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ABSTRACT

One critical issue in heteroepitaxid, lattice mismatched growth is the inevitable appearance
of threading didocations which reside in the relaxing film and degrade its semiconducting
properties. It has been shown in previous work that threading dislocations interact with each
other through a series of annihilation and fusion reactions to decrease their density as the film
thickness increases and follow a 1/h decay, where A is the film thickness. A characteristic
reaction radius is associated with these interactions. In previous smulations, the reaction radius
was taken to be a constant value estimated using a smple approximation based on infinite,
pardld didocation lines. Here, a continuum-based elagticity approach is taken to more accurately
quantify the reaction radius by comparing the Peach-Koehler force of one didocation acting on
another at a free surface with the lattice resistance to dislocation motion. The presence of the free
surface gives rise to a moderate reduction of the interaction force. Results are compared with
preliminary experimenta data for GaAs films grown on InP.

INTRODUCTION AND BACKGROUND

During heteroepitaxial growth of thin-films for electronic devices, misfit didocations
(MD) inevitably nucleate due to lattice mismatch stresses.  Upon reaching a critical thickness, &,
the film “relaxes’ as midfit didocations, and associated threading didocations, appear and
multiply. Misfit didocations are equilibrium defects - i.e. they are necessary to relieve mismatch
grain, while threading didocations are non-equilibrium line defects that link a given MD to the
surface. Threading didocation densities for films with large mismatch (in excess of -2%) can be
on the order of 10 °-10" cm™ and as pointed out by Beltz et d. [1], their population is largely
reducible while retaining the necessary MD dendity to sustain a relaxed film. A wedth of
experimental work has been performed in an attempt to reduce TD densities. However, relatively
few theoretical efforts have been carried out to understand TD density reduction mechanism.

There have been severd experimental research efforts to characterize TD density reduction
with film thickness for severd material systems. Tachikawa and Y amaguchi [2] observed a1/k

dependence of 7D density in GaAs films on St subsicate, wiere /# (s e film thickness, D
reduction has also been reported for InAs/GaAs, GaAs/Ge/Si, GaAs/InP, and InAs/InP by
Sheldon et d. [3], showing similar 1/ dependence for all 4 materia systems. They found TD
density to be inversely proportiona to film thickness for initial TD densities of 10%-10° cm™.
Additionally, the reduction behavior was found to be similar for &l of the material systems

indicating that the fundamental mechanics of dislocation reduction are the same regardless Of
material system. Tachikawa and Yamaguchi also found dislocation density to be exponentially
proportional to film thickness for initiadl TD densities of less than 107 cm™ Mathis et al. [4] have
'r:ecentlyl shown TD density data for GaAs grown on InP displaying the 1/h behavior, as shown in

igure 1.

In the recent theoretical work by Beltz et d., a computer simulation was developed to
study TD density reduction [ 1]. TDs are dlowed to “react” with one another to reduce their
overall density, giving results consistent with the 1/ density dependence and ultimate saturation
predicted by earlier models [5] and observed experimentally by such groups as Tachikewa and
Yamaguchi. A primary tenet in the theoretical models to date is that TDs within a reaction
distance of each other spontaneously interact.  Given the correct Burgers vector combination,
annihilation (b,+b,=0) or fusion (b,+b,=b,) of the TDs could occur, or the didocations would
sitrr?ply continue following a trgjectory to the surface, unimpeded or a most repelled by each
other.
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In conjunction with the computer simulation, an analytical approach was also taken to
further understand TD reduction. Romanov et a. [6,7] present an analyticd model for TD
reduction based on the principal of chemica kinetics. They derived and solved a system of non-
linear first order differentiad equations for the 24 types of TDs for FCC materids. Their
numerical results recover the 1/h dependence as well as the saturation behavior that has been
observed both experimentally and in simulations.
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Figure 1. Threading didocation density data for GaAs grown on InP via MBE.
SIMPLE REACTION RADIUS ESTIMATION

In the aforementioned theoretical work, the most critical physical parameters were left as
unknowns against which the primary results were normalized. The reaction radius for
annihilation and fusion reactions were assumed to be equivaent and were estimated by comparing
the force acting between two dislocations, also known as the Poech-Koehler force, with the force
opposing dislocation movement due to the lattice, also known as the Peierls stress.  Since TDs
are substantialy of screw character, only the conditions for screw didocations are considered
here for smplicity. For the smple case of two parallel screw didocations, the magnitude of the
PK forceis:

2nr
The lattice friction force per unit length of dislocation due to the Peierls stress, op, is
given as.

2
FPK_.Ub (1)

F,=0,b ()
Didocation motion will occur when these two forces are equivaent. Thus, the reaction
radius, r,, is approximated as:
b
-_H (3)
2no,

Based on the parameters of typical semiconductor materials, r, was set at 5000A [ 1].
Figure 2 shows results by Mathis et d. [4] of the reaction radius from the GaAs on InP system
previoudy mentioned, with the reaction radius varying from ~ 1 00-1200A, agreeing fairly well
with the predicted range. Since dislocation mobility increases with temperature, it is physically
realistic for the annihilation radius to increase with temperature as shown in Figure 2. Peierls
stresses for afew representative materias are listed in Table 1.
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Figure 2. Experimental data for GaAs on InP system showing annihilation
radii at various growth temperatures.

Table1. Peierls stress and shear modulus for various materials.

Material Peierls Stress (MPa) o/u (x10-3) L (GPa) T (K)
Silicon [ 6] 110 (expt) 2.62 42 873
Zr0, [7] 1.00- 150 (expt) 1.25-1.88 80 293
GaAs[8] 35-65 0.73- .35 48 623
MgO [9] 60- 170 (expt) 0.69-1.95 87 373-423

ELASTIC STRESS FIELD FOR A GENERAL DISLOCATION PERPENDICULAR TO A
SURFACE

To further enhance the simulation results, we wish to estimate the reaction radii, r, and rg,
using a more rigorous approach from the mechanics of defects. Comparing the elastic force
between two didocations at a free surface with the friction force from the Pelerls stress yields a
vaue for the reaction radius. In addition, we get a fedl for the range of values for reaction radii
for various material classes with an ultimate focus on semiconductor materials.
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Figure 3. Straight dislocation intersecting a free surface.
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A number of investigators have considered the problem of the stress field due to a straight
didocation intercepting a free surface (see Figure 3). The first, and best known work in this area
isthat due to Yoffe [10]. Thorough reviews of the methodology used for such solutions are
provided by Bacon and Groves [ 11], Eshelby [ 12], Lothe [ 13], and Yu. Belov [ 14].
Unfortunately, the literature in this problem is infamous for the presence of a moderate number of
misprints, especialy in the equations for the didocation stress field. As pointed out by Shaibani
and Hazzledine [ 15], the approach of Y offe lends itself well to concise expressions for the stress
fields but misprints exist in that origina work. They use Y offe’ s method to reconstruct the fields;
however, as mentioned by the same authors in a later paper [ 16], at least one misprint appears in
their results. Rather than directly adopting the stress fields provided in the literature, we directly
verify them. We derive the stress field due to a screw didocation perpendicular to a free surface.
Components of an edge didocation perpendicular to a surface have also been derived, but will not
be shown here.

Congider the coordinate system shown in Figure 3, with a single right-handed screw
didocation collinear with the z axis and the half-space occupying z > 0. Unit vectors aong the
three axes are denoted e;, with the usua Einstein index convention. Our definition of “right-
handed” is consistent with the usage of Hirth and Lothe[17], in that e;-b = b, with the
“positive” line sense of the didocation in the positive z direction. The stress solution for the
infinite screw didocation, b

Oy, = — 4
o= )

satisfies al of the boundary conditions for this problem except the traction free condition at z = 0;
i.e,, we require 6,4, = 0 for z=0. One could correct the solution in Equation (4) by integrating a
point force K(r,r") over the entire surface, weighted by the excess stress o, given by Equation
(4), thereby nullifying the totd traction on the surface. In polar coordinates, K(r,r’) gives the
stress o, a position r due to a point force of unit magnitude applied parallel to the surface and
tangential to a circle of radius r’ about the origin and can be constructed from the concentrated
tangential force solution found in Johnson [ 18]. The total stress field is thus given by

o8 =22 [ "k (r,ryrarae = —HE
2nr 2nr 2mrrt + 22

(&)

2
ubr
Cr9 =

- 2
271:«/;2 +22(z+\/r2+22)

These stresses agree with those for a screw didocation in an infinite solid in the limit as
z—oo, as well as give a traction-free condition 6;; = 0 for z = 0. Moreover, they agree with the
result of Hazzledine [12], except that care must be taken with the coordinate system, since their
screw didocation occupies the axis z < 0. Converting Equation (5) gives the following stress
field in Cartesian coordinates:

2xy b (y2 "‘2)
O =__——-——5 = o2
27 R(z+ R) 27 R(z+ R)
2xy ub xz
[oF = eva— o =T 6
27 27 R(z+R)? BT re? ©
033 =0 oy = LB Y2

27 Rr?
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where r=+/(x? + y?) and R=+/(x* + y? +z2). As a find check, Equations (6) satisfy the field

equations of elasticity for an isotropic material:

0jj,;=0

; ( P )
gi =—| 0. — ;i 7
ij 2u i 1+V Okk ij )
Eij ki + €kl,ij — Eik, jl~ Ejlik =0

The stress field for an edge didocation intercepting a surface is considerably more
difficult to obtain due to the lack of rotational symmetry about the z axis. Combining the
solutions for the screw and edge disocation gives the stress field for a mixed disocation
impinging a free surface, which we will present in future work.

FREE SURFACE EFFECTS

The PK force is given by —g;;s; 0',b, where s; are the components of the line sense of the
didocation in Einstein notation. ET/dJuatlon gives.

®)
FPK = - Hb~ 2
27 22+ 22
or expressed as aradia component,
b’z
B = ———— ©)
2mrr? + 22
. . ) ubzz . -
i.e, a purely attractive force of magnitude This force is independent of the
2 r? + 2% .

relative angular position of the disocations.
Equating the PK force with the Peierls force and solving for r, gives:

\N2no 7 2
SR i L3y BT | J (10)
oo U mo,z

where 7 = z/b. Note that as z—0, i.e. the free surface, the attractive force vanishes. Equation
(10) is plotted in Figure 4 for various values of G,/p.

CONCLUSION
The annihilation radius for two opposite, paralel screw didocations is given by

ub
2n0), .
When experimenta results on threading dislocation reduction are compared with the theory of

Speck et d., the annihilation radius estimated here agrees within one order of magnitude with the
value necessary for the theory to match the experiment. The effect of the free surface is to
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diminish the interaction force between the dislocations, as well as the annihilation radius. For
reasonable physical parameters, this decay only occurs near of the surface. It should be noted
that the existence of any edge component in the reacting dislocations will increase the attractive
force between the two disocations since there is aways an attractive force between two edge
didocations, even when z—0. In preliminary work by Beltz et d. [ 19], the reaction radius for
edge didocations is shown to have a maximum vaue near the free surface before decaying to

steady dtate.
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Figure 4. Free surface effect on reaction radius for various materials.
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