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Abstract
We present a detailed analysis of the ductile versus brittle response of bcc iron
containing a sharp crack and show that a continuum model based on the Peierls–
Nabarro model for dislocation formation is consistent with our atomistic results.
Specifically, we compare continuum predictions for dislocation emission from a
crack tip loaded in mode I under plane strain, tensile conditions with atomistic
results for a (1̄ 1 0)[1 1 0] crack emitting full edge dislocations in the 〈1 1 1〉
{1 1 2} slip system. The simulations are based on an N -body potential of
the Finnis–Sinclair type for iron at 0 K, and the continuum dislocation model
incorporates recent improvements that account for tension–shear coupling on a
prescribed slip plane, as well as the T-stress, in an anisotropic solid. We show
that the critical load for dislocation nucleation is influenced by the T-stress
(modulated by the level of external stress applied parallel to the crack plane
in a biaxially-loaded plate), which possesses a critical value associated with a
change of mechanism between dislocation emission and crack extension. The
results are consistent with recent preliminary analyses that address the effect of
crack size and the role of the T-stress in the ductile versus brittle response of
crystals.

1. Introduction

In the study of the mechanical response of crystals, an in-depth comparison of continuum
and atomistic results is essential, since two independent approaches can validate less-proven
methodologies and build overall confidence regarding the phenomena under investigation.
However, the analysis of discrepancies between these approaches (e.g. [1–4]) is not trivial since,
unlike continuum elastic models, atomistic simulations (i) do not involve stress singularities
that are associated with crack tips and dislocation cores and (ii) may be influenced by border
conditions associated with a finite domain.

Recent results on ductile versus brittle response indicate that existing contradictions
between atomistic results, e.g. [3], and the continuum prediction by Rice [5] based on the
Peierls–Nabarro model can be overcome when normal relaxation [6] between the slip planes
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and the T-stress acting along the crack plane [7] are included in the continuum model. Until
now, these effects have been treated separately. In this paper, a new continuum approach that
simultaneously includes both normal relaxation and the T-stress effect is described. We present
here in detail the energy and stress analysis of dislocation emission under uniaxial loading in
mode I in a single crystal of α-iron. The simulations have been carried out for larger samples
than previously considered and have been performed for various amounts of load applied both
perpendicular and parallel to the crack face. The continuum model developed for this paper
is used for an anisotropic solid, in order to make the comparison with the atomistic results as
self-consistent as possible.

The details of the stress state around a crack tip in an elastic solid are often characterized
by a single parameter, the stress intensity factor K that expresses the strength of the singularity
as the crack tip is approached. This parameter is extremely useful for quantifying when a
crack might begin to propagate or when it may emit a dislocation (or other shear-like feature)
and subsequently blunt. It has long been recognized that a nonsingular contribution to the
stress field (that is, a term that remains finite as the crack tip is approached, also known as the
‘T-stress’) may have some bearing on the stability of a propagating crack. However, the effects
of including the T-stress in models for dislocation nucleation have largely been ignored until
recently. Beltz and coworkers [8] incorporated this term into the Rice model [5] for dislocation
nucleation at a crack tip in an isotropic medium. It was found that in addition to the unstable
stacking energy γus (introduced in [5] in connection with block-like shear (BLS) displacement
of a crystal), the T-stress is also important and it has a profound impact on the brittle–ductile
behaviour of short cracks. This paper demonstrates the importance of the T-stress in atomistic
simulations. Moreover, we consider the influence of normal relaxation of slip planes (i.e. the
tension–shear coupling effect, as described by Sun et al [9]). Both effects can decrease the
applied load needed for dislocation emission, and hence it is incumbent to properly account for
these effects when attempting to reconcile atomistic simulations (e.g. [3, 4]) with continuum-
based predictions.

Another important consideration is the relative orientation of the crack plane and available
slip systems. Molecular dynamic (MD) simulations in bcc iron using the N -body potential
[10, 11] have shown that for the crack orientation (0 0 1)[1 1 0] (crack plane/crack front
direction), the generation of unstable stacking faults and twinning at the crack tip are preferred
on the 〈1 1 1〉 {1 1 2} slip systems; while for the crack orientation (1̄ 1 0)[1 1 0], emission of
complete edge dislocations is observed on the same type of slip systems [12], using the same
potential [11] as in our work. The stress and energy analysis presented here show that this can
be explained by the fact that the active shear systems 〈1 1 1〉{1 1 2} are oriented in the ‘easy,’
or twinning, direction for the crack (0 0 1)[1 1 0] and in the ‘hard,’ anti-twinning direction for
the crack (1̄ 1 0)[1 1 0].

Our continuum and atomistic models use the concept of the so-called interplanar stress [5],
since it is able to adequately describe the stress gradient arising at an interface when straining
is inhomogeneous in the range of the interatomic interactions [13–15].

2. Continuum predictions in anisotropic materials

2.1. Strain and stress fields

For a homogeneous anisotropic material under plane strain conditions (εzz = εzy = εzx = 0),
the strain–stress relations may be written [16] by means of the symmetric compliance constants
Aij that can be determined from the ‘unconstrained’ compliances Sij through the relation
Aij = Sij − S3Sj3/S33. Here we associate the cartesian axes (x, y, z) with crystallographic
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Figure 1. The crack and slip system inclined at angle θ . For convenience, the notations (x1, x2, x3)
and (x, y, z) are interchangeably used in the text to refer to a cartesian coordinate system based at
the crack tip.

Table 1. Continuum predictions for dislocation nucleation threshold for various biaxiality ratios α.

α 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Gdisl/γus isotropic shear only 4.27 4.34 4.61 4.79 4.98 5.19 5.41 5.64 5.88 6.14 6.42
Gdisl/γus anisotropic shear only 4.09 4.27 4.46 4.66 4.88 5.11 5.36 5.62 5.90 6.20 6.52
Gdisl/γus anisotropic t/s coupling 2.70 2.82 2.94 3.08 3.23 3.39 3.58 3.78 4.01 4.27 4.59

directions [0 0 1], [1̄ 1 0] and [1 1 0], respectively. Due to the symmetry of this crystal
orientation, the constants A16 and A26 vanish. The remaining constants (in units 10−11 m2 N−1)
are A11 = 0.5698, A12 = −0.2664, A22 = 0.4470 and A66 = 0.8621. These values have
been derived for our crystal orientation from the basic elastic constants C11, C12 and C44 for
the N -body potential from [11]3.

In cracked anisotropic bodies (see figure 1), the stress field depends not only on the nature of
the applied loading (as in the isotropic case) but also on the elastic compliances through complex
variables µ1 and µ2, which in our case are µ1 = 0.5462 + i0.7664, µ2 = −0.5462 + i0.7664.

The stress field around a narrow central crack of the length 2a, embedded in a large crystal
and loaded in tension mode I with an applied stress σA acting at the borders in the y-direction,
has been given by Savin [17]. For the angle θ = 0◦, the stress components σxx and σyy are
given by

σxx = −Re(µ1µ2)σAx√
x2 − a2)

+ T , σyy = σAx√
(x2 − a2)

, (1)

where x = r +a, and r is the distance from the crack tip. The constant term T = Re(µ1 µ2)σA

represents the so called T-stress, which degenerates to T = −σA in the isotropic case. In the
limit x → ∞, we obtain σyy → σA and σxx → 0.

If the stress component σyy is written as an expansion about x = a, i.e.

σyy = σA√
x − a

[
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(2)

(and performing a similar exercise for σxx), it is evident that an asymptotic stress field for the
angle θ = 0◦ can be re-expressed in terms of the stress intensity factor KI = σA (πa)1/2 and
the T -stress as

σxx = −Re (µ1µ2) KI√
2πr

+ T , σyy = KI√
2πr

. (3)

3 Note that a printing error exists in [11]. The correct units for the parameters ai and Ai in table 1 contained therein
are eV/a3

0 and eV2/a3
0 , respectively.
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If an additional external load σB = α σA is superposed in the x-direction, then the stress
intensity factor is unchanged but T changes as described by Stroh [18]:

T = σA
[
Re(µ1µ2) + α

]
. (4)

The case α = 0 corresponds to pure mode I under uniaxial, far-field tension, while the case
α = 1 corresponds to mode I induced by a biaxial, far-field loading σB = σA.

The energy release rate G is given by the relation G = CK2
I , where C is an appropriate

factor based on the constants Aij [16]; in our case, C takes the value 3.868×10−12 m2 N−1. The
anisotropic constant Re(µ1 µ2) is −0.8857. A comparison of stress components from relations
(3) and (4) with the stresses derived from the atomistic level will be given in section 4.2.

2.2. Ductile/brittle predictions

It is well known that the T-stress influences shear processes at crack tips [8,19]. Moreover, an
established model for the prediction of the ductile/brittle behaviour in an anisotropic continuum
is at our disposal: the Peierls framework for dislocation formation at a crack, which assumes that
the dislocation/crack system can be thought of as two anisotropic elastic semi-spaces separated
by a common plane (the crack plane and slip plane) on which there is a discontinuous jump in
the displacement field [5,9,20]. This model makes use of a periodic relationship between shear
stress and slip displacements along the slip plane, with traction free surfaces along the crack
plane. Prior to dislocation nucleation, a distribution of slip discontinuity develops along the
slip plane that ultimately reaches a point of instability with increased applied load. Using this
theory, a locus of threshold KI and T values at which nucleation occurs may be determined.

We implement this model at two different levels of complexity: (i) we use only a simple
relationship due to Frenkel [21] between shear stress τ and slip displacement �x on the slip
plane,

τ(�x) = µb

2πh
sin

(
2π�x

b

)
= πγus

b
sin

(
2π�x

b

)
, (5)

where τ is the shear stress (σrθ using the coordinates implied in figure 1), h is the interplanar
spacing, µ is the ‘effective’ shear modulus for shear along the slip plane of interest (and can
be written in terms of the anisotropic elastic constants), b is the Burgers vector and γus is
the unstable stacking energy (equal to µb2/2π2h in the Frenkel model) and (ii) we consider
combined slip �x and opening displacements �y (normal relaxation) on the slip plane, which
may be written as τ = ∂φ/∂�x and σ = ∂φ/∂�y , with the potential function proposed by
Rice and coworkers [9] as

φ(�x, �y) = 2γs

(
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)
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(6)

where γs is the surface energy for the separating surfaces, L is the characteristic length of the
decohesion process (i.e. tensile stress undergoes a maximum at �y = L in the absence of any
shear deformation) and p and q are dimensionless material constants that quantify the degree
of tension–shear coupling. Specifically, q is defined as the ratio γus/2γs (here, γus refers to an
unrelaxed shear process, as elaborated upon by Sun et al [9]), and p is related to the dilatation
undergone by the crystal when it shears to its unstable stacking position at zero normal stress.

In these slip plane constitutive equations, �x is the relative atomic shear displacement
between two atomic planes and �y is the relative opening between the planes. As introduced
by Rice [5], we use the continuum slip variable δx , thought of as �x extrapolated to a cut
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halfway between the slipping planes and given by δx = �x − τh/µ (and similarly for δy

versus �y). From equilibrium considerations, the stress along the slip plane can be written as

τ
[
δx, δy

] = KISrθ (θ)√
2πr

− T sin θ cos θ −
∫ ∞

0
g11(r, s, θ)

∂δx(s)

∂s
ds −

∫ ∞

0
g12(r, s, θ)

∂δy(s)

∂s
ds,

(7a)

σ
[
δx, δy

] = KISθθ (θ)√
2πr

+ T sin2 θ −
∫ ∞

0
g21(r, s, θ)

∂δx(s)

∂s
ds −

∫ ∞

0
g22(r, s, θ)

∂δy(s)

∂s
ds.

(7b)

The first two terms on the right-hand side of each equation give the pre-existing stress
along the slip plane due to the applied load on the crack geometry (comprising the most singular
term, scaled by KI, as well as the constant term, proportional to T , and the angular dependences
Srθ and Sθθ for cracks in an anisotropic solid), and the third and fourth terms reflect the stress
relaxation that occurs due to sliding along the cut. The kernel functions gij in the integral term
represent the stresses at distance r along the slip plane in an anisotropic solid due to a dislocation
positioned at s, while (−∂δx/∂s)ds and (−∂δy/∂s)ds represent infinitesimal Burgers vectors
(we exploit the notion that the slip distribution can be discretized into an array of infinitesimal
dislocations). We seek slip and opening distributions δx(r) and δy(r) such that, for all r > 0,
τ and σ predicted by the formulation above (equations (7a) and (7b)), must equate to τ and
σ provided by the atomic-based Frenkel relation. Using a numerical procedure outlined by
Beltz [22] and Beltz and Rice [23], we carry this out for incremental increases in KI and T ,
which are linearly related to each other through a relation T = K[α + Re(µ1 µ2)]/(πa)1/2,
until an instability (i.e. dislocation nucleation) is attained.

We consider the slip systems 〈1 1 1〉 {1 1 2} inclined at angle θ = 54.7◦ with respect
to a crack (1̄ 1 0) [1 1 0] (plane/front) embedded in bcc iron with the basic elastic constants
C11 = 2.433, C12 = 1.450 and C44 = 1.160 × 1011 N m−2 [7, 11], which are consistent
with the values of Aij cited in section 2.1. The shear modulus for the 〈1 1 1〉 {1 1 2}
slip system is µ = (C11 − C12 + C44)/3 = 0.714 × 1011 N m−2 [24]. According to a
simple, approximate version of the Rice model [7] for an isotropic continuum, the applied
energy Gdisl needed for emission of edge dislocations is given in our case by the expression
Gdisl/γus = 8/(1 + cos θ) sin2 θ = 7.612. However, the framework discussed in the preceding
paragraphs allows us to do better.

Table 1 shows how significantly the situation is influenced by the T-stress and by the ratio
of biaxial stress α according to the Beltz/Rice model, both in the isotropic (ν = 0.37) and
the anisotropic case, when normal relaxation is not considered (�y = 0). The table has been
calculated for the dimensionless quantities h/b = 0.4714 and a/b = 17.32 (crack length),
relevant for MD simulations. Here h = a0/

√
6 is the interplanar distance between the {1 1 2}

planes, b = a0
√

3/2 is the Burgers vector and a0 is the lattice parameter in bcc iron. The
largest impact (almost 50%) on the threshold for dislocation emission occurs for α = 0, where
T = −σA in the isotropic case and T = −0.8857σA in the anisotropic case. The negative
values of the T stress decrease the threshold for dislocation emission. When the biaxiality ratio
α increases, dislocation generation becomes more difficult and the ductile-brittle transition may
occur at a certain value of α according to this new continuum prediction. The last row in table 1
for �y �= 0 illustrates that a further decrease in Gdisl may be caused by the normal relaxation in
the continuum model. In figure 2, the anisotropic values Gdisl/γus from table 1 for �y �= 0 are
plotted together with the horizontal line 2γs/γus, that should predict the ductile/brittle interface
in our MD simulations, since 2γs represents the theoretical work of decohesion for the potential
used in a perfect crystal of bcc iron of the same orientation as defined above.
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Figure 2. Threshold for dislocation nucleation as a function of biaxiality ratio α.

3. MD simulations

In all simulations described below, we utilize the N -body potential of the Finnis–Sinclair type
for bcc iron that is discussed in previous studies [10, 11].

3.1. Perfect (uncracked) samples

In order to study lattice faulting generically, we first consider a perfect (uncracked) structure.
Consider the bcc lattice projected onto a (1 1 0) plane. Each projected atom represents a chain of
atoms in the perpendicular [1 1 0] direction. The crystal orientation is described in the previous
section, and plane strain conditions are assumed. To simulate BLS in the ‘hard,’ anti-twinning
direction, the upper part of the sample is fixed and the lower part is gradually displaced (step by
step) in the 〈1 1 1〉 direction along a (1 1 2) plane in increments of 0.01b, where b = a0/2〈1 1 1〉
is the Burgers vector in bcc iron (see figure 3(a)). If we were interested in deformation
twinning, the entire lower part of the crystal would be deformed as shown in figure 3(b) along
the {1 1 2} planes in the 〈1 1 1〉 anti-twinning direction. Since there are more interplanar
displacements and stresses associated with the atomistic analysis than what is allowed for
in the continuum modelling of the previous section, we adopt a slightly different notation
(U for displacements and R for stresses) in the context of the simulations to avoid confusion.
Figure 3(c) illustrates that to reach the final mirror positions in the anti-twinning direction, the
relative shear displacements below the plane 0 must be U10 = U21 = U32 = · · · = 2b/3 (while
in the easy twinning direction it is only b/3). In our notation for relative shear displacements,
Uij ≡ Ui − Uj , etc. For interplanar dimensionless stresses, R∗

ij ≡ Rij × 1.303 × 10−10 Pa.
The work done by the shear stresses is

W10 =
∫

R10dU10, W21 =
∫

R21dU21 (8)

in the slip systems 〈1 1 1〉{1 1 2}.
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Figure 3. Schematics of (a) block-like shear (BLS); (b) deformation twinning; (c) the twinning
(easy) and anti-twinning (hard) direction.

In earlier work, it has been shown that the resistance to BLS in the twinning and anti-
twinning directions are identical; i.e. γus = W10 = 1.14 J m2, and τ ∗

c = R∗
10 = 2.13 [10].

A different situation occurs during multi-plane shear in the anti-twinning direction (see figures 4
and 5), in which W10 = 1.195 J m−2, W21 = 1.433 J m−2, R∗

10 = 2.89 and R∗
21 = 3.64. That is,

the lattice resistance to shear in the anti-twinning direction is substantially larger than that for
the twinning direction. For a crack with slip systems oriented in the anti-twinning direction,
dislocation emission (not twinning) is expected (see figure 6). The results are in agreement
with previous theoretical work based on symmetry considerations [25] and with atomistic
simulations using different potentials for bcc iron than those used in this study [26].

The influence of normal relaxation of the {1 1 2} slip planes during BLS has also been
examined in uncracked samples. To illustrate this effect, we use a value o/h112 = +0.0625
observed in an earlier MD study of dislocation emission in iron [7]. Here, o denotes the
opening and h112 the interplanar spacing of {1 1 2} planes. Figures 7 and 8 show how the
separation of {1 1 2} planes decreases the lattice resistance in comparison with pure BLS. The
unstable stacking energy γus is smaller by approximately 7%, while the critical shear stress
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(a) (b)

Figure 4. Dimensionless interplanar shear stress R∗
10 and energy balance for interior atoms lying

on plane 1 below the interface 0 during deformation twinning in the hard anti-twinning direction
in uncracked samples.

(a) (b)

Figure 5. Dimensionless interplanar shear stress R∗
21 and energy balance during the deformation

anti-twinning for interior atoms lying on plane 2 below the interface 0.

τc is smaller by approximately 10%. These observed behaviours are consistent with earlier
simulations, and analytic modelling, carried out by Sun et al [9].

3.2. Cracked samples

We next consider a pre-existing atomically sharp central crack of the length 2
0 = 2a embedded
in a rectangular sample. The crack surfaces lie on (1̄ 1 0) planes, the crack front is oriented
along the z-direction and the potential crack extension is in the x = [0 0 1] direction. The
crack is loaded in mode I; i.e. the sample borders are loaded in the 〈1̄ 1 0〉 directions and we
subsequently consider biaxial loading by adding load in the x-direction. Due to the symmetry
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Figure 6. Generation (a) and emission (b) of complete edge dislocations from the crack (1̄ 1 0)[1 1 0]
loaded in mode I under the applied stress σA = 6.82 GPa (sample size 300 × 300).

of the problem, we only simulate one half of the sample in the x-direction. The external forces
at individual surface atoms are distributed homogeneously in five border layers, as previously
reported [10,11]. The sample consists of 300 planes both in the x and y directions for uniaxial
loading and 432 planes in the y-direction for biaxial loading. To maintain symmetry, atoms
lying at the left border of the sample (figure 6) are fixed in the x-direction, while other atoms
are free to move in the x- and y-directions. The half crack length is 
0 = 30 d001, where
d001 = a0/2 and a0 = 2.8665 Å is the lattice parameter. Interatomic interactions across initial
crack faces are not allowed.
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Figure 7. The decrease of the interplanar shear stress R∗
10 in perfect samples when normal relaxation

o/h112 = 0.0625 of the {1 1 2} slip planes is included during BLS.

Figure 8. Change of the potential energy in perfect samples when normal relaxation o/h112 =
0.0625 of the {1 1 2} slip planes is introduced during BLS.

Prior to the external loading, the samples are relaxed to avoid the influence of surface
relaxations on crack tip processes. The Newtonian equations of motion for individual atoms
are solved by the central difference method using time integration steps of magnitude 10−14 s.
Thermal atomic motion is not controlled in the system—that is, initial atomic velocities
are set to zero and we do not use a ‘thermostat’ to control temperature, similar to earlier
work by Mullins and Dokainish [1] or Machová and coworkers [10–12]. The global energy
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balance Wext(t) = Epot(t, 0) + Ekin(t) in the sample is monitored at each time step to ensure
numerical stability in the system. Here, Wext(t) denotes the work done by the external forces,
Epot(t, 0) = Epot(t)—Epot(0) is the change of the total potential energy during loading and
Ekin(t) is the total kinetic energy. We use a quasi-static loading, i.e. the total kinetic energy in
the system is very low (similar to what is conveyed in figure 15 in [10]).

4. Discussion and comparison of results

4.1. Uniaxial loading

We first consider uniaxial tensile loading only. Here, the sample is loaded gradually to a level
σA during 6000 time steps. When the prescribed stress level is reached, the applied stress
is held constant. Dislocation emission is observed below the Griffith level σG = KG/

√
πl0,

where KG is the critical stress intensity factor given by the relation 2γs = CK2
G. Here γs is

the surface energy and C is the appropriate anisotropic constant discussed in section 2.1. We
note that the sample dimensions are sufficiently large compared with the crack size such that
boundary correction procedures are not necessary [27].

Dislocation emission is not observed in the MD simulations at a constant level of applied
stress σA = 6.48 GPa. At a slightly higher level, σA = 6.82 GPa, dislocation emission
is observed with a certain delay (see figure 6). At an even higher level, σA = 7.16 GPa,
dislocation emission occurs shortly after the constant stress level is attained. We define the
point of dislocation emission as when the relative shear displacements ahead of the crack
tip on the slip systems 〈1 1 1〉{1 1 2} exceed the value b. Figure 6 illustrates that a pair of
edge dislocations have been emitted from the crack tip on the 〈1 1 1〉{1 1 2} slip systems.
We note that the dislocations move away from the crack tip with a velocity smaller than the
velocity of the shear waves in the slip system 〈1 1 1〉{1 1 2}, in agreement with continuum
expectations [12].

We performed a detailed energetic and stress analysis for a few key locations on the
〈1 1 1〉{1 1 2} slip system. Specifically, we considered atoms on plane 1 (see figure 6) below
the crack tip lying at distance b (crack tip atom) and 3b (interior atom) from the crack face. In
addition to the time evolution of the relative shear displacements U10, U21, U32 and U43, we
also calculated the interplanar shear stress R10 at these two locations. From the histories of U10

and R10 we obtained a shear–displacement curve (R10 versus U10) during dislocation emission
(see figure 9). This curve differs somewhat from the ideal BLS results (figure 7) discussed
earlier. The secondary maximum in the curve in figure 9 for the cracked sample coincides with
a transient shear displacement of farther slip planes 2, 3, 4 near the critical point b/2. The shear
stress R10 in figure 9 reaches its first zero point later than the corresponding BLS result, since
there is a permanent nominal shear strain near the loaded crack, even after dislocation emission.
The dependence R10 versus U10 enables one to calculate the work W10 = �R10(tn)�U10(tn)

done by the shear stress during dislocation emission up to the point when R10 vanishes for
the first time. This value W10 from the cracked sample should modestly correspond to the γus

from the BLS result. At the crack tip atom we find that the value is W10(MD) = 1.06 J m−2,
while at the interior atom it is W10(MD) = 1.245 J m−2. The average value from the MD
simulation agrees well with γus from the BLS calculation. However, the peak stresses (at about
U10/b ≈ 0.2, see figure 9) are significantly smaller than the expected value τc = 14.81 GPa
following from the BLS (even including normal relaxation). This discrepancy can be explained
by the influence of the T-stress.

The T-stress acts along the axis of potential crack extension, similar to the component
Sxx from the MD simulation. According to the continuum plasticity theory [19], the influence
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Figure 9. The shear–displacement curve at the interior atom in the 〈1 1 1〉{1 1 2} slip system,
conceived according to figures 9 and 10 for σA = 7.16 GPa (sample size 300 × 300).

of the T-stress on the critical shear stress may be accounted for by the simple interchange
τc → τc +T sin θ cos θ , where θ is the angle of the inclined slip system with respect to the crack
plane. For our crack and slip orientation (figure 6), the angle is θ ≈ 55◦ and sin θ cos θ = 0.47.
According to a handbook of T values [28], for our geometry (
0/W = 0.1, H/W = 0.707
and σA = 7.16 GPa), T is about −6 GPa. It may decrease the value of the critical shear stress
up to τc = 11.98 GPa, which is in good agreement with the peak stress shown in figure 9
(R10 = 12.0–12.2 GPa) obtained from the MD simulations.

Dislocation emission in the simulations is observed at an applied stress intensity KIA =
0.813– 0.854 MPa m1/2. This is significantly lower than Kdisl = 1.44 MPa m1/2 predicted by
the Rice model when tension/shear coupling is included. We note that this is in qualitative
agreement with the atomistic results in bcc iron obtained with a different potential for an
equivalent crack orientation [3].

The influence of the T-stress in a simplified isotropic continuum model has been examined
by Beltz and Fischer [8] as a function of crack size and slip plane inclination angle. Their
model predicts the threshold is decreased by about 25% for our geometry. A more precise
analysis of this effect in an anisotropic continuum according to table 1 for α = 0 gives better
agreement with the MD results. Using the anisotropic constant C = 3.868×10−12 m2 N−1 and
the relaxed value of γus = 1.06 J m−2, the lowest stress intensity factor needed for dislocation
emission from the updated model including only the T-stress (no tension/shear coupling) is
Kdisl = 1.059 MPa m1/2. Taking into account both the T-stress and the normal relaxation
effects between slip planes (Gdisl/γus = 2.70 in table 1), we then obtain a predicted value
Kdisl = 0.892 MPa m1/2, in good agreement with our MD results.

4.2. Biaxial loading

In our MD simulations of biaxially-loaded samples, the prescribed loading is linear up to
σA = 13.64 GPa over 12 000 time steps. This is consistent with the loading rate used in the
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Figure 10. Comparison of the stress field in MD (o) at time step 6000 with continuum solution
(——) for biaxiality ratio α = 0.7, σA = 6.82 GPa and angle θ = 0◦: normal stress component
Syy , lateral stress component Sxx and Ta stress (sample size 300 × 432).

previous section (prior to the constant level of the applied stress being attained). The sample
consists of 300 planes in the x-direction and 432 planes in the y-direction. To ensure that
loading waves in the x- and y-directions arrive from the borders to the crack tip at the same
time, the sample size in the y-direction is increased for biaxial loading.

A comparison with the anisotropic elastostatic Savin–Stroh solution has been performed
for a relatively low applied load (at time step 6000). In figure 10, we compare the interplanar
[15] atomic stress (circles) ahead of the crack tip (θ = 0◦) with the Savin–Stroh solution
(solid lines) for σA = 6.341 GPa and for α = 0.7 (a regime in which no bond breakage and
no dislocation emission are detected). The agreement between the atomistic and continuum
results is generally good, except very close to the crack tip, where nonlinear effects as well
as scattering of loading waves manifest themselves in the simulation. In figure 11, we use an
extrapolation procedure to compute the stress intensity factor associated with this loading:

KMD = lim
r→0

(2πr)1/2 Syy(r) = 0.737 MPa m1/2. (9)

This value of the stress intensity factor agrees well with the expected value

KI = σA

√
π
0 = 0.793 MPa m1/2. (10)

The atomistic results shown in figures 10 and 11 suggest that the parameters KI and T provide
an adequate description of the stress field and that their use in continuum predictions of the
brittle–ductile behaviour leads to consistent cross-model comparisons. The T-stress profile
near the crack tip obtained from the MD simulation (see figure 10) is typical of all biaxiality
ratios α considered in this paper.

As seen in table 1, if T is near its maximum negative value considered here (at α = 0),
the threshold for dislocation nucleation Gdisl is smallest, in favour of ductile behaviour. If T

increases towards zero (at α ≈ 1), the likelihood of brittle crack initiation increases. Thus,
there should exist some crossover value of α for brittle/ductile behaviour. To verify this, MD
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Figure 11. Linear extrapolation procedure for the stress intensity factor KMD from the stress
component Syy in MD shown in figure 10 (sample size 300 × 432).

Table 2. MD simulation results under biaxial loading. For this system, the Griffith level for fracture
is KG = 0.965 MPA m1/2.

α Process Time step σa (GPa) KA (MPa m1/2) T (GPa)

0.0 Symmetric dislocation nucleation 6667 7.58 0.88 −6.71
0.1 Symmetric dislocation nucleation 6760 7.68 0.89 −6.04
0.2 Symmetric dislocation nucleation 6863 7.80 0.91 −4.68
0.3 symmetric dislocation nucleation 6986 7.94 0.92 −4.65
0.4 Symmetric dislocation nucleation 7161 8.14 0.95 −3.95
0.5 Asymmetric dislocation nucleation 7280/7753 8.28/8.81 0.96/1.02 −3.19/−3.40
0.6 Asymmetric dislocation nucleation 7316/7777 8.32/8.84 0.97/1.03 −2.37/−2.56
0.7 Asymmetric dislocation nucleation 7272 / 7839 8.27/8.91 0.96/1.04 −1.54/−1.65
0.8 Bond breakage 6800 7.73 0.90 −0.66
0.9 Bond breakage 6794 7.72 0.92 + 0.11
1.0 Crack initiation 7301 8.30 0.97 + 0.95
1.1 Crack initiation 7287 8.28 0.96 + 1.77
1.2 Crack extension 7261 8.25 0.96 + 2.59

simulations under biaxial loading have been performed for several values of α, i.e. for different
T values. The complete results are summarized in table 2.

For a biaxiality ratio α = 1 (that is, T ≈ 0), brittle crack initiation is observed in the
simulations. The crack initiates at an applied stress intensity KA ≈ 0.964 MPa m1/2. The
associated energy release rate at fracture initiation is 3.85 J m−2, close to the theoretical work
of decohesion 2γs = 3.603 J m−2 (obtained in a perfect crystal strained axially in the 〈1 1 0〉
directions under plane strain conditions). Using the anisotropic constant C discussed earlier,
the theoretical Griffith stress intensity factor is KG = 0.965 MPa m1/2 , in good agreement
with the MD results. For biaxiality ratios α = 1.1 and α = 1.2 (positive T-stress), cleavage
crack extension (see figure 12) is observed at applied stress intensity factors of KA = 0.963
and KA = 0.959 MPa m1/2, respectively.
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Figure 12. Brittle crack extension during linear loading for biaxiality ratio α = 1.2 (time step
7450). The original crack tip atom is denoted in black (sample size 300 × 432).

For α = 0.9 and α = 0.8, significant bond breakage and crack tip opening are observed in
the simulation, but full crack initiation does not occur prior to the arrival of stress waves emitted
from the crack tip and reflected back from external sample borders to the crack tip (expected
at time step ∼8200). Nonetheless, the bond breakage is indicative of brittle behaviour.

For α = 0.7, an ‘asymmetric’ dislocation emission from the crack tip is observed. The
first complete dislocation is emitted on a slip plane 〈1 1 1〉{1 1 2} at the crack tip at time step
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Figure 13. Non-symmetric dislocation emission at the ductile–brittle interface with biaxiality
α = 0.6 (time step 8000); sample size 300 × 432.

7272. Emission of the second dislocation occurs on a slip plane 〈1 1 1〉{1 1 2} in front of the
crack tip at time step 7839. These emission events correspond to applied stress intensities
KA = 0.961 and 1.036 MPa m1/2. Similar behaviour is observed for α = 0.6 (figure 13) and
α = 0.5.

Symmetric dislocation emission at the crack tip occurs for 0 � α < 0.5, as summarized
in table 2. For the case α = 0 (figure 14), we observe that dislocation emission occurs
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Figure 14. Dislocation emission under linear loading at α = 0 (time step 6668); sample size
300 × 432.

at time step 6667, corresponding to an applied stress intensity KA ≈ 0.881 MPa m1/2, in
good agreement with the results presented earlier for uniaxial loading. As mentioned in the
introduction, in the case of uniaxial loading (α = 0), the (1̄ 1 0)[1 1 0] crack is much more
stable than the (0 0 1)[1 1 0] crack. This is in qualitative agreement with the simulations of
Kohlhoff et al [29] and also with recent fracture experiments [30] performed under uniaxial
loading on iron silicon (3 wt%) crystals of the same orientation. Extensive crack blunting and
activation of the inclined 〈1 1 1〉{1 1 2} slip systems have been observed in the experiments
with crack orientation (1̄ 1 0)[1 1 0], similar to what is predicted here.

We note that the applied stress in the MD simulations is orders of magnitude higher than
what is reported in experiments. This discrepancy can be understood in the framework of
fracture mechanics: cleavage fracture or dislocation emission occur when the applied stress
intensity factor KA reaches the critical Griffith value KG or Kdisl needed for dislocation
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emission, both considered as intrinsic material parameters. The applied stress needed for
a given process to occur is then either σA = KG/(πl0)

1/2 or σA = Kdisl/(πl0)
1/2. Since the

cracks in experiments are usually orders of magnitude longer, the applied stress needed for
the processes mentioned above can be smaller. This geometric effect is expected to have no
bearing on the main conclusions of this paper. Also, the three-dimensional aspect of dislocation
nucleation is expected to manifest itself in experimental observations. Here, the emission of
curved dislocations or loops is expected and, of course, thermal activation plays a role [31–33].

The continuum results in figure 2 show that a transition takes place for ductile to brittle
behaviour for the (1̄ 1 0)[1 1 0] crack as α increases through α = 0.5, where the horizontal
line 2γs/γus = 3.40 (calculated from the data for the used potential given above) intersects
the continuum curve Gdisl/γus. This constitutes reasonable agreement with the MD results
presented in table 2, where the transition region lies in the interval 0.5 < α � 0.7.

5. Summary

The stress fields that develop near a crack tip in atomistic simulations of iron can be accurately
characterized by a two-parameter asymptotic field using the stress intensity factor KI and the
T-stress. This supports our use of KI and T in continuum predictions for ductile versus brittle
behaviour.

Our continuum and atomistic modelling of bcc iron suggests that the T-stress plays a
significant role in determining the ductile versus brittle response of a crack tip and plays a role
in the crack size effect. Specifically, the reasonable agreement that we find is especially relevant
for small cracks, for which the T-stress, if it is neglected, can cause significant disagreement
between the continuum and atomistic predictions.
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