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ABSTRACT

The competition between cleavage decohesion and dislocation emission at a crack tip is
discussed here, with emphasis on a new approach 1o the analysis of dislocation nucleation
which makes use of a Peierls-type stress versus displacement relation on a slip plane ahead of
the tip. A recent anatytical result by Rice shows that for a mode II or Il shear crack, with a
slip plane paralle] to the crack plane, the criterion for nucleation is given by G = v,,; (G is the
energy release rate and ¥, is the "unstable stacking" energy associated with the sliding of
atomic planes past one another). The advantage of this treatment is that it allows for the
existence of an extended dislocation core during nucleation, eliminating the need for a core
cutoff radius. More complicated cases involving mixed mode loadings are considesed here, in
which numerical solutions are required to solve for the emission criterion. It is found that
tension across a slip plane slightly reduces the critical toad for emission. Implications for the
ductile versus brittle behavior of crystal lattices and interfaces are discussed,
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L INTRODUCTION

In this paper, the issue of the ductile versus britde response of a crysial in the presence
of a crack is addressed. The concept adopted here is the same as that used in later versions
[1,2,3,4,5] of the Rice-Thomson model [6], in which the competition between cleavage
decohesion and dislocation emission is qnantified via the parameters G, ... the encrgy release
rate for cleavage, and Gy, the energy release rate associated with the emission of a single
dislocation on a slip plane emanating from the crack tip. In fig. 1, the basic premise of the
model is illustrated. If Geaye < Ggigrs then the crack propagates in a brittle manner;
conversely, if Gy < Ggeave . then a dislocation moves away from the crack tip thus blunting
and "shielding” the crack tip from further increases in applied loading. Dislocation emission
from crack tips has been directly observed by use of the eich pit technique [7), x-ray
topography [8], and in-situ TEM observations [9,10].

The primary purpose of this paper is to incorporate a new approach to analyzing
dislocation nucleation. Previous models for calculating G were based on elasticity theory
for complete dislocations, and required a knowledge of the core cutoff radius 1, and the core
energy E . [1,6,11]. Argon [12] and, more recently, Schoeck [13] have recognized that a
fult dislocation is likely w0 emerge unstably from an incomplete, incipient dislocation at the tip,
but a reasonably exact treatment of the phenomenen has been given only recently [14]. That -
treatment, discassed here, solves the elasticity problem of a traction-free crack with a Peierls-
type stress versus displacement relation being satisfied as a boundary condition along a slip
plane ahead of the crack tip. Once this interfacial constitutive relation is specified, and the
elasticity problem solved, there is no need for core cut-off parameters. The advantage of this
method is that it allows for the existence of an extended dislocation core during nucleation, and
eliminates uncertainty involved with choosing the core parameters.

Several theoretical and experimental studies have revealed that the mechanical behaviour
of a grain boundary (or any bimaterial interface) is strongly dependent on the orientation of the
Joined crystal(s) (see [3) and references therein). Another effect is the type of loading (ie., the
relative amounts of applied mede I, 11, and III siress intensity factors). These effects are
closely related because they contre] dislocation emission through their determination of the
resolved shear stress and tensile stress on stip planes ahead of a crack tip. In the current work,
the specific problem of the emission of an edge distocation on a slip plane which is coplanar
with the crack plane is analyzed (see fig. 2). Emission criteria are developed for combined
mode I and mode IT loading.

11, DECOHESION AT A CRACK TIP

The Griffith criterion for crack growth in the absence of plasticity may be used to
estimate the energy release rate for cleavage {e.g., [4,15]),

Gteave = 2¥s: 14y

where 2y, is twice the surface energy, and corresponds to the revessible work of fracture. For
interfacial fracture, 2y; generalizes to 2y, and is given by
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i =18+ -0 @
The parameters 'y‘s“, y?, and yﬁ’ B correspond to the surface free energies of materiats A and
B, and the interfacial free energy prior to separation,

A more sophisticated trearment of decohesion is given by the cohesive zone model,
which attempts to take into account the non-uniform decohesion that occurs as a crack
propagates. In this model, two joined elastic media are initially in contact and decohere within
a "transition” zone. A stress versus separation relation ¢ = o(8) is assumed to apply along the
decohering interface. Application of a well-known J-integral calculation gives [16,17]

Gileave = ‘[00'(8){18 = Vit 3

in cases when the decohesion zone is much smaller than the overall crack length [4,16]. Note
that this is the same result predicted by the Griffith model,

Effects relating to lattice discreteness have been suggested as one reason why 2y, seems

to be a lower bound on G,,,... The phenomenon of "lattice trapping" is the excess of G_j...e

over 2y, where G, has been calculated for an ideally brittle crystal via one of the well-
known atomic simulation procedures [18,19]. This difference may exist even if the interaction
potentials used in the calculation are consistent with the uniform, brittle decohesion of bonds
on the fracture path. Another effect on G,y 15 the coupling that may occur between x, y,
and z relative displacements (denoted §,, 8},. and §,) on the cleavage plane. The J-integral
argument in connection with eq. (3) generalizes to

(By.By 8
Geleave = Jcteave = Jl

0,00 Oy By, By, B, M8, = OBIP,BM0,507), (&)

where ®(8,, 3, 3,) is the potential across the cleavage plane and thus Gy, =3®/ 88,
(o=X, y, z with summation over repeated indices). For large Syﬁp, & is independent of 8

and 3,, and equal to 2y,. Nevertheless, eq. (4) doesn't preclude the possibility that 8, and &,
may lead 0 local maxima of G for G < Gyeave, possibly corresponding to dislocation
nucleation, and thus {by shielding effects) cansing the macroscale, "applied” G to significantly
ex0eed Gegye- These displacement components may be brought on by shear loading in the
vicinity of the crack tip, or by effects relating to dissimilarity in elastic properties if bimaterial
fracture is under consideration.

Previous versions of the Rice-Thompson model have treated dislocation nucleation by

two methods. Both proceed by assuming the existence of a freshly generated dislocation at a

relatively small distance (lurning out to be less than a few atomic spacings) away from the

crack tip, on a slip plane which intersects the crack front. A drawback of both, as well as the

new method to be discussed in this paper, is that the analysis may be straightforwardly applied
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only to cases in which the slip plane(s) intersect the crack front. Following [1], however, we
may imagine a scenario in which dislocations are emitted when a moving crack front undergoes
local deviations which bring it into ling with a potentially active slip plane.

The first method assumes the dislocation line is straight (see fig. 3). Using an elasticity
solution for the dislocation in the presence of a crack tip the force on the dislocation can be
determined as a function of distance from the tip and the applied stress intensity factor(s). For a
mode I loading, the force is [6]

2 2
__hbT|cos“d . 2 Sh 5
- 471:1'[ Ty oo ¢]+Tl’ )

where 1 is distance from the tip, b is the length of the Burgers vector, ¢ is the orientation of the
Burgers vector in the slip plane, and S = S{8) is a geometric factor such that SKy /4T is the
resolved shear stress on the slip plane. Emission of the dislocation is assumed to occur when
K| is large enough to make [ vanish when the position r is equal to one core radius away from
the tip, i.e., setting eq. (5) equal to zero for r =1, gives the emission criterion. This procedure
insures that the Peach-Koehler force on the dislocation is larger than the image force tending to
draw the dislocation back into the tip for all r > r,. One drawback to this formulation is that the
core radius is an uncertain parameter [20]; in fact, the entire concept of a "core” radius loses its
meaning while a dislocation is nucleated.

A second method presupposes the existence of a dislocation loop ahead of the crack tip
(see fig. 4), The energy of this configuration may be calculated; it is the sum of contributions
from the self energy of the half-loop, the core energy, and the surface energy of the ledge
created at the crack tip, less the work done by applied loads to expand the loop to a given
radius. For the simple case of mode I loading, the energy is given by [2,3,6,11]

E= m[ab2 m(%“’g) + Em] +21Bjo4ge ~3.5br7 25K, )

where o = (2 — V)L / 8x(1~ v) is the prelogarithmic energy factor and is roughly 10% of the
shear modulus, and m is a constant of order 1-2 [21]. The critical stress intensity factor for
emission and radius r at instability are found by [1,2]

%% ={ (7a)
2
%—g =0. (7b)

The derivatives are at fixed K the first condition characterizes equilibrium states (r and K;
pairs) and the second the K; value at which the energy ceases to be a minimum at a given state

(transition from 3°E / 2 >0 atlower Kjto FPE/at <0 at higher Ky). The sclution for r is,

however, typically of the order b, whereas equations such as (6) are relatively unambiguous
only for r>>b,

Early versions of these models attempted to show the effect of slip plane orientation and
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only to cases in which the slip plane(s) intersect the ¢rack front, Following [1], however, we
may imagine a scenario in which dislocations are emitted when a moving crack front undergoes
local deviations which bring it into line with a potentially active slip plane.

The first method assumes the dislocation line is straight (see fig. 3). Using an elasticity
solation for the dislocation in the presence of a crack tip the force on the dislocation can be
determined as a function of distance from the tip and the applied stress intensity factor(s). For a
mode I loading, the force is [6}
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where 1 is distance from the tip, b is the length of the Burgers vector, ¢ is the orientation of the
Burgers vector in the slip plane, and S = 8(8) is a geometric factor such that SKy {+r is the
resolved shear stress on the slip plane. Emission of the dislocation is assumed to occur when
Kj is large enough to make f vanish when the position r is equal to one core radius away from
the tip, i.e., setting eq. (5) equal to zero for 1 = r. gives the emission criterion. This procedure
insutes that the Peach-Koehler force on the dislocation is larger than thie image force tending to
draw the dislocation back into the tip for all r > r,. One drawback to this formulation is that the
core radius is an uncertain parameter [20]; in fact, the entire concept of a "core" radius loses its
meaning while a dislocation is nucleated.

A second method presupposes the existence of a dislocation loop ahead of the crack tip
(see fig. 4). The energy of this configuration may be calculated; it is the sum of contributions
from the self energy of the haif-loop, the core energy, and the surface energy of the ledge
created at the crack tip, less the work done by applied loads to expand the loop to a given
radius. For the simple case of mode 1 loading, the energy is given by [2,3,6,11]

E= nr[txbz m[g-’f“é) + Em] +2tE egge — 3.5br7 28K, (6)
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where o= (2 - V)L / 8%{1 — V) is the prelogarithmic energy factor and is roughly 10% of the
shear modulus, and m is a constant of order 1-2 {21]. The critical stress intensity factor for
emission and radius r at instability are found by [1,2]

JE

> =0 {7a)
2
aarE =0. (7b)

The derivatives are at fixed Ky; the first condition characterizes equilibrium states (r and K
pairs) and the second the K; value at which the energy ceases to be a minimum at a given state
(transition from 3%E / 2 > 0 at lower K[ to 9%E / 9r* <0 at higher Ky). The solution for r is,

however, typically of the order b, whereas equations such as (6) are relatively unambiguous
only for r >>b.

Early versions of these models attempted to show the effect of slip plane orientation and
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combined Kj, Ky;, Ky loading modes on dislocation emission, and to extend the formulation
to an interface with segregated solute atoms, The greatest effect of impurity atoms seems to be
N Gjeaye through a lowering of 2y, (for "normal” segregators) [15]. Dislocation emission
may also be affected, however, through a possible solute pinning effect {22], and there is also
a possibility that some segregants, initially on a crack-containing interface, could segregate
along the core of an emerging dislocation and affect emission (as discussed in connection with
hydrogen by Anderson, Wang, and Rice [23]). The emission of dislocations in dissociated
form has been treated extensively in [2,11].

To summarize the new approach [14], assume now the existence of a Peierls-type shear
stress 1 (= csyx) versus relative atomic displacement {denoted A,) relation such as the sinusoidal

representation in fig. 5; A, denotes the shift of one atomic plane relative to another at the slip
surface. This curve gives the shear stress needed to locally shear atoms with respect to one
another on a given slip plane, and is the fundamental input to the Peierls-Nabarro dislocation
model [24,25]. The initial slope of such a curve corresponds with an appropriate shear
modulus. The parameter b is the length of a Burgers vector and represents the periodicity of
the stress-displacement relation. This type of data has been calcutated through the use of pair
potentials or the embedded atom method by several researchers [26,27,28]. The integral of
such a curve from A, = 0 to the unstable equilibrium position at which the shear stress next
vanishes (at Ay =b/2 in simple cases) has been called [14] the unstable stacking energy,
denoted ¥,,; the role of this parameter in the dislocation nucleation process will be discussed
shortly.

Consider a semi-infinite crack subject to mode II loading, in which this Peierls-type
stress versus displacement relation is taken to be the constitutive relation on a slip plane which
is coplanar with the crack (see fig. 2). With the exception of the slip plane, the material is here

taken as an isotropic, linear elastic solid with shear modulus p and Poisson’s ratio v; some
results, like egs. (10) and (11} to follow, do not require those assumptions [14]. Define 3, as
the displacement discontinuity on & mathematical cut coincident with the slip plane. We relate
8, to the displacement A, of the atomic planes at y =+h/2 by

§o=ul —uO =a, -2 )

7l
where h is the interplanar spacing. This idealized cut represents the slip plane, and by adding o
the displacement discontinuity 8, across the cut (in what is otherwise considered a linear elastic
continuum) the additional "elastic" displacement ht/u, we simulate approximately the relative
displacement A, =8, +ht/p between atomic planes a distance h apart. If 7 is now plotied
versus 8, the curve becomes skewed so s to give an infinite slope at the origin (see fig. 6).

The integral of T over half of a cycle remains equal to vy,., however.

In the following calculation, the J-integral [17] is used to predict an emission criterion
for the situation just discussed, in a manner closely related to its application to tensile
decchesion summarized in connection with eq. (3). Within this framework, an "incipient
dislocation" exists if the function 8, (x) is nonzero as distance x approaches zero. Evaluvation of
the J integrat on the path I'y, in fig. 7 gives

461



J=12'—"K%, =G ©)

when the slit length is moch smatler than the crack length (or any other overall length scale
associated with the crack-containing elastic body). The guantity G is the energy release rate
that would ensue if the crack were to move as a classical singular crack (without a shear or
decohesion zone at its tip) quasi-statically under the given level of K.

Evaluation of the J-integral on the path T, (see fig. 7) gives

. R, 5y
= j 0 By =j P 13, )db,, (10)
[ ¢ 0

where it is assumed that 8, (x) has decayed effectively o zero for some sufficiently large
distance R, (typically, of order 5b). The parameter Sﬁp is the displacement evaluated at x = 0.

If a T versus §, curve of the form shown in fig. 6 is assumed, then a plot of J versus -

Sﬁp would rise monotonically until 8o = b/ 2, then J would decrease giving instability to the
atomic configuration. The dislocation nucleation criteria is therefore

b/2
Jaist = IOT(SK )dBy = vy ‘ (113
More generally, the integral extends to the first value of 8, > 0 at which energy @ = [td8, has

a maximum. Thus, G =y is the condition for nucleation of a pure edge dislocation , on a slip
plane ahead of the crack tip and parallel to the crack plane; the corresponding Ky is, from (9)

and (11),
gl _ | 2#)
Kn (l—v Yus - 12)

The derivation for a screw dislocation under a mode III loading proceeds similatly,
again with the result G =y, and, because G = K7 /21,

K = 207 (13)

Complications arise, however, when we include in the model the effects of normat tractions
and dilatant opening across the slip plane. This sitwation occurs if some mode I loading is
added to the mode I sitnation just discussed, or in more realistic cases when the slip plane is
inclined with respect to the crack plane, There is no reason to assume that 4 given T versus 3,
curve retains its shape if tension is superposed; hence the effect of superposed tension on the
“effective” ¥, must be investigated.

Although the current work is for the simplified case when the slip and cleavage planes
are coplanar, cases involving inclined slip planes may be modelled (approximately) by
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considering the "effective” Kyy and Kyy; based on shear stresses of the elastic singular ficld
along the slip ptane. For example, the emission criterion for an edge dislocation on an inclined
slip plane under a mode I loading may be determined by replacing the left side of eq. (12) by
\2rS8(0)K;, where S is as defined in connection with eq. (5). This procedure neglects any
effect of tensile stresses across the slip plane; that can be treated in a similar approximate
manner by defining also an effective Ky, based on tensile siress along the inclined slip plane,

and using such resnlts as we give in the next section, for nucleation under mixed mode
loading. Work is in progress, however, to give a more reasonably exact treatment of emission
on inclined planes.

L F A L THE P K
Combined Tensi 1 Shear Relati

Let A, be the telative atomic separation across the slip plane (see fig. 8). Analogous to

the case for shearing, a suitable displacement variable for the mathematical cut representing the
slip plane may be defined:

O op,-==. (14)

The quantity 2y/L is an effective Young's modulus for tension across the slip plane and
corresponds to the initial slope of the o (= cyy) versus Ay relation to be discussed shortly [15].

Here a particular form of the t© versus A_ and & versus Ay relations are chosen for the purpose
of solving some particular problems. Assume that the curve in fig. 5 is a sinusoid

t= ﬂbﬂ&sin(z—"-:—*—), (15)

where the amplitude factor is chosen such that

b/2
Jo'c(Ax)dAx = Yus- (16)

Take this to be the proper form for T when A, is zero. The corresponding relation for tensile
decohesion is taken to be

2 ~A, /L
6= T;YZ“-A).e ¥ an

when A, = 0. This is an example of a stress versus separation relation as discussed in section
11, and follows from the well-known fit, with energy proportional to -(L+Ay)exp(-AylL), to the
universal bonding correlation of Rose, et. al. [29,30,31]. The parameter L has been suggested
as scaling with the Thomas-Fermi screening length; here it can be loosely interpreted as the
characteristic length associated with the decohesion process (o reaches its maximum, at
A, =0, when Ay = L), The constants in front are chosen to enforce
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‘[(:;(Ay)my =2, (18)

as required by the definition of 2y,

For general loadings the functions t(A,,A,) and o(AA,) must be derivable from a

potentia! function which corresponds to the energy per unit area on the slip plane via the
relations

¥
=2 . 1%9a
=3 A (19a)
Y
= — 19
o=< Ay’ (19b)
which are equivalent to the requirement
do _ dt
9 20
38, oA, @)

The potential ¥ is related to the potential  of equation (4) by ¥ = @+ t2h/ 2u + L20? / 4y,
which follows from equations (8) and (14), and from Gy, = 0¥ [ dA, =3d /03,

We now proceed by assuming the following generalized forms for ‘r(Ax,Ay) and
cr(Ax,Ay) involving functions A(Ay), B{(A,), and C(A,) to be determined:

:zA(A,)sm(E"bﬁL) @la)
a=[BaA, -Ca ™ Ay @1b)

Enforcing eqs.(16), {18), and (20) with C(0}=0, and requiring that T and ¢ vanish as
Ay — o, leads to the following as the most general possible expressions for A, B, and C:

Sy 20 [ )AL _(ujé.y_ ~bylL
A(Ay) b 5 {q(l e ) =) e (22a)
B(A,) { sm"{%&)} (22b)
i 1)

where
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and where Ay" is the value of Ay after shearing to the state A, = b/ 2 under conditions of zero
tension, =0 (i.e., relaxed shearing). The parameter r is referred to here as the "dilation
parameter.” It is possible to obtain an explicit form for ¥ by combining eqgs. (21) and (22) and
then integrating; in fact, when g=r, it is the same form used by Needleman [32] in
conjunction with the analysis of the decohesion of a viscoplastic block from a rigid substrate.
The embedded atom method has been successfully employed to estimate L/b, g, and r; the
results of ane such study [28] are used as a guideline for estimating the parameters used in this
investigation. Recent estimates suggest that q ranges from 0.05 to 0.07 in fec materials,
assuming a dislocation is emitted as a pair of partials [28]. Estimates for bcc materials, based
on results in {26] and [33], show that q is about 0.12 for iron and may be as large as 0.3 for
others,

B Solutions for Combiged Tensie Load

Consider again a semi-infinite crack in an infinite elastic medium, and a slip plane
which is modelled as a mathematical slit (of length Ry} which obeys the constitutive relations
developed in the previous section (see fig. 9). Rigorously, this slit should be semi-infinite; in
practice, however, the nonlinearities in the constitutive relations effectively disappear (i.c., the
8, are effectively zero) beyond a finite distance from the crack tip, s0 Ry may be regarded as
finite for later numerical solutions. Let x denote the distance from the actuoal crack tip, and &
denote the distance backwards from the end of the slit. We proceed by treating this situation
as if the crack terminates at £ =0. The faces of the "crack” are loaded by the tractions
':[8,[(&),6?(5_,)] and 0'[6,‘(&).63,(&)] immediately behind the tip, ie. in the range 0 <& <Ry.
Using the elastic solution for the displacements which result from applying a point load a finite
distance behind a crack tip [34], two coupled integral equations may be written:

SAKnd-v) [E (Ro. ., ,

By = L) 1/——2“ jo B(EEY3,.5,)dE (242)
SAKgd-v) (& Roo o, ’

By ()= 2L 1’2,; jo D&, E)0(5,,8, )", (24b)

The kernel is given by

tanh ™! 5, D<E<t’
BE ey=2d2Y) 5 25)

HE L coth -57 E' <& <Ry,

where £ is the point where the displacement is evaluated and &' is the position of the point load,
The first term on the right in each integral equation represent the displacements that would
occur on the crack faces due to the applied Ky and Ky if the crack face on 0 < £ <Ry were

465




traction free,

Since the functions 5(1(&) are expected to be nontrivial for § near Ry, the calculations
are carried out in a reference frame centered at the actual crack tip; changing variables such that
eqs. (24a) and (24b) are expressed in terms of % gives

- - Ry
By (x) = 16G1 - V)Rg ~x) siny —I D(x,x")T(8y, 8y )dx’ (26a)
\ ur "o
- - R,
8y = ot 0RO D cory - [ Bux)otb byax  2sb)
- ux 0

with the newly defined kemel
27

Note that egs. (26a) and (26b) are expressed in terms of G and  rather than Ky and K. The
parameter v is the phase angle of the applied load, and is defined by tanw =Ky / K;. Egs.
(26a) and (26b) are solved for various values of y between 0° and 90°, corresponding to
loading situations ranging from pure tension to pure shear. The parameters L/b and q are taken
to be 0.2 and 0.4, respectively. The dilation constant r is taken to be 0 and 0.2. The parameter
q borders on the range of our predictions for some of the harder bec materials, such as
chromium, molybdenum, or tungsten; however, no attlempt is made here to characterize any
particular material. Furthermore, the interplanar spacing h is taken to be equal to the Burgers
vector b.

The solution method proceeds by discretizing the region 0 <x <Ry into sixty
elements. The elements are chosen to vary in size along the domain so as 1o give a finer
"mesh” near the actual crack tip; the nodal points are given by the relation

X = Ro[l —cos{n(lkza ”}], (28)

where k =1,...60. The unknown functions BK(x) and By(x) are then characterized each by a

vector with 60 components. Equations (26a) and (26b} are thos transformed into the following
set of nonlinear algebraic equations

R,
0= —Bl,f +Lysiny— (JO lgk(x’)Q j(x’)dx‘)Tj (29a)

0=-85+L -jR" Qi (x)dx’ 1S
=8y + Ly cosy oDk(x)QJ(x)dx SJ, (29b)

where Qj is a suitable set of interpolation functions, Dy (x") = D{X;.,x"), etc.
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Eqs. (29a) and (29b) are solved by choosing a low value of G, and iterating to
convergence with the Newton-Raphson method, In most cases, convergence is obtained after
only two or three iterations. The applied G is then incremented, and the procedure is repeated
using the previous solution as the initial guess. As solutions are obtained for increasing G, the
determinant of the Jacobian matrix det J of egs. (29a,b) is monitored. In all cases observed,
this parameter rapidly decreases towards zero in a narrow range of G (see figs, 10 and 11 for
examples). When this determinant is zero, egs, (29a,b) are singular and therefore no solution
is possible. The sharp decrease in det J is interpreted here as the onset of instability, and the
solution procedure is halted.

Y. RESULTS AND DISCUSSION

In fig. 12, displacement profiles are shown for pure shear (y =90%) and r=0 at
various load levels up to instability. The characteristic length over which §, is appreciable is
roughly (2—3)b. This length gives a measure of the "half-width® of the incipient edge
dislocation that exists at the crack tip. If the Peierls-Nabarro dislocation model is applied to a
single edge dislocation (not in the presence of a crack tip) the half-width is given by W2(1-v),
where h is the interplanar spacing [35]. This quantity is arbitrarily defined as the distance over
which b/4<8, <b/2,and is equal to about 0.75b for the isolated dislocation (assuming
b =h, to be consistent with the way the equations are set up in this study). Applying the same
definition to the incipient dislocation gives a width of about 2b, The fact that the dislocation
core seems to be wider prior to emission adds more uncertainty to the Rice-Thomson equations
for nucleation, which use a core cut-off concept. The greater width also makes use of the
Peierls concept yet more applicable for dislocation nucleation from a crack tip than it is for a
dislocation in an otherwise perfect crystal,

At instability, the shear displacement at the crack tip is b/2, and the applied G is only
slightly larger than ¥, thus there is close agreement with the exact result for this simple mode

I case as outlined in section IIT; the very small difference is due 1o the numerical procedure. In
fig. 13, the applied G is plotted versus the shear displacement at the tip. As expected, the

curve is locally flat at 35P = b/ 2, indicating a local maximum in G.

The opposite limiting case of pure tension (¥ =0°) is depicted in the next series of
figures. Fig. 14 shows the opening profiles at various Ioad levels up to instability. Since
A, =0 everywhere, the parameler r is irrelevant. Fig. 15 shows the variation of the applied G

with SYﬁP. The curves level off at G =2y, thus giving agreement with the theory of the

cohesive zone model. The half-width of a profile here is synonymous with the "transition
zone" discussed in connection with the cohesive zone model, and is of comparable magnitude
to that estimated in [15].

The results for general combined tensile and shear loadings are tabulated in figs. 16 to
13. Figs. 16 and 17 show the variation of G with 3_YP at varicus y for r=0 and r=0.2,
respectively. Note that for r = 0 (i.e. minimal coupling) there is only a slight increase in §, 4P
at instability as more tension is superposed. When r = 0.2, there is a more modest increase in
8,UP at instability with G. In cases where the G-5,P relation achieves zero slope before
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G =2y, a dislocation is presumed to be emitted before tensile decohesion has a chance to
become unstable. The emission criteria, expressed as plots of Gy, versus y, are shown in
fig. 18. For comparison, the Rice-Thompson model, when expressed in terms of K; and
Ky, would give the result that emission on this uninclined slip plane is only dependent on Ky,
Current results, however, show that tensicn across the slip plane decreases the amount of Ky
needed to emit the dislocation. The effect of X; becomes stronger as the dilation parameter 1 is

increased. An "emission surface” [18] may be constructed in KKy space based on the G-y
data, and is shown in fig. 19, The circle represents the Griffith criterion, the straight line is the
Ky =constant result, and the curved lines represent current results. Because we have used a
large value of q (= Yys / 27,) the 1atio 4/g of critical Ky, (for pure mode I) to K; (for pure
mode T} is substantially higher than it would be for typical ductile metals.

Since the plots of Gy, versus w in fig. 18 are normalized such that Gy is 1.0 at
vy =0°, a comparison of the absolute values of G, given by the various methods is in order.
A convenient way to make the comparison is to equate expressions for Gy; from both
methods (at y = 0°), and then solve for this is the core cutoff parameter that would force the
Rice-Thomson equation to give the newer result G =y,:

. cos2¢+(1—v)sin2¢(u_b} (30)
b 16n(1 - v} Yus

If it is assumed that ¥y, lies in the range ub/40 to pb/20 as estimated based on [28} for
Shockley partials in fee crystals, then /b should be about 0.6 —1.2. Recent evaluations of the
Rice-Thomson equations for emission have often assamed 1, /=10 for simplicity [5],
although other estimates exist (see {2] and references therein).

An important prediction retained by the new model is the moderate dependence on the
phase angle. A boundary in a crystal could behave in a ductile or a brittle manner, depending
on the mode of loading. Although the effect of slip plane inclination is not investigated in this
work, the results there should not be surprising: certain orientations of the crystal should be
favorable for dislocation emission, while others should be favorable for cleavage.
Experiments on symmetric bicrystals of copper lend support to this claim {3,36]. Work is in
progress to test dislocation nucleation ideas on metal/ceramic interfaces [36].

One implication of the dependence of dislocation emission on the slip-plane inclination
angle is a cracking-direction dependence. A given interface containing at least one single
crystal which shows a range of mechanical behaviour may behave in a brittle manner with a
crack oriented to run in one direction, and may behave in a ductile fashion if the crack is
oriented to run in the opposite direction (assuming that slip systems are oriented differently
relative to the tip in the two cases). This kind of behaviour is observed in [3] and is discussed
within the Rice-Thomson framework. In fcc crystals, not many interface planes strongly
exhibit this type of behaviour due to the number of slip planes that are available for dislocations
to move on. Some examples of planes which do show strong directional dependence in fcc are
the {221} and {997} planes [3,36].
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Geleave < Ggig: >—ﬁ
Crack

Figure 1. Atomistically sharp crack on the left, showing the competition between dislocation |
emission (upper right) and cleavage decohesion (lower right).

Figure 2. Geometry

in 2-D for an emergent edge dislocation on a slip plane which is coplanar
with the crack plane,
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Slip Plane

Crack Surface

Figure 3. Geometry used in the Rice-Thomson analysis for the emission of a straight
dislocation line.

Slip Plane

Crack Surface

Figure 4, Geometry used in the Rice-Thomson analysis for an emergent semicircular
dislocation Ioop,
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b/4 34

Figure 5. Expected form of the shear stress

(%) on a slip plane versus relative atomic
displacement (A,).

'
on

br4 3bvq

Figure 6. Expected form of the shear stross (1)

on a slip plane versus displacement
discontinyity 3,).
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Figure 7. Geometry for evalvation of the J-integral on a path in the far field (T, } and on &
path which surrounds the slit which represents a slip plane (I'gj; ).

XXX X %T——n 0o
XXX X XXX

Figure 8. Schematic showing the combined relative atomic displacements in the x and y
directions.
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Figure 9. Coordinate frame used for setting up the integral equations which describe
dislocation emission under a mixed-mode loading,
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Figure 10. The variation of det J with applied energy release rate for various phase angles for
r=0; note sharp decrease indicating the onsct of instability.

475




-

log(det I}

Figure 11. Variation of det J with applied energy release rate forr=0.2.
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Figure 12. Displacement profiles at various levels of applicd energy release rate up to
instability for a pure mode II shear crack. '
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Figure 13. Applied energy release rate versus slip at the tip for a pure mode IF shear crack.
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Figure 14, Opening profiles for various loadings up to instability for a mode I loading.
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Figure 15. Applied energy release rate versus opening at the crack tip for a mode I loading.
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Figure 16. Applied energy release rate versus slip at the tip for various phase angles; r=0.
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Figure 17. Applied energy releasertafe versus slip at the tip for various phase angles; r = 0.2.
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Figure 18. Critical Gy, for emission of a dislocation as a function of the phase angle for the
two cases considered, 1 = () and 0.2, as well as the Rice-Thomson result,
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Figure 19. Emission surface based G-y data from fig. 18; the circle gives the Griffith
condition for cleavage and the remaining curves give the emission condition.
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