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Abstract

Results from atomistic simulations are used to parameterize constitutive relations involving the Frenkel sinusoidal
dependence of shear stress on sliding displacement and a Rose-Ferrante—Smith universal binding form for dependence
of tensile stress on opening displacement, for cases where the crystal symmetry dictates that a polarity in slip dis-

placement exists.

© 2003 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

In the past decade, the intrinsic mechanical re-
sponse of crystals has been understood by building
upon the concept of a periodic relation between
shear stress and sliding displacement along a slip
plane embedded in an elastic continuum. Using
such framework, Rice [1] derived an exact solution
for the nucleation of a dislocation when the slip
plane and crack plane coincide. His analysis con-
sidered shear only, ignoring the coupling between
the sliding displacements and tensile stress across
the slip plane. This analysis revealed a new solid
state parameter y,, termed the unstable stacking
energy, which is defined as the energy per unit area
of slip plane when one side of the lattice is shifted
in shear relative to the other to the equilibrium
position at, or close to, a sliding displacement of
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b/2, where b is the Burgers vector to form a
complete dislocation.

Rice’s solution for the critical mode II stress
intensity factor Ky for nucleation of a disloca-
tion edge character relative to the crack tip
when the slip plane and crack plane coincide is
(1 = v)K{ /2 = . Where u is the elastic shear
modulus and v is Poisson’s ratio. The left-hand
side of the above equation corresponds to the en-
ergy release rate for pure mode II conditions. But
since Rice’s solution neglects tension-shear cou-
pling along the slip plane, this solution is insensi-
tive to the tensile stress distribution acting
perpendicular to the slip plane, such as could be
modulated through an applied mode I stress in-
tensity factor.

Motivated by atomic models of crack behavior
in crystals that revealed the importance of tension—
shear coupling in easing the nucleation process
(see, for example, the work by Cheung et al. [2]),
various descendants of the continuum model dis-
cussed above addressed the tension/shear coupling
issue by assuming a mathematical form for the
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Fig. 1. Block-like lattice sliding and opening displacement of
atomic layers along a slip plane. The interplanar spacing is 4,
and the spacing in the slip direction is b. (a) represents an
idealized rectangular array; (b) depicts the sliding of {112} slip
planes in a bece structure. The atomic positions represented by
squares lie a9/y/2 above and below the plane of the image,
where a, is the lattice constant. The spacing in the horizontal
direction is v/3a¢/2, and the ABCDEF labelling refers to the six
absolute configurations of {112} planes. Shear in the anti-
twinning sense (Ax positive) is shown.

“constitutive’” behavior of the slip plane [3,4]. The
variables in such a relation include relative atomic
displacements along and perpendicular to the slip
plane, as well as the local shear stress and normal
stress. These models typically assume a certain
crystal symmetry. For example, a cubic, or even an
orthorhombic crystal, with the slip plane aligned
with the principal axes of the crystal would not
undergo shear if a relative atomic separation nor-
mal to the slip plane were imposed. Many crystals,
however, do not possess this symmetry about their
active slip plane(s). For example, Fig. 1b shows a
side view of the (1 12) plane in the bcc lattice. As
will be elaborated upon later, the tension—shear
coupling modes in such a crystal are more complex
than what has been treated in the literature to
date. The objective of this paper is to study the
tension/shear coupling modes in a representative
bce metal (in this case, a-iron) and to propose an
analytical representation of the slip plane constit-
utive response that can be used in fracture and
dislocation nucleation models.

2. Combined tension—shear constitutive relations

For a uniform slip process in a crystal lattice,
we imagine that a plane splits the crystal into two
blocks. The upper block translates by a displace-

ment (Ax, Ay) relative to the lower block (Fig. 1).
Here Ax is the horizontal shift of the crystalline
structure on one side of the slip plane, resulting in
an in-plane shear. The Ay mode results in the two
crystalline blocks being pulled apart (no periodic-
ity in this direction). This paper only focuses on
in-plane motions, leaving out any behavior asso-
ciated with the z-direction consistent with two
dimensional (plane strain) deformation.

Sun et al. [3] suggested an analytic form for the
combined slip and opening displacements between
two atomic planes with an initial separation 4. It is
expressed in terms of a potential corresponding to
the energy per unit area @, given by:
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where 7y, is the surface energy for one of the dec-
ohered surfaces, b is the Burgers vector, L is the
characteristic length of the decohesion process
(i.e., tensile stress undergoes a maximum at Ay = L
in the absence of any shear deformation), and p
and ¢ are dimensionless material constants that
quantify the degree of tension—shear coupling.
Specifically, ¢ is defined as the ratio y,/2y, (here,
74 Tefers to an unrelaxed shear process, as elabo-
rated upon by Sun et al. [3]), and p is related to the
dilatation undergone by the crystal when it shears
to its unstable stacking position at zero normal
stress. The potential above is related to stress
through its derivatives

o oo
@7 U—m. (2)

T =

This constitutive relation is designed to reduce to
the Frenkel sinusoidal form [5] in a shear mode
(sliding by Ax) when Ay =0 and the Rose—Ferr-
ante-Smith [6] universal binding relation for ten-
sile deformation (opening by Ay) when Ax = 0. It
has also been used in a micromechanics framework
for understanding the decohesion of elastic/plastic
adherends in the special case where p = ¢ [7]. Eq.
(1) does not account for the fact that in real
crystals, when the crystal halves are separated in
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the y-direction, shear stresses develop due to
asymmetry of atomic positions with respect to the
vertical axis. In order to make the constitutive
relation more applicable to asymmetric crystal
deformation, an additional contribution to the
deformation potential is proposed, which takes the
form

nAx Ay ae /"

Thus, an additional fitting parameter a, which
represents the strength of a coupling mode that
allows shear stress to accumulate when crystal
halves are pulled apart (Ax = 0 and Ay # 0), must
be determined in order to best match data ob-
tained from simulations, or optimistically, experi-
mental measurements. One weakness of the new
term is that it ceases to be periodic in Ax for
Ay # 0. The impact of this is minimal, as (i) the
loss of periodicity only applies to the normal stress
o when Eq. (2) is imposed, and (ii) the continuum
models that make use of such constitutive relations
typically do not apply them beyond approximately
Ax = b/2, i.e., well within the first period of os-
cillation.
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3. Atomistic simulations

The molecular dynamic simulations described
in this section use an N-body potential of the
Finnis-Sinclair type [8,9], applied to an iron crys-
tal at 0 K under plane strain. The potential is
consistent with the elastic constants C;; = 2.433,
Ci» =145, and Cy = 1.16 x 10" Pa. The simu-
lated crystal consists of 198 atomic planes in the
[110] direction, 200 planes in the [00 1] direction,
and three planes in the [1 10] direction, where pe-
riodic boundary conditions are utilized. Traction-
free boundary conditions are applied in the other
directions, similar to those used in Ref. [8]. The
small thickness in the latter direction is sufficient to
include the whole range of interactions in the bce
lattice for this potential under plane strain condi-
tions. The crystal is divided into two parts, divided
by the [111] diagonal. The upper part is fixed, and
the lower part is gradually displaced (step by step)
in the [111] direction, using a step 0.01» where

b=ay/2(111) is the Burgers vector in a bcc
crystal (ao is the lattice constant, equal to 2.8665
A). During this rigid sliding along a (112) plane
(which contains the [111] slip direction), the total
potential energy in the system is calculated as

EPOT(Axv Ay) - EPOT(Ov 0) (4)
NA11» ,

where Epor denotes potential energy in the system,
N is the number of atoms along the diagonal, and
Ay» is the area per atom in the (112) plane
(4112 = 2d,10b, where djjy is the interplanar dis-
tance between neighboring {110} planes). The
simulations are repeated for prescribed increments
in Ax and Ay (with no other relaxation allowed),
and the specific results for @(Ax, Ay) are discussed
in the next section. Earlier work by Machova et al.
[8] has revealed that the effects of crystal size are
negligible for the assemblage considered here.
Additional details concerning the geometry and
the method of solution, as well as the determina-
tion of local stresses, may be found in earlier work
by Machova et al. [8]. We note that in this work,
the block-like shear is applied in the anti-twinning
direction, that is, in a sense that leads to disloca-
tion formation rather than twinning.

b =

4. Results and discussion

The primary results from the atomistic model-
ing are summarized in Figs. 2-4. In Fig. 2, we
show @ as a function of Ax for various levels of
crystal separation Ay. As expected, the energy
levels return to values similar to where they started
(Ax =0 vs. Ax = b), reflecting the inherent peri-
odicity in the lattice. When the crystal is separated,
we note that the minimum of @(Ax) shifts away
from Ax = 0, indicative of a tendency for the lat-
tice to shear as it is separated (i.e., there is a ten-
dency for actual slip or the necessity for shear
stress 7 to develop to prevent a slip-like deforma-
tion). As emphasized earlier in this paper, this
phenomena would not be expected in a crystal of
cubic or orthorhombic symmetry with principal
axes aligned with the slip and opening directions.
The curve for Ay = 0 remains essentially symmet-
ric about the midpoint Ax = /2, not completely
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Fig. 2. The atomistically derived potential energy ®(Ax, Ay) as a
function of the sliding displacement Ax for a-iron. The inter-
planar spacing 4 is given by & = ag/+/6 = 2b/3+/2.
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Fig. 3. The potential energy ®(Ax,Ay) as a function of the
opening displacement Ay for Ax = 0. The results from atomistic
calculations and modeling based on the analytical formula, Eq.
(3), are shown.

expected due to the crystal symmetry, but in sur-
prisingly good agreement with the form proposed
by Frenkel [5]. The peak energy in this case is
identified as the unrelaxed unstable stacking en-
ergy [3]. At further levels of separation, the peak in
potential energy shifts, not unexpectedly due to the
crystal symmetry. Fig. 3 shows the potential en-
ergy as a function of normal separation Ay, not
only from the atomistic model, but also from the
analytic fit discussed in Section 2 (more details to
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Fig. 4. The local shear stress as a function of the sliding dis-
placement Ax for various values of Ay. The results from ato-
mistic calculations appear as solid lines, and the analytic results
appear as dashed lines.

follow). The characteristic form discussed by Rose
et al. [6] is apparent. In addition, we show profiles
of shear stress as a function of slip displacement in
Fig. 4 for various Ay # 0.

A useful exercise would be to determine values
of the parameters a, p, and L/b that give the most
accurate representation of the energy associated
with crystal deformation. The primary advantage
of this parameterization is that a class of contin-
uum models, based on the Peierls—Nabarro con-
cept, directly utilize equations of the form
7(Ax,Ay) and o(Ax,Ay), and the direct use of
atomistically derived data in those models is po-
tentially cumbersome. In addition, a wide range of
material classes could be studied using such con-
tinuum models simply by investigating the effects
of p, q, a, and L/b. As mentioned earlier, ¢ is al-
ready dictated by the atomistic potential, as it
corresponds to the ratio y,,/2y,. The strategy we
use to determine the remaining parameters is to
choose them such that the peak stresses T and o
undergone by the crystal during separation
(Ax = 0) agree, and that the peak shear stresses
during shear for separations other than zero agree.
The values of the constants are determined to be
q =0.307, p=10.360, L/b = 0.134, and a = 0.332.
In Figs. 5 and 6, respectively, we show the varia-
tion in ¢ and 7 as the crystal is separated. While
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Fig. 5. Normal stress ¢ versus opening displacement for Ax = 0.
The fitting scheme used in this paper ensures that the peak
stresses, as well as the area under the curves (ideal work of
separation), agree.
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Fig. 6. Shear stress t versus opening displacement for Ax = 0.
The fitting scheme used in this paper ensures that the peak
stresses agree.

the analytic form does an excellent job in repro-
ducing the value of the peak stresses, we note that
it is not robust enough to reproduce the particular
values of Ax and Ay at which the maxima occur.

Other modifications to Egs. (1)-(3), such as a
“skew” term introduced by Xu et al. [4], may
provide the basis for further improvements to the
analytic fit proposed in this paper.

5. Conclusion

The tension-shear coupling for combined slip
and decohesion of the {211} plane in a-iron is
examined using an atomistic model based on the
embedded atom method. An analytic form to
characterize the development of local stresses as a
function of the shear and opening displacements is
proposed and is found to represent satisfactorily
the atomistically derived results.
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