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ABSTRACT

We propose a self-consistent criterion for crack propagation versus dislocation emission, taking
into account the effects of crack-tip blunting. Continuum concepts are used to evaluate the
evolving competition between crack advance and dislocation nucleation as a function of crack-
tip curvature. This framework is used to classify crystals as intrinsically ductile or brittle in
terms of the unstable stacking energy, the surface energy, and the peak cohesive stresses
achieved during opening and shear of the atomic planes. We find that ductile-brittle criteria
based on the assumption that the crack is ideally sharp capture only two of the four possible
fracture regimes. One implication of the present analysis is that a crack may initially emit
dislocations, only to reinitiate cleavage upon reaching a sufficiently blunted crack-tip geometry.

INTRODUCTION

Ductile versus brittle behavior of crystalline materials is among the least understood of
the fundamental mechanical phenomena in materials science. The conventional procedure for
applying continuum-based theories to predict the mechanical response of cracked bodies is to
assume that the crack is atomically sharp, then to analyze how the body responds to an applied
load. Rice and Thomson [1] instituted this approach by comparing the load required to
propagate the crack with the load necessary to emit a dislocation on a slip plane inclined to the
crack plane and intersecting the crack front (see Figure 1). If dislocation emission occurs at-a
load lower than that required for crack propagation, then the material is said to be "intrinsically"
ductile; otherwise, it is said to be "intrinsically" brittle. This type of physical modeling has
evolved considerably over the years to account for factors such as nonlinear defect core
structures, realistic slip systems, and three-dimensional dislocation configurations [2]; however,
the role of crack blunting when dislocation emission initially occurs has received extremely
limited attention [3-7]. Atomistic studies [4,5] agree on one major point: the favorability of
crack advance versus dislocation emission can change when the crack tip blunts. Therefore, a
crystal should not be classified as intrinsically ductile or brittle based on the emission of the
first dislocation.

Presently, we consider the ongoing competition between crack propagation and
subsequent dislocation nucleation as the crack-tip curvature evolves toward steady state. We
identify the key material parameters that govern the outcome of this competition, allowing a
reassessment of the fundamental ductile-brittle response of crystalline materials.
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Fig.1 Tlustration of the competition between dislocation emission and cleavage
decohesion at an initially sharp crack tip with an intersecting slip plane. (a) The starting
crack configuration leads to either (b) crack-tip bond rupture or (c) dislocation emission

and consequent crack-tip blunting.

MODEL
We first consider crack propagation. According to the Griffith theory [8], a sharp crack
will advance when the applied energy release rate, J, attains 2Ys, the energy per unit area
required to create two free surfaces. Formally, J is the rate of decrease of stored elastic energy
in the system per unit area of crack advance. Y scales directly with the intensity of loads
applied to the body and is related to the stress intensity factor, K, by the Irwin relation [9]
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where E is Young’s modulus and v is Poisson’s ratio. For illustration, we consider pure mode I
loading, wherein the symmetry of the applied load is such that the crack faces tend to open
rather than shear against one another (the formalism can readily be extended to mixed-mode
loading). The material parameter 2y; is graphically depicted in Figure 2 as the area under the
stress versus displacement curve for the atomic planes undergoing separation during the
fracture process. In the Griffith theory, the critical applied load for fracture does not depend on
Op, the maximum of the stress vs. separation curve, but only on the area underneath it. This
lack of dependence on Gp, is also borne out by cohesive zone models [10].

We envision a crack that is capable of blunting on the atomic scale in response to the
applied load. The crack-tip blunting can represent either purely elastic deformation or
dislocation emission on slip planes intersecting the crack front. A slender elliptical slit is used
to approximate the blunting crack (Figure 2). The approximation of the crack as an ellipse not



Fig.2 The blunted crack configuration is approximated as an elliptical slit having a major
axis of length 2a and a minor axis of length 2b. The crack-tip curvature is p=b2/a. On the
crack plane, the opening displacement, Agpen, adheres to a traction-separation law, 6(Agpen),
schematically illustrated in (a). Along the slip plane inclined by an angle 0 to the crack
plane, the slip displacement, Agjip, adheres to the Peierls-like relationship, T(Asip),
illustrated in (b). 2y, and Y correspond to the areas under the opening and shear traction
curves, respectively.

only makes our calculations tractable, but it also introduces a length scale, p (radius of
curvature of the tip), into the analysis. The elliptical crack-tip profile represents a drastic
departure from the sharp corner (and its associated stress singularity) that would result, from a
continuum viewpoint, when dislocations emit along a single slip plane (e.g., Figure 1c). The
angled crack tip (which does retain a sharp corner) has received some attention in the literature,
notably from Schigtz et al. [4]. However, atomistic simulations by Gumbsch [5] suggest that,
at the atomic scale, it makes little sense to exploit a shape that contains a stress singularity in
the continuum description.

We now consider an infinite, two-dimensional, solid containing an elliptical cut-out
having a major axis of length 2a and a minor axis of length 2b (Figure 2). A remote tensile
stress of magnitude o_ is applied perpendicular to the major axis. The radius of curvature at the
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tip, p, is equal to b”/a. The elasticity solution for this problem, given by Inglis [11] and
Muskhelishvili [12], predicts that the stress at the crack tip is
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Assuming the crack is not sharp (and thereby departing from the Griffith theory), we impose the
condition that the crack propagates in a brittle fashion when the local stress given by Equation
(2) achieves the cohesive strength of the solid, 6,. To a remote observer who sees the cut-out
simply as a finite crack, the stress intensity factor is Ky = G..+/ma [13]. Combining Equations
(1) and (2) and solving for the critical energy release rate leads to
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where E’ = E/(1-V’) for plane strain. We have used the approximation in Equation (3) that
p<<a, i.e., the crack is of some macroscopic, "laboratory” dimension, while p is of atomic
dimension. Although Equation (3) is linear in p, it is expected to break down as p approaches
zero. In order to maintain a finite toughness in the ideally sharp crack limit, the Griffith theory
must prevail as p becomes vanishingly small. For p approaching zero, the applied energy
release rate for crack advance must approach the Griffith limit, 2y;. For larger values of p,
Yeleave Should asymptotically approach the straight line given by Equation (3). This is indicated
schematically in Figure 3. The transition zone between the two limits has been assumed to be
smooth. However, detailed mechanical analyses of the exact form of J jeave(p), using realistic
relations to represent the stress vs. separation curves of Figure 2, are in progress, and initial
results confirm the basic behavior indicated in Figure 3 [14].

The crossover curvature, below which blunting effects are superseded by the Griffith

limit, is SYSE’/EG%. This crossover appears to be consistent with atomistic results given by

Schigtz et al. [4] and Gumbsch [5], who found that only moderate increases in crack initiation
load above the Griffith limit are noted for slight excursions from an ideally sharp crack tip. In
the latter study, more significant increases in the failure thresholds were noted for significantly
blunter cracks.

Dislocation nucleation follows an analogous treatment to that presented for cleavage.
Recently, Rice and coworkers [15,16] provided an analysis of the threshold load for dislocation
nucleation. They considered a slip plane intersecting a sharp crack. The slip plane was taken to
obey an interplanar potential associated with rigid block sliding in a homogeneous lattice
(Figure 2). The principal result is that the critical applied J (the prevailing energy release rate if
the crack were to move as a classical singular crack, without a shear or decohesion zone at its
tip) associated with dislocation nucleation is
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where 0 is the inclination of the slip plane with respect to the crack plane. Equation (4)
assumes the Burgers vector lies completely within the plane of Figure 2 (i.e. has no component
parallel to the crack front) and overestimates Hgi5) for 8 > 0 because it ignores shear-tension
coupling (i.e., the effects of tension normal to the slip plane) and uses an approximate stress
solution on inclined slip planes [15-17]. The crack-tip shear stress, Gy, along the inclined slip
plane is given approximately by

rm,=cm(1+2J§]mn9ame (5)

which is essentially Equation (2) scaiert by the appropriate Schmidt Factor. Equation (5) is
valid for slip plane inclination angles up to about 70°, beyond which the equation breaks down
because the maximum shear stress does not occur directly at the crack tip. Equating (5) with
the peak shear stress, T,, and solving for the critical applied energy release rate for dislocation
nucleation gives
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Although Jgiq scales linearly with p, the relation must not be interpreted physically for p

approaching zero, whereupon the dislocation nucleation criterion is given by Equation (4). The
transition in Y4i5; from Equation (4) to Equation (6) is again assumed to be smooth, as shown in

Figure 3. The crossover crack-tip curvature is approximately 32y usE’coszf)/ n‘r% (1+cosB) .

DISCUSSION

Based upon the threshold criteria derived above, we can now differentiate between an
intrinsically ductile and an intrinsically brittle crystal. Imagine a material with an initially sharp
crack. Knowing the parameters 2Ys, Yus, Op, and T, (and elastic moduli), plots of J4is and Ycjeave
vs. p can be constructed, which can follow one of only four possibilities, as indicated in Figure
3:

Case (i): As depicted in Figure 3(a), 2y is less than g(8)yus, and op is less than
Ty/sinBcos®. When the material is loaded, the crack advances by crack-tip cleavage.
Because the condition for dislocation nucleation is never satisfied, no blunting (aside from
the elastic relaxation, pe) occurs, and we classify this material as intrinsically brittle. Many
ceramics below their ductile-to-brittle transition temperature and glasses below their glass
transition temperature would be expected to fall under this category.

Case(ii): As depicted in Figuiz 3(b). 2Y; is less than g(@)yus, but o, is greater than
T,/cosBsind, giving rise to a crossover between Jgig(p) and Yejeave(p). However, cleavage is




favored over dislocation nucleation, and an initiaily sharp crack remains sharp.
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This

material is intrinsically brittle; however, it is evident that a pre-existing, sufficiently blunt
crack could sustain ductile behavior and continue to blunt. The latter behavior is, however,
metastable, as a perturbation in the local crack-tip curvature could cause it to spontaneously

sharpen and proceed to extend via cleavage.
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Fig.3 Four possible fracture regimes are anticipated by the present model. (a) Ideal
cleavage, characterized by a Griffith fracture criterion and near-zero tip curvature, occurs
when 2Y,<g(0)Yys and 6,<ty/sinfcosB. (b) Ideal cleavage with a metastable blunting regime
occurs when 2Y,<g(0)Yys and Gp>Ty/sinBcosd. The metastable regime is marked by the
ability of a pre-blunted crack to continue blunting by persistent dislocation emission

although sharp-tip cleavage is the more stable configuration.

(c) Persistent blunting,

characterized by repeated dislocation emission and consequent crack-tip blunting, occurs
when 2y,>g(0)Yys and 6p>T,/sinBcos6. (d) Blunt-tip cleavage, characterized by the cleavage

of a finite-blunted crack, occurs when 2y,>g(8)y,s and 0,<T,/sin6cos6.
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Caseiii): As depicted in Figure 3(c), g(8)yys is less than 2y, and 7,/sinfcos8 is less than
Gp. Now, dislocation nucleation is the preferred response to applied load. As the crack
blunts and p continues to increase, {4is) remains less than J¢jeave, and persistent dislocation
nucleation remains the preferred mode. Therefore, the material is classified as intrinsically
ductile. Most fcc metals at room temperature are expected to fall under this regime.

Case(iv): As in the previous case, g(8)yys is less than 2y, and initial dislocation nucleation
is preferred. However, Tp/sinBcosf is greater than G}, and crossover occurs at a critical
value of p, as shown in Figure 3(d). Therefore, when the crack tip blunts to a critical radius
of curvature, cleavage becomes energetically more favorable than dislocation nucleation
and the crack advances. This behavior is representative of what is believed to occur in
some bce metals and at certain metal-ceramic interfaces.

Although the present model extends our ability to predict the competition between
cleavage and blunting beyond the first dislocation emission event, a number of issues remain to
be resolved. The motion of surrounding dislocations in the crystal is not accounted for in this
treatment, nor are three-dimensional aspects associated with dislocation nucleation on "oblique"
slip planes that intersect the crack tip at a point rather than along a line. For the cases described
above, in which dislocations are emitted from the crack tip, the applied energy release rates
should rigorously be interpreted as those based on the local, or screened, crack-tip field, which
can differ from the macroscopic field due to other dislocations, crystalline anisotropy, and
various other local heterogeneities. Although emitted dislocations are assumed to be swept
sufficiently far away that we may ignore these shiciding effects, the importance of external
dislocations and plastic dissipation on the ductile versus brittle competition have been shown to
play a critical role in the actual applied loads necessary to maintain the "local" loads described
in this paper [18-22]. This notion can be exploited to predict the macroscopic fracture
toughness, as well as to explain the large dependence of ductile vs. brittle fracture energies on
temperature, for example in [22].

Much work has been done on correlating 7y,s and 2y with observed fracture processes,
especially in the area of numerical simulations of fracture. The present model highlights the
relevance of the traction law parameters op and T,. The determination of peak tensile stresses
(e.g., in the spirit of Rose et al. [23]) and peak shear stresses (e.g,. as in the work by Cleri et al.
[17]) and their role in the ductile versus brittle behavior of crystals should be assessed in future
simulations and experiments on fracture.
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