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The ªeffective kineticsº of threading dislocations (TDs) in growing epitaxial films is developed on
the basis of the crystallographic and geometrical considerations from Part I of the paper. A system
of coupled first-order nonlinear differential equations for twenty-four families of TDs is derived and
solved for several initial conditions for TD densities. Numerical solutions demonstrated two general
types of asymptotic behavior with increasing film thickness: linear decrease or saturation of total
TD density. This behavior agrees with experimental data on TD reduction in mismatched homoge-
neous buffer layers.

1. Introduction

In Part I of this paper [1] a simple geometrical approach was developed to explain the
experimentally observed 1=h scaling behavior for the threading dislocation (TD) density
with the film thickness h for mismatched epitaxial buffer layers [2 to 4]. The approach
was based on the idea of effective motion of inclined TDs along the film surface as a
result of film growth and subsequent reactions between TDs. These reactions are annihi-
lation, fusion, or scattering of TDs and are associated with a characteristic distance for
initiating a reaction: rA; rF, and rS, respectively. Additionally, in Part I, the crystal geom-
etry of TDs and the possible reactions between them was developed for (001) epitaxial
growth of (001) semiconductor films. It was argued that for this geometry twenty-four
unique Burgers vector/slip plane combinations exist (which are included in Table I.13��:

In this part of the paper, we treat the derivation and numerical solutions of the sys-
tems of coupled differential equations for ªkineticsº of twenty-four TD families that is
appropriate for the (001) growth of f.c.c. semiconductor films. It will be demonstrated
that there exist two fundamental types of solutions for the coupled series of equations.
The first type corresponds to the 1=h scaling dependence and describes balanced TD
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distributions, that is, when the net Burgers vector content of all TDs is zero. The second
type of solutions is applicable to non-balanced TD populations and predicts saturation
behavior for TD densities at large film thicknesses. The saturation behavior corresponds
to the experimental data presented in Part I.

2. Derivation of the Governing Equations for TD Reduction

In the development of equations for TD kinetics, we consider the example of TDs belong-
ing to the family designated ª1º in Table I.1 with density r1, that is, for dislocations with
Burgers vector b1 � a=2�101� and line direction l1 approximately parallel to [2�13�. First,
we write the terms responsible for diminishing dislocation density. In the general case, all
reactions of the type 1-j for j � 1! 24 (see (I.22)) can contribute to the process of r1 de-
creasing,

dr1

dh
� ÿP24

j� 1

K1jr1rj ; �1�

where rj is the density of TDs in the j-th family. Kij are the ªkineticº coefficients that
describe the ªrateº of reactions between dislocations from families i and j. These coeffi-
cients are uniquely determined by the geometry of mutual motion of interacting disloca-
tions and by characteristic distances, the interaction radii rI. The general expression for
Kij was found in Part I (see (I.24)).

The possible reactions between TDs are annihilation, fusion, and scattering. Here we
will take into account only the first two reactions, with characteristic radii rA and rF,
respectively. Details of the formalism associated with scattering reactions are presented
in Appendix A. As derived in Part I and shown in Table I.1, TDs from family 1 can
only have annihilation reactions with TDs from family 4. TDs from family 1 can have
fusion reactions with TDs from families 11, 12, 15, 16, 19, 20, 23, and 24. Therefore,
only reactions with these families will contribute to the process of diminishing the den-
sity of TDs from family 1, i.e.,

dr1

dh
�ÿK1; 4r1r4 ÿK1; 11r1r11 ÿK1; 12r1r12 ÿK1; 15r1r15 ÿK1; 16r1r16

ÿK1; 19r1r19 ÿK1; 20r1r20 ÿK1; 23r1r23 ÿK1; 24r1r24 : �2�
It follows from the analysis of Table I.1 that TDs from family ª1º may be generated
only as the product of fusion reactions between TDs from the following pairs of families:
13±17, 13±18, 14±17, 14±18. Therefore, for production of TDs from family 1 as a result
of fusion, one can write

dr1

dh
� K13; 17r13r17 �K13; 18r13r18 �K14; 17r14r17 �K14; 18r14r18 : �3�

Combining the generation of TDs as a result of fusion (3) with TD reduction as a result
of annihilation and fusion (2) we arrive at the governing differential equation for the
density of TD family 1, r1, in the absence of scattering reactions

dr1

dh
�ÿK1; 4r1r4

ÿ r1�K1; 11r11 �K1; 12r12 �K1; 15r15 �K1; 16r16 �K1; 19r19 �K1; 20r20 �K1; 23r23

�K1; 24r24� �K13; 17r13r17 �K13; 18r13r18 �K14; 17r14r17 �K14; 18r14r18 : �4�
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Similar equations can be readily derived for all twenty-four dislocation families. These
twenty-four equations will include in the most general case 252 coefficients Kij. These
coefficients can be directly calculated from (I.24), however, some physical arguments
and assumptions permit us to restrict the number of independent coefficients by taking
into account the symmetry of the problem. First of all, by definition, Kij � Kji. Other
relations between Kij follow from Fig. I.4b where the crystallography of TDs for the
case of (001) epitaxy is presented. For example, we conclude that

K2; 11 � K6; 15 � K4; 9 � K5; 12 � . . . ;

K1; 4 � K2; 3 � K9; 12 � K10; 11 � . . . ;

K21; 24 � K22; 23 . . . ; �5�
and so on. For the sake of simplicity, we assume an identical value for the coefficients
Kij � D for all fusion reactions and that for the annihilation reaction K14 � C.

dr1

dh
�ÿ Cr1r4 ÿDr1�r11 � r12 � r15 � r16 � r19 � r20 � r23 � r24�
�D�r13r17 � r13r18 � r14r17 � r14r18� : �6�

We can rewrite (6) by including the coefficients rA and rF,

dr1

dh
�ÿ rAcr1r4 ÿ rFdr1�r11 � r12 � r15 � r16 � r19 � r20 � r23 � r24�
� rFd�r13r17 � r13r18 � r14r17 � r14r18� ; �7�

where c and d are dimensionless parameters that depend on the relative dislocation mo-
tion with changing film thickness. For example, it follows from (I.24) that for annihila-
tion reactions (in the approximation that dislocations have � h112i line directions)
c � 2

���
2
p

(for more realistic line directions, such as � h123i; c will have a smaller value).
For fusion reactions, we may also consider situations in which c � d. Finally, we can
represent (7) in dimensionless form,

d~r1

d ~h
�ÿ c~r1 ~r4 ÿ ck~r1�~r11 � ~r12 � ~r15 � ~r16 � ~r19 � ~r20 � ~r23 � ~r24�
� ck�~r13 ~r17 � ~r13 ~r18 � ~r14 ~r17 � ~r14 ~r18� ; �8�

where ~h � h=rA; ~ri � rir
2
A, and k � rF=rA and now d � c. Using the same approxima-

tions and designations, we can write the equations for the rest of the TD densities (see
Appendix B). The derived system of coupled ordinary nonlinear differential equations
will serve as the basis for the analysis of TD kinetics in growing films under different
initial conditions.

3. Numerical Solutions and Interpretation

The numerical solutions of the system of coupled differential equations for TD densities,
(B1) to (B24), can be obtained using standard mathematical software. We will illustrate
the possible behavior of TD densities by several examples of solutions for different initial
conditions which are listed in Table II.1. Two groups of possible initial conditions should
be treated separately. The parameter responsible for this subdivision is the net Burgers
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vector content B of the TDs in the film, defined as

B � P24

i� 1

~r0
ibi ; �9�

where ~r0
i are the normalized TD densities for the initial thickness h0, and bi is the

Burgers vector of a TD from the i-th family. We note that the net Burgers vector con-
tent B of the TDs is a conserved vector that can be distributed amongst several specific
TD families.

3.1 Balanced TD densities (B = 0)

3.1.1 Relation between growth structure and initial conditions

The first group of initial conditions (cases B1 through B8 in Table II.1) correspond to
ªbalancedº cases; i.e., the TDs in the film have no net Burgers vector content �B � 0�.
This can happen when the families with opposite Burgers vectors �b and ÿb have
equal initial densities (cases B1 through B7). Special attention has to be given to case
B7 for which TDs with the same Burgers vector, but from different slip systems, have
equal initial densities. The other special example is presented for case B8 where there is no
equilibrium between some�b andÿb pairs �~r0

1 � ~r0
2 6� ~r0

3 � ~r0
4; ~r0

13 � ~r0
14 6� ~r0

15 � ~r0
16; and

~r0
18 6� ~r0

19� but the global condition B � 0 is maintained.
Cases B1 and B2 in Table II.1 correspond to the presence of populations of TDs with

inclined Burgers vectors with respect to the film/substrate interface and zero popula-
tions of TDs with Burgers vectors parallel to the film/substrate interface. Such a situa-
tion can result from surface nucleated TDs during layer-by-layer film growth. In case
B1, all TD populations have the same initial densities that correspond to a uniform
generation of dislocations by surface sources. In case B2, populations 5! 8 have higher
densities than other TDs. This may happen, for example, as a result of heterogeneous
stresses, or an imperfect biaxial stress state. For cases B3 and B4, initially TDs with
their Burgers vector parallel to the film/substrate interface are present. This dislocation
configuration may be a consequence of coalescence of impinging islands. Case B5 is a
combination of cases B1 and B3; similarly, case B6 is a combination of cases B2 and B4.
Regarding case B7, we propose that this initial TD configuration may be formed due to
an artifically-induced imbalance between slip systems. Finally, case B8 represents a
situation that does not correspond to any particular TD formation mechanism, but may
be of interest from an academic point of view.

3.1.2 Numerical solutions

Examples of numerical solutions of the equations for TD kinetics in growing films for
the balanced cases are presented in Fig. 1 and 2 (for these figures, the values of the
parameters c � 2 and k � 1 were used for the numerical solution of the system of equa-
tions (B1) to (B24)). All families follow a 1=h dependence for large film thicknesses h
and converge to a single curve. However, at the initial stage of film growth the behavior
of specific TD densities may be different. For example, case B1 (see Fig. 1, upper panel)
corresponds to an idealized situation where all TDs are generated by surface nucleation
of half-loops. For these initial conditions, the TD densities r1 through r16 decrease
monotonically with increasing film thickness. In contrast, TD densities r17 through r24

Threading Dislocation Density Reduction in Heteroepitaxial Layers (II) 37



show a rapid initial increase and then also begin to decrease with increasing film thick-
ness. The initial increase in TD densities r17 through r24 is due to fusion reactions
between primary TDs (surface nucleated TDs). With increasing thickness, the densities
r17 through r24 reach a maximum value at ~h � 5, and at a thickness of ~h � 100, the TD
densities converge for all families.

An idealized case of island growth, where the TDs are generated as a result of island
coalescence, is shown in Fig. 1, lower panel. In this balanced case (B � 0�, families 17
through 20 have a smaller initial density than families 21 through 24. The difference in
densities diminishes with increasing thickness as a result of higher initial concentration
of TDs in families 21 through 24 and thus a higher initial rate of annihilation.

The mixed case, in which all types of TDs are initially present in equal densities (for
example case B5 shown in Fig. 2, upper panel), demonstrates the identical monotonic
decrease in density for all families. Families 1 through 24 have been treated equivalently
in (B1) to (B24), and thus with equal initial conditions, the system maintains this
equivalence in TD densities. However, if the symmetry of the initial conditions is bro-
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Fig. 1. Threading dislocation densities for balanced Burgers vector content �B � 0� corresponding
to surface nucleated TDs (case B1 from Table II.1) (upper panel) and to TDs generated during
island coalescence (case B4 from Table II.1) (lower panel). Left column: linear± linear scale; right
column: log± log scale. The specific TD designation is indicated in the figure and in Table I.1; c � 2
and k � 1



ken, as in case B8 (Fig. 2, lower panel), then there is a ªtransition thicknessº necessary
for all of the families to converge to the same value for increasing h. Similar to case B1,
some families show an increasing initial TD density as a result of fusion reactions.

3.1.3 Thickness dependence of total TD density

For the balanced cases, the total TD density ~rT �
P24

i� 1

~ri always obeys the 1=h depend-

ence at large film thicknesses. This can be easily seen from the log± log plot in Fig. 3a.
Note that in this plot, the ordinate is the logarithm of the relative TD density, i.e.,
~rT=~r0

T, where ~r0
T � r0

Tr
2
A and r0

T is the initial total TD density, and thus the offset of
the curves at large h is simply log �~r0

T�, which will be discussed shortly. From the analy-
sis of Fig. 3a, and in close analogy with (I.10), we propose that the behavior of the total
TD density rT in balanced cases may have the following dependence:

rT �
~rT

r2
A

� 1

KT�h� ĥT�
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Fig. 2. Threading dislocation densities for balanced Burgers vector content �B � 0� corresponding
to TDs for cases B5 (upper panel) and B8 (lower panel) from Table II.1. These TDs correspond to
those for a mixed growth mode. Left column: linear± linear scale; right column: log± log scale. The
specific TD designation is indicated in the figure and in Table I.1; c � 2 and k � 1



or

log
~rT

~r0
T

� ÿ log � ~KT�~hÿ ~h0� � 1� ;

�10�
where KT is the global TD ªki-
netic reactionº coefficient (and
~KT � KTr0

TrA is its normalized
value), ĥT � 1=�KTr0

T� ÿ h0, and
~h0 � h0=rA. Clearly, (10) correctly
predicts the behavior of the total
TD density for h� ĥ; the value
of the coefficient ~KT can be found
from the extrapolation of the line-
ar parts of the curves in Fig. 3a to
the value at log ~h � 0. To confirm

the general dependence of (10) for any film thickness, we first need to examine other
features of the solution of the general system of differential equations.
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Fig. 3. Logarithmic plots of the total
relative threading dislocation densities
as a function of normalized film thick-
ness for balanced cases �B � 0�: a) De-
pendencies for different initial condi-
tions given in Table II.1; c � 2 and
k � 1. b) Dependencies for different
values of the relative radius for fusion
k; c � 2 (case B1 from Table II.1).
The k values are indicated in the fig-
ure. Solid lines represent solutions ob-
tained with the help of (10). ~KT val-
ues are indicated in the figure. c)
Dependencies for different values of k
for case B5 (+) and normalized case
B1 (solid lines) such that the total in-
itial TD density ~r0

T � 0:6 for both
cases. The geometric parameter c � 2
was used for these solutions



3.1.4 Competition between annihilation and fusion reactions

We reiterate that the results presented in Fig. 1 and 2, and correspondingly Fig. 3a, were
obtained for c � 2 and k � 1 in (B1) to (B24). Recall here the results of Section 2 (also see
Appendix B), where the parameter c was associated with the geometry of effective motion
of TDs in growing films and k characterized the relative radius for fusion reactions with
respect to the annihilation radius. From the structure of the system of equations (B1) to
(B24), it is clear that a change of the parameter c will lead to a simple renormalization of
the film thicknesses. That is, for larger c, the same values of ~ri and ~rT will be achieved for
a smaller value of the film thickness h. This is because a larger value of c leads to larger
dislocation motion for the prescribed change in film thickness.

The influence of the parameter k (the ratio of fusion radius to the annihilation radius)
on the TD reduction is shown in Fig. 3b for initial TD densities given by case B5 in Table
II.1. For larger k, the TD densities fall more rapidly, indicating that larger k corresponds
to a larger global ~KT. This behavior can be understood in the framework of annihilation
and fusion reactions. First, if we consider cases where the annihilation is the only possible
reaction, k � 0, then a TD from a specific family only has the possibility of reacting with
TDs from one of the twenty-four families (Fig. 3b). However, in the case in which both
fusion and annihilation are possible, then a TD from a specific family has the possibility of
reacting with TDs from nine of the twenty-four families; one of these reactions will corre-
spond to annihilation and eight to fusion. However, fusion between TDs from other fam-
ilies will lead to TD generation and for a specific family, there will exist four sets of genera-
tion reactions. For the case where fusion and annihilation have equal interaction radii, i.e.,
k � 1, we expect the global ~KT to be five times larger than for the case where k � 0, as
seen in Fig. 3b. Further, we note that the 1=h behavior can also be obtained when there is
effectively only fusion, as seen in Fig. 3b for increasing values of k.

The validity of the general behavior (10) was checked for two very different values of
k: For k � 0:5 and 50 from the large thickness region (ÿ1 slope in the log± log plots),
~KT was found to be equal to 0.15 and 10, respectively. Since ~h0 is defined by the initial

conditions �~h0 � 1�, the full predicted behavior for log ~rT=~r0
T can be simply checked by

plotting (10) for the values of ~KT estimated above. The agreement for both k values is
excellent, as shown in Fig. 3b.

The solutions in Fig. 3a correspond to unequal total initial densities ~r0
T. To verify the

offset of normalized TD density for a large normalized thickness in the plots of total TD
density in Fig. 3a (ªoffset effectº), we have repeated the calculations for renormalized initial
densities for case B1 in which the total density ~r0

T �� 0:6� for this modified case is equal to
the total density for case B5. This normalization of total density leads to coincident curves
for ~rT for cases B1 and B5 for several values of k, as shown in Fig. 3c. This result demon-
strates both the offset effect is a consequence of total initial density and that the initial
distribution of TDs over the families does not change the overall character of the solution.

3.2 Non-balanced TD densities (B 6� 0)

3.2.1 Basis for non-balanced TD densities

In the second group of initial conditions (cases N1 through N8 in Table II.1), the initial
TD densities are not balanced such that the film has a net Burgers vector content
�B 6� 0�. TD reactions happen locally, and in many cases on a local length scale, there
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may be a local net Burgers vector content of TDs. However, globally, B � 0 may or
may not be achieved. The fluctuations in the net Burgers vector content thus become a
very important topic for future investigations. Here, however, we treat the general case
in which there is a net Burgers vector content and do not consider the origin of this
behavior. Again, variations for the presence and absence of TDs with Burgers vectors
parallel to the film/substrate interface are considered. The results show many similar
features to the solutions for the balanced cases. However, since there is a net Burgers
vector content, at least one, and often a set of families will show saturation behavior.

3.2.2 Numerical solutions

For the non-balanced situations, the initially prescribed net Burgers vector content is
invariant with regard to film growth. An example of such behavior is given in Fig. 4,
upper panel where r0

1 � r0
2 > r0

i for i � 3 to 16 and TD families 17 through 24 (with
Burgers vector parallel to the film/substrate interface) are initially absent. As in the bal-
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Fig. 4. Threading dislocation densities for non-balanced Burgers vector content �B 6� 0� correspond-
ing to surface nucleated TDs (case N1 from Table II.1) (upper panel) and to TDs generated during
island coalescence (case N4 from Table II.1) (lower panel). Left column: linear± linear scale; right
column: log± log scale. The specific TD designation is indicated in the figure and in Table I.1; c � 2
and k � 1



anced case, the densities of primary dislocations r1 through r16 begin to decrease with
increasing h due to both annihilation and fusion reactions. The densities of secondary
dislocations r17 through r24 initially increase, but also fall with increasing film thickness.
For larger values of ~h; r3 through r16 asymptotically approach zero. However, r1 and r2

asymptotically approach saturation values Dr � r1 ÿ ri. The total density rT also satu-
rates to a value 2 Dr because of the initial net Burgers vector content.

The other non-balanced cases (Fig. 4, lower panel and Fig. 5) present different situa-
tions where the saturation behavior manifests itself in the ensemble of TDs in growing
films. For example, case N4 (Fig. 4, lower panel) corresponds to island growth, where only
TDs with Burgers vectors parallel to the film/substrate interface exist and have an initial
imbalance. In this case, the imbalance between pairs of TD families remains constant, i.e.,

�r23 � r24� ÿ �r21 � r22� � �r17 � r18� ÿ �r19 � r20� � 2 Dr ; �11�
where Dr � r0

23 ÿ r0
22 � r0

17 ÿ r0
21.

Fig. 5 corresponds to non-balanced cases in which there are TDs that may appear by
both layer-by-layer and island growth. We note that for case N5 the TD behavior is similar
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Fig. 5. Threading dislocation densities for non-balanced Burgers vector content �B 6� 0� corre-
sponding to TDs for case N5 (upper panel) and case N6 (lower panel) from Table II.1. These TDs
correspond to those for a mixed growth mode. Left column: linear± linear scale; right column: log±
log scale. The specific TD designation is indicated in the figure and in Table I.1; c � 2 and k � 1
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to N1. Interestingly, the solutions for the initial conditions N5 correspond to twenty-four
distinct values of the TD families (no pairing of families). For this case, B � 0:02 a=2�110�
and for large h, the two families that saturate to a finite density are TD families 17 and 18,
both with Burgers vector b � a=2�110� each with densities ~r117 � ~r118 � 0:01. The behavior
of the solutions for case N6 (see Fig. 5, lower panel) demonstrates saturation in which a
given excess of Burgers vectors is unequally distributed in the two families 1 and 2. This
demonstrates that the net Burgers vector content is preserved yet redistributed into differ-
ent families (line directions). This behavior can be understood in the framework of the
fusion reactions between families with non-zero densities. We will use case N6 with differ-
ent values of ~r0

1 � ~r0
2 to demonstrate some of the general features of saturation behavior.

3.2.3 Thickness dependence of the total TD density

The behavior of the total TD density for the non-balanced cases is shown in Fig. 6,
where Fig. 6a summarizes all of the cases of initial conditions N1 through N8 and
Fig. 6b demonstrates the saturation behavior for varying ratios jBj=~r0

T. Notice in
Fig. 6a that for a range of thicknesses, the TD density follows the 1=h scaling behavior
and then saturates. The magnitude of the saturation value approximately scales as

jBj=~r0
T. Detailed considerations of

the absolute magnitude of the sat-
uration value ~r1T depends on how
B is partitioned into individual
components related to dislocation
families. In Fig. 6b, we demon-
strate this dependence of the
change in saturation value with
decreasing jBj=~r0

T. Together with
the decrease in saturation level,
the 1=h region increases. Further-
more, the value of ~KT is approxi-
mately independent of jBj=~r0

T.
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Fig. 6. Logarithmic plots of the total
relative threading dislocation densities
as a function of normalized film thick-
ness for non-balanced cases �B 6� 0�. a)
Dependencies for different initial condi-
tions given in Table II.1, cases N1
through N8; c � 2 and k � 1. b) De-
pendencies for different magnitudes of
the net Burgers vector content jBj
(and correspondingly Dr� for the case
N6; k � 1; c � 2. The value of ~r0

1 � ~r0
2

is indicated in the figure



4. Discussison and Conclusions

The results reported in this paper demonstrate that for initially balanced �B � 0) cases,
the total TD density follows the global reduction law (10). The model presented in Part I
treated only one type of TD density. It was shown here in Part II that the total reduc-
tion is described by the coefficient ~KT. This result appears to be valid at least for situa-
tions when the series of differential equations includes only a single parameter for the
geometry of TD motion (parameter c� and two parameters for TD reactions: the annihila-
tion radius rA and the fusion radius rF.

We have also demonstrated that for balanced cases the total TD density rT�h� appears
to be independent of the initial distribution of TDs between different subfamilies. We
conclude that ~KT in (10) depends on the value of k and thus on the possibility of fusion
reactions within an ensemble of TDs. When fusion is not possible due to initial condi-
tions, for example if only the TDs of the initially present families have Burgers vectors
that lie in the plane of the film/substrate interface (e.g., see case B4), then the value of ~KT

corresponds to that of k � 0. In the general case, however, varying the ratio of rF to rA

(parameter k� does not change the global behavior for the balanced cases; rather, increas-
ing k only increases the overall rate of reduction by increasing the value of ~KT.

For non-balanced TD distributions �B 6� 0�, the total TD density shows the same
initial behavior as the balanced cases. However, at large film thickness, ~rT saturates to a
constant value. The saturation behavior is due to the net Burgers vector content B
which is defined by (9). The main characteristic of B is that it remains constant during
reactions in a TD ensemble, however, it can be redistributed amongst several TD fam-
ilies. We believe that saturation in real experiments [5] is a consequence of lateral fluc-
tuations in the density of different TD families and thus fluctuations in B.

The treatment presented in Part II provides new insight into the details of TD reduc-
tion. In a future paper we plan to include a complete treatment of the geometric coeffi-
cients Kij for the reactions between specific pairs of TDs. This modification will break
the overall symmetry of the set of the twenty-four differential equations in such a way
that equations for families 1 through 16 will be inequivalent to the equations for families
17 through 24. Therefore, the possibility of the global reduction behavior other than
that predicted by (10) will be examined.
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Appendix A

In this appendix, we consider the addition of scattering reactions to the series of differ-
ential equations for TD kinetics. Equation (1), in principle, includes all possible reac-
tions between TDs from family 1 with TDs of any other of the twenty-four families.
Based on the analysis of Part I, we may only conclude that K11 � K13 � 0 because the
TDs in these pairs have no relative motion with increasing film thickness. Some of the
possible reactions in (1) correspond to scattering (fusion and annihilation have been
treated in the main body of the text). For the case of scattering, it is important that
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there is the conservation of Burgers vector during scattering reactions, this means that
TDs of family 1 can appear only from scattered TDs from families 1 or 2.

Consider now an example of scattering. For the entry [(1, 2)±(5, 6)] in Table I.1, dis-
locations of family 1 are produced by scattering reactions. In differential form, the scat-
tering may be represented as

dr1

dh
� b1

1; 5K1; 5r1r5 � b1
1; 6K1; 6r1r6 � b1

2; 5K2; 5r2r5 � b1
2; 6K2; 6r2r6 ; �A1�

where, again, bkij describes the probability that the reaction TDs from the i-th and j-th
families form a TD from the k-th family. If only one TD is formed, then this is a fusion
reaction, if two TDs result, then it is a scattering reaction. It was argued in Part I that
for scattering reactions the following relation must be true:

bkij � bmij � biij � bjij � 2 ; �A2�
where, again families i and k have the same Burgers vector and families j and m have
the same Burgers vector (but not the same b as for families i and k). This relation
simply reflects the conservation of the Burgers vectors of the reacting TDs, i.e., scatter-
ing reactions do not directly reduce rT. If there is no scattering, then bkij � bmij � 0 and
biij � bjij � 1. If there is scattering with overall equal probability, then bkij � bmij � biij
� bjij � 1

2. The case when dislocations from the i-th and j-th families have the same
Burgers vector, but different line directions (corresponding to diagonal entries in Table
I.1) should be treated separately. Here only two coefficients have to be used: biij and bjij.
For such ªdiagonalº reactions, the case with no scattering is indistinguishable from the
case with equal probability of scattering: for both cases biij � bjij � 1.

Now we can combine all contributions, in accordance with Table I.1, to the change of
dislocation density of r1.

dr1

dh
� �ÿ1� b1

1; 2�K1; 2r1r2 ÿK1; 4r1r4

� �ÿ1� b1
1; 5�K1; 5r1r5 � b1

2; 5K2; 5r2r5

� �ÿ1� b1
1; 6�K1; 6r1r6 � b1

2; 6K2; 6r2r6

� �ÿ1� b1
1; 7�K1; 7r1r7 � b1

2; 7K2; 7r2r7

� �ÿ1� b1
1; 8�K1; 8r1r8 � b1

2; 8K2; 8r2r8

� �ÿ1� b1
1; 9�K1; 9r1r9 � b1

2; 9K2; 9r2r9

� �ÿ1� b1
1; 10�K1; 10r1r10 � b1

2; 10K2; 10r2r10 ÿK1; 11r1r11 ÿK1; 12r1r12

� �ÿ1� b1
1; 13�K1; 13r1r13 � b1

2; 13K2; 13r2r13

� �ÿ1� b1
1; 14�K1; 14r1r14 � b1

2; 14K2; 14r2r14 ÿK1; 15r1r15 ÿK1; 16r1r16

� �ÿ1� b1
1; 17�K1; 17r1r17 � b1

2; 17K2; 17r2r17

� �ÿ1� b1
1; 18�K1; 18r1r18 � b1

2; 18K2; 18r2r18 ÿK1; 19r1r19 ÿK1; 20r1r20

� �ÿ1� b1
1; 21�K1; 21r1r21 � b1

2; 21K2; 21r2r21

� �ÿ1� b1
1; 22�K1; 22r1r22 � b1

2; 22K2; 22r2r22 ÿK1; 23r1r23 ÿK1; 24r1r24

�K13; 17r13r17 �K13; 18r13r18 �K14; 17r14r17 �K14; 18r14r18 : �A3�
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The equations for densities of TDs from the other families will have a similar structure.
Note that in the absence of scattering, (A3) transforms to (4).

Appendix B

This appendix provides the system of coupled first-order nonlinear ordinary differential
equations for TD families in growing (001) epitaxial f.c.c. films.

1

c

d~r1

d ~h
�ÿ ~r1 ~r4 ÿ k~r1�~r11 � ~r12 � ~r15 � ~r16 � ~r19 � ~r20 � ~r23 � ~r24�
� k�~r13 � ~r14� �~r17 � ~r18� ; �B1�

1

c

d~r2

d ~h
�ÿ ~r2 ~r3 ÿ k~r2�~r11 � ~r12 � ~r15 � ~r16 � ~r19 � ~r20 � ~r23 � ~r24�
� k�~r9 � ~r10� �~r21 � ~r22� ; �B2�

1

c

d~r3

d ~h
�ÿ ~r2 ~r3 ÿ k~r3�~r9 � ~r10 � ~r13 � ~r14 � ~r17 � ~r18 � ~r21 � ~r22�
� k�~r15 � ~r16� �~r19 � ~r20� ; �B3�

1

c

d~r4

d ~h
�ÿ ~r1 ~r4 ÿ k~r4�~r9 � ~r10 � ~r13 � ~r14 � ~r17 � ~r18 � ~r21 � ~r22�
� k�~r11 � ~r12� �~r23 � ~r24� ; �B4�

1

c

d~r5

d ~h
�ÿ ~r5 ~r8 ÿ k~r5�~r11 � ~r12 � ~r15 � ~r16 � ~r17 � ~r18 � ~r21 � ~r22�
� k�~r9 � ~r10� �~r19 � ~r20� ; �B5�

1

c

d~r6

d ~h
�ÿ ~r6 ~r7 ÿ k~r6�~r11 � ~r12 � ~r15 � ~r16 � ~r17 � ~r18 � ~r21 � ~r22�
� k�~r13 � ~r14� �~r23 � ~r24� ; �B6�

1

c

d~r7

d ~h
�ÿ ~r6 ~r7 ÿ k~r7�~r9 � ~r10 � ~r13 � ~r14 � ~r19 � ~r20 � ~r23 � ~r24�
� k�~r11 � ~r12� �~r17 � ~r18� ; �B7�

1

c

d~r8

d ~h
�ÿ ~r5 ~r8 ÿ k~r8�~r9 � ~r10 � ~r13 � ~r14 � ~r19 � ~r20 � ~r23 � ~r24�
� k�~r15 � ~r16� �~r21 � ~r22� ; �B8�

1

c

d~r9

d ~h
�ÿ ~r9 ~r12 ÿ k~r9�~r3 � ~r4 � ~r7 � ~r8 � ~r19 � ~r20 � ~r21 � ~r22�
� k�~r1 � ~r2� �~r23 � ~r24� ; �B9�

1

c

d~r10

d ~h
�ÿ ~r10 ~r11 ÿ k~r10�~r3 � ~r4 � ~r7 � ~r8 � ~r19 � ~r20 � ~r21 � ~r22�
� k�~r5 � ~r6� �~r17 � ~r18� ; �B10�

1

c

d~r11

d ~h
�ÿ ~r10 ~r11 ÿ k~r11�~r1 � ~r2 � ~r5 � ~r6 � ~r17 � ~r18 � ~r23 � ~r24�
� k�~r3 � ~r4� �~r21 � ~r22� ; �B11�
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1

c

d~r12

d ~h
�ÿ ~r9 ~r12 ÿ k~r12�~r1 � ~r2 � ~r5 � ~r6 � ~r17 � ~r18 � ~r23 � ~r24�
� k�~r7 � ~r8� �~r19 � ~r20� ; �B12�

1

c

d~r13

d ~h
�ÿ ~r13 ~r16 ÿ k~r13�~r3 � ~r4 � ~r7 � ~r8 � ~r17 � ~r18 � ~r23 � ~r24�
� k�~r5 � ~r6� �~r21 � ~r22� ; �B13�

1

c

d~r14

d ~h
�ÿ ~r14 ~r15 ÿ k~r14�~r3 � ~r4 � ~r7 � ~r8 � ~r17 � ~r18 � ~r23 � ~r24�
� k�~r1 � ~r2� �~r19 � ~r20� ; �B14�

1

c

d~r15

d ~h
�ÿ ~r14 ~r15 ÿ k~r15�~r1 � ~r2 � ~r5 � ~r6 � ~r19 � ~r20 � ~r21 � ~r22�
� k�~r7 � ~r8� �~r23 � ~r24� ; �B15�

1

c

d~r16

d ~h
�ÿ ~r13 ~r16 ÿ k~r16�~r1 � ~r2 � ~r5 � ~r6 � ~r19 � ~r20 � ~r21 � ~r22�
� k�~r3 � ~r4� �~r17 � ~r18� ; �B16�

1

c

d~r17

d ~h
�ÿ ~r17 ~r20 ÿ k~r17�~r3 � ~r4 � ~r5 � ~r6 � ~r11 � ~r12 � ~r13 � ~r14�
� k�~r1 � ~r2� �~r15 � ~r16� ; �B17�

1

c

d~r18

d ~h
�ÿ ~r18 ~r19 ÿ k~r18�~r3 � ~r4 � ~r5 � ~r6 � ~r11 � ~r12 � ~r13 � ~r14�
� k�~r7 � ~r8� �~r9 � ~r10� ; �B18�

1

c

d~r19

d ~h
�ÿ ~r18 ~r19 ÿ k~r19�~r1 � ~r2 � ~r7 � ~r8 � ~r9 � ~r10 � ~r15 � ~r16�
� k�~r3 � ~r4� �~r13 � ~r14� ; �B19�

1

c

d~r20

d ~h
�ÿ ~r17 ~r20 ÿ k~r20�~r1 � ~r2 � ~r7 � ~r8 � ~r9 � ~r10 � ~r15 � ~r16�
� k�~r5 � ~r6� �~r11 � ~r12� ; �B20�

1

c

d~r21

d ~h
�ÿ ~r21 ~r24 ÿ k~r21�~r3 � ~r4 � ~r5 � ~r6 � ~r9 � ~r10 � ~r15 � ~r16�
� k�~r1 � ~r2� �~r11 � ~r12� ; �B21�

1

c

d~r22

d ~h
�ÿ ~r22 ~r23 ÿ k~r22�~r3 � ~r4 � ~r5 � ~r6 � ~r9 � ~r10 � ~r15 � ~r16�
� k�~r7 � ~r8� �~r13 � ~r14� ; �B22�

1

c

d~r23

d ~h
�ÿ ~r22 ~r23 ÿ k~r23�~r1 � ~r2 � ~r7 � ~r8 � ~r11 � ~r12 � ~r13 � ~r14�
� k�~r3 � ~r4� �~r9 � ~r10� ; �B23�

1

c

d~r24

d ~h
�ÿ ~r21 ~r24 ÿ k~r24�~r1 � ~r2 � ~r7 � ~r8 � ~r11 � ~r12 � ~r13 � ~r14�
� k�~r5 � ~r6� �~r15 � ~r16� : �B24�
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The equations in this system were derived in the same way as (8). Normalized TD den-
sities ~ri � rir

2
A and thickness ~h � h=rA are used in this system of equations. The coeffi-

cient k � rF=rA denotes the relative radius for fusion reactions. The parameter c de-
scribes the dependence of TD motion on their inclination with respect to the surface
normal. For perpendicular orientations, c � 0, for large inclination, c tends to infinity.
For the real case of (001) epitaxy, c � 2.
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