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ABSTRACT

Continuum models, based upon both the Volterra and the Peierls descriptions
of a screw dislocation ahead of a mode III crack, are used to evaluate the critical
loading for dislocation nucleation at the tip of a finite pre-blunted crack. Results
are presented for various crack tip root radii, for several crack lengths. Moreover,
the effect of ledge formation at the crack tip is evaluated. It is found that blunt
cracks require a substantially larger load to induce dislocation nucleation, and
this effect is amplified by including ledge formation in the analysis. It is also noted
that short cracks require a reduced load for dislocation nucleation.

§1. INTRODUCTION

Understanding crack tip behaviour and the ductile-to-brittle transition has been
the motivation behind a wide range of continuum and atomistic studies. One
ongoing objective of this research is to understand whether a crack will respond
to loading by emitting dislocations, or by propagating. The Rice—Thomson (1974)
model was an early attempt to quantify the competition between dislocation emis-
sion and atomic decohesion using continuum concepts. In it, the competition
between cleavage decohesion and dislocation emission is evaluated in terms of the
parameters Gieave, the ‘applied’ energy release rate associated with cleavage, and
Guisl, the energy release rate associated with the emission of a single dislocation on
a slip plane emanating from the crack tip. If Ggeave < Guisi, the crack propagates in a
brittle manner; conversely, if Ggisi < Gileave, @ dislocation moves away from the crack
tip, thus blunting and ‘shielding’ the crack tip from further increases in applied
loading (figure 1). Over the years, this framework has been broadened to account
for elastic anisotropy, bimaterial interfaces, nonlinear core structures, realistic slip
systems and three-dimensional dislocation geometries. Reviews of these efforts may
be found in recent articles by Xu et al. (1995) and Rice et al. (1992).

Most mechanistic studies of dislocation formation have assumed that crack tips
are atomically sharp prior to dislocation nucleation and remain so during the nuclea-
tion event. Kinematically, this is not the case, as incipient dislocation activity (at
least when the slip plane is aligned with the crack plane) forces the crack faces to
separate. More compelling support for this idea comes from atomistic studies of
dislocation nucleation, which clearly show blunting at the atomic scale. Realistic
crack tip geometries have received recent attention in the work of Schietz et al.
(1996, 1997), in which a blunt crack tip was conformally mapped to the upper
half of the complex plane. The mode III stress fields were derived using antiplane
elasticity. Fischer and Beltz (1997) created a finite-element model to determine the
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Figure 1. A sharp crack with intersecting slip plane (left), showing the competition between
dislocation emission (upper right) and cleavage decohesion (lower right).

stress fields of a similar blunt crack tip under mode I loading. In both cases, the
stress fields of blunted cracks were shown to deviate moderately from those of sharp
cracks, especially at length scales of interest away from the tip. This deviation in
stress field around the crack tip from the ideally sharp limit could very easily change
the favourability of crack advancement versus dislocation emission. Neither of the
above studies, however, yielded a critical load for dislocation nucleation.

Blunt crack geometries have also received limited attention in atomistic studies.
Schietz et al. (1996, 1997) conducted simulations using a two-dimensional hexagonal
atomistic model under mode I and mode II loading. They found that, for a blunting
height of ten layers of atoms, the force required to propagate the crack was 15-20/%
more than that for a sharp crack. Gumbsch (1995) similarly found that crack tip
geometry, particularly an increased blunting height, can significantly increase the
required loading for crack propagation. Two-dimensional molecular dynamic simu-
lations done by Paskin ef al. (1985) also used a hexagonal lattice structure to observe
the sensitivity of stress distribution to crack geometry. While the results showed little
difference in the stress distributions for narrow and wide cracks, it was shown that
irregularly shaped crack tips displayed significantly lower stresses in the near-tip
region.

On the basis of the above, we hypothesize that deviations in crack tip geometry
can change the favourability of crack advancement versus dislocation nucleation
(both of which, presumably, are made more difficult by blunting, but not necessarily
equally). Consideration of this effect should substantially contribute to the reconci-
liation between continuum-based and atomistic models. The purpose of the current
paper is to provide a simple model, based upon screw dislocation emission from a
pre-blunted shear crack loaded in mode III. This paper examines the effects of crack
tip root radius (a measure of bluntness) and crack length on the critical mode III
loading for dislocation nucleation at the tip of an elliptically shaped crack. The
ellipse is used for analytical convenience and will allow us to draw some conclusions
about crack size effects as well. An obvious trade-off here is that the elliptical crack
tip profile does not retain the corner (and its associated stress singularity) that
would result, at least from a continuum viewpoint, when dislocations emit along a
single slip plane (figure 1). Immediately, this suggests that our elliptical representation
will lead to an overestimate of the effects of blunting. Moreover, the geometry under
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consideration is artificial in that the antiplane deformation associated with prior
screw dislocation activity would nrot blunt a crack. Work in progress by Fischer
and Beltz (1998) confirms that more applicable in-plane models (i.e. for dislocations
with edge components in bodies loaded under Mode I) give identical trends, as well
as the fact that conditions for cleavage also become less favourable as the crack
blunts.

Two models will be presented in this paper. The first is based on continuum
elastic dislocation theory and is analogous to the analytic model presented by Rice
and Thomson (1974) and updated by Mason (1979) and Rice et al. (1990). The
second model is based upon the Peierls framework (Rice 1992) to allow for extended
nonlinear (but planar) dislocation cores. Both models use a thin elliptical hole as an
initial unstressed reference state, that is, it is assumed that any dislocations which
gave rise to the initial blunted configuration have moved infinitely far away, and
small-strain elastic dislocation theory is subsequently used. The effect of additional
stress sources (e.g. the back stresses due to dislocations present nearby the crack), as
well as the full implications of using a small-strain analysis, are deferred to future
work.

§2 DISLOCATION NUCLEATION IN THE VOLTERRA FRAMEW ORK
The load for dislocation nucleation, expressible as Ggig (the energy release rate
associated with nucleation), is derived in this section. The force tending to drive a
straight pre-existing screw dislocation away from an elliptical cut-out (figure 2)
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Figure 2. A screw dislocation in proximity to an elliptical crack under mode III loading
experiencing the opposing Peach—Koehler and image forces.
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is given by the Peach-Koehler formula, where oj is taken as the stress field in
an infinite plate containing an elliptical hole, loaded in antiplane shear (i.e.
Cy: — o as z— 00) without the dislocation present, evaluated at the dislocation
position:

2
Semit =1 — Syksiqzblékl = bop. =bRe <§'§_Lll))'exp (i@)), (1)

where g is the permutation tensor, s; is a unit vector describing the dislocation
line direction, b; is the Burgers vector (here taken parallel to the dislocation line), 6
is the slip plane inclination angle, g = (a - d)/ (a + d), and i= (—1)1/ ®. The
Einstein index convention is assumed. The stress field is obtained via the conformal

mapping
C 1
z= 5 (l + ;) , (2)

where ¢ = (az — dz) , which maps the ellipse of semiaxes a and d into a circle of
radius (1/ )l/ *. An effective, or ‘apparent’, mode III stress intensity factor is defined
as G(Tra "2 We couch the problem in terms of Ky, bearing in mind that we are using
a slender ellipse (a > d) to simulate a slit that macroscopically resembles a crack
with a crack root radius p = d*/ a that is of atomic dimension. Within the framework
of linear elastic fracture mechanics, Kiiy remains a valid descriptor of the intensity of
the stress field for distances away from crack tip that are small compared with «, but
large compared with p.

The ‘image’ force component opposes outward motion of the dislocation line
and draws it back into the tip. The image force for a screw dislocation arbitrarily
located external to an elliptical hole was solved for by Zhang and Li (1991). They
correctly recognized that the solution has two principal results, depending on
whether the dislocation is introduced from the elliptical boundary (m =1), or
from the far field (m = 0). Their result is

Fimge = ].l_b2 Rel exp(i0) < —c N 1 m)], (3)

(2 )P (2 A I —gtada

1/2

where z4 denotes the position of the dislocation,  is the shear modulus and ¢4 is the
transformation of zy according to equation (2). In our current application, the
appropriate value for m is taken to be unity.

To find the critical stress intensity factor at which dislocation emission occurs, we
use a simplified statement of the Rice-Thomson model that imposes femit + fimage = 0
for r = r, the dislocation core size, which also assures that femit > fimage for all r > re.
By combining equations (1) and (3) we can solve for the critical mode III stress
intensity factor for screw dislocation emission at the elliptical crack tip. The
critical mode III stress intensity factor can be converted into a critical energy release
rate by invoking the Irwin-type energy release rate expression for mode III,
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G = Kiu/2u, yielding
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(4)
where zg = a + reexp (19)

As an example, figure 3 shows critical energy release rates for dislocation emis-
sion for various values of crack length and crack tip root radius when the slip plane
is taken as the prolongation of the crack plane, that is 6 = 0. The energy release rates
are normalized by the unstable stacking energy as given by the Frenkel (1926) model
(yus = b’/ 210 h), where the value of //b or / is taken as 2" ? appropriate for a
Shockley partial dislocation in a fcc crystal. This particular normalization is chosen
to facilitate comparisons in the next section, which explicitly makes use of the
unstable stacking concept. The crack lengths and crack tip root radii are normalized
by b. Equation (4) is similarly evaluated for 6 = 60° and specific results for this case
are shown in figure 4.
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Figure 3. The critical energy release rates of screw dislocation nucleation for a slip plane
inclination of 0° under mode III loading in the Volterra framework. Results are shown
for various crack lengths and crack tip root radii.
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Critical Energy Release Rate of Nucleation
Volterra Framework
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Figure 4. The critical energy release rates of screw dislocation nucleation for a slip plane
inclination of 60° under mode III loading in the Volterra framework. Results are
shown for various crack lengths and crack tip root radii.

Figures 3 and 4 reveal two principal behaviours. First, as expected, increasing the
value of the crack tip root radius p increases the critical threshold for dislocation
nucleation. The effect is rather pronounced. For example, for a relatively long crack,
if the tip is assumed to have a root radius of just one atomic spacing (rather than
being mathematically sharp), the critical energy release rate nearly doubles. For a
root radius of just ten atomic spacings, the critical energy release rate is an order of
magnitude larger. The crack tip root radii considered here are not large, even in an
atomic sense and could easily be achieved by prior dislocation nucleation, diffusive
or other relaxation processes; in fact, it is more realistic that a stationary crack takes
on some degree of bluntness rather than remaining atomically sharp.

The second major conclusion to be drawn from this analysis is that, as the
crack length decreases, so does the critical energy release rate. This effect is not
observable for sharp cracks and manifests itself only when the root radius exceeds
about one atomic spacing. For typical root radii considered here, it is necessary for a
finite crack to exceed 10°-10" Burgers vectors before the ‘long-crack’ limit is repro-
duced.

§3. 'THE PEIERLS MODEL AND RESULTS
The Peierls treatment of the mode III elliptical crack assumes that there is a
periodic relationship between shear stress and slip displacement along the slip plane
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intersecting the crack tip (Peierls 1940, Rice 1992). Immediately prior to dislocation
nucleation, there is a distribution of slip discontinuity along the slip plane that
ultimately reaches a point of instability with increased applied stress and results in
the nucleation of a dislocation at the crack tip. Using this framework, the critical
energy release rates at the point of instability have been obtained for various values
of crack length and crack tip root radius.

For most of our calculations, the simplest relationship between shear stress and
slip displacement on the slip plane is assumed. In this section we exclusively use the
Frenkel sinusoidal function

b . (2MAN Ty (274
T:2Tl'hsm(b>: b sm(b>, (5)

where T is the shear stress, A is the relative atomic displacement between two atomic
planes, / is the interplanar spacing of those two planes and b is the burgers vector. As
introduced by Rice (1992), the continuum analogue to A (referred to as J) is thought
of as A extrapolated to an imaginary cut half-way between the slipping planes and is
given by

-
O=A——. 6
7 (6)
We impose equilibrium along the slip plane using the integral equation:
| 06
Blrll= o)~ |8 (9 5 s .

where csgz(r) is the pre-existing shear stress along the slip plane due to the applied
load on the crack geometry (as used in equation (1)), and cs?ﬁlf(r, s) is the stress at r
along the cut due to a screw dislocation located at s, as provided by Zhang and Li
(1991). Using the numerical procedure of Beltz (1992), the nonlinear integral equa-
tion is solved for incremental increases in the applied load until the instability is
reached, coinciding with the emission of a dislocation.

Fixing the value of 8 = 0°, figure 5 shows the critical energy release rates for various
values of crack length and crack tip root radius. All quantities are normalized as in the
previous section. The same calculations are performed for @ = 60° and are shown in
figure 6. The results from the Peierls framework produce the same trends as those
performed under the Volterra framework, with striking agreement. As the crack tip
root radius or crack length increases, so does the critical energy release rate.

As explained earlier, this model assumes a periodic relationship between the
shear stress and the slip displacement along the slip plane. Figure 7 shows the slip
displacement profile along the slip plane, 8 = 60°, at the point of instability for a
normalized crack length of 1000 and various values of the crack tip root radius. For
sharper crack tip geometries, the slip displacement is relatively large in the immediate
vicinity of the crack tip and dies off rapidly with increasing distance from the tip. In
fact, the shear displacement at the sharp crack tip, just at instability, agrees very well
with the value of b/2 predicted by the analysis of Rice (1992). For the blunter
geometries, the slip displacement occurs over a much wider zone along the slip
plane but maintains comparatively low levels of slip up to the point of instability.

Figure 8 shows the applied energy release rate versus the slip displacement at the
crack tip for the same crack length and 6. As anticipated, these curves flatten, with
zero slope, at the point of instability, indicating a local maximum in the ‘applied’
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Critical Energy Release Rate of Nucleation
Peierls Framework
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Figure 5. The critical energy release rates of screw dislocation nucleation for a slip plane
inclination of 0° under mode III loading in the Peierls framework. Results are shown
for various crack lengths and crack tip root radii.
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Figure 6. The critical energy release rates of screw dislocation nucleation for a slip plane
inclination of 60° under mode III loading in the Peierls framework. Results are shown
for various crack lengths and crack tip root radii.
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Slip Displacement Profiles
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Figure 7. Slip displacement profiles along the 60° inclined slip plane for a normalized crack
length of 1000 for various crack tip root radii under mode III loading at the point of
dislocation nucleation.

energy release rate. As previously observed, increasing the bluntness of the crack tip
increases the critical energy release rate for dislocation emission but lowers the slip
discontinuity at which the instability occurs.

§4 EFFECT OF LEDGE CORRECTION AND UNSTABLE STACKING ENERGY

It has been pointed out by several authors that the Frenkel model, as used in the
previous section (equation (5)), fixes the unstable stacking energy at the value
Yus = /Jbz/ 210 h. The unstable stacking energy actually tends to be smaller, especially
for metals (Beltz and Freund 1994). Moreover, atomistic studies (Gumbsch and
Beltz 1995, Xu et al. 1995) have suggested that the formation of a ‘ledge’, or addi-
tional atomic step, at a surface or crack tip retards dislocation formation. More
realistic shear stress—displacement relationships have been formulated to account
for these effects and can be used in the left-hand side of equation (7). We use the
modified analytical form proposed by Xu et al. (1995):

7(4) —&{E sin (2ﬂ> +M sin (4E> +@p_(i/b)_ [1 —cos (@H}

~oh \ B b 2B b 2qp b
(8)

In equation (8), B = b’/ 210 Iy, is an adjustable parameter that allows a variation
in the unstable stacking energy from that consistent with the Frenkel model. In most
cases, the value of S is greater than unity but less than two. The parameter ¢ is
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Applied Energy Release Rate versus Slip
0=60"

20 T T T T T T

Gly

3/b

Figure 8. Applied energy release rates versus slip at the tips of mode IIT loaded elliptical
cracks of normalized length equal to 1000 for various crack tip root radii.

defined as Y,/ 2Ys, where 7, is the surface energy used to approximate the energy
created during the ledge formation. Small values of ¢ typify ductile materials while
large values of ¢ are associated with brittle materials (Sun et al. 1993). The value of ¢
is generally less than unity. The parameter s is distance from the crack tip, and Ais a
dimensionless parameter which characterizes the length scale over which the ledge or
any surface perturbs the nominal T versus A relationship. The value of A is expected
to lie between unity and two (Xu et al. 1995).

Figure 9 shows the critical energy release rates for cracks of normalized crack tip
root radii equal to 3.0 with different crack lengths and various values of 8 and A. For
these calculations, 8 = 60° and ¢ = 0.125. For the range of values examined, increas-
ing the value of 8 decreases the critical energy release rate for dislocation nucleation.
Conversely, considering the effect of ledge formation, an increase in the value of A
will subsequently increase the critical energy release rate for dislocation nucleation.
Simultaneously considering greater values of unstable stacking energy and the effect
of ledge formation will result in critical energy release rates that are greater than
those found using the Frenkel model.

§5. SuMMARY
The two continuum frameworks used in this paper indicate that the critical
threshold for dislocation formation is strongly dependent upon the crack length
and crack tip geometry. The results show that increasing the crack tip root radius
(i.e. the ‘bluntness’ of the crack) dramatically increases the required applied energy
release rate to emit a dislocation from the crack tip. It is also shown that decreasing
the crack length to below about 10°~10* Burgers vectors causes the critical energy
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Critical Energy Release Rate of Nucleation
Peierls Framework
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Figure 9. The critical energy release rates of screw dislocation nucleation for slip plane
inclination of 60° and normalized crack tip root radius of 3.0 under mode III loading.
Results are shown for various crack lengths, unstable stacking energies and ledge effect
parameters.

release rate to fall substantially below the asymptotic value that corresponds to that
of a semi-infinite crack. As noted in the introduction, the use of an idealized elliptical
profile to represent a blunted crack tip should render these results, at best, over-
estimates of the effects of blunting,

Furthermore, the magnitude of the critical energy release rate can be altered by
considering the effects of ledge formation and realistic values of the unstable stacking
energy. Smaller unstable stacking energies will reduce the critical energy release rate
of dislocation nucleation, while ledge formation increases the critical energy release
rate. These findings warrant a serious re-examination of continuum models that
predict the outcome of the competition between dislocation nucleation and crack
initiation. Perhaps more importantly, these effects should significantly contribute
towards a reconciliation between continuum and atomistic models for dislocation
nucleation as well as ductile versus brittle behaviour.
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