegler–
Nichols (ZN) tuning rules, then a detuning factor is

used for all of the loops. The detuning factor is adjusted
so that the biggest log modulus, a measure of how far
the system is from closed-loop instability, has a specified
value. This method provides reasonable preliminary
controller settings with guaranteed closed-loop stability.
Other design methods have been developed for

decentralized PI control systems based on Nyquist sta-
bility analysis and frequency response information. Ho
et al. [7] developed a design method for decentralized
PID control systems by shaping the Gershgorin bands,
the MIMO version of the Nyquist curve, so that the
gain and phase margin specifications for the Gershgorin
bands can be satisfied at the gain and phase crossover
frequencies of the diagonal elements. This method can-
not guarantee closed-loop stability because only two
points of the Gershgorin bands are specified. Also, the
process model is assumed to be a second-order plus
dead-time model. Lee et al. [8] extended the iterative con-
tinuous cycling method for SISO problem to decentralized
PI controller tuning. Their method refined the Nyquist
array method to provide less conservative stability con-
ditions, and ultimate gains for decentralized tuning are
determined. But closed-loop stability is still not guaranteed
due to the nature of the continuous cycling method.
If the process model is not available, the relay auto-

tuning approach [1,9] is a useful and simple method to
obtain system frequency information for PI controller
design. Because MIMO systems have an infinite number
of ultimate points [10], the relay auto-tuning approach
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for SISO systems cannot be directly applied. Loh et al.
[11,12] and Shen and Yu [13] have proposed sequential
relay-feedback tests to locate the ultimate points of a
MIMO system and to design PI controllers. Halevi et al.
[10,14] used simultaneous relays in all of the control
loops to obtain the ultimate point information. In both
the sequential and simultaneous relay auto-tuning
approaches, after the frequency response information
has been obtained, the ZN [15] or modified ZN tuning
rules [9,16,17] can be used to tune the PI/PID controllers.
In this paper a new design method for decentralized

PI control systems is proposed based on the idea of
independent design and Nyquist stability analysis. In
the independent design procedure, loop interactions and
the overall stability are considered first, and each con-
troller is then designed independently of each other.
Thus there are two main steps in the proposed method.
First, a stability region is obtained for the proportional
gain and integral time of each PI controller. Then
appropriate PI controller settings are chosen which are
inside the stability regions; thus closed-loop stability is
guaranteed. For systems that are not column diagonally
dominant, a pre-compensator is required to achieve
diagonal dominance [18,19]. In the proposed method,
no assumption is made concerning the form of the linear
process model, i.e., the model is not limited to second-
order plus dead-time models or to any other specific
form. Only the frequency response for each input–out-
put pair is required to determine the stability region for
each PI controller.
The proposed design method provides a simple way to

apply Nyquist array analysis for the design and tuning
of decentralized PI control systems with guaranteed
closed-loop stability. A related paper [20] describes a
simple alternative approach but it does not guarantee
closed-loop stability. These design methods can be
extended to accommodate model uncertainty using new
robust stability conditions [21,22].

2. Stability analysis for decentralized control systems

Consider an n�n system, G(s)=[gkl (s)]n�n, controlled
by a decentralized controller, C(s)=diag{c1(s), . . ., cn(s)}.
The block diagram of the decentralized feedback con-

trol system is shown in Fig. 1. It is assumed that G(s)
has been arranged so that the pairings of the inputs and
outputs in the decentralized feedback system corre-
spond to the diagonal elements of G(s).
Let the diagonal closed-loop system be represented as

H~ sð Þ ¼ G~ sð ÞC sð Þ IþG~ sð ÞC sð Þ
� ��1

¼ diag hl sð Þ
� �

¼ diag
gll sð Þcl sð Þ

1þ gll sð Þcl sð Þ

� �
ð1Þ

where G̃(s) is the diagonal subsystem of G(s):

G~ sð Þ ¼ diag g11 sð Þ; g22 sð Þ; . . . ; gnn sð Þ
� �

ð2Þ

In the independent design method, each controller
cl (s) is designed for the corresponding diagonal element
gll (s) so that each diagonal closed-loop system is stable.
But due to the process interactions, the stability of this
diagonal subsystem does not necessarily guarantee the
stability of the overall closed-loop system:

H sð Þ ¼ G sð ÞC sð Þ I þG sð ÞC sð Þð Þ
�1

ð3Þ

Some constraints on the individual controller designs
should be satisfied in order to guarantee stability of the
overall system. The �-interaction measure [23], which
bounds the amplitude of h~l j!ð Þ, gives a sufficient condi-
tion for stability. This measure is somewhat con-
servative because the phase information for H~ j!ð Þ is not
utilized. Lee et al. [8] proposed a phase stability condi-
tion which provides a less conservative stability condi-
tion when it is used together with the �-interaction
measure. The �-interaction measure is very useful but
the computation is rather complex because the struc-
tured singular value is involved. The phase stability
bound makes it even more complicated.
The Nyquist array method [24,25] is considered in this

paper because it provides much simpler conditions for
stability, provided that the open-loop system is diagonally
dominant. Consider the Nyquist curve gll (j!)cl (j!) and
superimpose a circle of radius,

Fig. 1. General decentralized control system.
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Xn
k¼1;k6¼l;

gkl j!ð Þcl j!ð Þ
�� �� ð4Þ

This circle is referred to as Gershgorin circle. The band
composed of Gershgorin circles for all frequencies is
called the Gershgorin band. Gershgorin bands can be
used to determine whether the closed-loop system
remains stable in spite of the process interactions. The
constraints on the Gershgorin bands for closed-loop
stability can be obtained from the following theorem.

Theorem 1 [23]. Assume that G(s) and G̃(s) have the
same number of right half-plane poles and that H̃(s) is
stable. Then the closed-loop system H(s) is stable if

h~l j!ð Þ

��� ��� < Xn
k¼1;k 6¼1

gkl j!ð Þcl j!ð Þ
�� ��" #�1

8l; ! ð5Þ

Eq. (5) can be rewritten as

1þ gll j!ð Þcl j!ð Þ
�� �� > Xn

k¼1;k6¼l

gkl j!ð Þcl j!ð Þ
�� �� 8l; ! ð6Þ

Eq. (6) presents column diagonal dominance criteria for
the closed-loop system, I+G(s)C(s), while the left hand
side of Eq. (6) defines the radii of the circles forming the
Gershgorin bands [24]. Therefore, under the assump-
tions of Theorem 1, the overall closed-loop system H(s)
is stable if column diagonal dominance is achieved for
all loops at all frequencies.
The column diagonal dominance measure given by

Eqs. (5) or (6) provides individual constraints for each
single loop transfer function h̃l (j!), i.e., for each of the
controllers cl (j!). It would be incorrect to view the

�-interaction measure as less conservative than the col-
umn diagonal measure [23]. The �-interactionmeasure is
a general method, which can consider a controller C(s)
with block diagonal structure, while the column diagonal
dominance measure is only valid for a diagonal controller
C(s). However, for decentralized control systems the col-
umn diagonal measure is much simpler and easier to
implement for system analysis and design, especially for
fixed structure controllers such as PI or PID controllers.
Because most practical processes are open-loop stable,

in this paper it is assumed that the system is open-loop
stable. It is also assumed that a decentralized control
system is used and the closed-loop system has column
diagonal dominance. Then the Gershgorin band of each
loop must be one of the two cases shown in Fig. 2.
If the open-loop Gershgorin band of the l-th loop is

like Case II in Fig. 2, then this individual loop is not
stable due to the encirclement of the critical point by the
Nyquist locus. Thus as stated in Theorem 1, in order to
achieve the closed-loop stability, the stability of the
diagonal closed-loop system H(s) is required in addition
to closed-loop column diagonal dominance.

3. Stability region for decentralized PI systems

In this section the stability of decentralized PI systems
is analyzed by applying the stability condition given by
Theorem 1.
Each element of the system frequency response can be

expressed in terms of real and imaginary parts,

gkl j!ð Þ ¼ akl !ð Þ þ jbkl !ð Þ ð7Þ

or in terms of the magnitude rkl and phase angle �kl:

gkl j!ð Þ ¼ rkl !ð Þe j�kl !ð Þ ð8Þ

Fig. 2. Column diagonal dominance cases.
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Suppose that a decentralized PI control system
C(s)=diag{c1 (s), . . ., cn(s)} is used to control the multi-
variable system, G(s), and that each cl (s) is a PI con-
troller:

cl sð Þ ¼ Kcl 1þ
1

s�Il

� �
ð9Þ

or

cl sð Þ ¼ Kcl þ
KIl
s

ð10Þ

where KIl
4
¼Kcl=�Il is called the integral gain.

3.1. Column diagonal dominance

Define

Rl !ð Þ
4
¼

Xn
k¼1;k 6¼l

gkl j!ð Þ
�� �� ð11Þ

rll !ð Þ
4
¼ gll ðj!
�� Þj ð12Þ

then the column diagonal dominance condition in Eq.
(6) can be expressed as

1þ gll j!ð Þcl j!ð Þ
�� ��2> cl j!ð Þ

�� ��2R2
l !ð Þ 8l; ! ð13Þ

Substituting (7) and (10) and using the definitions of
(11) and (12), the inequality in (13) can be written as

K2
cl r

2
ll !ð Þ � R2

l !ð Þ
 �

þ K2
Il

r2Il !ð Þ � R2
l !ð Þ

!2

þ 2 Kclall !ð Þ þ KIl
bll !ð Þ

!

� �
þ 1 > 0 ð14Þ

Therefore, a region can be obtained for (Kcl, KIl) of
the l-th loop PI controller by applying condition (14) for
04o<1 . This region is referred to as the column
diagonal dominance region for the l-th loop. For a
MIMO system and a decentralized PI control system, if
each PI controller has its parameters (Kcl, KIl) located
inside the column diagonal dominance region, then the
column diagonal dominance of the closed-loop system is
achieved.

3.2. Stability conditions for individual controllers

As discussed in Section 1, each controller cl (s) should
stabilize the corresponding diagonal element gll (s) in
order to achieve closed-loop stability for the overall
system. Based on a Nyquist stability analysis for open-
loop stable SISO systems, Åström et al. [26] have derived
the following parametric description of the stability
boundary for a PI controller in terms of Kcl and KIl,

Kcl ¼ �
all !ð Þ

r2ll !ð Þ

KIl ¼ �!
bll !ð Þ

r2ll !ð Þ
ð15Þ

where all(!), bll(!), and rll (o) are defined in Eqs. (7)
and (8). By applying Eq. (15) for 04! <1, an indivi-
dual stability region boundary can be obtained for (Kcl,
KIl) of the l-th PI controller.

Fig. 3. Stability regions for PI controller settings: the Wood–Berry

column example.

Table 1

Controller settings for the Wood–Berry column example

Tuning

method

Overhead Bottoms Reference

Kc1 �I1 Kc2 �I 2

1 0.54 7.92 �0.072 26.70 [13]

2 0.85 7.21 �0.089 8.86 [8]

3 0.74 17.20 �0.103 15.90 [8]a

4 0.38 8.29 �0.075 23.60 [4]

5 0.57 20.70 �0.110 12.90 [7]

6 0.38 21.60 �0.070 14.80 [7]

a Tuning method originally developed in [30].
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3.3. Overall stability condition

In order to achieve the stability for overall system,
each controller cl (s) should satisfy both the column
diagonal dominance condition and the individual stabi-
lity condition for gll (s), i.e., the parameter settings (Kcl,
KIl) of each controller should satisfy both Eqs. (14) and
(15) for all frequencies. The column diagonal dom-
inance region can be obtained from Eq. (14) by using a
one-dimensional search. First a range for Kcl is speci-
fied; then for each value of Kcl, a one-dimensional
search is implemented for the KIl values which satisfy
condition (14) for all frequencies. By applying Eq. (15),
the individual stability boundary can be obtained for

each (Kcl, KIl). Therefore, the overall stability region for
(Kcl, KIl) of the l-th PI controller is the intersection of
the column diagonal dominance region from Eq. (14)
and the individual stability region from Eq. (15) for the
l-th loop and for all frequencies.

3.4. Wood–Berry distillation column model

A simulation example is considered to demonstrate
how to obtain the boundaries of stability regions for the
parameter settings of a decentralized PI control system.
Wood and Berry [27] developed the following transfer

function model of a pilot-scale distillation column that
is used to separate a methanol–water mixture,

Table 2

14 cases of 3 � 3 systems

Case gii (s) gij (s)

(i6¼j)

l11 �ul Fl Proposed design BLT design

Kcl �Il Kcl �Il

1 2e�s

sþ 1

e�2s

1:2sþ 1
1.5 0.135 0.466 0.269 2.44 0.296 4.44

2
2e�s

sþ 1

e�2s

1:5sþ 1
1.5 0.286 0.429 0.272 2.41 0.307 4.28

3
2e�s

sþ 1

e�2s

2sþ 1
1.5 0.452 0.387 0.274 1.87 0.313 4.21

4
3e�s

sþ 1

e�2s

2sþ 1
1.2 0.637 0.341 0.185 1.67 0.205 4.28

5
5e�s

sþ 1

e�2s

2sþ 1
1.07 0.783 0.304 0.112 1.57 0.122 4.32

6
12e�s

sþ 1

e�2s

2sþ 1
1.01 0.910 0.273 0.0469 1.50 0.0505 4.38

7
2e�s

sþ 1

e�2s

0:9sþ 1
1.5 �0.0801 0.5 0.256 2.37 0.280 4.71

8
2e�s

sþ 1

e�2s

0:8sþ 1
1.5 �0.170 0.5 0.244 2.36 0.273 4.82

9
2e�s

sþ 1

e�2s

0:7sþ 1
1.5 �0.271 0.5 0.232 2.31 0.266 4.95

10
2e�s

sþ 1

e�2s

0:6sþ 1
1.5 �0.385 0.5 0.220 2.28 0.259 5.08

11
2e�s

sþ 1

e�2s

0:5sþ 1
1.5 �0.509 0.502 0.209 2.22 0.251 5.23

12
2e�s

sþ 1

e�2s

0:4sþ 1
1.5 �0.647 0.537 0.211 2.09 0.244 5.39

13
2e�s

sþ 1

e�2s

0:3sþ 1
1.5 �0.790 0.573 0.214 2.00 0.237 5.55

14
2e�s

sþ 1

e�2s

0:1sþ 1
1.5 �1.051 0.638 0.221 1.84 0.227 5.81
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XD sð Þ

XB sð Þ

2
66664

3
77775¼

12:8e�s

16:7sþ 1

�18:9e�3s

21sþ 1

6:6e�7s

10:9sþ 1

�19:4e�3s

14:4sþ 1

2
66664

3
77775
R sð Þ

S sð Þ

2
66664

3
77775þ

3:8e�8:1s

14:9sþ1

4:9e�3:4s

13:2sþ1

2
66664

3
77775F sð Þ

ð16Þ

where XD and XB are the overhead and bottoms mole
fractions of methanol, respectively; R is the reflux flow
rate and S is the steam flow rate to the reboiler; F is the
feed flow rate, a disturbance variable.
The stability boundary shown in Fig. 3 for the l-th PI

controller was obtained by taking the intersection of
the column diagonal dominance region from Eq.
(14) and the individual stability region from Eq.
(15). Six decentralized PI controller settings reported
in the literature are given in Table 1 and shown in
Fig. 3.
All of these controller settings are located inside the

stability region except the ones for Method 2. As dis-
cussed in Section 1, the stability condition is a sufficient
but not necessary condition. Lee et al. [8] have devel-
oped a phase stability condition which makes their sta-
bility conditions less conservative. Therefore, it is not
surprising that their settings are just outside the stabi-
lity region obtained here. Although the stability condi-
tions proposed by Lee et al. [8] may provide less
conservative results, their method is very complicated
to apply. Thus, it can be concluded that the simple
stability condition presented in the present paper pro-
vides a suitable stability boundary for decentralized PI
controller design.

Fig. 4. Decentralized PI control system tuning.

Fig. 5. 3 � 3 system, cases 1–4. Fig. 6. 3 � 3 system, cases 5–8.
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4. Tuning method for decentralized PI controllers

The stability region calculation of the previous section
provides a stability boundary for the parameters of each
PI controller. Thus closed-loop stability is guaranteed
for any controller settings that lie inside the stability
region. However, the performance of the closed-loop
system may vary significantly for different PI parameter

settings. Next, we propose a tuning procedure to choose
appropriate controller settings for each loop.
The first step in the proposed tuning method is to calcu-

late the stability region for each PI controller. The ultimate
gain Kul of the l-th loop [20] is the Kcl with the maximum
magnitude of |Kcl| on the stability boundary. The corre-
sponding frequency is defined as the ultimate frequency of
the l-th loop,!ul. The ultimate gain and ultimate frequency
can be obtained from the calculation of stability region
using Eqs. (14) and (15). Analytical formulas for calculat-
ing the ultimate gain and ultimate frequency were devel-
oped in Chen and Seborg [20]. This ultimate gain Kul and
ultimate frequency !ul of the l-th loop are different from
those calculated for the diagonal transfer function gll (j!)
in the classical SISO approach because the process inter-
actions are included in the proposed method.
Next, a detuning factor Fl for the ZN tuning relations

is calculated for each control loop. The column diag-
onal dominance information should be taken into
account because the radii of the Gershgorin bands, and
thus the stability regions, are directly related to the col-
umn diagonal dominance. A column diagonal dominance
index for each loop is defined as,

�l !ð Þ
4
¼

gll j!ð Þ
�� ��� Pn

k¼1;k6¼l

gkl j!ð Þ
�� ��

gll j!ð Þ
�� �� ¼ 1�

Rl!

rll !ð Þ
ð17Þ

At each frequency, �l (!) is a real number that is less
than or equal to one. Processes with more severe loop
interactions have smaller �l (!) values. Let �ul denote
the column diagonal dominance index at the ultimate
frequency !ul:

�ul ¼ �l !ulð Þ ð18Þ

In order to develop a tuning criterion for calculating
the detuning factor Fl from the column diagonal dom-
inance index �ul, 14 different 3�3 systems with a large
range of �ul values have been evaluated. All of the 3�3
systems have the same structure: the transfer function
matrix is symmetric and the diagonal elements are the
same. The diagonal elements gii(s) and the off-diagonal
elements gij (s) are shown in Table 2. Because the trans-
fer function matrix is symmetric, the �ul value is the
same for all loops of each case. Therefore, for each of

Fig. 7. 3 � 3 system, cases 9–12.

Fig. 8. 3 � 3 system, cases 13–14.

Table 3

Wood–Berry column example

Loop l �ul Fl Proposed design BLT design

Kcl �Il Kcl �Il

XD 0.212 0.447 0.436 11.0 0.375 8.29

XB 0.328 0.418 �0.0945 15.5 �0.075 23.6
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the 14 cases, the same values of Fl, Kcl, and �Il are
obtained for each of the three loops. Furthermore, the
Relative Gain Array (RGA) element, l11 [28,29], for
each case is shown in Table 2. The RGA element is a
commonly used index for steady-state loop interaction,

but obviously it is not a good index for measuring
diagonal dominance. These 14 systems have large dif-
ferences in column diagonal dominance, but the values
of the RGA element, l11, are very similar for these
cases.

Fig. 10. Controller outputs for the Wood–Berry column example.

Fig. 9. Closed-loop responses for the Wood–Berry column example.
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Based on analysis and simulation results for the 14
cases, the following tuning relation is proposed for the
Fl factor and the column diagonal dominance index �ul,

Fl ¼

0:75 if �ul4 � 1:5
0:375� 0:25�ul if � 1:5 < �ul4 � 0:5;
0:5 if � 0:5 < �ul4 0;
0:5� 0:25�ul if 0 < �ul4 1

8>><
>>: ð19Þ

Because �ul 41, Fl varies between 0.25 and 0.75.
Finally, the proportional gain of the l-th PI controller,

Kcl, is calculated by multiplying the ultimate gain Kul by
Fl,

Kcl ¼ KulFl ð20Þ

For this Kcl, the corresponding value of KIl that lies
on the stability boundary is denoted as K

�

Il, as shown in
Fig. 4. Then the recommended value of the integral gain
is,

KIl ¼ K
�

IlFl ð21Þ

and the corresponding integral time of controller cl(s) is
calculated as,

�Il ¼
Kcl
KIl

ð22Þ

Because the detuning factor Fl is limited to values less
than one, the PI controller settings of each loop are
located inside the stability regions. Thus closed-loop
stability is guaranteed for the resulting PI controllers. In
the proposed tuning method, different detuning factors
can be obtained for each loop due to the different
degrees of column diagonal dominance of each loop,
while the BLT method uses the same detuning factor for
all loops.
The proposed tuning method has been applied to the

14 3 � 3 systems in Table 2. All 14 systems are open-
loop, column diagonally dominant, and thus a decou-
pler is not required. The column diagonal dominance
index �ul, the detuning factor Fl, and the PI controller
settings for the proposed method and the BLT method
are also shown in Table 2. The corresponding simula-
tion results are shown in Figs. 5–8 for a y1 set-point
change followed by a unit step disturbance at the inputs
at t=80 min. Note that the y2 and y3 responses are
symmetrical due to the symmetry of G(s). In general, the
proposed method provides better control because its
settling times are shorter.

Fig. 11. Set-point change responses for the Vinante–Luyben column example.

Table 4

Vinante–Luyben column example

Loop l �ul Fl Proposed

design

BLT 1 BLT 2

Kcl �Il Kcl �Il Kcl �Il

1 �0.666 0.542 1.21 4.64 2.08 5.96 �1.07 7.1

2 0.440 0.390 3.74 1.10 6.38 2.22 1.97 2.58
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5. Simulation examples

In this section, two 2 � 2 systems and a 4 � 4 system
considered by Luyben [4] are considered to demonstrate
the proposed method.

5.1. Example 1. Wood–Berry distillation column model

The Wood–Berry column model in Eq. (16) is open-
loop, column diagonally dominant. Therefore, a static
decoupler was not required. First, the stability regions
shown in Fig. 3 were calculated. The column diagonal
dominance index �ul and the corresponding detuning
factor Fl for each loop are shown in Table 3. By apply-
ing the proposed method, two PI controllers were
designed and are compared to the BLT settings in
Table 3.
The closed-loop responses for unit step changes in the

set-points for XD (at t=0) and XB (at t=150 min) and
for a unit step feed ow disturbance at t=300 min are
shown in Fig. 9. Fig. 10 shows that the controller out-
puts are similar for both methods. The XD responses of
the proposed design method and the BLT method are
similar, but the XB responses of the proposed method
are better.

5.2. Example 2. Vinante and Luyben (VL) column

The transfer function matrix for the VL column sys-
tem [4] is given by,

G sð Þ ¼

�2:2e�s

7sþ 1

1:3e�0:3s

7sþ 1

�2:8e�1:8s

9:5sþ 1

4:3e�0:3s

9:2sþ 1

2
66664

3
77775 ð23Þ

From the transfer function matrix, it is easy to tell that
the VL column system does not exhibit open-loop col-
umn diagonal dominance. Therefore, a static decoupler,
D(0)=G�1 (0), was applied and the stability region for
each loop (Kcl, KIl) was calculated for the augmented
system, G(s)D(0). Using the proposed tuning method,
the �ul, Fl and the PI controller settings for the aug-
mented system were calculated and are compared to the
BLT settings in Table 4. The BLT method was applied
to design PI controllers for both the augmented system
and the original system. Thus, two sets of PI settings

Fig. 12. Disturbance responses for the Vinante–Luyben column example.

Table 5

Alatiqi column (A1) example

Loop l �ul Fl Proposed design BLT design

Kcl �Il Kcl �Il

1 �8.41 0.750 0.176 62.9 0.881 85.4

2 �2.87 0.750 0.220 31.0 4.14 6.74

3 0.777 0.306 3.15 8.03 2.86 9.59

4 �0.665 0.541 0.447 47.5 0.524 94.9
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were obtained: BLT-1 settings are for the augmented
system (i.e., the static decoupler is used) and BLT-2
settings are for the original system with no decoupler.
Unit step changes were introduced in the set-points

for y1 (at t=0) and y2 (at t=30 min). The closed-loop
responses are shown in Fig. 11. The simulation results
indicate that the set-point responses of the proposed PI
controllers are less oscillatory than those of the BLT-1
PI controllers. The responses for unit step disturbances
are shown in Fig. 12. A step change occurred in u1 at
t=0 and in u2 at t=40 min. For these input dis-

turbances, the proposed PI controllers provide a slower
y1 response but a faster y2 response in comparison with
the BLT-1 PI controllers. When no static decoupler is
included, the resulting BLT-2 controllers give slower
closed-loop responses. In particular, the disturbance
responses of the BLT-2 controllers are very sluggish.

5.3. Example 3. Alatiqi column (A1)

The transfer function matrix G(s) for the A1 column
system [4] is given by,

Fig. 13. Responses for set-point changes on y1 and y2: Alatiqi column (A1) example.
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Fig. 14. Responses for set-point changes on y3 and y4: Alatiqi column (A1) example.
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Because this system does not exhibit open-loop column
diagonal dominance, a static decoupler, D(0)=G�1 (0),
was applied. The stability region for each loop (Kcl, KIl)
was obtained for the augmented system, G(s)D(0).
Table 5 gives the �ul, Fl and the PI controller settings for
the augmented systems obtained using the proposed
method. The BLT method was also used to obtain the
PI controller settings for the augmented system.
Fig. 13 shows the responses for unit step changes in

the set-points of y1 (at t=0) and y2 (at t=1000 min).
The responses for unit step changes in the set-points of
y3 (at t=0) and y4 (at t=500 min) are given in Fig. 14.
The simulation was implemented with saturation limits
imposed on each of the input variables: �14ui 41 for
all i=1, . . ., 4. The simulation results indicate that the
proposed design method provides faster responses with
smaller overshoot for loop 3 and loop 4 than the BLT
method, but the responses of loops 1 and 2 for the
proposed method are much more sluggish. Table 5
shows that the A1 column has larger negative �ul
values for loops 1 and 2. Thus, it can be concluded
that the proposed method may be conservative for
highly interacting systems, i.e., systems with large nega-
tive �ul values.

6. Conclusions

The stability of decentralized PI control systems has
been analyzed based on Nyquist stability analysis. In
particular, a stability region has been derived for each
PI controller from system frequency response informa-
tion. A tuning method has been proposed based on the
obtained stability region and a new column diagonal
dominance index for each loop. The resulting decen-
tralized control system can guarantee closed-loop stabi-
lity. Simulation results illustrate that this design method
provides good performance for a wide range of exam-
ples.
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