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On the Nucleation of Dislocations at a Crystal Surface 

BY 
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An exact expression for the elastic energy associated with a semicircular shear dislocation loop emanating 
from a free surface is derived (within continuum dislocation theory) and compared with an earlier 
approximation. The energy required to activate a semicircular dislocation loop into its unstable 
“saddle-point’’ configuration is then re-calculated, based on the modified expression for the self-energy. 
It is found that the shear stress necessary to emit the loop, as a function of temperature, is almost 
50% less than earlier estimates. The principal drawback to this type of calculation is also discussed, 
namely, that the critical radius of an incipient dislocation loop is on the order of one atomic spacing, 
which is too small for a continuum theory to be valid. 

Ein exakter Ausdruck fur die elastische Energie eines halbkreisformigen Scherversetzungsringes, der 
von einer freien Oberflache ausgeht, wird im Rahmen der Kontinuumsversetzungstheorie berechnet 
und mit fruheren Naherungen verglichen. Die Aktivierungsenergie, um einen halbkreisformigen 
Versetzungsring in die instabile Sattelpunktskonfiguration zu bringen, wird aufgrund des modifizierten 
Ausdrucks fur die Selbstenergie neu berechnet. Man findet, daB die zur Emittierung eines Ringes 
notwendige Schubspannung als Funktion der Temperatur etwa 50% niedriger ist als fruher ange- 
nommen. Die prinzipielle Schwachstelle dieser Berechnungsweise wird auch diskutiert, nlmlich, daR 
der kritische Radius eines anfanglichen Versetzungsringes in der GroRenordnung eines Atomabstandes 
liegt, was zu klein ist fur eine hier noch gultige Kontinuumstheorie. 

1. Introduction 

The behavior of dislocations in materials with electronic applications has been a topic of 
long-standing interest, because of the effect of dislocations on electrical properties. One 
example is the appearance of misfit dislocations in layers which have been epitaxially grown 
onto a substrate with a slightly different lattice parameter. Invariably, this process involves 
materials which have been chosen primarily for their electronic properties, such as the 
band-gap width, the resistivity, and the type of charge carrier, and not for reasons related 
to their lattice parameters. The resulting strain that occurs is commonly relieved by the 
formation of misfit dislocations. If these dislocations are prevented from forming, the stress 
in the film is not necessarily detrimental - the stress affects the electronic properties in a 
predictable manner and is often controlled by exploiting differences in lattice parameters, 
and subsequently changes in temperature, via a difference in thermal expansion coefficients. 

The appearance of misfit dislocations during epitaxial growth has been observed 
experimentally to coincide with the attainment of a critical thickness, which in turn depends 
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on the misfit strain, elastic constants, and the orientation of the various slip systems involved 
(e.g., Matthews [l], Hull et al. [2, 31, and Houghton et al. [4]). Theoretical studies of this 
problem have established the validity of the critical thickness concept, starting with Frank 
and van der Merwe [5, 61 and leading up to recent work by Freund [7, 81. Most analyses 
to date, however, have concentrated on analyzing the stability of a single pre-existing 
threading dislocation, or a threading dislocation in the presence of an array of other 
dislocations. Another issue that must be addressed more rigorously is the actual nucleation 
of dislocations. If dislocations could somehow be prevented from forming to begin with 
during the epitaxial growth process, then results pertaining to fully formed dislocations 
would not be as relevant. 

A possible location at which dislocations are actually generated during film growth is 
the film surface. The primary purpose of this paper is to re-examine the process of dislocation 
nucleation at a crystal surface, in light of recent developments with the theory of dislocation 
formation. First, an expression for the shear stress due to a general shear dislocation loop 
perpendicular to a free surface is derived, and immediately utilized to derive an accurate 
expression for the elastic self-energy of a semicircular loop. Next, conditions for nucleation 
of the semicircular loop are worked out in the continuum framework described by Hirth 
[9] and subsequently by Fitzgerald et al. [lo], but with the modified expression for the 
self-energy of the loop. Finally, the potential utility of the expression for shear stress derived 
here in more atomistic-type calculations is pointed out. 

2. The Energy of a Semicircular Dislocation Loop at a Free Surface 

We present here a calculation of the self-energy of a dislocation loop emerging perpen- 
dicularly from a free surface in an isotropic, elastic half-space. To understand the nature 
of the principal result of this section, recall that the elastic self-energy for a full circular 
dislocation loop of radius r in an injinite elastic solid is given by [ l l ]  

Uf"" - pb2r  (2 - v) 
- ~ _ _ _  

4 (1 - v )  

where ,u is the shear modulus, b the Burgers vector, v Poisson's ratio, and ro the core cut-off 
radius. In analogous fashion to what Gao and Rice [12] have done for a general dislocation 
loop ahead of a crack, we will show here that the energy of the semicircular loop of radius 
r emerging from the free surface has the form 

where m is a geometry-dependent correction factor. Early analyses of dislocation loop 
nucleation at cracks [13], as well as most analyses of nucleation at a free surface to date 
[9, 10, 141, begin with the assumption that m = 1, i.e., by estimating Uhalf as half the energy 
of a full circular loop. 

Simple physical arguments may be invoked to state that 0 < m < 1. The former inequality 
is expected because the energy becomes unbounded as m + 0. The latter inequality follows 
from considering the formation of a full circular dislocation loop in an infinite solid by 
bonding together two half-spaces, each containing a semicircular loop with the same radius 
(see Fig. 1). The resultant energy must be the sum of the two energies of the half-space 
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Fig. 1. Geometry of an emergent semicircular shear dislocation loop at a free surface. The slip plane, 
as well as the Burgers vector, are perpendicular to the surface 

configurations, as well as the positive work that must be done on the free surfaces to make 
the two spaces match. I.e., the inequality 2Uhalf < Uf"" must hold, which is consistent with 
in < 1. 

The calculation of m follows the procedure outlined by Gao and Rice [12] and Anderson 
and Rice [15] in that (1) and (2) may be combined and re-arranged to give the following 
expression for m: 

8 (1 - v) 
In (m) = ~ ~ 

pb2r (2 - v) (3) 

The difference in elastic energy between the dislocation emanating from the free surface 
and one half that of the corresponding full loop in an infinite body is calculated by integrating 
the corresponding difference in work done in forming the dislocations, - (b/2) [ ~ ~ ~ ' ~ ( x ,  0, z )  
- tfu'l(x, 0, z)], over the entire area of the half-loop. The integral of the stress dfference 
converges, even though the limits of integration extend entirely up to the dislocation line itself. 
Hence, an expression may be written form that is independent of any core cutoff procedure, 

[thalf(x, 0, z) - ~ ~ ~ ' ' ( x ,  0, z)] dA , 4 (1 - v) In (m) = - - ~ 

pbr (2 - v) 
(4) 

where t h a l f  and t f u ' l  are, respectively, exact expressions (within continuum elastic dislocation 
theory) for the shear stress of the half-loop at  the free surface and the full loop in an infinite 
solid. As will be evident later, a common factor of r appears upon non-dimensionalization 
of the integral in (4). Hence, m should depend only on v .  

For now, assume that a general Burgers displacement 6(x,z) (defined as u,?(x, z) 
- u; (x, z) ,  where u: and u; denote the displacement immediately above and below the 
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slip plane) exists on a slip plane, for purposes of discussing expressions for the shear stresses 
needed for evaluating (4). Later, 6(x, z) will be replaced by b in a circular dislocated region. 
The shear stress zf""(x, 0, z )  associated with a dislocation loop in an infinite solid is [12,16,17] 

K"(x,  z ;  2,5) 6(2,F) d2 d l ,  c1 
Tfu'l(X, 0, 2) = 

4741 - v )  
-a -03 

where the operator Km(x, z ;  I, 5) is given by 

____ 
and D = I/(x - I)' + (z - 5)'. The domain of integration may be restricted to the 
dislocated region, i.e., where 6(x, z )  is nonzero. However, care must be exercised at the 
boundaries if, for example, the gradient of 6(x,  z) is Dirac-singular. 

The derivation of an expression for the shear stresses around a dislocated region in a 
half-space, zhalf(x, 0, z), is somewhat more involved and follows the framework laid out by 
Bacon and Groves [18] and Eshelby [19]. In that formalism, the infinitesimal displacement 
field due to an infinitesimal dislocation loop located at (2,0,5) is written as 

dui (x, y, Z ;  2 , i )  = du,PD(x, y ,  z ;  2,Z) + dui(x, y ,  z; 2,Z) i- duf(x, y ,  z; 2,  5) , (6) 

where du,PO(x, y ,  z ;  2,q are the displacements due to the loop at (2 ,0 ,3  in an infinite body, 
dui(x, y ,  z; I,?) are the displacements due to a loop of opposite sign at ( -2 ,0  5) in an 
infinite medium (the so-called image term), and duf(x, y ,  z ;  2 , l )  are the displacements 
required to make the surface traction-free. The subscript i refers the displacement component 
to the x-, y- ,  or z-direction. The shear stress associated with the finite dislocation loop in 
a half-space may then be obtained by integration of the displacements in (6) over the loop 
area, differentiation to determine the strains, and finally application of Hooke's law. 
Fortunately, the result is already known for the contributions from duy(x, y ,  z )  and 
duI(x,y,z), by making appropriate use of (5).  If the shear stress is broken into three 
corresponding contributions, 

then z"(x, 0, z )  and ?(x, 0, z) may be written as 
a m  
n n  

K" (x, z ;  2,5) 6(2,2) d2 dP , 
4 ~ ( 1  ' - V) J J  P ( X ,  0, z) = 

~m 0 

K'(x,  z; 2 , l )  d(2, 5)  d2 d l ,  
4 ~ ( 1  ' - V) J J  Z'(X, 0, z) = - 

- m  0 

where the operator K'(x,  z; 2 , Z )  is given by 

2 s - x  a z " - ~  a 
K'(x ,  2 ;  2 , l )  = ___ - + (1 - v) __- - 

R3 82 R3 aZ 
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and R = v ( x  + 2)' + ( z  - 2)'. Again, care must be taken with the limits of integration. 
In the half-space, the dislocation loop terminates as a line along the free surface, i.e., the 
gradient of 6(x,  z )  is generally Dirac-singular along x = 0. In anticipation of a numerical 
problem due to a l/x singularity at the free surface, the contribution to the integrals in I 
between 0- and 0' is evaluated, giving 

- m  

m m  P P  

+ J J Kffi(x,z;x",f)6(I,5)dfdz", 
4 ~ ( 1  - V )  

- m  n+  

m m  
n n  

K'(x, z ;  1,z") 6(1 ,  f )  d I  dz". 
4n(l I* - V) J J  - (9 b) 

- m  0' 

The infinitesimal displacement expressions duS(x, y, z )  for a shear loop perpendicular to 
a free surface are [IS, 191 

where I? = I/(x + X)2 + ( z  - 5)' + y2. Equations (10a) and (lob) may be differentiated 
and combined to obtain the shear strain 

and the shear stress is determined via Hooke's law, i.e., 

d ~ , ,  = 2 p  de,, . (12) 

The final expression is found by integrating over the loop area and evaluating at y = 0 to 
obtain 

6(I,i') d2 dz" . 151(f + x ) ~  - 21 
R5 

ZS(X, 0, z )  = ~ _ _  
4 ~ ( 1  - $3) R7 

- m  n 

23* 
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The integrand was verified by means of a symbolic manipulation program. The final 
expression for 0, z) is determined by combining (9) and (13) to give 

- 5  

15X(X + x)' - "1 + -  d ( 2 , i )  d2 d l  . (14) 4 ~ ( 1  - V) R7 R5 
- m  0 

Following [12] and [15], the Cauchy singularities in the integrands may be combined by 
subtracting out a uniform displacement that has the effect of making the integrand finite 
as 1 approaches 0, 

2px 
4Z(i - V) 

1 6(0+, i) - 6(0+, z )  
(x, 0, z )  = - d i  Zhalf 

[x2 + ( z  - 4213/2 
- m  

[K"(x,  Z ;  2, ?) - K'(x,  Z ;  X , 4 ]  6(2, Z) dX di 
4 ~ ( l  - V) 

+ -  
-a) 0' 

&x i I[ 152(2 + x ) ~  - "1 + 
4 ~ ( 1  - V) R7 R5 

- a  0 

x {6(X,Z) - 6(0+, z ) )  dX d i .  

The result gives the shear stress induced for an arbitrary opening 6(x, z). 
The integrand in (4) may now be formulated by combining ( 5 )  and (15) to give 

I 2px 7 ![152(X + x)' - "1 
4n(l - V) R7 R5 

- m  0 

x {6(2, ?) - 6(0', z ) }  dX dZ. (16) 
The four-fold integral in (4) was carried out numerically via a 21-point Gauss-Kronrod 
rule with a relative error in the result of The integrand was broken up in such a way 
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Fig. 2. Plot of the correction factor m as a function of Poisson’s ratio v 

as to give a result that explicitly depends on Y, 

0.7734 - 1.059(2 - [ 2 - v  
m = exp 

When v = 0.3, m = 0.546 and when v = 0.218, as appropriate for silicon, ni = 0.535. Fig. 2 
shows m as a function of v. In principle, analogous procedures to that presented here for 
the shear loop perpendicular to the free surface may be used to calculate m for general 
loop shapes, with arbitrary slip plane and Burgers vector orientations. 

3. Nucleation of a Semicircular Loop 

The calculation presented in this section essentially follows that of Hirth [9], in which the 
energy associated with an incipient semicircular dislocation loop is determined, and then 
rendered stationary in order to find the critical radius of the loop, beyond which the loop 
will unstably enlarge. It is assumed that the dislocated plane, as well as the direction of 
slip, are perpendicular to the crystal surface (as in Fig. 1). The loading is assumed to be a 
uniform, remotely applied shear stress 7. It is also assumed that the dislocation is not 
dissociated, i.e., that the stacking fault energy does not contribute in any fashion. The total 
energy of the loop then consists of three terms, 

wstress 9 (18) E = Uhalf  + U M g e  - 

where Uhalr is as discussed in the previous section, Uledge is the energy of the ledge that is 
created (or removed) at the surface due to the intersecting dislocated plane, and Wc1re9s is 
the work done by the applied load, 

(19) Wstress - 1 - nr’rb 

which is the product of the Peach-Koehler force rb and its work-conjugate displacement, 
the area that the dislocation has swept out. 

The ledge energy is commonly written as 

Ulrdge = f2ybr ,  (20) 



3 10 G. E. BELTZ and L. B. FREUND 

I ' ' " I ' ' . ' I ' ' ' ~  

m = 0.535 - 

- - - - - - - . m=1.0 

- 

- 

! , , .  

where the positive value is used for ledge creation, the negative sign is taken for ledge 
removal, and y is the surface energy. This is a questionable approximation, since it is difficult 
to define a true thermodynamic surface energy for an area that is one atomic spacing wide. 
It is perhaps best to interpret yh as an effective ledge energy per unit length. Following [lo] 
and [14], we take y = @/8. The conclusions noted later are relatively insensitive to the 
choice of this parameter. 

At absolute zero, the condition for dislocation emission is given by rendering the total 
energy stationary, 

2yb - nrzb = 0 ,  
aE pb2 (2 - v) 
ar 8 (1 - v) 

- 

a2E pb2 (2 - v) 
ar2 8r (1 - v) 

m b  = 0 ,  - 

where the latter condition is a stability criterion, i.e., it insures that the energy decreases 
as the loop expands. Solving for the critical stress for which the loop would spontaneously 
enlarge gives &, = 0 . 5 0 5 ~ ~  assuming ledge creation, or z$, = 0.0873p, assuming ledge 
removal. If it is assumed that rn = 1, then the critical stresses increase to 0 .944~ and 0.163p, 
respectively. Thus an accurate expression for the self-energy of a loop near the free surface 
leads to a decrease, by almost a factor of 2, of the critical stress necessary to homogeneously 
nucleate the loop. All the calculations presented here use ro = b/4 and v = 0.218. 

The nucleation process, however, realistically occurs at temperatures well above absolute 
zero. The critical stress for emission may then be determined via an activation energy 
concept. Assume that the local shear stress is less than &,. There will then exist two 
solutions to (21a) - one corresponding to a local minimum of the total energy (r  = rl) ,  
and the second corresponding to a local maximum of energy ( r  = r2).  In general, r2  > r l .  
The energy difference between these two state$ AE = E ( r 2 )  - E ( r l ) ,  defines the activation 
energy. If energy from thermal vibrations is sufficient to overcome this activation energy, 

24 
Fig. 3. The activation energy for dislocation loop emission as a function of the applied shear stress 
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then the dislocation loop is spontaneously emitted. The activation energy is plotted in Fig. 3 
for m = 0.535 as well as m = 1. Qualitatively, the behavior is as expected: the energy barrier 
to dislocation emission decreases as the applied stress approaches its maximum value of 

but as the limiting 
stress is approached, the rate of decrease slows, suggesting that thermal vibrations may be 
sufficient to emit dislocations for a certain stress range below 7Zrit. More importantly, note 
that using an appropriate value of rn leads to significantly reduced activation energies - 
for most loads there is more than a factor of 2 difference. Additionally, note when it is 
assumed that the emitting dislocation is removing a ledge at the surface, the energy 
barrier is significantly reduced. 

Now that the activation energy required for the emission of a dislocation from the surface 
is determined, we need some estimate of what energy is available for the process. An estimate 
by Rice and Beltz [20] is based on a standard Arrhenius relation between the nucleation 
rate and AE/kT (k is Boltzmann’s factor), and assumes that a “reasonable” nucleation rate 
is given by one dislocation per second per millimeter of crack front. This elementary 
calculation leads to an available energy of 43kT. A similar argument by Hirth [9] gives 
88kTof available energy. Given the uncertainty present in this type of calculation, we follow 
Fitzgerald et al. [lo] and assume that the available energy is 50kT. Based on the activation 
energies in Fig. 3, the stress necessary to emit a dislocation loop as a function of temperature 
is given in Fig. 4. As expected, a proper choice for rn reduces the shear stress by a factor 
of about 2. Furthermore, the critical stress for a nucleation process associated with removal 
of a ledge at the surface is about three times less than the stress when the ledge is created. 

The decrease in activation energy is relatively sharp for 5 < 

4. Validity of the Continuum Approach 

The largest source of uncertainty in the type of calculation presented in the previous section 
is the fact that a continuum-based description of a dislocation is used over length scales 
that are much too small. For example, the critical radius for dislocation emission at absolute 
zero, when a ledge is being removed, is 1.038b, according to the theory outlined in the 
previous section. When a ledge is being created, the critical radius reduces to 0.50% (these 
numbers assume rn = 0.535). In the latter case, the elastic energy predicted by (2) is negative. 
To realistically calculate the energy associated with a dislocation loop this small, some 
kind of atomistic theory is needed to model the core. 

Furthermore, the expressions used in this paper assume that the dislocation is fully 
formed. One example of a situation where these considerations have been addressed is the 
problem of dislocation nucleation at crack tips, which up until recently has also relied on 
continuum energy expressions for dislocations. Weertman [21] and, more recently, Argon 
[22] and Schock [23] have suggested that the Burgers displacement (i.e., the function 6(x, z )  
from Section 2), as well as the relative position of the dislocation core, should be regarded 
as configurational parameters when modeling dislocation nucleation and evaluating the 
activation energy. A reasonably exact treatment of this phenomenon has been given recently 
by Rice and coworkers [24 to 271 that makes use of the Peierls-Nabarro dislocation model 
[28, 291. In that treatment, the two-dimensional elasticity problem of a traction-free crack 
with a periodic, nonlinear stress versus displacement relation being satisfied as a boundary 
condition along a slip plane ahead of the crack tip is solved. Once this interfacial 
“constitutive” relation is specified (it could be as simple as the Frenkel sinusoidal law), and 
the elasticity problem solved, there is no need for the core-cutoff parameter (used earlier 
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Fig. 4. The critical stress required to emit a dislocation loop as a function of temperature 

in this paper). The advantage of this method is that it allows for the existence of an extended 
dislocation core during nucleation, and eliminates uncertainty involved when using 
expressions that were derived with the usual core cutoff procedures. 

The same types of ideas may be applied to the problem of dislocation nucleation at a 
surface [30]. Although the problem may be quite straightforwardly worked out for the 
two-dimensional case (yielding an activation energy per unit length of dislocation parallel 
to the surface), the three-dimensional case appears to be quite complex. The problem would 
essentially involve finding a saddle-point dislocation configuration at the surface, i.e., a 
function 6 (x, z )  that renders the total energy stationary. Any numerical solution to this 
problem within the Peierls-Nabarro framework would necessarily involve a suitable form 
of (15). 
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