
Introduction
That fracture is governed by processes

occurring over a wide range of length
scales has been recognized since the earli-
est developments of modern fracture me-
chanics. Griffith’s study of the strength of
cracked solids1,2 is perhaps the earliest
example of such multiscale thinking, pre-
dating by several decades the first at-
tempts to apply atomistically grounded
traction-separation laws to fracture (e.g.,
the Orowan–Gilman model3,4). Griffith
recognized the critical condition for crack
extension to be a statement of thermo-
dynamic equilibrium of a cracked solid,
representing a balance between the me-
chanical energy decrease upon crack ex-
tension and the corresponding increase in
energy due to the newly created crack sur-
face. Griffith determined the elastic strain
energy of the cracked body using the con-
tinuum solution of the stress field about
an ellipse5 and recognized that the poten-
tial energy associated with the cleavage
surfaces of the crack was directly propor-
tional to the surface energy, the latter de-
riving from the cohesive molecular forces
of the solid. The Irwin–Orowan extension
of Griffith mechanics to include plastic
dissipation,6–9 which is known to occur on
the mesoscopic length scale (�1–100 �m),
provides yet a further example of multi-
scale thinking in the early community of
fracture researchers. In fact, the interaction
of length scales is of central importance in
most problems of fracture.

At first glance, it may seem that com-
bining continuum and discrete (atomistic
and/or dislocation) approaches to model
fracture over a large range of length scales
would be difficult to realize because of the
significant differences in the domain sizes
and characteristic constitutive properties

of the respective phenomena. However,
such approaches have been successfully
integrated by a number of investigators in
recent years.10–23 Presently, we provide an
additional example of how discrete dis-
location theories can be exploited to ex-
plain certain fracture phenomena in a way
that links theories appropriate for vastly
differing length scales.

Fracture Anisotropy: A Departure
from Griffith Mechanics?

It is generally recognized that a mate-
rial’s intrinsic resistance to fracture need
not be isotropic, depending on the crystal-
lographic orientation of the fracture
plane,24,25 as discussed in additional detail
in the article by Gumbsch and Cannon in
this issue. The anisotropy of brittle frac-
ture is easily incorporated into Griffith
fracture mechanics by allowing the surface
energy �s to be a function of the crystallo-
graphic cleavage plane (see, for example,
Reference 26). Upon further inspection,
however, Griffith fracture mechanics ap-
pears to dictate that the resistance to frac-
ture must be a scalar property and, as
such, must not exhibit any anisotropy
within a given cleavage plane. The funda-
mental measure of a material’s resistance
to brittle fracture—the work of cohesion
of the solid (or the work of adhesion for
interfacial fracture)—is, after all, path-
independent. In other words, the fracture
criterion is fully prescribed by the dif-
ference between the free energies of the
initial state (i.e., the intact solid) and the
final state (i.e., the two free surfaces).
This conclusion is further supported by
Rice’s well-known implementation of the
J-integral,27,28 whereby the fracture crite-

rion is shown to be equal to the area under
the traction-separation curve in the cohe-
sive zone of the crack tip.

While it appears that the resistance to
cleavage fracture should be constant once
the crack is constrained to lie in a given
fracture plane, some exceptions are known
to occur. For instance, discrete interactions
between the crack tip and the lattice lead
to “lattice-trapping” effects25,29,30 and, there-
fore, to a deviation of the fracture resis-
tance from the Griffith prediction. Recent
experiments by Gumbsch and co-workers
on tungsten single crystals25 and atomistic
simulations on tungsten and iron single
crystals11 have shown that lattice trapping
can explain the seemingly anomalous de-
pendence of the cleavage fracture resis-
tance on the propagation direction. They
considered cleavage in the [010] versus
[011] directions on the (100) plane, as well
as in the [100] versus [011] directions on
the (011) plane. Differences in the orienta-
tion dependence of cleavage fracture re-
sistance as large as �40% were found, and
in all cases, the fracture resistance ex-
ceeded the Griffith value. These effects
were collectively ascribed to lattice trap-
ping. Similar trends were found by Farkas
in recent atomistic simulations of fracture
along grain boundaries.31

Despite observations indicating that the
fracture process exhibits crystallographic
anisotropy, there is no methodology for
predicting, let alone quantifying, such
phenomena within the framework of con-
tinuum fracture mechanics. Presently, we
revisit the assumption imposed by classi-
cal brittle-fracture mechanics that fracture
along a prescribed plane must be path-
independent. We consider the simple case
of cleavage along a symmetrical tilt
boundary and ask whether the crack re-
sistance is affected by the direction of
crack propagation. We show that path-
independence is not a necessary condition
in brittle-fracture mechanics and, in so
doing, quantify the “polarity” of fracture
along symmetrical tilt boundaries.

Dislocation Representation of
Low-Angle Tilt Boundaries

The simplest kind of boundary that one
can consider is the symmetrical tilt bound-
ary, as depicted in Figure 1. A symmetrical
tilt boundary can form when dislocations
with Burgers vectors of magnitude b coa-
lesce into a straight array, thus minimizing
the total elastic energy in the system. If the
angle of tilt is �, and the dislocation spac-
ing is p, then the kinematic constraint
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can be obtained by considering a right tri-
angle, two sides of which have lengths
given by b and p. Because the angles for
which Equation 1 remains valid are small
(e.g., when the dislocations are spaced as
closely as five Burgers vectors, � is �11.5�),
the approximation p/b � 1/�, with �
expressed in radians, is commonly used.
If the dislocations become too closely
spaced—say, by less than a few Burgers
vectors—the boundary is referred to as a
large-angle grain boundary, and one must
resort to more complex methods, such as
atomistic simulation, for understanding
these boundaries. An analogous represen-
tation can be made for the twist boundary,
in which the adjacent grains are rotated
with respect to one another about an axis
that is normal to the boundary. In this
case, the displacement (and stress) field
can be represented by a cross-grid of
screw dislocations. The most general
boundaries, having mixed tilt and twist
character, can be represented by a cross-
grid of dislocations having both edge and
screw character. A detailed discussion of
how general low-angle grain boundaries
are described using dislocation arrays
may be found in the books by Nabarro,32

Hirth and Lothe,33 and Hull and Bacon.34

For ease of conceptualizing the problem
of fracture along grain boundaries, we
presently confine our attention to low-
angle symmetrical tilt boundaries.

Barring internal stresses arising from
thermal anisotropy or defect generation

during processing, individual grains in
an unloaded solid can be approximated
as stress-free. However, a single edge dis-
location produces a stress field that, for
an infinite, isotropic solid with shear
modulus � and Poisson’s ratio �, takes
the form33,34

, (2)

, (3)

and

. (4)

The important feature to note about
Equations 2–4 is that they indicate a rela-
tively slow r�1 decay of stress, where

represents the distance
from the core of the dislocation. As the
core of the dislocation is approached
(x, y l 0), Equations 2–4 predict an infi-
nite stress. This issue is addressed in
greater detail later in this article; suffice it
to say for now that the stress equations are
accurate only outside the “core region” of
the dislocation (r � r0), having a size of
�1–2 Burgers vectors. Inside the core, the
constitutive response of the solid is highly
nonlinear, and the stresses are, as would
be expected, bounded.

r � �x2 	 y2�1/2


xy �
�bx�x2 � y2�

2��1 � �� �x2 	 y2�2


yy �
�by�x2 � y2�

2��1 � �� �x2 	 y2�2


xx � �
�by�3x2 	 y2�

2��1 � �� �x2 	 y2�2

When considering a tilt boundary, it is
necessary to sum the stress field arising
from an infinite number of dislocations
lying on the y axis and spaced apart by a
distance p. These sums are defined and
analytically simplified by Hirth and
Lothe,33 and we will not reproduce the ex-
pressions here. We note, however, that the
stresses decay exponentially with distance
away from the array (Figure 2a shows the
shear-stress component � � 
xy), in con-
trast to the sluggish 1/r stress field for the
single dislocation. Hence the stress due to
the array decays practically to zero over a
distance of the dislocation spacing, indi-
cating the absence of a long-range stress
field—a fundamental property of grain
boundaries. In the plane of the array, the
stress field takes on an oscillatory nature
with periodicity p. Figure 2b shows the
normal stress 
 � 
xx for y � 0 (i.e., within
the array). At the midpoint between two
dislocations, this stress component van-
ishes. At distances much less than p from
any given dislocation, the stress field of
the array can be shown to approach that of
the individual dislocation.

Brittle Fracture
We now turn our attention to cracks.

Upon loading, the stress field of a cracked
solid asymptotically takes the form ,
where r is the distance from the tip. This is
true near any crack tip, regardless of other
geometric features of the system. Thus for

1��r
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Figure 1. (a) A bubble-raft simulation of a low-angle tilt boundary, revealing that the boundary is comprised of a periodic array of edge
dislocations (courtesy of P.G. Shewmon, Reference 42). (b) Schematic representation of a symmetrical tilt boundary having misorientation
angle � and comprising a dislocation periodicity p.



a given geometry and loading, the stress
components can be written as

, (5)
ij �
Kfij���
�2�r

where the angular functions fij(�) can be
determined, given the loading configura-
tion, and K represents the “intensity” of
the stress singularity and is commonly
known as the stress intensity factor. For con-

venience, we will restrict the discussion to
“Mode I” loading, wherein the crack is
symmetrically loaded about the crack
plane, giving rise to crack opening or clo-
sure. K scales linearly with the magnitude
of external loading and depends (some-
times in a complex way) on the geometry
of the system. As a simple example, for a
through-crack of length 2a, centered on
the origin of an infinite solid and subject to
remote tension 

 oriented normal to the
crack plane, . Note that in the
absence of external loading, K � 0, and the
crack has no driving force for extension.
Another significant feature of K is that it is
related to the elastic energy-release rate G
(change of total elastic energy stored in the
system, including the potential stored in
the loading system, per unit area of crack
advance) through the Irwin relation
G � (1 � �)K2/2�. The classical Griffith
criterion for fracture may then be ex-
pressed as G � GG; that is, when the
“applied” G achieves a certain threshold
value, the crack propagates. Due to the
monotonic relation between G and K, the
stress-intensity factor may be directly
used in the fracture criterion such that the
critical stress-intensity factor required for
fracture is given by

. (6)

Crack/Dislocation Interactions
Because a dislocation is a source of

stress, it can induce an additional stress-
intensity factor, designated KD, on a crack.
The simplest case is a semi-infinite crack
having an edge dislocation on the prolon-
gation of the crack plane, as depicted in
Figure 3a. The stress-intensity factor for
this geometry was given by Thomson:35

, (7)

where s is the distance from the crack tip
to the dislocation. Note that KD diverges as
the crack tip approaches the dislocation.

What happens when a relatively long
crack is introduced onto a tilt boundary?
At first glance, it appears logical to com-

KD �
�b

�1 � ���2�s

KG � �2�GG

1 � �

K � 

��a
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Figure 2. Comparison of stresses due to a low-angle tilt boundary (solid line) and an
isolated dislocation (dashed line).The shear stress moving away from the boundary is given
in (a), while the normal stress 
xx within the boundary is given in (b). Note the rapid decay of
� associated with the boundary as compared with that of the single dislocation.

Figure 3. A semi-infinite crack on a
boundary containing (a) a single
dislocation and (b) a dislocation array.



pute the summation of the stress-intensity
factor of Equation 7 over each dislocation
in the array ahead of the crack, as indi-
cated schematically in Figure 3b. The result-
ing stress-intensity factor should depend
not only on the dislocation spacing p, but
also on the distance s of the first disloca-
tion to the crack tip:

(8)

Inspection of Equation 8 reveals that the
series is divergent! This result would
imply that a crack located on a tilt bound-
ary is unstable with respect to fracture (or
healing, depending on the orientation of
the crack with respect to the array). This
conclusion is, of course, unphysical. The
problem with the simplistic approach
leading to Equation 8 stems from the fact
that dislocations previously comprising
the boundary (to the left of the tip in Fig-
ure 3b), which are presumably annihilated
as the crack propagates, still exert a force
on the crack tip.

To understand the effect of these so-
called image, or virtual, dislocations, we
first consider the general problem of a dis-
location introduced into a body contain-
ing an arbitrarily shaped hole (Figure 4) in
an infinite, two-dimensional solid. Imag-
ine introducing the dislocation at point B
by creating an imaginary cut along the ray

KD �
�b

�1 � ���2�
 	

n�0

 
1

�s 	 np
.

AB, then displacing the faces of AB by the
appropriate Burgers vector. In this case,
there are actually two dislocations in the
system: one is the primary dislocation at
point B, and the other is the residual dis-
location represented by the hole itself. A
Burgers circuit around point B results in
the expected Burgers vector b; applying
the circuit to the hole results in a Burgers
vector of –b, that is, the hole contains one
negative virtual dislocation. Drawing the
circuit around the entire hole/dislocation
pair gives a null Burgers vector, because in
fact a dislocation dipole has been intro-
duced into the system. If we now consider
introducing the dislocation at B via an
imaginary cut that runs from point B to a
point on the external boundary of the body
(albeit an infinite distance away), and dis-
placing the faces of this cut by the Burgers
vector, we again have a dislocation of
Burgers vector b at B; however, the Burgers
circuit around the hole yields a null Burgers
vector (i.e., the hole contains no virtual
dislocations). This distinction has no rele-
vance to the semi-infinitely long crack rep-
resented in Figure 3, since the crack faces
themselves constitute part of the external
boundary of the solid and no additional
crack-tip force is created. However, for the
case of an internal crack, the creation or
annihilation of dislocations has the direct
consequence of modifying the crack-tip
stress intensity. For the special case of an
elliptical hole, the stress field resulting
from such virtual dislocations has been
worked out by Kratochvíl36 and Hirth.37

In general, then, a finite crack of length
2a may contain an arbitrary number of vir-
tual dislocations, each inducing a force on
the crack tip. The stress-intensity factor Kd,
induced by a virtual dislocation on the
right-hand crack tip, was independently
calculated by Lin and Hirth38 and Zhang
and Li:39

(9)

Note that Equation 9 does not depend on
the location of the virtual dislocation
within the crack. Similarly, the stress-
intensity factor due to a real dislocation
lying in the crack plane ahead of the right-
hand tip of a finite crack of length 2a is
given by39

(10)

Note that Equation 10 reduces to Equa-
tion 7 in the limit as a l 
.

KD �
�b

2�1 � ����a
 
�2a 	 s

s
� 1� .

Kd �
��b

2�1 � ����a
.

Grain-Boundary Fracture
We now imagine an infinitely long,

crack-free, low-angle tilt boundary. At
some point along the boundary (without
loss of generality, we can define this point
as the origin), a crack nucleates and is
forced to extend in either direction along
the boundary (see Figure 5). As the crack
extends, real dislocations are converted
into virtual dislocations. The number of
dislocations that are annihilated and that
become virtual dislocations, m, increases
stepwise as the crack grows and, for
a/p �� 1, can be thought of as a continu-
ous and linear function of a such that
m � 2a/p. The total stress-intensity factor
induced by the dislocations on the right-
hand crack tip, , is calculated by sum-
ming Equation 10 over all remaining
dislocations on the boundary (to the left
and right of the crack tip), then adding
Equation 9 for all m virtual dislocations
annihilated by the crack:

(11)

The first two terms in the summation rep-
resent the shielding KD from all real grain-
boundary dislocations to the right of the
right-hand tip (y � a) and to the left of the
left-hand tip (y � �a), respectively. The
last term represents the shielding Kd from
all virtual dislocations annihilated by the
crack (�a � y � a). In the limit a l 
, both
terms within the square brackets of Equa-
tion 11 diverge, as was the case with
Equation 8. However, the term due to the
image dislocations within the crack,
which itself diverges as a l 
, keeps
Equation 11 convergent.

With no apparent analytic simplifica-
tion of Equation 11, we must resort to
numerical evaluation. Selecting appropri-
ate normalization factors and taking the
limit a l 
, we arrive at a single curve for
K induced at the crack tip of a forward-
propagating, semi-infinite crack as a func-
tion of relative crack-tip position between
two dislocations (Figure 6). Starting im-
mediately to the right of the origin
(�a/p l 0	), a dislocation has just been
annihilated, and a full periodic distance p
remains to the next real dislocation. At this
point, the crack actually experiences
shielding from the grain-boundary dis-
locations, as evidenced by a negative
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Figure 4.There are two distinct
approaches to introducing a dislocation
at location B near an arbitrarily shaped
hole. In the first, the dislocation is
injected from the hole by making a cut
from the surface of the hole (location A)
to B and shearing the opposing faces
across the slip plane AB by the Burgers
vector. Alternatively, the dislocation can
be introduced from an exterior surface
of the body (location C, not shown) by
making a cut between C and B, then
shearing the opposing faces across the
slip plane BC by the Burgers vector.The
first method results in no net Burgers
vector, indicating the creation of an
image dislocation within the hole having
an opposite-signed Burgers vector.The
second method does not lead to the
creation of an image dislocation.The
two constructions lead to unique
stress fields.

×



stress-intensity factor. Under an applied
load characterized by Ka, the net stress-
intensity factor at the crack tip is

, where is given by
Equation 11. The threshold condition for
crack extension is attained when 
reaches the Griffith fracture limit KG. To
propagate the crack tip along the bound-
ary, Ka must be sufficiently large so that

overcomes the maximum shielding
along the entire interval p between adja-
cent dislocations. As is evident from
Figure 6, the maximum shielding for
propagation in the forward direction oc-
curs at �a/p l 0	. Therefore, the critical
applied stress intensity for crack propaga-

K	
tip

K	
tip

K	
gbK	

tip � Ka 	 K	
gb

tion in the forward direction, defined as
, is:

(12)

Thus, the apparent, or “applied,” stress-
intensity factor necessary to maintain
crack extension is greater than the Griffith
value by an amount that is inversely pro-
portional to the spacing of dislocations
comprising the grain boundary. As the
angle of grain-boundary tilt diminishes,
p l 
, and the classical Griffith result is
recovered. It should be noted that KG, as
given in Equation 12, represents the Grif-

K	
c � KG 	 3.6

�b

2��1 � ���p
.

Ka l K	
c

fith value of the grain-boundary fracture re-
sistance and is therefore a function of the
tilt angle. KG can be related to the surface
energy of the solid via the Dupré relation

and the Irwin rela-
tion (Equation 6).

We now consider propagation of a
semi-infinite grain-boundary crack in the
reverse direction. The only distinction
from the forward-propagating crack is
that it experiences the effect of disloca-
tions having opposite-signed Burgers vec-
tors. Therefore, the stress-intensity factor
induced by the array of dislocations is
simply the negative of that given by Equa-
tion 11 and Figure 6: . If the
crack were to propagate in this direction,
the greatest crack-tip shielding occurs
when the tip just approaches a dislocation
(this is analogous to position �a/p l 0� in
Figure 6). At this location, an infinitely
large applied Ka would appear to be
necessary to overcome the nominally
unbounded shielding induced by the dis-
location, such that . This conclu-
sion reveals one of the major deficiencies
of continuum elastic dislocation theory:
the crack must be able to penetrate
through the core region of the dislocation
with a finite resistance. Atomistic meth-
ods, such as those discussed elsewhere in
this issue, are clearly the preferred way to
treat the mechanics of extremely close or
overlapping crack/dislocation cores.
However, we can make a reasonable first-
order estimate of the reverse-fracture cri-
terion using a core-cutoff approach.

We conjecture that as the crack ap-
proaches the dislocation, the dislocation
core slightly redistributes itself over its
slip plane. In so doing, no singularity in
the crack-tip stress intensity arises. As the
crack passes through the core, the slip
discontinuity that defines the dislocation
recedes into the free surfaces of the crack
wake. This conceptual model is, in a sense,
just the opposite of the dislocation-
nucleation process described by Rice.12

We have carried out a preliminary study
of this mechanism using the Peierls–
Nabarro40,41 model of the dislocation core.
Details of the implementation of the
model and of the subsequent results are
outside the scope of the present discus-
sion. However, we note that a good em-
pirical fit to the results is obtained when
the stress-intensity factor given by (the
negative of) Equation 11 is evaluated at a
crack-tip/dislocation spacing of approxi-
mately one Burgers vector. The latter
length scale defines the dislocation core-
cutoff parameter r0.

Evaluating Equation 11 in the limit as
a l 
, the threshold condition for fracture
in the reverse direction occurs when K�

tip

K�
c l 


K�
gb � �K	
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Figure 5.The stress field associated with a finite crack on a low-angle grain boundary can
be regarded as the superposition of the stresses associated with individual dislocations.
Image dislocations, occupying positions where the crack has extended, must be included
in this calculation.

Figure 6. Stress-intensity factor induced on the forward-propagating crack tip due solely
to the dislocation array.The crack is taken as sufficiently long to allow a periodic function
to develop.

K	
gb



at the location of maximum shielding
along the entire interval p between adja-
cent dislocations reaches KG. This criterion
corresponds to a critical applied stress in-
tensity :

, (13)

where the second term corresponds to the
stress intensity induced by the lead dislo-
cation, and the last term is the stress inten-
sity induced on the crack tip by the
remainder of the array of real and virtual
dislocations. Note that the value of , as
given by Equation 13, is finite.

Implications and Directions for
Future Investigation

We set out to determine whether the di-
rectional anisotropy of cleavage fracture
along a tilt boundary can be predicted—
and quantified—using a simple extension
of the Griffith theory to include trapping
at geometrically necessary (i.e., nonredun-
dant) grain-boundary dislocations. We ar-
rived at two unique expressions for the
fracture resistance along a grain bound-
ary: Equation 12 for the resistance to frac-
ture in the “antishielding” direction and
Equation 13 for the analogous resistance
in the “shielding” direction. It is worth-
while to estimate the magnitude of the
predicted anisotropy for a low-angle grain
boundary in a representative metallic
solid. For this illustration, we consider:
� � 100 GPa, � � 0.3, and b � r0 � 3 Å.
Assuming a grain-boundary tilt angle of
�5�, Equation 1 gives p/b � 11.5. Substi-
tuting these values into Equations 12 and
13, one obtains 
and for the anti-
shielding and shielding directions, respec-
tively, where the typical grain-boundary
toughness of a Griffith solid may be esti-
mated as . From this
estimate, we conclude that (1) the inter-
action between a grain-boundary crack
and the nonredundant grain-boundary
dislocations leads to an intrinsic tough-
ness that is roughly two times greater than
the limiting Griffith value, and (2) there is
an appreciable and heretofore unquanti-
fied directional anisotropy (�20%) in the
grain-boundary fracture resistance. The
magnitude of the present results is, of
course, dependent on the magnitude of
the parameters chosen for the calculations.

A number of issues remain to be re-
solved in extending the present treatment

KG � 0.5 MPa�m

K�
c � KG 	 0.6 MPa�m

K	
c � KG 	 0.4 MPa�m

K�
c

� 3.6
�b

2��1 � ���p

 K�
c � KG 	

�b

�1 � ���2�r0

K�
c

to a more general description of the direc-
tional anisotropy of crystalline fracture.
The present model does not account for
the development toward a mature crack,
the behavior of which is often dominated
by larger-scale processes such as the de-
velopment of a plastic zone, the presence
of multiple grains, and various effects of
other heterogeneities (such as second-
phase particles). The motion of surround-
ing dislocations in the crystal is not
accounted for in this treatment, nor is dis-
location nucleation. The shielding effect of
previously emitted dislocations can sub-
stantially reduce the local stress field
around the crack and therefore increase
the critical applied loads for dislocation
nucleation and cleavage. Although emit-
ted dislocations are assumed to be swept
sufficiently far away that we may ignore
these shielding effects, background dislo-
cations and plastic dissipation have been
shown to play a critical role in the applied
loads necessary to maintain the “local”
loads described in this article.6–9,18–20 These
effects are expected to influence the frac-
ture behavior in a highly nonlinear fash-
ion (sometimes referred to as the “valve”
effect) and can account for an increase in
the applied loads by up to three to four
orders of magnitude from the loads dis-
cussed in the present work.20 Perhaps
most important is the fact that the valve
effect can induce profound changes in the
macroscopic behavior of real solids for
what appear to be modest changes in the
Griffith criterion. We leave such considera-
tions for future investigation.
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