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Tension–shear coupling in slip and decohesion of iron crystals
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Abstract

Results from atomistic simulations are used to parameterize constitutive relations involving the Frenkel sinusoidal

dependence of shear stress on sliding displacement and a Rose–Ferrante–Smith universal binding form for dependence

of tensile stress on opening displacement, for cases where the crystal symmetry dictates that a polarity in slip dis-

placement exists.

� 2003 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
1. Introduction

In the past decade, the intrinsic mechanical re-

sponse of crystals has been understood by building

upon the concept of a periodic relation between

shear stress and sliding displacement along a slip
plane embedded in an elastic continuum. Using

such framework, Rice [1] derived an exact solution

for the nucleation of a dislocation when the slip

plane and crack plane coincide. His analysis con-

sidered shear only, ignoring the coupling between

the sliding displacements and tensile stress across

the slip plane. This analysis revealed a new solid

state parameter cus, termed the unstable stacking
energy, which is defined as the energy per unit area

of slip plane when one side of the lattice is shifted

in shear relative to the other to the equilibrium

position at, or close to, a sliding displacement of
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b=2, where b is the Burgers vector to form a

complete dislocation.

Rice�s solution for the critical mode II stress

intensity factor KII for nucleation of a disloca-

tion edge character relative to the crack tip

when the slip plane and crack plane coincide is
ð1� mÞK2

II=2l ¼ cus, where l is the elastic shear

modulus and m is Poisson�s ratio. The left-hand

side of the above equation corresponds to the en-

ergy release rate for pure mode II conditions. But

since Rice�s solution neglects tension–shear cou-

pling along the slip plane, this solution is insensi-

tive to the tensile stress distribution acting

perpendicular to the slip plane, such as could be
modulated through an applied mode I stress in-

tensity factor.

Motivated by atomic models of crack behavior

in crystals that revealed the importance of tension–

shear coupling in easing the nucleation process

(see, for example, the work by Cheung et al. [2]),

various descendants of the continuum model dis-

cussed above addressed the tension/shear coupling
issue by assuming a mathematical form for the
by Elsevier Ltd. All rights reserved.
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Fig. 1. Block-like lattice sliding and opening displacement of

atomic layers along a slip plane. The interplanar spacing is h,
and the spacing in the slip direction is b. (a) represents an

idealized rectangular array; (b) depicts the sliding of {1 1 2} slip

planes in a bcc structure. The atomic positions represented by

squares lie a0=
p
2 above and below the plane of the image,

where a0 is the lattice constant. The spacing in the horizontal

direction is
p
3a0=2, and the ABCDEF labelling refers to the six

absolute configurations of {1 1 2} planes. Shear in the anti-

twinning sense (Dx positive) is shown.
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‘‘constitutive’’ behavior of the slip plane [3,4]. The

variables in such a relation include relative atomic

displacements along and perpendicular to the slip

plane, as well as the local shear stress and normal

stress. These models typically assume a certain
crystal symmetry. For example, a cubic, or even an

orthorhombic crystal, with the slip plane aligned

with the principal axes of the crystal would not

undergo shear if a relative atomic separation nor-

mal to the slip plane were imposed. Many crystals,

however, do not possess this symmetry about their

active slip plane(s). For example, Fig. 1b shows a

side view of the (1 1 2) plane in the bcc lattice. As
will be elaborated upon later, the tension–shear

coupling modes in such a crystal are more complex

than what has been treated in the literature to

date. The objective of this paper is to study the

tension/shear coupling modes in a representative

bcc metal (in this case, a-iron) and to propose an

analytical representation of the slip plane constit-

utive response that can be used in fracture and
dislocation nucleation models.
2. Combined tension–shear constitutive relations

For a uniform slip process in a crystal lattice,

we imagine that a plane splits the crystal into two

blocks. The upper block translates by a displace-
ment (Dx, Dy) relative to the lower block (Fig. 1).

Here Dx is the horizontal shift of the crystalline

structure on one side of the slip plane, resulting in

an in-plane shear. The Dy mode results in the two
crystalline blocks being pulled apart (no periodic-

ity in this direction). This paper only focuses on

in-plane motions, leaving out any behavior asso-

ciated with the z-direction consistent with two

dimensional (plane strain) deformation.

Sun et al. [3] suggested an analytic form for the

combined slip and opening displacements between

two atomic planes with an initial separation h. It is
expressed in terms of a potential corresponding to

the energy per unit area U0, given by:

U0 ¼ 2cs 1

�
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�
þ Dy

L

�
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�
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ð1Þ

where cs is the surface energy for one of the dec-

ohered surfaces, b is the Burgers vector, L is the

characteristic length of the decohesion process

(i.e., tensile stress undergoes a maximum at Dy ¼ L
in the absence of any shear deformation), and p
and q are dimensionless material constants that

quantify the degree of tension–shear coupling.

Specifically, q is defined as the ratio cus=2cs (here,
cus refers to an unrelaxed shear process, as elabo-

rated upon by Sun et al. [3]), and p is related to the

dilatation undergone by the crystal when it shears

to its unstable stacking position at zero normal

stress. The potential above is related to stress

through its derivatives

s ¼ oU
oDx

; r ¼ oU
oDy

: ð2Þ

This constitutive relation is designed to reduce to
the Frenkel sinusoidal form [5] in a shear mode

(sliding by Dx) when Dy ¼ 0 and the Rose–Ferr-

ante–Smith [6] universal binding relation for ten-

sile deformation (opening by Dy) when Dx ¼ 0. It

has also been used in a micromechanics framework

for understanding the decohesion of elastic/plastic

adherends in the special case where p ¼ q [7]. Eq.

(1) does not account for the fact that in real
crystals, when the crystal halves are separated in
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the y-direction, shear stresses develop due to

asymmetry of atomic positions with respect to the

vertical axis. In order to make the constitutive

relation more applicable to asymmetric crystal
deformation, an additional contribution to the

deformation potential is proposed, which takes the

form

U ¼ U0 þ 2cs
pDxDy ae�Dy=L

bL
: ð3Þ

Thus, an additional fitting parameter a, which

represents the strength of a coupling mode that

allows shear stress to accumulate when crystal

halves are pulled apart (Dx ¼ 0 and Dy 6¼ 0), must
be determined in order to best match data ob-

tained from simulations, or optimistically, experi-

mental measurements. One weakness of the new

term is that it ceases to be periodic in Dx for

Dy 6¼ 0. The impact of this is minimal, as (i) the

loss of periodicity only applies to the normal stress

r when Eq. (2) is imposed, and (ii) the continuum

models that make use of such constitutive relations
typically do not apply them beyond approximately

Dx � b=2, i.e., well within the first period of os-

cillation.
3. Atomistic simulations

The molecular dynamic simulations described

in this section use an N -body potential of the
Finnis–Sinclair type [8,9], applied to an iron crys-

tal at 0 K under plane strain. The potential is

consistent with the elastic constants C11 ¼ 2:433,
C12 ¼ 1:45, and C44 ¼ 1:16� 1011 Pa. The simu-

lated crystal consists of 198 atomic planes in the

[�1110] direction, 200 planes in the [0 0 1] direction,

and three planes in the [1 1 0] direction, where pe-

riodic boundary conditions are utilized. Traction-
free boundary conditions are applied in the other

directions, similar to those used in Ref. [8]. The

small thickness in the latter direction is sufficient to

include the whole range of interactions in the bcc

lattice for this potential under plane strain condi-

tions. The crystal is divided into two parts, divided

by the [�1111] diagonal. The upper part is fixed, and
the lower part is gradually displaced (step by step)
in the [�1111] direction, using a step 0.01b where
b ¼ a0=2h111i is the Burgers vector in a bcc

crystal (a0 is the lattice constant, equal to 2.8665
�AA). During this rigid sliding along a (1�112) plane
(which contains the [�1111] slip direction), the total
potential energy in the system is calculated as

U ¼ EPOTðDx;DyÞ � EPOTð0; 0Þ
NA112

; ð4Þ

where EPOT denotes potential energy in the system,

N is the number of atoms along the diagonal, and

A112 is the area per atom in the (1�112) plane

(A112 ¼ 2d110b, where d110 is the interplanar dis-

tance between neighboring {1 1 0} planes). The

simulations are repeated for prescribed increments

in Dx and Dy (with no other relaxation allowed),

and the specific results for UðDx;DyÞ are discussed
in the next section. Earlier work by Machov�aa et al.

[8] has revealed that the effects of crystal size are

negligible for the assemblage considered here.

Additional details concerning the geometry and

the method of solution, as well as the determina-

tion of local stresses, may be found in earlier work

by Machov�aa et al. [8]. We note that in this work,

the block-like shear is applied in the anti-twinning

direction, that is, in a sense that leads to disloca-

tion formation rather than twinning.
4. Results and discussion

The primary results from the atomistic model-
ing are summarized in Figs. 2–4. In Fig. 2, we

show U as a function of Dx for various levels of

crystal separation Dy. As expected, the energy

levels return to values similar to where they started

(Dx ¼ 0 vs. Dx ¼ b), reflecting the inherent peri-

odicity in the lattice. When the crystal is separated,

we note that the minimum of UðDxÞ shifts away

from Dx ¼ 0, indicative of a tendency for the lat-
tice to shear as it is separated (i.e., there is a ten-

dency for actual slip or the necessity for shear

stress s to develop to prevent a slip-like deforma-

tion). As emphasized earlier in this paper, this

phenomena would not be expected in a crystal of

cubic or orthorhombic symmetry with principal

axes aligned with the slip and opening directions.

The curve for Dy ¼ 0 remains essentially symmet-
ric about the midpoint Dx ¼ b=2, not completely
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Fig. 2. The atomistically derived potential energy UðDx;DyÞ as a
function of the sliding displacement Dx for a-iron. The inter-

planar spacing h is given by h ¼ a0=
p
6 ¼ 2b=3

p
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Fig. 3. The potential energy UðDx;DyÞ as a function of the

opening displacement Dy for Dx ¼ 0. The results from atomistic

calculations and modeling based on the analytical formula, Eq.

(3), are shown.
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Fig. 4. The local shear stress as a function of the sliding dis-

placement Dx for various values of Dy. The results from ato-

mistic calculations appear as solid lines, and the analytic results

appear as dashed lines.
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expected due to the crystal symmetry, but in sur-
prisingly good agreement with the form proposed

by Frenkel [5]. The peak energy in this case is

identified as the unrelaxed unstable stacking en-

ergy [3]. At further levels of separation, the peak in

potential energy shifts, not unexpectedly due to the

crystal symmetry. Fig. 3 shows the potential en-

ergy as a function of normal separation Dy, not
only from the atomistic model, but also from the
analytic fit discussed in Section 2 (more details to
follow). The characteristic form discussed by Rose

et al. [6] is apparent. In addition, we show profiles

of shear stress as a function of slip displacement in

Fig. 4 for various Dy 6¼ 0.

A useful exercise would be to determine values

of the parameters a, p, and L=b that give the most

accurate representation of the energy associated
with crystal deformation. The primary advantage

of this parameterization is that a class of contin-

uum models, based on the Peierls–Nabarro con-

cept, directly utilize equations of the form

sðDx;DyÞ and rðDx;DyÞ, and the direct use of

atomistically derived data in those models is po-

tentially cumbersome. In addition, a wide range of

material classes could be studied using such con-
tinuum models simply by investigating the effects

of p, q, a, and L=b. As mentioned earlier, q is al-

ready dictated by the atomistic potential, as it

corresponds to the ratio cus=2cs. The strategy we

use to determine the remaining parameters is to

choose them such that the peak stresses s and r
undergone by the crystal during separation

ðDx ¼ 0Þ agree, and that the peak shear stresses
during shear for separations other than zero agree.

The values of the constants are determined to be

q ¼ 0:307, p ¼ 0:360, L=b ¼ 0:134, and a ¼ 0:332.
In Figs. 5 and 6, respectively, we show the varia-

tion in r and s as the crystal is separated. While
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The fitting scheme used in this paper ensures that the peak

stresses, as well as the area under the curves (ideal work of

separation), agree.
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The fitting scheme used in this paper ensures that the peak

stresses agree.
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the analytic form does an excellent job in repro-

ducing the value of the peak stresses, we note that
it is not robust enough to reproduce the particular

values of Dx and Dy at which the maxima occur.
Other modifications to Eqs. (1)–(3), such as a

‘‘skew’’ term introduced by Xu et al. [4], may

provide the basis for further improvements to the

analytic fit proposed in this paper.
5. Conclusion

The tension–shear coupling for combined slip

and decohesion of the {2 1 1} plane in a-iron is

examined using an atomistic model based on the

embedded atom method. An analytic form to

characterize the development of local stresses as a

function of the shear and opening displacements is

proposed and is found to represent satisfactorily

the atomistically derived results.
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