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Abstract

The Tennessee Eastman challenge process is a realistic simulation of a chemical process that has been widely used in process
control studies. In this case study, several identification methods are examined and used to develop MIMO models that

contain seven inputs and ten outputs. ARX and finite impulse response models are identified using reduced-rank regression
techniques (PLS and CCR) and state-space models identified with prediction error methods and subspace algorithms. For a
variety of reasons, the only successful models are the state-space models produced by two popular subspace algorithms, N4SID

and canonical variate analysis (CVA). The CVA model is the most accurate. Important issues for identifying the Tennessee
Eastman challenge process and comparisons between the subspace algorithms are also discussed. r 2001 Elsevier Science Ltd.
All rights reserved.
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1. Introduction

Multivariable linear models are commonly used in
process control applications, notably model predictive
control (MPC). Most MPC applications use non-
parametric linear models such as finite impulse response
(FIR) or step response models. For large-dimensional
applications, nonparametric models result in a very
large number of parameters to be estimated. As
shown by Larimore (1996b), the accuracy of the
identified model measured by its variance is pro-
portional to the number of estimated parameters.
Thus, these ‘‘nonparsimonious’’ models can have
poor robustness properties for controller design
due to large parametric uncertainty; they also have
limited predictive capabilities due to their model
structure.
Subspace methods identify linear state-space models

from input–output data without using iterative, non-
linear optimization or specialized model designs, unlike

maximum likelihood methods. A major tenet of sub-
space algorithms is the ability to identify large-dimen-
sional (i.e., large numbers of inputs, outputs and states)
models with little design required by the userFa
significant challenge for the other techniques mentioned
above. Since large dimensional applications are com-
monly found in many industrial processes, subspace
methods are potentially quite useful for process control
problems. Additionally, many modern control and
monitoring applications are developed for linear state-
space models. Hence, identifying parsimonious state-
space models from input–output data could facilitate
applications of modern control theory to industrial
processes.
A previous simulation study demonstrated that sub-

space models can identify accurate process models for
various noise models and for data collected during
closed-loop operation (Juricek, Larimore, & Seborg,
1998). In that study, the simulated process was a linear,
second-order state-space model with two inputs and two
outputs. Due to the linear and low-order model
structure, other approaches (e.g., nonlinear optimiza-
tion) could also produce equivalent, if not better,
process models if the model structure was known
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reasonably well. In this paper, the process is large-
dimensional, nonlinear and does not have a known
mathematical representation because the simulation is
distributed as an intentionally undocumented FOR-
TRAN program (Downs & Vogel, 1993).
Two subspace algorithms, N4SID and canonical

variate analysis (CVA), are used to identify state-space
models of the Tennessee Eastman challenge process
(referred to as TE throughout the paper). FIR and ARX
models using two reduced-rank regression methods
(partial least squares and canonical correlation regres-
sion) and state-space models using optimization are also
examined. In the next section, a brief description of
subspace models and the relevant issues for the subspace
methods are presented. The pertinent issues for identify-
ing the TE are then described and the state-space models
from the two subspace algorithms are compared.

2. Subspace methods

Subspace methods are a relatively recent development
in the field of system identification. The CVA algorithm
was proposed by Larimore (1983), and is based on
mathematical statistics and time series analysis methods.
The N4SID algorithm, developed by van Overschee and
De Moor (1996), is more closely related to linear systems
theory. Both algorithms identify a stochastic state-space
model,

xðkþ 1Þ ¼ AxðkÞ þ BuðkÞ þ KeðkÞ;

yðkÞ ¼ CxðkÞ þDuðkÞ þ eðkÞ; ð1Þ

where x is the (nx � 1) vector of state variables, u is the
vector of measured inputs (nu � 1), y is the vector of
measured outputs (ny � 1), e is the vector of innovations
(ny � 1), and the matrix K is the Kalman gain. 1 As
described below, the state vector has a very particular
meaning for subspace algorithms. The state-space model
structure allows for any noise model, i.e., any linear
model structure (ARX, ARMAX, OE (Ljung, 1999))
can be represented by a state-space model.
The derivation of subspace algorithms is relatively

complicated compared with the traditional prediction
error methods. Furthermore, the different approaches
used in the derivations make comparing the subspace
algorithms with one another difficult. The derivation of
CVA is cast in a mathematical statistics framework that
has a direct algebraic and linear algebra interpretation
(Larimore, 1999). The derivation of N4SID relies on
linear algebra and geometric arguments for a linear
system written as a set of matrix equations.

For subspace algorithms, the state vector, xðkÞ; is
defined by a linear combination of past inputs and
outputs,

pðkÞ ¼ ½yTðk� 1ÞyyTðk�NÞ; uTðk� 1ÞyuTðk�NÞ�T;

ð2Þ

xðkÞ ¼ JpðkÞ; ð3Þ

where pðkÞ is referred to as the ‘‘past’’ at sample k: The
dimension of the past is specified by the number of lags,
N: The state vector, xðkÞ; is computed from data, and is
not specified a priori. Once J has been determined, as
will be described below, the state vector can be estimated
by (3). The state-space model matrices can then be
estimated via linear least squares regression,
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;
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: ð4Þ

The parameter estimation step of subspace algorithms
can vary, but all algorithms proceed in the same general
fashion: estimate the state vector from the ‘‘past’’, and
then estimate the state-space matrices using ‘‘current’’
values for state, input and output vectors.
The calculation of J distinguishes the various sub-

space algorithms from one another. In CVA, J is
derived from the canonical loadings between the
conditional future (i.e., subtracting the effect of the N
future inputs from the N future outputs) and the past
(Larimore, 1997). In the N4SID approach, J results
from a series of geometric arguments based on the set of
matrix equations for a linear system (van Overschee &
De Moor, 1996). For CVA, N4SID, and all other
subspace methods, the key step for calculating J can be
written as a weighted singular value decomposition (van
Overschee & De Moor, 1994),

svdðW1Covð *f; pÞW2Þ ¼ ½U1U2�
S1 0

0 S2

" #
VT
1

VT
2

" #
; ð5Þ

whereW1 andW2 are weighting matrices, and Covð *f; pÞ
is the covariance matrix of the conditional future, *f;
and the past, p: J is calculated from the lower
dimensional subspace defined by U1: Each subspace
algorithm defines the weighting matrices, W1 and W2;
differently.
The scaling for CVA is particularly noteworthy

because it results from the maximum likelihood (ML)
solution for reduced rank regression (Tso, 1981;
Larimore, 1997). When CVA is applied to time series
data, it is an ML procedure incorporating the correct
shift structure of the regression coefficients (i.e., the
precise structure of a fully parameterized state-
space model of a given order). In CVA this unknown

1Eq. (1) is written in ‘‘innovations’’ form. The noise models for CVA

and N4SID are sometimes written slightly differently, but are

completely equivalent.
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shift structure is not explicitly imposed, but several
simulation studies demonstrate the accuracy of CVA to
be essentially equal to the ML solution (Larimore,
1996b). A formal proof for this property has yet to be
obtained. ML accuracy permits the computation of
confidence bands on model accuracy and hypothesis
tests concerning the model structure: e.g., detecting the
presence of a bias, feedback, and delays. Near ML
accuracy in quite small sample sizes has also been
demonstrated in a number of complex systems by
Larimore (1996b).
In principle, different subspace algorithms would

identify the same state-space model if weighted appro-
priately. However, other important differences exist
between the subspace algorithms: the exact numerical
and statistical estimation procedures, determining the
dimension of the past (N in (3)), and selecting the model
order. Ideally, the model order corresponds to the
number of singular values in (5) greater than zero or
some very small value, e: For N4SID, the order is
selected ad hoc by the user, usually looking for a ‘‘knee’’
in the plot of singular values, or by noting where the
singular values fall below a specified critical value. For
CVA, the singular values (or equivalently the canonical
correlations) can also be used for order selection based
on objective tests of hypotheses rather than ad hoc user
selection. For the ADAPTX software (Larimore, 1996a),
the model order is automatically selected via Akaike’s
information criteria (AIC), an optimal procedure for
model order selection (Larimore, 1999). As the TE
results will show, simply using the CVA weighting and
the N4SID algorithm did not produce the same model
as was identified by ADAPTX: Thus, other steps in the

subspace methodology apparently are necessary to
achieve the near ML properties of CVA in finite sample
sizes.

3. The Tennessee Eastman challenge process

The TE challenge process was published by the
Tennessee Eastman Company (Downs & Vogel, 1993)
as a process simulation for academic research. By
academic standards, the problem is quite large: it
contains 41 measured variables and 12 manipulated
variables. Based on a real chemical process, the TE
produces two products (labeled G and H) from four
reactants (labeled A, C, D and E). An explicit
mathematical representation of the process is not given;
instead the simulation is distributed as purposely
convoluted FORTRAN code (Ricker, 2001). In addition
to the process description, the problem statement defines
process constraints, 20 types of process disturbances,
and six operating modes corresponding to different
production rates and G/H mass ratios in the product
stream. The base operating mode is a 50/50 G/H mass
ratio and a production rate of 14; 072 lb=h:
A simplified diagram of the process is shown in Fig. 1.

The process consists of three units: a reactor, product
separator, and stripper. A recycle stream returns unused
reactants in the product to the reaction section. The 41
measurements are a mixture of continuous and sampled
measurements. Each measurement is corrupted by
additive noise; the statistical properties of the noise are
unknown. The process is nonlinear, open-loop unstable,
and contains a mixture of fast and slow dynamics.

Fig. 1. A simplified diagram of the Tennessee Eastman challenge process.
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Several researchers have used the TE for a variety of
applications. McAvoy and Ye (1994), Ricker (1996) and
Sriniwas and Arkun (1997) have designed different
control systems for the process. Farina, Trierweiler, and
Secchi (2000) analyzed the control properties (i.e.,
performance and robustness) of these control systems
using the ‘‘Robust Performance Number’’. Ricker and
Lee (1995a, b) derived a physical model of the TE and
used this model to develop a nonlinear MPC algorithm.
Using the economic data for the TE, Ricker (1995)
optimized the steady-state conditions for the six operat-
ing modes. No detailed identification studies for the TE
have been published, although Sriniwas and Arkun
(1997) identified multi-input single output (MISO)
models for the production rate and key compositions
that were used in an MPC algorithm. Also, Chiang,
Russel, and Braatz (2001) identified a state-space model
using CVA in order to demonstrate process monitoring
strategies. These studies emphasize the resulting appli-
cations more than the properties of the identified
models.

3.1. Methodology for the TE case study

In order to generate input–output data for identifying
a process model, the TE must first be stabilized. The
control strategy must prevent process constraints from
being violated while the TE is perturbed by the input
excitation. Such a control system could serve as the base
control system for an MPC controller acting at the
supervisory level. The base control system for this study
consisted of the ‘‘Stage One’’ and ‘‘Stage Two’’
controllers from the decentralized control strategy
proposed by McAvoy and Ye (1994). Stage One
provides PI controller settings for the flow controllers
in Fig. 1: the A, C, D, and E feed flowrates, and the
purge and product flowrates. The Stage Two loops for
the reactor, product separator and stripper levels, and
the reactor cooling water outlet temperature were
required to prevent shutdown limits from being violated.
During the excitation phase, the levels and stripper
steam rate were controlled at the optimal steady-state
values specified by Ricker (1995).
In order to define a process model that was large, but

manageable, the seven inputs and ten outputs in Tables
1 and 2 were selected. The composition measurements in
the TE were omitted to avoid a multi-rate sampling
problem, which subspace methods do not readily
handle. The sampling period was Dt ¼ 1 min and 96 h
(5760 samples) of data were used for the system
identification.
Process nonlinearities are important characteristics

for the TE if all of the possible operating modes are
considered. However, for small changes (e.g., approxi-
mately 10%) from the nominal values in Table 1, a
linear model describes the process reasonably well, as

indicated by responses to the following sequence of step
changes in the ith input:

uiðtÞ ¼

u0i ; tot0;

u0i þ dui; t0ptot0 þ 24 h;

u0i � dui; t0 þ 24 hptot0 þ 48 h;

u0i ; tXt0 þ 48 h;

8>>><
>>>:

ð6Þ

where u0i is the nominal input for the base operating
mode, given in Table 1. In Eq. (6), t0 is the time
when the first step change is introduced. Fig. 2 shows
the response to the step sequence for the D feed
flowrate, with du4 ¼ 300 kg=h: The responses are nearly
linear because the gains and time constants are
approximately equal for the step in either direction.
Fig. 3 shows the response to steps of du3 ¼ 0:05 kscmh
in the A feed flowrate. For this case, the static and
dynamic nonlinear effects are more apparent; for
example, the reactor temperature settles faster for the
increase in u3; than for the decrease. Linear process
models around the base operating condition are
identified in this case study.
The step responses in Figs. 2 and 3 illustrate the

wide range in time constants for the TE. This range
is especially difficult to model with nonparametric
models such as FIR or step response models. If Dt
is the same for each variable, a small Dt will result
in an enormous (Oð103Þ) number of FIR coefficients in
order for all ten output variables to settle. A large Dt
will neglect faster dynamics that are faster than

Table 1

Model inputs and nominal values

u1 Compressor recycle valve 22.2%

u2 Condenser cooling water flow 18.1%

u3 A feed SPa 0:25 kscmh
u4 D feed SPa 3686 kg=h
u5 C feed SPa 9:35 kscmh
u6 Purge rate SPa 0:34 kscmh
u7 Reactor CW temp. SPa 94:61C

aSP: setpoint to flow controller.

Table 2

Model outputs and nominal values

y1 Recycle flow 26:64 kscmh
y2 Reactor feed rate 42:00 kscmh
y3 Reactor pressure 2687 kPa

y4 Reactor temp. 120:31C
y5 Product separator temp. 80:501C
y6 Product separator pressure 2616 kPa

y7 Stripper pressure 3082 kPa

y8 Stripper temp. 56:971C
y9 Compressor work 338:0 kW
y10 Separator CW temp. 76:791C

B.C. Juricek et al. / Control Engineering Practice 9 (2001) 1337–13511340



Fig. 2. The open-loop response of the outputs to a step in u4; the D Feed Rate, indicates the fast mode (du4 ¼ 300 kg=h).

Fig. 3. The open-loop response of the outputs to a step in u3; the A Feed Rate, indicates the slow mode (du3 ¼ 0:05 km scm h).
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the Nyquist frequency, oN ¼ p=Dt: Consequently,
subspace methods are advantageous because the state-
space model structure can handle the wide range of time
constants better.
Identification data were generated by perturbing each

manipulated variable as a three-level sequence. Three-
level sequences, like pseudo random binary sequences
(PRBS), are deterministic signals generated by a
difference equation,

uiðtÞ ¼ remða1uiðt� 1Þ þ?þ ansuiðt� nsÞ; 3Þ; ð7Þ

where ns is the order of the sequence, ai are the
generating polynomial coefficients, and remðx; 3Þ
indicates the remainder of x divided by 3. The sequence
ui only assumes three levels: 0; 1; and 2: After the
sequence was generated, these levels were translated
to u0i � dui; u0i ; and u0i þ dui; where u0i is the nominal
value for the ith input in Table 1. Godfrey (1993)
discusses the properties of three-level sequences, and
provides the generating polynomial coefficients, ai;
in (7). Theoretically, three-level sequences reduce the
effect of nonlinearities on the resulting linear model
(Godfrey, 1993).
The seven manipulated variables were excited simul-

taneously and independently with seventh-order three-

level sequences and a switching time of 30 min (i.e., ns ¼
7 and Eq. (7) was evaluated every 30 min). The input
amplitudes were chosen to have roughly similar effects
on the reactor pressure, because the pressure constraint
limited the degree of excitation. The amplitudes are
shown in Table 3. Fifty hours of excitation data for the
inputs and outputs are shown in Figs. 4 and 5,
respectively. Ninety-six hours of data (5760 samples)
were used for system identification.
An attempt was made to identify N4SID models using

the MATLAB System Identification Toolbox (Ljung,
1995). However, the large problem dimensions caused
computational problems (out of memory errors) that

Table 3

Amplitudes for three-level sequences

du1 Compressor recycle valve 5%

du2 Condenser cooling water flow 1%

du3 A feed SPa 0:025 kscmh
du4 D feed SPa 300 kg=h
du5 C feed SPa 0:25 kscmh
du6 Purge rate SPa 0:05 kscmh
du7 Reactor CW temp. SPa 1:01C

aSP: setpoint to flow controller.

Fig. 4. Excitation data for the inputs.
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limited the model order. Then, N4SID models were
identified using the ‘‘Robust N4SID’’ code, that is
available in the book by van Overschee and De Moor
(1996). Modifications to the code were required in order
to guarantee a stable transition matrix, and to guarantee
a strictly proper system (i.e., no direct input–output
terms). The transition matrix was stabilized with the
method proposed by Maciejowski (1995). The CVA
models were identified using ADAPTX version 3:5
(Larimore, 1996a).
The nominal values in Tables 1 and 2 were subtracted

from the excitation data prior to identification. Since the
CVA algorithm is not scale sensitive, no further data
preprocessing was necessary to identify the CVA
models. For the N4SID models, input and output
variables were scaled by their standard deviations.
Numerical problems also occurred for MIMO ARX

models estimated using canonical correlation regression
(Tso, 1981) or partial least squares (PLS) methods and
the MATLAB PLS Toolbox (Wise & Gallagher, 1996).
However, MISO ARX models were successfully identi-
fied. The ARX model for the ith output with order mi is
given by

Aðq�1ÞyiðkÞ ¼ B1ðq�1Þu1ðkÞ þ?þ B7ðq�1Þu7ðkÞ; ð8Þ

Aðq�1Þ ¼ 1� A1q
�1 �?� Ami

q�mi ; ð9Þ

Bjðq�1Þ ¼ Bj;1q
�1 þ?þ Bj;mi

q�mi : ð10Þ

The ARX model parameters were estimated using
ordinary least squares. The use of MISO ARX models
is a more traditional identification approach than
MIMO ARX or subspace methods for process applica-
tions (Rivera & Jun, 2000).

4. Results from the TE case study

For the CVA models, the minimum AIC occurred
when the subspace model order was 23, as shown in
Fig. 6. Based on experimentation with several other
model orders, this choice appears to be reasonable. The
plot of singular values in Fig. 7(a) shows a ‘‘knee’’ at
order 23, supporting this choice. Based on the singular
values for the N4SID algorithm, shown in Fig. 7(b), and
experimentation with several model orders, a 15th order
model was identified. The MISO ARX model orders, mi

for i ¼ 1y10; were selected according to the minimum
AIC and are shown in Table 4. The CVA model had 667

Fig. 5. Excitation data for the outputs.
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parameters, the N4SID had 460 parameters, and the
ARX model had 360.
The identified models were compared by examining

the n-step ahead model predictions for two sets of
validation data and different values of n: For validation
set 1, the data were generated using the same conditions
that generated the identification data: inputs were
excited simultaneously as three-level sequences
using the amplitudes in Table 3, and each sequence
had a switching time of 30 min: Validation set 1 data

are shown in Figs. 8 and 9 for inputs and outputs,
respectively. For validation set 2, data were generated
by perturbing each input individually using the
sequence of steps in (6); these data are shown in
Figs. 2 and 3 for u4 and u3; respectively. For this
validation data set, each input was excited individually
in order to assess the model accuracy for particular
input–output pairs. Three prediction horizons were
selected in order to approximately assess the model
accuracy in high ðn ¼ 1Þ; intermediate ðn ¼ 15Þ and
low ðn ¼ NÞ frequencies. A classical measure of
model accuracy is given by the coefficient of deter-
mination, R2;

R2ðnÞ ¼ 1�
PN

i¼1 ðyðiÞ � #yðiji � nÞÞ2PN
i¼1 ðyðiÞ � %yÞ2

" #
� 100%; ð11Þ

where N is the number of data points and n is the
prediction horizon. For validation set 1, the R2 value
will indicate whether a particular output variable is
poorly modeled. For the step responses in validation set
2, a poor model for a particular input–output pair is
indicated by a small R2 value. Also, the R2 value for
validation set 2 weights the steady-state behavior (or,
more precisely, the low frequencies) more heavily than
the dynamic behavior because there are more data at
steady state. Hence, a small R2 value may be due to a
steady-state error (i.e., an offset).
The R2 results for the identification data and

validation set 1 are given in Tables 5 and 6, respectively.
In general, the R2 values for the identification data are
slightly better for the identification data than for
validation set 1, as expected. Since the R2 values for
these validation data are comparable to the values for
the identification data, the models are clearly modeling
the process and not overfitting the data (i.e., ‘‘fitting the
noise’’).
For validation set 1 and n ¼ 1; most of the R2 values

are well above 95%, indicating accurate predictions.
The CVA and ARX models are very accurate for
most outputs with R2 values greater than 99%. For
n ¼ 15 and n ¼ N; the R2 values decrease. However, the
CVA model decreases are relatively small compared to
the changes for the ARX and N4SID models; in
particular, the N4SID model decreases the most.
Fig. 10 shows the model residuals for y8 and validation
set 1. The residuals confirm the results of the R2 values:
the ARX and N4SID predict y8 very poorly for n ¼ 15
and N:

Fig. 6. AIC versus model order. The circle indicates the selected model

order.

Fig. 7. The singular values, s; versus model order for (a) CVA and (b)

N4SID. The circles indicate the selected model orders.

Table 4

MISO ARX model orders

Model y1 y2 y3 y4 y5 y6 y7 y8 y9 y10
Order (mi) 4 4 3 5 7 3 3 4 6 6

B.C. Juricek et al. / Control Engineering Practice 9 (2001) 1337–13511344



Fig. 8. Validation set 1 input data.

Fig. 9. Validation set 1 output data.
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Table 5

R2 values (%) for identified models using identification data (R2 values less than zero are indicated by a (F) entry.)

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

n ¼ 1 97.1 97.4 99.9 99.8 99.9 99.9 99.9 99.9 99.9 99.9 CVA

87.7 91.8 99.7 98.9 99.8 99.7 99.5 97.4 99.4 99.9 N4SID

96.3 96.8 99.9 99.8 99.9 99.9 99.9 99.9 99.9 99.9 ARX

n ¼ 15 96.5 97.3 99.8 99.4 99.5 99.7 99.8 99.7 99.5 99.3 CVA

77.2 80.6 82.3 94.5 92.4 82.8 82.6 2.9 84.2 86.7 N4SID

92.1 93.5 92.2 68.8 97.7 92.2 89.8 81.6 98.6 98.8 ARX

n ¼ N 95.4 96.8 97.4 99.4 99.1 97.3 97.5 99.0 97.5 99.1 CVA

76.7 75.4 78.1 92.0 90.8 78.4 78.0 (F) 75.2 79.3 N4SID

90.5 91.4 74.5 61.0 95.1 74.8 66.6 (F) 95.5 97.5 ARX

Table 6

R2 values (%) for identified models using validation set 1 (R2 values less than zero are indicated by a (F) entry.)

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

n ¼ 1 96.9 97.0 99.9 99.7 99.9 99.9 99.9 99.9 99.9 99.9 CVA

89.1 90.8 99.7 98.8 99.7 99.7 99.5 96.8 99.4 99.9 N4SID

96.2 96.3 99.9 99.8 99.9 99.9 99.9 99.9 99.9 99.9 ARX

n ¼ 15 96.5 96.9 99.7 99.1 99.0 99.7 99.7 99.5 99.4 98.9 CVA

80.3 80.1 81.0 94.3 91.5 81.1 81.0 (F) 84.9 84.4 N4SID

91.5 92.8 92.6 67.6 96.9 92.5 90.7 81.8 98.2 98.2 ARX

n ¼ N 96.2 96.0 91.4 99.2 97.6 91.2 91.7 98.0 98.5 97.2 CVA

80.0 74.6 76.5 92.8 89.6 76.5 76.2 (F) 76.2 75.2 N4SID

90.7 89.9 74.2 61.2 93.4 74.3 68.7 (F) 95.1 95.1 ARX

Fig. 10. The y8 model residuals for validation set 1 and three prediction horizons: n ¼ 1; 15;N:
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Tables 7–9 show the R2 values for validation set 2 and
n ¼ 1; 15; and N: For n ¼ 1; the R2 values for each
model are very good (greater than 95%) for many of the
input–output pairs. The R2 values for N4SID and ARX
decrease significantly when the prediction horizon
increases to n ¼ 15 for several pairs, while the CVA
model has approximately the same accuracy as for n ¼
1; for example, the y3 � u6 (the reactor temperature F
purge rate) and y9 � u3 (compressor work F A feed)
pairs demonstrate this behavior. This type of decrease
occurred for several pairs for the N4SID and ARX
models. The R2 values continue to decrease for larger
prediction horizons. For n ¼ N; the predicted outputs
are inaccurate for the inputs with very large time
constants, indicating that the very slow dynamics have
not been modeled accurately. The input variables with

these slow dynamics are u3 (A feed), u5 (C feed), and u6
(purge rate). Based on the R2 values for these inputs in
Table 9, the CVA model clearly is the most accurate
model for the slow dynamics; the N4SID and ARX
models are of approximately the same accuracy for u3;
u5 and u6:
Fig. 11 shows y3 � u6 predictions for different pre-

diction horizons. These plots demonstrate the same
general trends as for the R2 metrics. For n ¼ N;
the ARX and N4SID predictions are especially
poor. The slow dynamics and nonlinear gain are difficult
to model well. The slow dynamics could be modeled
better by increasing the sampling period, which would
improve the resolution of the poles near the unit circle
(i.e., the slow dynamics) at the expense of poorer
resolution of poles near the origin (i.e., the fast
dynamics). In Figs. 12 and 13, the predictions of each
model for n ¼ 15 are shown for four representative
input–output pairs. These pairs were selected to show
results for different variable types, and for slow and fast
dynamics. The N4SID model predictions clearly indicate
that the gain (e.g., for y2 � u2) and slow dynamics (e.g.,
for y9 � u3) are poorly modeled. The predictions of the

Table 7

R2 values of identified models for prediction horizon n ¼ 1 (R2 values

less than zero are indicated by a (F) entry.)

u1 u2 u3 u4 u5 u6 u7

y1 81.2 95.3 67.9 93.8 92.4 83.4 98.4 CVA

23.2 90.1 0.3 89.7 57.2 41.4 93.1 N4SID

77.8 94.9 59.7 92.3 90.4 78.9 98.0 ARX

y2 86.6 94.5 60.4 93.5 96.3 83.1 98.2 CVA

52.3 87.9 18.4 90.0 83.6 67.5 91.6 N4SID

84.2 93.2 51.2 91.9 95.4 78.9 97.8 ARX

y3 99.9 99.9 99.9 99.9 99.9 99.9 99.9 CVA

99.4 99.8 99.4 99.9 99.4 99.0 99.9 N4SID

99.9 99.9 99.9 99.9 99.9 99.9 99.9 ARX

y4 98.6 87.4 97.9 99.8 99.8 58.2 99.9 CVA

82.2 64.3 48.4 99.6 94.6 (F) 99.9 N4SID

98.8 98.0 98.2 99.8 99.9 92.6 99.9 ARX

y5 99.9 99.9 99.9 99.9 99.9 99.9 99.9 CVA

99.7 99.7 99.0 99.9 98.6 98.3 99.9 N4SID

99.9 99.9 99.9 99.9 99.9 99.9 99.9 ARX

y6 99.9 99.9 99.9 99.9 99.9 99.9 99.9 CVA

99.7 99.8 99.6 99.9 99.5 99.0 99.9 N4SID

99.9 99.9 99.9 99.9 99.9 99.9 99.9 ARX

y7 99.9 99.9 99.9 99.9 99.9 99.9 99.9 CVA

95.3 99.5 99.1 99.8 98.9 98.6 99.5 N4SID

99.9 99.9 99.9 99.9 99.9 99.9 99.9 ARX

y8 99.9 99.9 99.9 99.9 99.9 99.9 99.9 CVA

87.5 98.3 83.2 99.9 83.4 65.5 99.7 N4SID

99.7 99.9 99.9 99.9 99.9 99.8 99.9 ARX

y9 99.9 99.9 99.1 99.8 99.9 99.3 99.9 CVA

99.9 99.1 98.8 99.7 99.8 98.9 99.8 N4SID

99.9 99.9 98.9 99.8 99.9 99.2 99.9 ARX

y10 99.9 99.9 99.8 99.9 99.9 99.9 99.9 CVA

99.4 99.9 99.0 99.9 99.8 99.5 99.9 N4SID

99.9 99.9 99.8 99.9 99.9 99.9 99.9 ARX

Table 8

R2 values of identified models for prediction horizon n ¼ 15 (R2 values

less than zero are indicated by a (F) entry.)

u1 u2 u3 u4 u5 u6 u7

y1 79.2 92.8 67.6 93.7 92.2 81.8 98.2 CVA

(F) 65.6 3.5 85.0 42.6 9.5 85.7 N4SID

76.6 93.3 50.8 93.0 88.8 69.6 97.5 ARX

y2 85.3 94.2 59.8 93.5 96.3 82.9 98.2 CVA

3.6 58.7 19.2 83.2 67.3 32.1 78.9 N4SID

82.9 92.1 47.7 92.3 95.3 74.7 97.5 ARX

y3 99.9 99.2 99.8 99.9 99.9 99.3 99.8 CVA

60.0 55.3 23.2 96.2 58.3 20.9 87.1 N4SID

92.5 93.4 89.0 99.6 92.5 85.5 98.5 ARX

y4 96.0 (F) 88.1 99.4 98.0 (F) 99.8 CVA

81.0 (F) (F) 98.6 88.8 (F) 99.0 N4SID

(F) (F) (F) 99.1 86.1 (F) 91.2 ARX

y5 99.5 96.2 99.6 99.9 99.5 95.7 99.9 CVA

88.8 69.9 8.8 96.7 51.2 28.3 98.1 N4SID

98.0 98.2 82.3 99.3 95.0 86.6 99.6 ARX

y6 99.9 99.3 99.8 99.9 99.9 99.3 99.8 CVA

68.1 57.5 23.9 96.4 58.2 19.8 86.8 N4SID

93.7 93.0 88.6 99.6 92.1 85.0 98.3 ARX

y7 99.8 99.2 99.8 99.9 99.9 99.3 99.9 CVA

(F) 55.7 24.1 95.6 56.0 18.5 85.0 N4SID

66.6 92.2 88.4 99.6 91.1 84.2 98.1 ARX

y8 98.8 99.7 99.5 99.9 99.6 98.3 99.9 CVA

(F) (F) (F) 99.4 (F) (F) 95.9 N4SID

67.3 97.6 94.7 97.4 94.3 91.2 98.9 ARX

y9 99.7 99.2 96.7 99.7 99.9 98.3 99.9 CVA

93.8 74.9 2.6 89.9 89.8 51.0 88.5 N4SID

99.4 99.4 97.7 99.5 99.7 96.2 99.6 ARX

y10 98.9 99.5 99.3 99.8 99.9 98.5 99.4 CVA

(F) 94.9 49.9 88.3 78.8 42.6 71.3 N4SID

97.5 99.9 91.8 99.8 99.7 96.6 98.9 ARX
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ARX and CVA models indicate that these models are
more accurate.
A plot of the poles for the CVA and N4SID models

is shown in Fig. 14. The CVA model places several
poles closer to the unit circle; these poles are related
to the slower system dynamics. Based on the step
responses shown in Fig. 3, the TE exhibits slow
dynamics. The absence of poles near the unit circle
for the N4SID models explains the poor predictions
for variables with slow dynamics, even for n ¼ 1
and 15:
As noted earlier, the transition matrix of the model

identified with the ‘‘Robust N4SID’’ code was stabilized
by modifying the method for estimating of A in (1), as
suggested by van Overschee and De Moor (1994).
When the algorithm was not modified, the identified
transition matrix had poles outside the unit circle, and
the model for multiple step ahead (n ¼ 15 and N)
predictions was unstable. As described by Maciejowski
(1995), this modification can bias the estimates of
the poles, which explains why the slow modes were
not modeled well by the N4SID model. It may be
possible to decrease this bias in the estimated transition
matrix by modifying the algorithm differently, with
methods such as those proposed by Chui and Macie-
jowski (1996).
The effect of weighting in the N4SID algorithm was

examined by identifying a model with the N4SID
algorithm and CVA weighting (referred to as ‘‘weighted

Table 9
R2 values of identified models for prediction horizon n ¼ N (R2 values
less than zero are indicated by a (F) entry.)

u1 u2 u3 u4 u5 u6 u7

y1 66.0 89.6 18.3 93.3 86.3 52.7 94.9 CVA
(F) 63.0 5.5 84.9 41.5 2.5 84.7 N4SID
66.8 85.3 (F) 93.2 76.7 15.4 94.7 ARX

y2 76.8 87.6 13.6 93.1 93.6 51.5 95.0 CVA
(F) 41.6 0.2 79.9 56.8 (F) 72.5 N4SID
73.0 81.7 (F) 91.9 91.4 22.2 93.7 ARX

y3 84.2 87.3 32.1 99.8 88.2 50.2 89.8 CVA
50.7 41.7 11.1 95.0 48.0 (F) 83.6 N4SID
48.7 53.4 16.5 99.1 43.4 (F) 89.9 ARX

y4 92.3 94.6 87.2 99.7 99.3 (F) 99.9 CVA
(F) (F) 23.1 95.7 90.5 34.2 98.5 N4SID
(F) (F) (F) 99.3 72.6 (F) 86.5 ARX

y5 95.2 98.9 34.9 99.9 86.5 53.3 99.3 CVA
84.3 73.9 9.0 95.7 28.6 (F) 97.4 N4SID
91.7 94.1 (F) 96.4 71.5 23.7 98.1 ARX

y6 87.3 87.3 32.2 99.8 88.1 50.2 89.8 CVA
60.2 43.9 11.7 95.2 47.3 (F) 83.2 N4SID
58.0 52.4 16.7 99.1 42.9 (F) 89.0 ARX

y7 42.4 87.1 31.9 99.8 88.6 50.1 89.9 CVA
(F) 40.7 12.6 94.3 44.6 (F) 80.7 N4SID
(F) 46.8 17.3 98.9 36.8 (F) 88.1 ARX

y8 84.7 99.8 (F) 95.8 62.7 33.0 98.7 CVA
(F) (F) (F) 99.3 (F) (F) 95.2 N4SID
(F) (F) (F) (F) (F) 58.0 (F) ARX

y9 95.2 94.5 76.2 98.8 99.5 71.8 98.2 CVA
89.6 54.4 6.0 80.9 76.0 (F) 78.4 N4SID
92.9 94.0 88.3 98.1 98.4 59.0 96.2 ARX

y10 87.7 98.0 18.0 99.5 97.4 61.5 98.4 CVA
(F) 91.7 (F) 80.3 61.4 (F) 50.9 N4SID
73.8 97.9 (F) 99.5 96.5 43.4 83.6 ARX

Fig. 11. Comparisons of the actual and predicted reactor pressure response to a sequence of steps in the purge rate and three prediction horizons:

n ¼ 1; 15;N:
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N4SID’’). Interestingly, the results using the weighted
N4SID model were not the same as the CVA
models obtained using the ADAPTX code. The singular
values (i.e., canonical correlation coefficients) and
identified models of the same order were different.
For all of the simulations, the dimension of the
past in (2) was the same, N ¼ 10; as selected according
to the AIC statistic calculation in the ADAPTX

software. The difference between the two subspace
algorithms may be due to specific numerical steps (e.g.,
whether a QR or SVD algorithm was used for a
particular step) and the sample statistical properties,
which are unknown.
In summary, based on the R2 values, the CVA state-

space model was the most accurate, followed by the set
of MISO ARX models, and the N4SID state-space
model. The MISO ARX models performed reasonably
well for short prediction horizons, and had larger R2

values than the N4SID models for several input–output
pairs. However, the set of identified ARX models is
more difficult to interpret than a single state-
space model. Thus, when compared with the MISO

ARX model, the N4SID state-space model might
still be preferred because it is a more parsimonious
representation.

5. Conclusions

The TE challenge process was used to compare
dynamic models identified using the CVA, N4SID and
ARX methods. Although the TE is a nonlinear system,
linear models for the base operating mode were reason-
ably accurate for most of the seven inputs and ten
outputs that were included in the model. The models
identified by the CVA algorithm were particularly
accurate, and should be well-suited for model-based
control and monitoring applications. In general, the set
of MISO ARX models was less accurate than the CVA
model, but better than the N4SID state-space model, as
indicated by the R2 values for two validation data sets.
Compared with a set of MISO ARX models, the single
state-space model identified by CVA was more accurate
and simpler to interpret. For example, the statistical

Fig. 12. Comparisons of the actual and predicted responses to a sequence of steps for n ¼ 15 for y2 � u2 (reactor feedFcondensor CW) and y9 � u3
(compressor workFA feed).
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properties of the noise and the modes of the system are
easier to analyze using the single state-space model than
seven ARX models. Although the subspace algorithms
are related by the generalized singular value decomposi-

tion, using the N4SID algorithm with the CVA
weighting did not produce the same state-space model
as the CVA model that was identified using the
ADAPTX software.
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