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On the Nucleation of Dislocations at a Crystal Surface

By
G. E. BELTZ?) and L. B. FREUND

An exact expression for the elastic energy associated with a semicircular shear dislocation loop emanating
from a free surface is derived (within continuum dislocation theory) and compared with an earlier
approximation. The energy required to activate a semicircular dislocation loop into its unstable
“saddle-point” configuration is then re-calculated, based on the modified expression for the self-energy.
It is found that the shear stress necessary to emit the loop, as a function of temperature, is almost
50% less than earlier estimates. The principal drawback to this type of calculation is also discussed,
namely, that the critical radius of an incipient dislocation loop is on the order of one atomic spacing,
which is too small for a continuum theory to be valid.

Ein exakter Ausdruck fiir die elastische Energie eines halbkreisformigen Scherversetzungsringes, der
von einer freien Oberfliche ausgeht, wird im Rahmen der Kontinuumsversetzungstheorie berechnet
und mit friheren Niherungen verglichen. Die Aktivierungsenergie, um einen halbkreisformigen
Versetzungsring in die instabile Sattelpunktskonfiguration zu bringen, wird aufgrund des modifizierten
Ausdrucks fiir die Selbstenergie neu berechnet. Man findet, da8 die zur Emittierung eines Ringes
notwendige Schubspannung als Funktion der Temperatur etwa 50% niedriger ist als frither ange-
nommen. Die prinzipielle Schwachstelle dieser Berechnungsweise wird auch diskutiert, ndmlich, daB
der kritische Radius eines anfanglichen Versetzungsringes in der GroBenordnung eines Atomabstandes
liegt, was zu klein ist fiir eine hier noch giiltige Kontinuumstheorie.

1. Introduction

The behavior of dislocations in materials with electronic applications has been a topic of
long-standing interest, because of the effect of dislocations on electrical properties. One
example is the appearance of misfit dislocations in layers which have been epitaxially grown
onto a substrate with a slightly different lattice parameter. Invariably, this process involves
materials which have been chosen primarily for their electronic properties, such as the
band-gap width, the resistivity, and the type of charge carrier, and not for reasons related
to their lattice parameters. The resulting strain that occurs is commonly relieved by the
formation of misfit dislocations. If these dislocations are prevented from forming, the stress
in the film is not necessarily detrimental — the stress affects the electronic properties in a
predictable manner and is often controlled by exploiting differences in lattice parameters,
and subsequently changes in temperature, via a difference in thermal expansion coefficients.
The appearance of misfit dislocations during epitaxial growth has been observed
experimentally to coincide with the attainment of a critical thickness, which in turn depends
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on the misfit strain, elastic constants, and the orientation of the various slip systems involved
(e.g., Matthews [1], Hull et al. [2, 3], and Houghton et al. [4]). Theoretical studies of this
problem have established the validity of the critical thickness concept, starting with Frank
and van der Merwe [5, 6] and leading up to recent work by Freund [7, 8]. Most analyses
to date, however, have concentrated on analyzing the stability of a single pre-existing
threading dislocation, or a threading dislocation in the presence of an array of other
dislocations. Another issue that must be addressed more rigorously is the actual nucieation
of dislocations. If dislocations could somehow be prevented from forming to begin with
during the epitaxial growth process, then results pertaining to fully formed dislocations
would not be as relevant.

A possible location at which dislocations are actually generated during film growth is
the film surface. The primary purpose of this paper is to re-examine the process of dislocation
nucleation at a crystal surface, in light of recent developments with the theory of dislocation
formation. First, an expression for the shear stress due to a general shear dislocation loop
perpendicular to a free surface is derived, and immediately utilized to derive an accurate
expression for the elastic self-energy of a semicircular loop. Next, conditions for nucleation
of the semicircular loop are worked out in the continuum framework described by Hirth
[9] and subsequently by Fitzgerald et al. [10], but with the modified expression for the
self-energy of the loop. Finally, the potential utility of the expression for shear stress derived
here in more atomistic-type calculations is pointed out.

2. The Energy of a Semicircular Dislocation Loop at a Free Surface

We present here a calculation of the self-energy of a dislocation loop emerging perpen-
dicularly from a free surface in an isotropic, elastic half-space. To understand the nature
of the principal result of this section, recall that the elastic self-energy for a full circular
dislocation loop of radius r in an infinite elastic solid is given by [11]

2 —
grn = KT 2T <ir ) (1)
4 (1 —v) \é'r,

where p is the shear modulus, b the Burgers vector, v Poisson’s ratio, and r,, the core cut-off
radius. In analogous fashion to what Gao and Rice [12] have done for a general dislocation
loop ahead of a crack, we will show here that the energy of the semicircular loop of radius
r emerging from the free surface has the form

2 —
grac = KT Y (Lm’), @)
8 (1 —v \er

where m is a geometry-dependent correction factor. Early analyses of dislocation loop
nucleation at cracks [13], as well as most analyses of nucleation at a free surface to date
[9, 10, 14], begin with the assumption that m = 1, ie., by estimating U as half the energy
of a full circular loop.

Simple physical arguments may be invoked to state that 0 < m < 1. The former inequality
is expected because the energy becomes unbounded as m — 0. The latter inequality follows
from considering the formation of a full circular dislocation loop in an infinite solid by
bonding together two half-spaces, each containing a semicircular loop with the same radius
(see Fig. 1). The resultant energy must be the sum of the two energies of the half-space
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Fig. 1. Geometry of an emergent semicircular shear dislocation loop at a free surface. The slip plane,
as well as the Burgers vector, are perpendicular to the surface

configurations, as well as the positive work that must be done on the free surfaces to make
the two spaces match. Le., the inequality 2U™ < U™" must hold, which is consistent with
m < 1.

The calculation of m follows the procedure outlined by Gao and Rice [12] and Anderson
and Rice [15] in that (1) and (2) may be combined and re-arranged to give the following
expression for m:

_ 8 A= . i fu11>
In (m) = el — <U 5 U . 3)

The difference in elastic energy between the dislocation emanating from the free surface
and one half that of the corresponding full loop in an infinite body is calculated by integrating
the corresponding difference in work done in forming the dislocations, — (b/2) [?"*¥(x, 0, z)
tfull(x, 0, 2)], over the entire area of the half-loop. The integral of the stress difference
converges, even though the limits of integration extend entirely up to the dislocation line itself.
Hence, an expression may be written for m that is independent of any core cutoff procedure,

4
In (m) = J[ hally 0, z) — T™(x, 0, z)] dA4 , 4)
ubr (2 — )
where ! and ™" are, respectively, exact expressions (within continuum elastic dislocation

theory) for the shear stress of the half-loop at the free surface and the full loop in an infinite
solid. As will be evident later, a common factor of r appears upon non-dimensionalization
of the integral in (4). Hence, m should depend only on v.

For now, assume that a general Burgers displacement &(x,z) (defined as u](x, 2)
— u; (x, z), where u;} and u, denote the displacement immediately above and below the
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slip plane) exists on a slip plane, for purposes of discussing expressions for the shear stresses
needed for evaluating (4). Later, 8(x, z) will be replaced by b in a circular dislocated region.
The shear stress 77" (x, 0, z) associated with a dislocation loop in an infinite solid is [12, 16,17]

[be] 0

j j K*(x,z; %, 2)d(%, 2)dx dZ, (5a)

—o — oo

u

tf“”(x, 0, Z) = -
4n(1 — v)

where the operator K*(x, z; X, Z) is given by

Koozmnn= i O it l (sb)
X,z %, 8) = — ) ——

D? ox D3 oz
and D =1/(x — %)? 4+ (z — 2*. The domain of integration may be restricted to the

dislocated region, ie., where §(x, z) is nonzero. However, care must be exercised at the
boundaries if, for example, the gradient of 4(x, z) is Dirac-singular.

The derivation of an expression for the shear stresses around a dislocated region in a
half-space, T (x, 0, z), is somewhat more involved and follows the framework laid out by
Bacon and Groves [18] and Eshelby [19]. In that formalism, the infinitesimal displacement
field due to an infinitesimal dislocation loop located at (%, 0, £) is written as

du, (%, 9,2, %, 2) = duP(x, y, 23 £, 2) + dul(x, y, 2, %, 8) + duf(x, y, 2; £, 5), (6)

where du®(x, y, z; %, 2) are the displacements due to the loop at (%, 0, 2) in an infinite body,
dul(x, y, z; %, 2) are the displacements due to a loop of opposite sign at (—%,0Z) in an
infinite medium (the so-called image term), and duf(x, y, z; %, ) are the displacements
required to make the surface traction-free. The subscript i refers the displacement component
to the x-, y-, or z-direction. The shear stress associated with the finite dislocation loop in
a half-space may then be obtained by integration of the displacements in (6) over the loop
area, differentiation to determine the strains, and finally application of Hooke’s law.
Fortunately, the result is already known for the contributions from du(x,y,z) and
dul(x, y, z), by making appropriate use of (5). If the shear stress is broken into three
corresponding contributions,

half(x 0, 2) = 79(x, 0, z) + 7i(x, 0, 2) + 13(x, 0, 2), (7

then 1%(x, 0, z) and 7'(x, 0, z) may be written as

o(x, 0,2) = — o f JKw(x,z;x,aé(x,z)dx dz, (8a)
4n(l — v)
—o 0~
(x,0,2) = — J fK'(x,z;)Z, 3) (%, 2) dx dz, (8b)
dn(l — v)
~ow 0~

where the operator K!(x, z; %, ) is given by

1 ‘~~_)”C'+X@ 77—z O
K(x,z,x,z): R3 &‘F(I—V)——R—s—k (8C)
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and R = |/(x + £)*> + (z — 7)%. Again, care must be taken with the limits of integration.
In the half-space, the dislocation loop terminates as a line along the free surface, ie., the
gradient of §(x, z) is generally Dirac-singular along x = 0. In anticipation of a numerical
problem due to a 1/x singularity at the free surface, the contribution to the integrals in £
between 0~ and 0" is evaluated, giving

@K

ux 5(0%, 2)dz
1%{x,0,2) = —
4n(l — v) [x? + (z — £*??
+Ez(_1ﬂ—_v) J JKWx,z;;E,z”)é(f,Z)didz", (9a)
— o0 0+
[ 30, 2 dz
Jx,0,2) = — — (07, 3d

4n(l —v) . [x? + (z — 92

H I s o ossa . 1s
- K'(x,z;%,2)0(% 2)dx dZ. 9b
4n(1—v)Jj (x,2; X, 2) 0(%, 2) dx dZ (9b)
_w0+

The infinitesimal displacement expressions duf(x, y, z) for a shear loop perpendicular to
a free surface are 18, 19]

bx dS o2 (1 o®
dis(x, yo 332 2) = {(4 —2v) <~> - (i)} (10a)
4n(l —v) Ox Oy \R x> 0y \R
bx dS o /1 03
duS(x, 3, 2%, 8) = — {zv — (—v> - <§>} (10b)
dr(l — v) 0x 0y \R dx 0y \R

where R = |/(x + ®* + (z — 2> + y*. Equations (10a) and (10b) may be differentiated
and combined to obtain the shear strain

1 0
dgxy = -d (& + %) (11)
2 Ox ay

and the shear stress is determined via Hooke’s law, i.e.,
dr,, = 2ude,,. (12)

The final expression is found by integrating over the loop area and evaluating at y = 0 to
obtain

T 15x(x +x)? 3% . s e
5(x, 0, z) = 47r(1 v) J j [ RS] §(xX, 2ydx dz . (13)
—aw 0

23*
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The integrand was verified by means of a symbolic manipulation program. The final
expression for 1 (x, 0, z) is determined by combining (9) and (13) to give

G

half _ 2ux J 8(0%, 2)dz
7%, 0,2) = 4n(l — v) x* + (z — 2?2
H w e s gl o o
mj‘ J‘[K (x,z,x,i) K(xsZ>X,Z)]5(X,5)dxdz
—w 0%
2ux wwlﬁw+w_qﬂ ¢, ) ds dz
R J J[ R 75 |0 D) d¥dz. (14)
—w 0

Following [12] and [15], the Cauchy singularities in the integrands may be combined by
subtracting out a uniform displacement that has the effect of making the integrand finite
as X approaches 0,

half . 0+ Z~) - 5(0+5Z)
T 0,2 = 4n(1—v) J %+ (z — P2

—#— J\ J\ [Koo(x, Z, gs E) - Kl(xa z, 55’ f)] 6(55, 5) d)z dZ~
47':(1 —v)
—ow 0F
2ux J J[lsf(i + x)? 3&]
47'5(1 — V) R7 R?
- 0

x {8(%,2) — 8(0, 2)} d% dz. (15)

The result gives the shear stress induced for an arbitrary opening d(x, z).
The integrand in (4) may now be formulated by combining (5) and (15) to give

ghalf _ ofull _ 2ux J 0(0",2) — 6(0%, 2) ds
(=) ) 3+ = PR
——2"——} JK‘(x 2: %, 2) 8(%, 5) d% d2
4r(l — v) T ’
— O+
Zux f f[le £ + x)? 3)2]
4n(1 - R?
- 0
x{8(%,2) — 6(0%,2)} dx df. (16)

The four-fold integral in (4) was carried out numerically via a 21-point Gauss-Kronrod
rule with a relative error in the result of 10 "% The integrand was broken up in such a way
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Fig. 2. Plot of the correction factor m as a function of Poisson’s ratio v

as to give a result that explicitly depends on v,

[0.7734 ~ 1.059(2 — \')J
m = exp 5 .
—V

(17

When v = 0.3, m = 0.546 and when v = 0.218, as appropriate for silicon, m = 0.535. Fig. 2
shows m as a function of v. In principle, analogous procedures to that presented here for
the shear loop perpendicular to the free surface may be used to calculate m for general
loop shapes, with arbitrary slip plane and Burgers vector orientations.

3. Nucleation of a Semicircular Loop

The calculation presented in this section essentially follows that of Hirth [9], in which the
energy associated with an incipient semicircular dislocation loop is determined, and then
rendered stationary in order to find the critical radius of the loop, beyond which the loop
will unstably enlarge. It is assumed that the dislocated plane, as well as the direction of
slip, are perpendicular to the crystal surface (as in Fig. 1). The loading is assumed to be a
uniform, remotely applied shear stress 1. It is also assumed that the dislocation is not
dissociated, i.e., that the stacking fault energy does not contribute in any fashion. The total
energy of the loop then consists of three terms,

E — Uhalf + Ulcdge _ Wslress, (18)

where U is as discussed in the previous section, U'*** is the energy of the ledge that is
created (or removed) at the surface due to the intersecting dislocated plane, and W™ is
the work done by the applied load, '

wetress = 4 mr2h (19)

which is the product of the Peach-Koehler force tb and its work-conjugate displacement,
the area that the dislocation has swept out.
The ledge energy is commonly written as

U'sdes = +2ybr, (20)
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where the positive value is used for ledge creation, the negative sign is taken for ledge
removal, and y is the surface energy. This is a questionable approximation, since it is difficult
to define a true thermodynamic surface energy for an area that is one atomic spacing wide.
It is perhaps best to interpret yb as an effective ledge energy per unit length. Following [10]
and [14], we take y = ub/8. The conclusions noted later are relatively insensitive to the
choice of this parameter.

At absolute zero, the condition for dislocation emission is given by rendering the total
energy stationary,

OE p? 2 — 8
OF _ pb? 2-7) 1n<mr>4_—2yb—nrrb=0, (1a)
or 8 (1 —v) er,

CE  pb* (2 —v)

a8

—nath =0, (21b)
8 (1 —v)

where the latter condition is a stability criterion, i.e., it insures that the energy decreases
as the loop expands. Solving for the critical stress for which the loop would spontaneously
enlarge gives 12, = 0.505y, assuming ledge creation, or %, = 0.0873y, assuming ledge
removal. If it is assumed that m = 1, then the critical stresses increase to 0.944u and 0.163p,
respectively. Thus an accurate expression for the self-energy of a loop near the free surface
leads to a decrease, by almost a factor of 2, of the critical stress necessary to homogeneously
nucleate the loop. All the calculations presented here use ry = b/4 and v = 0.218.

The nucleation process, however, realistically occurs at temperatures well above absolute
zero. The critical stress for emission may then be determined via an activation energy
concept. Assume that the local shear stress is less than 1%,. There will then exist two
solutions to (21a) — one corresponding to a local minimum of the total energy (r = ry),
and the second corresponding to a local maximum of energy (r = r,). In general, r, > r,.
The energy difference between these two states, AE = E(r,) — E(r,), defines the activation

energy. If energy from thermal vibrations is sufficient to overcome this activation energy,

0.75

Fig. 3. The activation energy for dislocation loop emission as a function of the applied shear stress
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then the dislocation loop is spontaneously emitted. The activation energy is plotted in Fig. 3
for m = 0.535 as well as m = 1. Qualitatively, the behavior is as expected: the energy barrier
to dislocation emission decreases as the applied stress approaches its maximum value of
12, The decrease in activation energy is relatively sharp for t < t%,, but as the limiting
stress is approached, the rate of decrease slows, suggesting that thermal vibrations may be
sufficient to emit dislocations for a certain stress range below 2. More importantly, note
that using an appropriate value of m leads to significantly reduced activation energies —
for most loads there is more than a factor of 2 difference. Additionally, note when it is
assumed that the emitting dislocation is removing a ledge at the surface, the energy
barrier is significantly reduced.

Now that the activation energy required for the emission of a dislocation from the surface
is determined, we need some estimate of what energy is available for the process. An estimate
by Rice and Beltz [20] is based on a standard Arrhenius relation between the nucleation
rate and AE/kT (k is Boltzmann’s factor), and assumes that a “reasonable” nucleation rate
is given by one dislocation per second per millimeter of crack front. This elementary
calculation leads to an available energy of 43kT. A similar argument by Hirth [9] gives
88k T of available energy. Given the uncertainty present in this type of calculation, we follow
Fitzgerald et al. [10] and assume that the available energy is 50kT. Based on the activation
energies in Fig. 3, the stress necessary to emit a dislocation loop as a function of temperature
is given in Fig. 4. As expected, a proper choice for m reduces the shear stress by a factor
of about 2. Furthermore, the critical stress for a nucleation process associated with removal
of aledge at the surface is about three times less than the stress when the ledge is created.

4. Validity of the Continuum Approach

The largest source of uncertainty in the type of calculation presented in the previous section
is the fact that a continuum-based description of a dislocation is used over length scales
that are much too small. For example, the critical radius for dislocation emission at absolute
zero, when a ledge is being removed, is 1.0385b, according to the theory outlined in the
previous section. When a ledge is being created, the critical radius reduces to 0.505b (these
numbers assume m = (.535). In the latter case, the elastic energy predicted by (2) is negative.
To realistically calculate the energy associated with a dislocation loop this small, some
kind of atomistic theory is needed to model the core.

Furthermore, the expressions used in this paper assume that the dislocation is fully
formed. One example of a situation where these considerations have been addressed is the
problem of dislocation nucleation at crack tips, which up until recently has also relied on
continuum energy expressions for dislocations. Weertman [21] and, more recently, Argon
[22] and Schock [23] have suggested that the Burgers displacement (i.e., the function é(x, z)
from Section 2), as well as the relative position of the dislocation core, should be regarded
as configurational parameters when modeling dislocation nucleation and evaluating the
activation energy. A reasonably exact treatment of this phenomenon has been given recently
by Rice and coworkers [24 to 27] that makes use of the Peierls-Nabarro dislocation model
[28, 29]. In that treatment, the two-dimensional elasticity problem of a traction-free crack
with a periodic, nonlinear stress versus displacement relation being satisfied as a boundary
condition along a slip plane ahead of the crack tip is solved. Once this interfacial
“constitutive” relation is specified (it could be as simple as the Frenkel sinusoidal law), and
the elasticity problem solved, there is no need for the core-cutoff parameter (used earlier
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Fig. 4. The critical stress required to emit a dislocation loop as a function of temperature

in this paper). The advantage of this method is that it allows for the existence of an extended
dislocation core during nucleation, and eliminates uncertainty involved when using
expressions that were derived with the usual core cutoff procedures.

The same types of ideas may be applied to the problem of dislocation nucleation at a
surface [30]. Although the problem may be quite straightforwardly worked out for the
two-dimensional case (yielding an activation energy per unit length of dislocation parallel
to the surface), the three-dimensional case appears to be quite complex. The problem would
essentially involve finding a saddle-point dislocation configuration at the surface, ie., a
function d(x, z) that renders the total energy stationary. Any numerical solution to this

problem within the Peierls-Nabarro framework would necessarily involve a suitable form
of (15).
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