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The geometry of threading dislocations (TDs), non-equilibrium defects that are generated as a re-
sult of stress relaxation in thin films, is considered in order to provide a basis for their reduction
behavior during heteroepitaxial growth. This paper, the first of a two-part series, discusses the geo-
metric possibility for reactions between TDs as a result of film growth. It is demonstrated that
effective TD motion and reaction are responsible for their overall reduction. The reactions become
possible if pairs of TDs come within a critical distance: ra for annihilation reactions, rr for fusion
reactions, and rg for scattering reactions. The model is used to explain the experimentally observed
1/h (h is the film thickness) dependence on TD density. The crystallographic consideration of TDs
in the case of (001) growth of f.c.c. semiconductor films is presented and possible reactions between
TDs in this case are analyzed.

1. Introduction

In the development of semiconductor devices, there is an increasing drive to utilize sys-
tems in which the film and substrate have large lattice mismatches. The need to work
with large lattice mismatched systems is based both in technology and economics. For
many systems, the need to control energy gap leads to alloy compositions that are not
lattice matched to any commonly available single crystal semiconductor substrate; this
is the case in common systems such as In,Ga; _;As/GaAs (001) or Si; _,Ge,/Si(001).
Many substrates are unavailable in large areas because of limitations in growth technol-
ogy. For example, CdTe and related compositions Cd;_,Zn,Te cannot be grown as
large single crystal boules. In many cases, the substrate material has such low fracture
toughness that large area substrates are unviable. The difficulties and cost associated
with bulk GaAs lead to the extensive and partially successful effort during the 1980s to
develop GaAs on Si technology. Thus, the science and technology of lattice mismatched
systems require further theoretical investigation [1]. In particular, theoretical investiga-
tions of misfit dislocations {MDs) and associated threading dislocations (TDs) that are
essential elements of thin film systems must be developed.
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In Parts I and II of this paper we expand upon our previous theoretical work on TD
reduction [2]. In Part I, we discuss the background on TD generation and then review
experimental evidence for dislocation reduction in semiconductor buffer layers. We then
provide a simplified basis for TD reduction. A general treatment involving inclined TDs
is developed and applied to TDs in (001) f.c.c. films. Finally, geometrical arguments are
presented for development of scaling laws for TD reduction. In Part II, a series of
coupled differential equations is derived that describe the specific details of TD densities
in homogeneous buffer layers. Solutions for a range of initial TD densities, applicable to
different thin film growth modes, are obtained and discussed.

The model developed in Parts I and II is based on the crystal geometry of TD reac-
tions and on the consequent TD “kinetics”. The analytic formalism includes the geo-
metric cross-section for TD annihilation and fusion reactions. The solutions to the sim-
plified equation and series of coupled differential equations show that the total TD
density is inversely proportional to film thickness h, as experimentally observed. We find
in Part II that the saturation behavior in TD density is due to finite local Burgers
vector content.

2. Background
2.1 Misfit dislocation and threading dislocation generation

Misfit dislocation (MD) and threading dislocation {TD) generation must be considered
for situations in which the film is grown well in excess of a critical thickness. For lattice
mismatched films, regardless of the growth mechanisms, such as Frank-van der Merwe
(layer-by-layer), Stranski-Krastanov (initial wetting followed by islanding), or Volmer-
Weber (incoherent islanding) increasing film thickness will ultimately lead to MD gen-
eration and concomitant TDs. For either island mechanism, TDs may result from sur-
face half-loop generation or from island coalescence.

For epitaxial systems in which the film wets the substrate, Frank-van der Merwe
growth results. The mismatched film will grow strained but MD free until it reaches a
kinetic critical thickness h; in excess of the Matthews-Blakeslee critical thickness h.,
where h, is given as

_ [b| 2 ahe
o= e 0 oo A (7). 0

where &, is the misfit strain, v is Poisson’s ratio, |b| is the magnitude of the Burgers
vector of the dislocation, 4 is the angle between b and a line perpendicular to the MD
line that lies in the film/substrate interface, § is the angle between b and the dislocation
tangent line, a describes both the core cut-off radius invoked in continuum mechanics
approximations for strain energies of dislocations and the boundary condition at the film
free surface [3].

For a fully relaxed film, the linear MD density Qup relaxeq multiplied by the edge com-
ponent of the MD Burgers vector parallel to the interface, begge, | = b cos 4, is equal to
the misfit strain gy, i.e.,

Owmp, relaxedbedge, | = &m- (2)
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For films of finite thickness that are grown on semi-infinite substrates, the equilibrium
linear MD density Qup, equn ™8y be readily shown to scale in the following manner 4]

h,
QMD,equiI = QMD,relaxed [1 - f] . (3)

In the heteroepitaxial growth of semiconductors with large lattice mismatches, e.g.,
&m 2, 2%, the critical thicknesses are less than 20 A and dislocation generation is ubiqui-
tous for layer thicknesses much in excess of h..

For layer-by-layer growth, the prevailing assumption is that dislocation half-loops nu-
cleate at steps or impurities on the growing free surface [5, 6], and the loops expand to
form two threading segments, largely of screw character, with antiparallel Burgers vec-
tors, and a misfit segment at the film/substrate interface. Thus, the initial TD density is
twice the nuclei density. For threading dislocation segments in epitaxial layers, we adopt
the convention that the dislocation line direction is in the same sense as the film/sub-
strate surface normal. This convention is used because in large mismatch heteroepitaxy
it is practically impossible to identify matching pairs of TDs from the same nucleation
event — that is, isolated loops are rarely, if ever, discernible. Dislocations with the same
line sense but opposite (antiparallel) Burgers vectors are physical opposites and will
annihilate upon contact. Further we treat the case in which the film thickness greatly
exceeds the physically realized thickness in which MDs are generated, i.e., h > hy > hc.
For buffer layers, we assume complete misfit relaxation in the film and only consider the
possible reactions between the TDs. We note here that for A > h;, the MDs are equilib-
rium interfacial defects with an equilibrium population given approximately by (3). On
the contrary, the TDs in all cases raise the free energy of the film — the equilibrium
density of these defects is zero.

2.2 Experiments on threading dislocations

In typical large mismatch semiconductor heteroepitaxy, the TD density is very high
near the film/substrate interface and decreases with increasing film thickness. In recent
years there have been several efforts to quantify the thickness dependence of the TD
density for lattice mismatched growth. Sheldon et al. {7] reported on the thickness de-
pendence of the TD density for the systems InAs/GaAs, GaAs/Ge/Si, GaAs/InP, and
InAs/InP. These systems represented a range of lattice and thermal expansion mis-
matches between the film and the substrate. It was found that the TD density was
proportional to the inverse of the film thickness for TD densities in the order of ~10% to
10° cm™2. Further, the thickness dependence of the densities was found to fall on the
same curve, independent of specific epilayer/substrate combination, as shown in Fig. 1a.
In a similar study, Tachikawa and Yamaguchi [8] also observed the 1/h (where h is the
film thickness) behavior for the TD density in thick films of GaAs on Si. However, at
lower dislocation densities, a weaker decay was observed, as shown in Fig. 1b. Further,
in the study of strained layer superlattices, TD densities have commonly been observed
to saturate for larger film thickness [9 to 11]. Other data on experimental observations
of the behavior of TDs are summarized in a recent review by Beanland et al. [1] where it
was stressed that until now there has yet to be any reasonable model to explain the 1/h
dependence of TD density in buffer layers.

39 physica (b) 198/2
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Fig. 1. Experimental data, reported in the
literature, showing the scaling of the thread-
ing dislocation density with increasing film
thickness. a) Results of a study showing the
universal 1/h decay of the TD density for
high dislocation densities for a range of sys-
tems (after Sheldon et al. [7]). b) Results of
a study showing both the 1/h decay of the
TD density for high dislocation densities
and either saturation or exponential decay
behavior of the TD density of thick films
(after Tachikawa and Yamaguchi (8])

3. Physical Basis for Threading
Dislocation Density Reduction

As we have mentioned above, TDs are
non-equilibrium defects that always
raise the internal energy of the film/
substrate system. Thus, there is a nat-
ural driving force to reduce the internal
energy and TD density, concomitantly.
This reduction may, however, be
achieved only as a result of kinetic pro-
cesses, mainly by reactions between
pairs of TDs. For reducing the total
TD density, fusion and annihilation re-
actions are important. When two TDs
fuse, they produce a single resulting
TD; annihilation is only possible for
TDs with opposite sign. The criteria for
these reactions will be considered be-
low. Here we only mention that both of
these reactions can take place when the
distance between interacting disloca-

tions becomes smaller than the characteristic cross-section of a specific reaction: annihi-
lation radius 4 for annihilation reactions (the concept of the annihilation radius in the
modeling of TD reduction was initially proposed by Martisov and Romanov [12]); fusion
radius rp for fusion reactions. After TDs have fallen within the interaction distance,
they glide or climb together under the action of internal forces. There must be an initial
relative motion for TDs to come within an interaction distance. During this motion,
different barriers must be overcome. In addition to annihilation and fusion, one can con-
sider scattering reactions among moving TDs. As the result of such a reaction, one or
each of reacting TDs can change its direction of motion. We can also characterize the
interaction length for scattering reactions by a scattering radius rg. Both processes, mo-
tion and reaction, can be assisted by external and internal factors such as temperature,
film growth geometry, internal and externally imposed stress, and point defects.
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Usually we suppose that the reaction process between TDs requires less time than the
“motion” process. This is because in order to initiate and continue TD motion high
internal barriers (for example, high Peierls stresses for covalent semiconductors) must be
overcome, as TDs come within an interaction distance, their motion is accelerated and
becomes faster because the interaction forces are inversely proportional to the separation
distance (as it follows from the consideration of the reactions between two straight par-
allel dislocations). Therefore, we may conclude that all approaches to TD density reduc-
tion rely upon enhancing TD motion such that TDs will fall within the interaction ra-
dius of one another. This is a necessary condition for all TD reduction processes. Using
the concept of motion as an underlying principle, we will develop simple arguments for
the general description of TD evolution in thin films.

First, to derive the governing equation for TD reduction, we consider only annihila-
tion reactions. Assuming that the points of TD intersections with the film surface may
experience relative motion (e.g., with increasing film thickness), each TD will sweep (see
Fig. 2a) an interaction area dS = 2r, dr, where dr is the differential value of the rela-
tive TD motion r. Each TD will encounter dN = ¢ 85 other TDs where g is the density
of TDs. Therefore, the change of TD density due to annihilation reactions will be

do = —@dN = —2r,0*dr. (4)

TDs The relative motion r is a function of several
parameters including time ¢, temperature T,
. . / film thickness h, stress tensor &, and other
. parameters, i.e.,

. 4 / /

a 2rA P> o .

r=r(t,T,h,a&,...) (5)

. and therefore

. . or or or or N
dT‘—Edt-{—a—TdT-’r%dhﬁ-% eeds+...;
(6)

[ moreover there also can be internal relations
) Z between parameters that characterize the mo-
/ tion, and as we have mentioned previously, 75

P 0 ./ kmj can be a function of these parameters,

MO MD h,/hz ra=7alt, T, h, 0,...). ()

Fig. 2. Threading dislocation motion in growing
f2 films: a) The interaction area swept by a moving
A_l t TD in plan view. Relative motion of inclined TDs
c m, m, as a result of film growth. b) Perspective view. c)
4 r1—‘L Plan view. In b) and c) the positions of two TDs
. are shown for successive film thickness; m; and m;
are unit vectors in the directions of the motion of
TDs i and j along the film surface

39*
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Therefore, to find the dependence of TD density on external and internal parameters,
one has to know the functional form of r and r5 (5) and (7). In the simplest cases, we
can consider model functions for r and r5. If » = r(h), then we can arrive at the prob-
lem of TD reduction in strain-free buffer layers. Here we assume that changing film
thickness, as a result of growth, is the only reason for TD motion. The effective motion
of TDs is a consequence of the fact that each TD assumes a minimum energy line orien-
tation (see below) which is constant during film growth. With increasing film thickness,
the separation distance between the TDs will change, a shown in Fig. 2b and ¢, and at
some film thickness, a minimum separation distance will be achieved. If the approach
distance between two TDs with opposite Burgers vectors reaches a value of the annihila-
tion radius ra, TDs begin to glide together because of the attractive interaction and
finally annihilate. If we assume that ra is constant, then (4) may be written in the
following form:

do = —Ko* dh, (8)

where K = 2rs(0r/0h), and the partial derivative Or/0h takes into account the geome-
try of TDs in the growing film. When K is not a function of h, (8) may be easily solved
to provide the following dependence of TD density on film thickness:

1/K
e=——=,
h+h

where h = 1/(K0,) — ho, 0, is the TD density at the starting thickness hg, and hgy usual-
ly can be taken as the thickness for which the average spacing between TDs is larger
than the annihilation radius 7. When A > ﬁ, the TD density is inversely proportional
to the film thickness, i.e.,

1

This simple approach thus predicts the 1/h scaling behavior. If we set K equal to twice
the annihilation radius 2ra (Or/8h = 1), we may readily solve for h. For instance, if the
initial threading dislocation density is 10'° em™2, hy = 0 (for simplicity), and the annihi-
lation radius is 500 A, then A has a value of 1000 A. If we assume h > h, (9) would be
valid for thicknesses of the order of 1 um and larger — this is in close greement with the
initial thicknesses for which TD densities are commonly reported. We note that the data
of Sheldon et al. [7] shown in Fig. 1a correspond to an 74 value of ~500 A and the data
of Tachikawa and Yamaguchi [8] shown in Fig. 1b correspond to an r4 value of ~1000 A.

In close analogy to the simplified model developed above, Parts I and II of the present
paper provide a detailed treatment of TD reduction in homogeneous buffer layers. In
particular, the approach will not only include annihilation reactions but will also incor-
porate fusion and scattering reactions, and crystallographic details of the reactions be-
tween different families of TDs. The value of the rate constant K will be generalized.
Finally, numerical solutions for TD density reduction will be found and analyzed.

Other methods of reducing TD densities (e.g., thermal annealing cycles, impurity dop-
ing, strained layer superlattices, and compositionally graded layers) can also be under-
stood in the framework of relative TD motion. For these more involved approaches, the
function for relative dislocation motion has to be determined in each particular case.
Solution of these problems is the subject of our future work.

9)
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4. General Treatment of Inclined Threading Dislocations

4.1 Isolated threading dislocation

We begin by determining the orientation of an isolated TD in a film and then we derive
the general geometry of interaction between pairs of TDs. First, consider a straight TD
connected to a MD, as shown in Fig. 3. The Burgers vector b of this angular dislocation
lies in its glide plane with normal ng, and thus, the TD is glissile. The free surface of the
film has a normal ns and the tangent vector of the TD is 1. Working under the assump-
tion that the TD maintains a glissile orientation, the goal of this section is to determine
the orientation of the TD line (unit vector 1). If 1 is known, then the angle w between
the TD line and the surface normal may be found as

w =cos ' (I-ny). (11)

If the position of the MD at the interface is fixed and we restrict the TD to be a
straight line, there is an orientation for the TD that minimizes the energy of the TD-
MD configuration. This minimum corresponds to the optimal balance between the screw
component of a TD and its length (when the film thickness h is fixed). In a real situa-
tion, the energy of the TD-MD configuration has to be calculaied by taking into ac-
count surface effects, the shape of the dislocation line, and differences in elastic proper-
ties between the film and the substrate. To find the simplified expression for the
dislocation energy, we will work in an approximation of dislocation line tension [13] and
neglect the interaction of the TD with the free surface and the interface. Taking the

Fig. 3. Geometry of isolated TD~MD in the film/substrate system
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angle ¢ between the TD line and its Burgers vector as the controlling parameter for the
minimization of the dislocation energy, we can write the expression for this energy in the

form
_ ub? h 9 sin? ¢ aR
B0, 9 =" Gy ee@e) (9 1_v) 1“(m>’ (12)

where y is the shear modulus, v is Poisson’s ratio of the film, R is the screening length
for the energy calculation, and the parameter a takes into account the contribution of
the dislocation core (R depends weakly on h and ¢ but we neglect these dependencies
because R is contained within the argument of the weakly varying logarithm function).
The angles ¥ and 6 can be found by considering the geometry of the shortest possible
TD line in the slip plane (parallel to k); y is the angle between k and the projection of
k to the film/substrate interface,

y = cos ' (ng - ng), (13)
and @ is the angle between b and k,

0 = cos ! & . (14)
[b| sin y
After the angle ¢ is found from the minimization of (12), we can then derive the

relation for the unit vector 1 along the TD line,

_sin(6—¢) b  sing
" sin@® |b| sin® (15)

where k is also given as

_mgXx (ns X ng)

k (16)

sin y
During continuing film growth, we propose that the geometry of the TD-MD system
remains self-similar. This means that the TD remains in the position of minimum energy
with constant angle ¢ and therefore constant line direction 1. The point of intersection
of the inclined TD with the free surface will, however, move along the free surface with
increasing film thickness, as shown schematically in Fig. 2. Thus, even in the absence of
glide, there is lateral motion (in the laboratory reference frame) of the inclined TD with
increasing film thickness. The direction of this motion m in the surface plane is given as

o 1-(1-n;)ng
== (oo (17

4.2 Relative motion and reactions of threading dislocations

Consider now two TDs with Burgers vectors b; and b; and line directions I; and 1;, as
shown in Fig. 2b. At film thickness h;, TD; and TD; are separated by a distance r;. At
film thickness hy, the two TDs are separated by a distance r, as shown in Fig. 2¢. If the
TDs come within a distance such that the interaction forces are sufficient to initiate
additional motion of dislocations, then they can start to react to produce new disloca-
tions or change their trajectories of motion. The minimum distance to initiate disloca-
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tion motion is referred to as the interaction radius r;. Different types of interactions are
possible between TDs and include: (i) annihilation, (ii) fusion reactions, and (iii) scatter-
ing reactions. The possibility of reactions is primarily governed by Frank’s rule (the b?
criterion) [13]. A reaction between TD; and TD; to produce a new TD; with Burgers
vector by = b; + b;, should fulfil the condition

by < B2 +0. (18)

In the case that by = 0, we have an annihilation reaction and the corresponding interac-
tion distance is referred to as the annihilation radius ra. For the case by #0 and
b2 < b? +b§, we have a fusion reaction and the corresponding interaction distance is
referred to as the fusion radius rp. Fusion reactions lead to an overall TD density reduc-
tion. In the case that b > b? + b?, there will be no annihilation or fusion reactions of
TDs, however, the local scattering (change of TD trajectories of their motion) can take
place. Scattering reactions will have a characteristic interaction distance that will be
referred to as the scattering radius rs. Finally, for the case b2 = b2 + b?, the principles of
minimization of dislocation length contribution become important. Here, the outcome of
the possible reaction will be dictated by the dislocation core energy dependence on the
value of the Burgers vector together with minimization of a dislocation length for a
given film thickness.

To find the value of the interaction radii, rs, rr, and rg, we must solve the compli-
cated problem of the interaction of two angular TD—MDs near a free surface. Factors
such as temperature, Peierls barrier, internal and externally imposed stress, presence of
point defects must all be considered. We will begin to treat these problems in our future
work.

Here we explore the approach dealing with TD densities and making an analogy to
simple chemical reaction kinetics. Again, consider TDs of the i-th and j-th types with
corresponding densities g; and g;. We suppose that due to the effective motion of in-
clined TDs the reactions occur with uniform probability at any point on the surface
with prescribed reaction velocity V;;. Then for diminishing defect densities g, or ¢, as a
result of the direct reaction of RDs of the ¢-th and j-th types we can write

do.,.
%t(]—) = —Vi50;0; - (19)

The reaction velocity can be expressed via relative dislocation motion and interaction
cross-section ry in the following form:
V;j =2 {Vz —le, IZA, F, OI'S, (20)

where V; and V; are the velocities of motion of the TD intersections with the free sur-
face as a result of film growth. The velocity of a TD can be written as

V; = h tan (y;) my, (21)

where b = dh/dt is the film growth rate. After that, the expression for the decrease of
density of dislocations participating in the reaction (19) can be rewritten in the form
directly connecting densities and film thickness,

d@i(')
dh] = 7805, (22)
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where the “kinetic” coefficient Kj; is given as
K;; = 2rr|tan y;m; — tan y,;m;| (23)
which can also be written as

‘vlﬂ n;)* L—(L n)nd 1= 00" [1; - (1 - ) n]

2”‘\ Wond  —(mgnd  Lond 1, — (0

. (24)

Analyzing the expression for K;;, we conclude that it reflects all essential features of
the TD geometry. First, for perpendicularly oriented TDs, 1; = 1; = ny, there will be no
motion and correspondingly no interaction of the TDs; therefore, K;; =0 in this case.
Second, for I; = 1; # ny, there will be no relative dislocation motion and again Kj; = 0.

The reactions of the type given in (19) will also contribute to the production of TDs:
in the case of fusion reactions, TDs of a new type g, will appear; in the case of scatter-
ing reactions, TDs of a new type may be generated by cross slip of existing TDs (con-
servation of Burgers vector, change of slip plane). For the case of scattering reactions,
the total number of interacting dislocations does not change. In the case of annihilation,
no new TDs are produced as a result of the reactions. The TD production terms can be
taken into account with the help of an additional set of coefficients ﬂfj

do
d—lf: ¢ Kijo0;- (25)

Based on this dlscuss1on, we can conclude that for annihilation reactions /3 ;; = 0, for
fusion reactions ,3 .=1(k #1, k+# j) and for scattering reactions ﬂ + ﬂ,] + /3”+/3] =2,
where k and m correspond to dislocations that can appear as a result of scattering of the
i-th and j-th dislocations.

5. Dislocation Geometry and Reactions
for (001) F.C.C. Filmm Growth

The most common growth orientation for semiconductor heteroepitaxy is (001). Thus, in
this paper, we restrict our study to cube-on-cube epitaxy of f.c.c. materials. For f.c.c.
semiconductors, such as Si, Ge, or GaAs, the most common slip system is
a/2 (110) {111}. The Burgers vectors for this system are along the face diagonals of the
cubic cell and represent the shortest possible primitive lattice translation vectors. The
possible set of Burgers vectors for the f.c.c. system are parallel to the edges of a half
octahedron, as shown in Fig. 4a. The half-octahedron is oriented such that the square
base is parallel to the (001) plane and the inclined faces are parallel to either (111),
(111), (111), or (111).

As was mentioned in Section 2.1, we consider the possibility that MDs and TDs are
generated by surface-related processes for layer growth and possibly by lateral injection
mechanisms in island growth. For layer growth, misfit strains in coherent or partially
relaxed films may be relieved by surface nucleation of dislocation half-loops. Assuming
homogeneous biaxial tension, the half-loops will form on inclined slip planes with Bur-
gers vectors that are inclined with respect to the film substrate interface. For the (001)
growth of f.c.c. semiconductors, this plane corresponds to one of the four inclined faces
of the half-octahedron shown in Fig. 4a and the possible Burgers vector of the disloca-
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[oo1] Fig. 4. a) (001) deformation half-octa-
hedron. b) Projection down [001] of the
deformation half-octahedron

[010}

(111) a

{100

tions will be one of the following: +a/2 [101], +a/2 [011], +a/2 [101], +a/2 [011]. For
dislocation half-loop nucleation at the film surface, the Burgers vectors of the half-loop,
and eventually the pair of TDs and the MD, will be parallel to one of the inclined half-
octahedron edges (note again, however, that we use the uncommon convention that the
line directions of the TD segments are in the same sense as the surface normal, and thus
the two TD segments for a half-loop will have opposite sense Burgers vectors). This
gives the set of possible Burgers vectors for surface nucleation as:
+a/2 [101], +a/2 [011], £a/2 [101], +a/2 [011]. For island growth, there is the additional
possibility that the MDs are generated by a lateral injection mechanism at the island
periphery, thus the initial set of MDs may have their Burgers vectors lying in the film/
substrate interface. This set of Burgers vectors will be parallel to one of the edges of the
square base of the half-octahedron and will be from the set +a/2 [110], a/2 [110]. TDs
may be generated as a result of island coalescence with the same possible Burgers vec-
tors as those of the MDs. Within the context of island growth, we do not exclude the
possibility of nucleating dislocations at the free surface of an island.

For f.c.c. systems, the Burgers vectors can lie on one of two slip planes. Although
there are 12 unique Burgers vectors, there are 24 Burgers vectors/slip plane combina-
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tions. Thus, in considering the overall reactions between TDs, a 24 x 24 matrix can be
constructed to investigate all possible TD—TD interactions. Before considering the possi-
ble reactions between TDs, it is first important to analyse the orientational dependence
of the energy of an inclined TD.

Dislocations must terminate at other dislocations, high-angle grain boundaries, or free
surfaces. Specifically, an isolated dislocation line cannot terminate within a crystal. As-
suming that a TD is anchored at, or near, the film/substrate interface, it must either
thread to the free surface of a film, fuse with another TD to form a third TD segment,
or form a loop that closes back down on the interface. For the case in which the TD
threads to the free surface, the energy of the TD is a balance between minimizing line
length while concurrently maximizing the screw character. For (001) film growth, all
{111} slip planes have the same inclination with respect to ns. Thus we need to consider
only the orientation for minimum energy of TDs with Burgers vectors that are parallel
to the film/substrate interface b, (e.g., a/2[110]) or those which are inclined b; (e.g.,
a/2[101}]). For these two types of dislocations, the angles ¥ and @ in the expression for
TD energy (see (12)) will be correspondingly y, =y; =sin" (vV2/V3), 6, = 7/2,
6; = /6. In Fig. 5 we plot the dependence of TD energy on orientation for TDs with
Burgers vectors that are either parallel or inclined with respect to the film/substrate
interface (a Poissons ratio value of 0.3 was used here). For TDs with their Burgers
vector parallel to the film/substrate interface, the minimum energy orientation is paral-
lel to k, the direction of shortest line length. For the {111} family of slip planes, this
orientation corresponds to a TD line direction parallel to (112). For TDs with inclined
Burgers vectors, the minimum energy orientation is =15° away from b in the sense that
reduces line length and we will approximate this direction, for (001) films, as (123)
where the third Miller index is always 3 and positive. On this basis, the motion of the

1.8 n
1.7 =

1.6 -1

is b =a/2{110)

L
14 _
-

Dislocation Energy

13

12 b=a/2{101]

1 H 1 1 d [ | !
-08 -06 -04 -02 0 0.2 0.4 0.6 0.8

6-¢
Fig. 5. Dependence of TD energy in (001) films on the deviation of the TD orientation from the
shortest line length orientation. The TDs in this case are in the (111) plane. Curve 1 corresponds to
a TD with a Burgers parallel to film/substrate interface by, = a/2 [110]. Curve 2 corresponds to a

TD with a Burgers inclined to film/substrate interface b; = a/2[101]. The energy is in units of
(ub?h /3/4m \/25) In (@R/[b})
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TDs on the growing film surface is determined by (17). The minimum energy orienta-
tion for all 24 possible TDs for (001) f.c.c. films is shown in Fig. 4b. The labeling scheme
used for the TDs is given in Table 1.

The possible reactions between TDs are based on both their geometric likelihood of
interaction and whether the possible reactions are energetically favorable. As described
earlier, the b% criterion is used to determine whether or not reactions are favorable. All
annihilation reactions lead to energy release and thus are favorable. For favorable
fusion reactions, the resulting TD may have a Burgers vector that can lie on several
different slip planes. We argue that the slip plane the TD chooses is such that the line
direction of the resulting TD most closely maintains force balance at the node of the
three TD junctions. Finally, repulsive reactions are determined by both unfavorable
energies and additional Burgers vectors that have an acute angle. Repulsive interac-
tions between TDs may lead to a change in slip plane for a given TD, a process that
we refer to as scattering. Using these criteria, the reactions between pairs of TDs can
be developed and are shown in Table 1. In this table, the following notation is used:
U corresponds to parallel dislocation lines 1 with no geometrical likelihood for interac-
tion; S1 and S2 correspond to repulsive interactions (from b? criterion) and may lead
to scattering; N corresponds to no reaction (from the b? criterion), however, there is a
possibility for fusion or scattering; 0 corresponds to annihilation reactions; and finally
the entries with a specific number correspond to the resulting TD from a fusion reac-
tion.

6. Summary and Conclusions

This paper offers the geometric possibility for reactions between TDs as a result of film
growth. The reactions become possible if pairs of TDs come within a critical distance:
ra for annihilation reactions, rr for fusion reactions, and rg for scattering reactions. The
effective motion of an inclined individual TD in a stress-free homogeneous layer has
essentially a purely geometrical origin. In cases where the inclined TD maintains a con-
stant line direction, the point of intersection of the TD with the film free surface will
move laterally on the film surface with increasing film thickness. Since the line directions
for different TDs may be different, this results in mutual dislocation motion in TD en-
sembles.

The simplified model based on the ability of TDs to move has been proposed to ex-
plain the experimentally observed 1/h dependence of TD density. In this Part I of the
paper, the parameters describing dislocation motion have been found for arbitrarily ori-
ented TDs. After that, these general results were applied to the case of (001) epitaxial
growth of f.c.c. semiconductors together with considerations of the crystallography of
possible reactions between TDs.

The results from Part I will be used in Part II for the derivation of a series of coupled
differential equations that describe the details of TD density evolution in homogeneous
buffer layers.
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