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Abstract.  This paper addresses a class of deformation mechanisms involving the coordinated 
shear of multiple, parallel slip planes.  Relevant phenomena include complex stacking faults, 
deformation twins, and dislocation nucleation ahead of cracks in metals.  As part of the theory, we 
revisit the notion of a multi-plane slip potential, we develop a criterion for the emergence of 
microtwins, and we discern the conditions that favor microtwin versus dislocation nucleation.  The 
model is constructed using concepts from the continuum-based Peierls-Nabarro framework for 
extended dislocation cores. 
 
 
Introduction 
 
The deformation of metals has long been an area of intensive study.  In particular, body centered 
cubic (BCC) metals have garnered close scrutiny due to the common use of steels for structural 
applications.  There are several notable features that can develop during plastic deformation of 
BCC metals, such as dislocation nucleation and motion, stacking fault formation, crack 
propagation, and deformation twinning.  Though BCC metals are almost always used in 
polycrystalline form, this paper addresses plastic deformation at the level of a single crystal. 
 
In general, plastic deformation occurs by the motion of dislocations (see Fig 1a).  Macroscopic 
deformations are the result of slip, which is due to the movement of full dislocations in response to 
an applied shear stress.  Twinning is a deformation process similar to slip, involving shearing of 
parallel atomic planes past one another, and is associated with the motion of partial dislocations on 
these planes (see Fig. 1b).  Twinning differs from slip on a macroscopic level in that the twinned 
region inherits a different crystallographic orientation than the rest of the crystal.  Since BCC 
crystals do not have a close-packed plane on which slip is especially easy, the Peierls stress to 
move a perfect dislocation can be high, while the shear stress to activate the twinning process may 
be significantly lower.  Twinning does not result in large portions of bulk plastic deformation, and 
twinning and slip are not “either-or” processes.  While single-layer stacking faults, the type of 
crystalline slip that leads to twinning when it happens on successive planes, have been observed in 
FCC crystals, they have not been observed to occur in BCC metals.  Calculations by Vitek [1] in 
1970 revealed that no local fault energy minima exist for BCC crystals, and thus, single-layer 
stacking faults are considered to be unstable.  Vitek found the first stable multi-layer stacking 
faults to occur on {112} planes for n-layer faults where n ≥ 3.  When n reaches a sufficiently large 
number, the multi-layer stacking faults are identical to twins. 
 
In this paper, we develop a multi-plane continuum model that for an isotropic, non-linear elastic 
continuum to describe deformation processes that occur on one or more slip planes ahead of a 
crack tip.  The crack tip is assumed to be a nucleation point for slip processes.  Within the 
framework of the multi-plane model, an empirical constitutive law is developed to describe the 
relationship between shear stress and displacement on the participating atomic planes.  The 
constitutive law is defined by a parameter set which controls the deformation outcome as either (i) 
full dislocation formation or (ii) formation of an extrinsic stacking fault.  The model is similar in 



 
 
Figure 1.  A crack loaded in mode II, if it doesn’t propagate, either (a) emits a full dislocation or (b) emits a microtwin 
as a front of vertically-arrayed twinning dislocations.  In BCC crystals, the full dislocation Burgers vector b is given 
by √3a/2i, where a is the lattice constant.  The twinning dislocation Burgers vector bt is given by b/3.  The y-axis 
corresponds to the [1 12]  crystallographic direction, and the x-axis corresponds to the [111]  crystallographic 
direction. 
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Figure 2.  Multi-plane model for slip in the Peierls-Nabarro framework; (a) depicts the undeformed state while (b) 
depicts a mode II loading.  The relative atomic displacement ∆i refers to the horizontal shift of atoms across slip plane 
i, with ∆i = 0 in the undeformed state.  Three parallel slip planes (one coplanar with the crack and two adjacent) slip 
according to the generalized interplanar potential given by Eq. 4 and shown in Fig. 3.  Material external to the slip 
planes is modeled as a linear, elastic continuum.  Within this framework, a large amount of slip concentrated on slip 
plane #2, with relatively small slip on planes #1 and #3 is characteristic of dislocation emission; while significant slip 
on all three planes is characteristic of twin formation. 



spirit to recent work by Tadmor et al. [2] in that it exploits the Peierls concept to describe the slip 
of adjacent, parallel planes ahead of a crack tip.  The Tadmor model has been rigorously developed 
for twinning in FCC crystals, a phenomenon which has been observed experimentally [3].  The 
current framework is somewhat more amenable to slip processes in BCC crystals. 
 
 
Multi-Plane Slip Model 
 
In our framework, the formation of a multi-layer, or extrinsic, stacking fault is treated as a 
precursor to growth of a twin.  This so-called “microtwin” is not yet a fully developed twin.  It has 
been seen experimentally that deformation of BCC crystals can lead to the concomitant formation 
of twin dislocations and partial dislocations [4].  These partial dislocations are also known to form 
in as few as two or three slip planes.  Thus, we limit our consideration to only those three critical 
atomic planes, directly ahead of the crack tip (see Figs. 1b and 2).  This allows the model to remain 
tractable as an analytical model, while incorporating the necessary feature of multiple, coupled slip 
planes.  The incipient microtwin is bounded on its flanks by twin planes, and is bounded 
horizontally by the crack tip and the partial dislocation front, respectively.  The remaining material 
(exterior to the slipping planes along the x-axis) is treated as an elastic continuum.  This allows the 
model to be atomistically specific in a critical region, while capturing essential mechanical details 
of the surrounding material.  This model addresses the competition between the formation of 
multi-layer stacking faults versus full dislocations and even partial dislocations. 
 
This model characterizes the behavior of BCC metals under applied shear stress by directly using 
an integral equation method developed by Beltz and Rice [5], built on the Peierls-Nabarro concept 
[6] of dislocation formation.  The model assumes a periodic relationship between the shear stress 
and sliding displacement on planes just ahead of the crack tip.  In order to more accurately portray 
a vertical stack of twin dislocations that form a twin front, or an incipient twin front, we represent 
them as a vertical stack of slip distributions.  In turn, these slip distributions are discretized into a 
series of infinitesimal dislocations of Burgers vector of b′ spaced apart by a distance dx, where b′ 
is defined as – (∂∆/∂x)dx.  The distribution of the infinitesimal dislocations can be made consistent 
with a state of stress-balance everywhere along the slip plane, and the problem of stress 
singularities and the associated need for a core cut-off radius are eliminated. 
 
Fig. 2 shows a schematic of the multi-plane system before and after deformation.  In considering 
the case of three slip planes at the crack tip, a set of coupled, nonlinear integral equations may be 
written to enforce stress equilibrium: 
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where ∆1, ∆2, and ∆3 are the displacements along the three slip planes of interest, gij are the 
Green’s functions for shear stress on plane i due to a dislocation located on plane j, and h is the 
interplanar spacing.  Expanding upon the integral solution method utilized by Gumbsch and Beltz 
[7], who studied mixed-mode loading of a single slip plane ahead of a crack, the solution of this set 
of equations involves the determination of the KII necessary to achieve any combination of 
displacements, ∆1, ∆2, and ∆3.  Eq. 1 describes the entire stress distribution along the three slip 
planes ahead of the crack tip.  The effects of slip or any displacement on a slip plane is no longer 
limited to just that slip plane.  The interactions between the three slip planes are taken into 
consideration, i.e. the presence of a dislocation on any given slip plane incurs a stress on all three 
slip planes.  Any slip that occurs along a slip plane generates stresses that are felt on all three slip 



planes.  Additionally, displacement can occur on all three slip planes, and the displacement is not 
required to be uniform across all three planes. 
 
The solution consists of finding functions ∆i(r) which satisfy Eq. 1, and to determine the maximum 
load for which these functions are stable.  If a solution can be found for the integral equation, KII is 
incremented and the solution procedure repeated until the solutions, ∆i(r) converge.  More details 
pertaining to the numerical solution procedure may be founds in Refs. [5], [7], and [8].  The KII at 
that point is considered to be the critical stress intensity factor corresponding to the load necessary 
for some instability to occur; e.g. multi-plane slip, or dislocation nucleation. 
 
 
Constitutive Law 
 
To complete the integral equation introduced in the previous section, it is necessary to develop a 
constitutive law for the shear response along the sliding slip planes to describe the interatomic 
interactions.  The shear stress, τ[∆1, ∆2, ∆3], is related to the actual slip that occurs along the three 
parallel slip planes during the deformation process.  We begin by revisiting Frenkel’s sinusoidal 
model [9] for the excess energy of a system undergoing slip on a single plane: 
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where A is a dimensionless fitting parameter and γref is an energy scale defined below.  
Differentiating the energy with respect to ∆ gives the local shear stress: 
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and thus τ and ∆ are work conjugate to each other.  To generalize the Frenkel concept – that is, 
develop an energy appropriate for the multi-plane slip, interactions between the multiple, parallel 
slip planes must be considered.  Relative displacement on one slip plane necessarily disrupts the 
equilibrium of atoms on neighboring planes.  An empirical, yet analytic form of the energy 
potential is proposed as: 
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The terms having coefficient A in Eq. 4 correlate to the slip of nearest neighbor layers of atoms – 
as a sum of the energies of three adjacent slip planes undergoing deformation.  This contribution is 
just an extension, in an additive sense, of Eq. 2.  The terms involving coefficient B represent 
secondary interactions generated from second-nearest-neighbor layers of atoms, and the C terms 
account for rotational contributions.  The additional terms on the second and third lines of Eq. 4 
are an attempt to include the interaction of layers within the active slip region with atomic layers 
above and below the active slip plane region. 
 
For the case of single-plane slip, e.g., ∆1  ∆3 ≈ 0, Eq. 4 reduces to E=γref(A+2B+2C)sin2(π∆2/b); 
hence, we identify the grouping of parameters γref(A+2B+2C) as the unstable stacking energy γus.  
The parameter C represents an energy penalty for slip confined to one plane; i.e., materials that 



have a tendency to twin might be expected to have a large, positive value of C.  Collectively, the 
parameters A, B, and C are empirical constants which should be related to material properties, and 
are to be determined by fitting to various existing atomistic potentials.  Such procedures are 
described in detail by Chang and coworkers [8,10]. 
 
Differentiating Eq. 4 results in expressions for local, interplanar shear stress to be used in 
conjunction with Eq. 1; i.e., 
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While the model is developed on the atomic level, and the underlying atomic structure gives rise to 
the functional forms developed here, the formulation of the constitutive law is inherently a 
continuum one.  For the purpose of visualizing the energy profile of the constitutive law, the case 
of multi-plane slip will be presented in this paper with the constraint that ∆1= ∆3, with ∆1 and ∆2 
plotted against energy.  This special case is chosen since ∆1 and ∆3 are expected to be identical in 
value – i.e., they lie equidistant from the central slip plane – and the geometry and loading 
considered here are symmetric about the x-axis. 
 
The surface profile of the potential energy can assume several different shapes, with features 
depending to some extent on the nature of the critical point at (∆1, ∆2) = (b/2, b/2): there may exist 
a peak (that is, a relative maximum), a trough (that is, a relative minimum), or a saddle point.  The 
parameters A, B, and C dictate which one of these classes the energy surface falls into.  The type of 
profile can be determined by considering the second partial derivatives of Eq. 4 with respect to ∆1 
and ∆2 (again, with ∆3 identified with ∆1) at the critical point, along with the determinant of the 
Hessian operator (the so-called “second derivative test”) [11]. 
 
 
Dislocation Formation 
 
Fig. 3a shows the energy contour for the case of A = 1.0, B = 0.5, and C = 0.1.  For this parameter 
set, the energy surface shows no relative minima, except for cases where the lattice has undergone 
one full lattice translation vector (that is, at the corners of the plot).  In this situation full 
dislocation formation is favored.  Additionally, the lowest energy path from (0,0) to the next point 
of zero excess energy is along the “∆2 edge,” indicating that slip-like displacement will be 
concentrated on the 2nd (middle) slip plane, consistent with the formation of a single, or planar, 
dislocation.  Moreover, the 2nd derivative test is consistent with a saddle point at the critical point 
(b/2, b/2).  Thus, it would be unlikely for the atomic planes to displace, even locally, into a 
metastable state in the range 0 < ∆i < b. 
 
Fig. 4a shows the displacement results from the multi-plane model for the three main combinations 
of slip plane motion, plotting the displacement along each slip plane, along the y-axis, against the 
distance from the crack tip in units of Burgers vectors, along the x-axis.  As expected, most of the 
displacement occurs on the middle slip plane (#2).  Minimal slip does occur on slip planes 1 and 3 
as well, since the slip planes are not artificially held stationary and are allowed to react to activity 
occurring on neighboring planes.  Additionally the maximum amount of slip, which occurs right at 
the crack tip, is about b/2, and quickly decreases away from the crack tip, which is in agreement 
with the Rice/Beltz model [5] for dislocation nucleation.  The displacements shown are the 
amounts of slip on each slip plane just prior to dislocation emission. 
 
In addition to predicting the deformation mechanism that occurs when the lattice is under applied 
shear stress, the multi-plane model isolates the threshold for instability in terms of G/γus, where G 
is the energy release rate [given by 2

II(1 )K / 2− ν µ ] and γus is the unstable stacking energy 
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Figure 3.  Multi-plane interplanar potentials characteristic of (a) full dislocation formation (A=1.0, B=0.5, C=0.1) and 
(b) twinning (A=–0.7, B=0.5, C=0.6).  The curves represent the local excess energy due to slipping one, two, or three 
parallel slip planes in any combination with the constraint that the slip on planes #1 and #3 are identical (consistent 
with the symmetry considered in this paper).  Here, b denotes the magnitude of a full Burgers vector, √3a/2, where a is 
the lattice constant. 
 
discussed earlier.  The model starts with an initial G/γus, finds a solution to the integral equations, 
then increases G/γus and repeats the solution procedure.  Here, the system becomes unstable at 
(G/γus)max ≈ 1.05, which may be thought of as the effective unstable stacking energy of single 
dislocation formation for the multi-plane slip model.  As expected, this is very close to the 
expected result G = γus for dislocation nucleation in the single-plane version of the model as 
developed by Rice and Beltz [5]. 
 
 
Microtwin Formation 
 
Multi-plane slip is favored when an unstable minimum exists in the potential energy surface of the 
constitutive law.  To illustrate this, we consider the parameter set A = –0.7, B = 0.5, and C = 0.6.  
A stacking fault forms when the slips on the three adjacent slip planes settle into a state of 
metastable equilibrium associated with the minimum depicted in Fig. 3b, with partial Burgers 
vectors. 
 
In contrast with the case of dislocation formation presented in the previous section, here C has 
increased, from C = 0.1 to C = 0.6; B remains the same, and A is decreased significantly.  
Comparing Figs. 3a with 3b, it can be seen that multi-plane slip is associated with a lesser energy 
barrier than single plane slip.  The displacement profile results for this case are shown in Fig. 4b, 
indicating the formation of a stacking fault.  Slip plane 2 (midplane) still experiences the most slip, 
since it is located in line with the crack.  However, the adjacent slip planes 1 and 3 also experience 
significant slip.  As with the previous case, the displacement decays quickly, and within a few 
Burgers vector lengths from the crack tip, the material is essentially unaffected by the presence of 
the newly formed stacking fault. 
 
As seen from the energy profile, the displacements of the three-slip plane prior to instability are 
less than the value b/2 that was seen for the single dislocation case, further indicating the 
formation of a stacking fault.  The potential well sits directly in the center of the energy profile of 
Fig. 3b.  Though the true displacement profile does not take place along either of these idealized 
paths, but rather some combination of multi-plane slip, they are good guides for visualizing the 
deformation, and the point of instability should occur near these points.  Indeed, the results show 
the maximum displacement of slip plane 2 to be around 0.32b, which correlates to the point of 
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Figure 4.  Profiles of relative atomic displacement on three parallel slip planes obtained from the numerical solution 
of Eq. 1 with the interplanar potentials given by Eq. 4.  Twinning is characterized by non-negligible shear 
displacement accumulating on multiple, parallel planes, consistent with the system reaching an energy state in the 
interior of the plot given in Fig. 3b.  Here, b denotes the magnitude of a full Burgers vector, √3a/2, where a is the 
lattice constant. 
 
 
instability, or the top of the potential energy “hill” before the displacement falls into the potential 
well, thus forming a stacking fault. 
 
The onset of instability occurs at G/γus ≈ 0.6, a modestly lower value than for the dislocation 
emission considered in the previous section, consistent with the system avoiding the energy barrier 
associated with single plane slip. 
 
 
Conclusion 
 
The unique characteristic of the multi-plane slip model is the ability for multiple slip planes to 
operate, allowing for the possibility of deformation features other than the oft-modelled single 
dislocation emission.  Given the appropriate set of parameters for the multi-plane energy potential, 
the lattice response of the model results in slip occurring along multiple planes, which can lead to 
stacking fault formation, and ultimately, twinning. 
 
The model produces clear distinction between stacking fault formation and full dislocation 
formation.  The case of single dislocation emission produces realistic displacement results, with 
displacement occurring on all three slip planes.  The majority of the slip occurs on the middle, 
central slip plane as expected, but the other two slip planes also experience some slip, although of 
a magnitude less than that on the central slip plane.  This is interesting to note, since it 
demonstrates the mobility that is allowed and always present in the system; the secondary slip 
planes are not “locked” and do experience some small deformation in response to the large 
displacement occurring on the central slip plane. 
 
The situations in which stacking fault formation arises differ in that significant slip occurs on all 
three planes, and is distributed along all three planes, though it is not necessary for the slip to be 
equal on all three planes.  The symmetry of the system requires that the slip planes above and 
below the crack plane experience equal but opposite amount of displacement, and this is observed 
in the results of the model. 
 



This model is currently limited to an idealized case of mode II loading of a crack tip that is 
coplanar with the slip planes.  Further expansions for the model should include a consideration of 
inclined slip planes, mixed mode loading effects, and perhaps most importantly, a more robust 
family of slip plane constitutive laws that can be fit to the behavior of real crystals. 
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