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ABSTRACT

The analysis of dislocation emission from a crack tip within the Peierls framework [Rice (1992) J. Mech.
Phys. Solids 40, 239-271 ; Rice et al. (1992) Topics in Fracture und Fatigue, pp. 1-58; Sun et al. (1993)
Mater. Sci. Engng A170, 67-85], heretofore developed for isotropic solids, is generalized to take into
account elastic anisotropy. An incipient dislocation core, represented in terms of a critical configuration at
the crack tip, is determined numerically (most simply in the shear-only version of the model, but also for
a combined tension—shear version that includes tension-shear coupling constrained by atomic modeling).
These solutions improve upon approximations based on an effective shear stress intensity. For fcc crystals
and intermetallics, the nucleation event analysed is that of a set of partial dislocations emitted sequentially.
The anisotropic formulation accounts for corrections as large as 30% in the critical value of the stress
intensity factor for atomic decohesion, or cleavage. The anisotropic critical crack extension force for
dislocation emission may be greater or less than its isotropic counterpart. For an embedded-atom-method
(EAM) model of bce a-Fe, the anisotropic values can be as large as 2.4 times the isotropic ones in one
crack orientation; in another crack orientation, the values are as much as 40% less than the isotropic
analogs. For fcc structures (EAM nickel, aluminum and Ni;Al), the difference is within a +10-25% range.
For silicon, the isotropic formulation is good, with less than a 14% difference from the anisotropic
counterpart. The anisotropic effects are found to increase with a standard ratio of elastic anisotropy, and
are important for predicting intrinsic ductile versus brittle response.

INTRODUCTION

The recent analysis of dislocation emission from a crack tip by Rice (1992) is based
on the Peierls-Nabarro model (Peierls, 1940; Nabarro, 1947) for a straight line
dislocation. This model combines atomistic descriptions of the dislocation core with
continuum elasticity in a physically realistic fashion and describes the process of a
dislocation core nucleated from nil at a crack tip. In the same way as in the Peierls—
Nabarro model of a dislocation core, the nucleating incipient dislocation at a crack
tip is depicted as follows: a distribution of discontinuity in the displacement field
across the slip plane obeys a sinusoidal law of shear stress versus displacement, and
is embedded in a linear elastic medium surrounding the crack. The main advantage
of the new approach is the elimination of the ill-defined dislocation core cut-off radius
r.. used in the earlier pioneering work by Rice and Thomson (1974). The newly
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identified physical property by Rice (1992), a solid state parameter y,,, the unstable
stacking energy, is now the key to the analysis of dislocation emission from a crack
tip in the Peierls framework. We note that the newer approach contains no account
of the energy of the ledge formed at the crack tip by the emergent dislocation, and it
remains to be seen how important that factor is.

Additional reservations should be made here regarding the Peierls-type analysis for
dislocation emission. Recent atomistic studies by Zhou er al. (1994) indicate that the
Peierls model may underestimate the critical loading for dislocation emission by as
much as 50% when the slip plane is tilted with respect to the crack plane. The
agreement of the two types of approaches is good in the case of coplanar crack and
slip planes (Zhou er al., 1993). Whether the discrepancy is due to the discrete nature
of the system, so as to result in lattice trapping in the slip process or the so-called
ledge effect, remains open for further research. The atomistic simulations of crack
tips in RuAl (Becquart er al., 1993) showed that surface reconstructions may be
induced under mode I loading on the near-tip crack surfaces, and may determine
whether or not the dislocation is emitted. We note that the Peierls model does
not take into account stress-induced surface reconstructions, which may alter the
predictions by the Peierls model and the Griffith cleavage condition. These issues are
generic in nature, and likely are beyond the scope of what the Peierls model can
handle.

Furthermore, we note that the embedded-atom-method (EAM) representation of
“real” iron is only fair: it does not directly consider magnetic effects, and can only
mimic their consequences in fitting the vacancy energy and the requirement that
energy of bec be lower than fce and hep structures. The fit to the elastic constants is
only fair because of this requirement. Interested readers should consult the original
paper (Harrison et al., 1990) for details. However, despite this, it is still appropriate
that we compare the predictions of the Peierls type analysis with the observations in
molecular dynamics (M D) simulations using the same EAM potential by Cheung and
Yip (1990, 1994), Cheung (1990), and Cheung et al. (1991).

It has been determined that the tensile stress across a slip plane ahead of a crack
tip has the effect of decreasing the cnitical loading required to emit a dislocation;
evaluation of the effect is important for understanding ductile versus brittle response.
The details of estimating the tension- shear coupling parameters and a systematic
study of coupling effects were carried outl by calculating the criteria for dislocation
nucleation for a wide range of these parameters, and results were presented in Rice ef
al. (1992), Sun et al. (1993), and Sun (1993).

The Peierls concept has also been used in a recent analysis of dislocation nucleation
by Schock (1991). His analysis was somewhat more approximate compared to Rice’s
(1992) Peierls type analysis and did not uncover the exact critical core configuration
of the nucleated dislocation within the Peierls framework. There, a simple arctan
function was instead assumed for the core and used for variational determination.

Since all crystals are anisotropic and most existing atomistic MD simulations
correspond to anisotropic crystals, the problem of dislocation emission from a crack
tip should be analysed based on the anisotropic elasticity formulation. The objective
of this work is to generalize the analysis of dislocation nucleation at a crack tip within
the Peierls framework from the previous isotropic elasticity formulation to anisotropic



Dislocation nucleation from a crack tip 1907

elasticity. Some preliminary work towards that end, giving shear-only results for
coincidental crack and slip planes, was reported by Rice er al. (1992).

After a brief description of anisotropic elasticity, dislocation emission from a crack
tip is first treated in the approximation of an effective shear stress intensity factor and
without tension—shear coupling. The exact numerical solutions improve upon the
approximate treatments based on an effective shear stress intensity. The incipient
dislocation core and its critical configuration at the crack tip is exactly solved numeri-
cally, most simply in the shear-only version of the model, but also for a combined
tension—shear version that includes tension—shear coupling constrained by atomic
models. This is done for several EAM metals, as well as silicon, with parameters of
slip constitutive laws estimated by density functional theory in the local density
approximation (Huang et al., 1991 ; Huang, private communication ; Kaxiras and
Duesbery, 1993), referred to as DFT-LDA Si, following Rice er a/. (1992), Sun et al.
(1993), and Sun (1993). For the fcc crystals and intermetallics, the nucleation event
analysed is that of a set of partial dislocations emitted sequentially. Results are
compared to those of the isotropic formation.

CRACK EXTENSION

The energy release rate of a loaded crack tip in an anisotropic medium is
G= Ko(Aoz/iK[f» (1)

where K, = (K|, K,, K;) = (Ky;, K, Ky;)) is the external loading and A, is the appro-
priate matrix for the crack orientation in the anisotropic material. The Einstein
summation convention is used in this article, namely, repeated dummy indices indicate
summation. The matrix A, is real and symmetric and can be represented by the elastic
constants in the crack coordinate system, and has, in general, off-diagonal elements
[sece Stroh (1958), Bilby and Eshelby (1968), Barnett and Asaro (1972) and Suo
(1989)]. The elastic constants for the EAM materials for anisotropic calculations are
the fitted results by these atomic models, not the experimental values. The elastic
constants and EAM functions used in this work have the following sources: Ni are
from Foiles et al. (1986) and Foiles and Daw (1987); Al, Hoagland et al. (1990);
Ni;Al, Foiles and Daw (1987); z-Fe, Harrison er al. (1990). Those for Si are the
experimental values, listed by Hirth and Lothe (1982).

For convenience, capital letters are used to label crack orientations in cubic crystals,
which are listed in Table 1. The coordinate system is : the x, axis is the crack extension
direction, x, is normal to the crack plane, and x; is along the crack front. For instance,
a crack on the (001) plane growing along the [100] direction is labeled as crack A,
and along the [110] direction as crack B.

Equation (1) is used to calculate the critical loading K, for crack extension under
mode I loading corresponding to the Griffith condition, that is, G = 2ys, where Vg is
the surface energy. For crack 4 in EAM-Fe, with yg equal to 1.83 J m™2% K5 is 0.864
MPa \/E in the isotropic formulation, but 0.665 MPa \/a in the anisotropic for-
mulation, which is 23% less than the isotropic value. For the isotropic calculation,
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Table 1. The crack and slip systems

Lattice Crack model X—Xy-X;, crack coord. Slip system

bee A [o10}- [OO]] [100] (1/2y [111] (Oll)
bee B [110]-[001]-[110] (1/2y [111] (T10)
bee C [011]-[011]-[100] (1/2) [111] (01D)
fee D [1103-[001]-[110] (1/6) [121] (111)
fee E [001]-[T10]-[110] (1/6) [112] (111)
fee F [111]-[110]-[112] (1/6) 211} (117)
fce G [112]-{T11}-[110] (16y 112 (111

p = 0.691 x 10" Pa and v = 0.323, which are Voigt averages of the anisotropic elastic
constants for EAM-Fe.

According to isotropic elasticity, the Griffith condition under pure mode I loading
would be the same for the crack to extend along any direction in a given plane.
However, in an anisotropic elastic crystal, the different crack extension directions
have different A, matrices, and therefore require different critical pure mode I load-
ings. Even with the same value of G equal to 2y, for (001) crack planes in a cubic
crystal, a crack growing along [100] (crack A4) or [110] (crack B) would require
different amounts of mode 1 loading for extension. For EAM-Fe, crack 4, K is
0.665 but for Bitis0.778 in units of MPa , /m, a 15% difference. Since the anisotropic
formulation is necessary for detummmg the condition of crack extension. we may
expect it is also important for dislocation emission.

DERIVATION OF CRITERIA FOR DISLOCATION NUCLEATION WITHIN
THE EFFECTIVE SHEAR STRESS INTENSITY FACTOR APPROXIMATION

In this section, we first treat the problem of dislocation emission from a crack tip
within the effective shear stress intensity factor K, approximation (Rice, 1992 ; Rice
et al., 1992). Let us consider the general scenario: suppose that a “soft” slip plane
intersects the crack plane and that the intersection line is also the crack front, and
that the slip plane makes an angle ¢ with the crack plane. Assume that the crack tip
is loaded by (K, K,, K5) = (K, K}, K1) ; the K, here are the local and screened stress
intensity factors near the crack tip. Assume that the crack doees not extend. The stress
concentration near the crack tip is relieved by an emergent zone of displacement
discontinuity {3,(r), 3,(r), d(r)} across the slip plane, i.e. an incipient dislocation.
The incipient slip zone is illustrated in Fig. 1.

The edge slip direction is along r, the normal direction is along 6 with the unit
directional vector n and the screw slip direction is along z. The edge component is
3,(r) = ut (r)—u, (r) and the screw component J.(r) = ur (r)—u; {r); the dis-
continuity in the opening direction 8,(r) = ugy (¥} —u; () = nfu; (r)—u; (r)]. The slip
direction in the slip plane has the unit directional vector denoted s = (cos ¢, 0, sin ¢)
in the r, 8, z coordinate system. The sign convention for the angle ¢ of the slip
direction is that ¢ is defined as positive when the slip direction rotates from the r axis
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crack tip

Fig. 1. Anincipient dislocation, represented by a distribution of sliding and opening displacements, develops
along a tilted slip plane at angle 6 with respect to the crack plane in response to the mixed loading K}, and K.

toward the z axis. The displacement discontinuity across the slip plane in that direction
is 0,(r) = 5,0,(r) = 5, [u] (r)—u, ()]

The lattice restoring stresses at one point # in the slip plane are assumed to be
only a function of the local displacement discontinuity §,(r) in the slip direction s.
Afterwards only the slip on that direction is considered, namely, [5,(r), 6.(r)] = [cos
¢, sin @] 5,(r). We present the details for the constrained path approximation later.
The modeling of such lattice restoration against shear slip, in a way that also involves
opening, has been presented in Sun ef al. (1993) and Sun (1993), with empirical
interatomic potentials in the EAM and with reference to DFT-LDA studies by others
(Huang et al., 1991 ; Huang, private communication ; Kaxiras and Duesbery, 1993).

We first analyse the case of coincidental slip and crack planes, i.e. # = 0, and derive
the nucleation criterion. There the mathematics simplifies, and an exact analytical
solution is possible via the J-integral method in the shear-only model. The case of an
inclined slip plane is approximately treated based on the effective stress intensity
factor. Though such an approximate method tends to overestimate the critical loading
for dislocation emission, it establishes a conceptual framework. In the next section,
we present exact numerical solutions and also treat tension—shear coupling.

Analysis of coincident crack and slip planes for general loading and Burgers vector angle

We follow the derivation in Rice (1992), using the J-integral argument, but instead
using anisotropic elasticity, which was partially outlined in Rice er al. (1992). The
path independent J-integral is

J= f [, W (V) —n,0,4 dug/ox,] ds, 2)
r

where W is the strain energy density, 0., is the stress tensor, u is the displacement
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slip plane

Fig. 2. A semi-infinite crack tip is loaded by K;,, while an incipient shear zone of edge character on the
coplanar plane with the crack relieves the singular shear stress field. J-Integrals are evaluated along the far
and slit paths.

field, n is the unit normal vector pointing outward from the path I', and s is the arc
length. The integral path starts from any traction-free point on the lower crack
surface, surrounds the crack tip, and ends on any traction-free point on the upper
crack surface. The J-integral is path independent as long as the elastic properties are
independent of x, and the equilibrium condition is satisfied.

Figure 2 shows the J-integral paths around the crack tip. Suppose the incipient slip
zone is small compared to the overall size of the crack and specimen, so that we can
treat the crack as embedded in an infinite medium and the stress near the tip is
dominated by the singular field prescribed by K,. This is verified by the numerical
solutions to be presented in the next section, since the incipient zone is appreciable
over the length of eight or less units of b ahead of the crack tip. The crack is treated
as semi-infinite and the concept of small scale yielding is valid. It is a well known
result that evaluation of the J-integral along the path 'y, which is far from the shear
zone but still is small compared to crack length yields J = G, i.e.

J =G = KAK, (3)

The emergent slip zone relaxes the singular stress field near the tip. If the stress
relief is not complete, there would be some remnant singular stress components. which
are describable by the stress intensity factor at the tip K,uip = [Kiwp Kagipr Kagtip] -
Evaluating the J-integral along a path closely embracing the slit thus yields two parts:
the first arises from integration on a circular path I, with an ever-shrinking radius
around the crack tip, resulting from the crack tip singularity, and the second from
integration over [,

o,

J = K.Mm)/\,/;Kﬁmp,—l—J [—0s €0y/Cx ) dxy, (4)

4}

where 7, is the stress across the slip plane for which we assume there exists a potential
®() such that
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Gap = 6‘1)(5)/@5/1» (5

and is related to the ;. The integration of the second term in (4) is easily carried out.
The integral is identical to ®(d;,), an elegant result in that it depends only on the
displacement discontinuity at the tip. Therefore, J evaluated along I'y;, is

I = K im A Kpaipy + P8 iipy)- (6)
Combining (3) and (6) relates the K, to the potential O(d,,)).
KaAo(/fK/f—Koc(lip)AxlfK/K(tip) = ®(6(tip))' (7)

From (7), we obtain information about the slip displacement ¢, at the tip via
the lattice potential ®(d,,) if we know how the K, is determined by the shear zone
process under loading K..

As a simplification, we treat the slip process zone {J,(r)} as a pure shear process,
i.e. the dilational opening does not enter directly into the formulation of the mechanics
problem, which means putting constraints on the opening, e.g. 3, = 0, or gy, = 0. The
modeling involving dilational opening takes into account the effect of the tension
coupling, and the result is a reduction in the critical loading for dislocation nucleation.
A simple but approximate procedure to account for such a reduction is to use %, i.e.
the relaxed value instead of the unrelaxed value for 7y, in our formulation (Rice et
al., 1992). A full account of tension—shear coupling is presented in Sun et al. (1993).

The lattice potential ®(d,, d, = constrained, J.) is a function of two independent
variables, the slip displacements §, and 4., and is periodic along the s(¢) direction
defined to be parallel to the Burgers vector and has a maximum called y,,, the unstable
stacking energy. The pathway for é in the two dimensions of the slip displacements
d, and 6. going from zero, through the maximum point, and finally ending at one
Burgers vector b is a saddle-like path in the slip plane of the lattice potential ®(o,,
dy = constrained, J.) for full slip. In the direction which is perpendicular to the saddle
path the lattice potential ®(J,, o, = constrained, ¢.) rises rapidly. Assume that the slip
displacement d(r) is constrained strictly along s(¢), in the so-called constrained path
approximation (Rice, 1992),

0,(ry = (3,(r)cos ¢,0,6,(r) sin ) = 0.(r) s,(¢), (8)

where s,(¢) = (cos ¢, 0, sin ¢). The assumption of the constrained path is excellent,
especially in crystals for which the saddle path is straight, such as in Ni, Al and Ni,Al
in the Shockley partial route.

The stress a,,(r) at a point r on the slip plane that is arbitrarily close to the crack
tip is determined, by definition, by the stress intensity factor at the tip K, ,, and may
be singular, i.e.

limit [/ 22762,(1)] = Kiapy- O)

The shear stress component ©(r) along the s(¢) direction is 1(r) = 5,(§) 6,,(r), which
must be balanced by the lattice restoring force ©(r) = s,(¢) P(5)/36,, where we recall
that the 9, are set to 5,0, in this expression. Since the lattice restoring force z(r) at the
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tip cannot be arbitrarily large, the stress intensity factor along s(¢) at the tip must
vanish,

Sz(ﬂé)Ka(up) = Kjip COS ¢ + Kspip sing = 0. (10

Moreover, the stress intensity factor at the tip K, must be a linear superposition
of applied K, and the K,, that are induced by the incipient dislocation zone slips
{05(r)}. The slip zone {d,(r)} is readily modeled as a continuous distribution of
dislocations with Burgers vector b; = —drdd(r)/dr. The single line dislocation at r
of Burgers vector b, when the dislocation is coplanar with the crack plane produces
a stress intensity factor K, (Rice, [985),

Ko = — == Ay'by. ()

The stress intensity factor produced by the shear zone {J,(r)} is then the integration
over the entire continuous dislocation distribution. Consequently, we obtain

Koc(tip) =K.+ Am-}f, Od/}(”)a (12)
where O is an operator acting on {3,(r)},
o0 N ! d d (13)
= — == —aF |
J & 2\//.—2751" dr '
We put in the constrained path approximation &,(r) = s, d,(r) and obtain
Ka((tip) = Kot + CvAx_/ilsﬁ(d))’ (14)
where the term C arises from O acting on {8,(r)},
= . dé,
Czj w[dr .‘(r)]_ (15)
o 2./2nr dr

However, there exists another method to find the term C without having to solve for

8,{r): combining (14) with (10) and solving for C gives

= °'(«-¢~—~3I" . (16)
s.(@) Ax[f 5/;(¢)

The stress intensity at the tip is completely determined by (14) and (16), and is

combined with (7). After a few algebraic steps, we arrive at

sOKE
Sy (‘f))/\a}f' sp(¢)

where we have used the fact that the matrices A, and Aj;' are symmetric.

The variable g in (17) would become G, the crack extension force, under special
circumstances provided that the matrix A, is diagonal and : (1) either for pure edge
dislocation nucleation under pure K, = K, loading, or (2) pure screw dislocation
nucleation under pure K; = Ky, loading. The condition for dislocation nucleation in
these two special cases is then G = y,,,, which is the same as in the isotropic formulation.

g D(d:ip). (7
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Fig. 3. The periodic relation of shear stress (solid curve) and its associated potential (dashed curve) versus
the slip displacement within the Peierls concept. Each is scaled by its maximum and the displacement by &,

The relation expressed by (17) connects the solution of the shear zone {J,(r)} to
the applied loading {K,}. Due to the periodic nature of the lattice potential ®(4) in the
constrained path expressed by 0,(r) = 5,(¢) 6,(r) in the slip process, there correspond
multiple solutions 4, C, 4A’, C’, etc., to one set of loadings X,, as shown in Fig. 3.
Point A represents the stable solution, while point C is the unstable after-critical
solution for the incipient shear zone of the first dislocation. The critical solution
corresponds to point B, when the lattice potential ®(8) takes the maximum value y,.
The solutions 4’ and C’, etc., correspond to the second dislocation nucleation
processes, respectively. The dislocation nucleation criterion for the first dislocation is

Sa(¢)K1 =V yusp(d))v (18)

where we have defined p (¢) = s,(¢) A,5' s5(¢). It is interesting to note that the term
s,(¢) K, of combination of shear K, and anti-plane shear loadings K; can be regarded
as the shear stress intensity factor along the s,(¢) direction in the slip plane.

We note that (14) can be rewritten as

A/fox(tip) _A/foszx = CS/:(¢)- (19)

The term A,, K, determines the displacement discontinuity between the crack surfaces
behind the crack tip,

Aug(r) = uf (ry—uy (r) = 4./ 2r/nAp K., (20)

in the absence of any shear zone {ds(r)} (Rice, 1985). Thus, Ay, K, can be termed the
displacement intensity factors in analogy with the stress intensity factor K,. Equation
(19) can also be interpreted as follows: the displacement intensity factors Ay, K,
remain unchanged near the tip, along both the crack opening direction and the
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direction perpendicular to the s,(¢). for partial relief of singular stress in the con-
strained path approximation.

Nucleation of dissociated dislocations on coincidental crack and slip planes

Frequently, dissociated partial dislocations are formed in metals, e.g. Shockley
partials in fce crystals, and partials connected by faulted planes such as the anti-phase
boundary (APB), complex stacking fault (CSF) and superlattice intrinsic stacking
fault (SISF) in intermetallics. It is likely that dislocation emission in fcc materials
consists of sequentially emitted partials rather than the full dislocation.

We consider now the emission of paired partials in the same manner as Rice
(1992), but using anisotropic elasticity, understanding that the interpretation of those
formulae are to be corrected as in a note appended to Rice er al. (1992) to account
for the partials forming in a definite ordered sequence rather than competitively. The
slip plane is presumed to be coplanar with the crack surfaces for simpler mathematical
manipulations. The first partial is labeled A, with slip direction at angle ¢, with the r
direction in the slip plane, while the second partial is labeled B, with slip direction at
angle ¢ .

The emission of the first partial occurs in an anisotropic medium when the
nucleation condition expressed in (18) is reached,

Ki=s($0K, = /1up(dd) = K, 1)

The emitted partial has two effects on the nucleation of the second: (1) shielding
of the loading and (2) offset of the lattice potential from zero to the value of the
stacking fault energy so that the energy barrier for the second partial nucleation is
(ﬂ)"us - R)"sl‘) .

The shielding of the loading depends on the location of the emitted partial as
expressed by (11). The emitted partial dislocation will be treated as a line defect ; the
self-consistency is ensured by the fact that it is far away from the shear zone of the
second partial at the crack tip. Its stable equilibrium position is found from the
condition that the force exerted on it in the slip plane vanishes (the larger of the two
roots of the following equation), i.e. the balance of the Peach--Kohler force and the
attractive forces of the stacking fault energy and the image force in the slip plane,

fi= K/4h.»1,ff\//7mﬁ; —vat/ =0, (22)

where f, is the image force on the partial dislocation in a slip plane and has been
derived by Asaro (1975) and Rice (1985),

f=— fzis\%(d)A)Ax/flsa(d)A) _ bft[’ ((1’42 (23)

8nr 8nr 4
A

The glide motion of the first partial also experiences a friction force o, b, from lattice
resistance, the Peierls stress o, ; hence the term 7, should be replaced by (y4+0,b.)
in (22). The Peierls stress a,, is of order 10 * to 10"y, (Hirth and Lothe, 1982). For
fce metals, we estimate o,,b, to be 10™* g b4 and e to be 1/3 7, = 0.01 gy, b4 (Rice,
1992 ; Rice ef al., 1992) so that the lattice friction ¢,b, is about 1% of y,, which is



Dislocation nucleation from a crack tip 1915

justifiably neglected for fcc metals here. For the position of the first partial. a relation
is found by solving (22) in connection with (21) and (23),

- )
bA KA yus
2/ 2mr, P () '

Its position is estimated to be 10-50 times b, away from the tip. The stress intensity
factor is now shielded by the emitted first partial dislocation according to (11),

(24)

b
Ki=K,— <A>Awls/f(¢4)- (25)

2./ 2nr,

The shear stress intensity factor along the s,(¢),) direction is K = s,(¢5) K, and for
the screened stress intensity factor K§ = s,(¢g) KX

K= Ks—n (s 0K +1(Ps ¢/ Ki—75p(d ), (26)

where
_ s (@) s5(d 1) _ s (P Ay s5(d ) 7
L TV Y S S STV ) B @

The emission of the second partial dislocation occurs when

KE = Gu =700 (05) - (28)

The two effects of the emitted first partial have been incorporated into the nucleation
condition expressed in (28).

Approximate nucleation condition in the case of a tilted slip plane

If the slip plane is inclined at an angle 6 with the crack plane, the exact solution
can only be obtained by numerical methods [see Beltz (1992), Rice et al. (1992) and
Sun er al. (1993) and also the next section]. We would project the singular stress
concentration and the A, matrix from the main crack onto the slip plane, then treat
such a projected case as if the crack were coplanar with and just behind the slip plane.
This method of projection is only rudimentary, and must be checked by the numerical
solution. We will observe that this projection method is justified, though approximate.

The approximation occurs in two steps. First, we adopt the concept of the effective
stress intensity factors K&" as proposed by Rice (1992). These effective stress intensity
factors KS" are defined through the stress components a,,(r) in the slip plane with
o= (r,0,z) from the general loading K = (K|, K>, K3) = (Kj1, K, Kj;;) on the main
crack,

F, 1/?(8)]([;

04, (1) = 5 (29)
2nr

such that
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ch’f
Ounlr) =

. (30)
\/ 2mr

We have
K" = Fy(0)K,. (31

Secondly, we find the proper AY) matrix for crack extension force G, for a crack

extending along the r direction such that G, = K"A} K§". The A{) matrix is related
to the A,; matrix by

AS;; = foﬁA(SyR{f;*- (32}
where R is the rotation matrix,

cosf  smm@ O

R=| —sinf cosf 0. (33)
0 0 1
It is easily shown that the inverse of the Al)) matrix, Al ™" = R,z A5 Ry,.

The dislocation nucleates on the inclined plane when the condition expressed by
(18) is satisfied, but here in the context of the effective stress intensity concept and
the AL} matrix for the inclined plane, that is

SADIKE = S 7u0(0. 0), (34)
where p (6, 0) = 5,(O)AG " s,(¢).

INTEGRAL EQUATION FORMULATION FOR THE PROBLEM OF
DISLOCATION EMISSION FROM A CRACK TIP

In the previous section, the dislocation emission criterion was approximately
obtained by the effective stress intensity factor K" and AP, obtained by the projection
method, when the slip planc is inclined with respect to crack planes. Should the
normal stress also be taken into account, the critical nucleation criterion can no longer
be determined by the J-integral even in the coplanar slip and crack planes case, but
only be determined exactly by numerical methods. We now present exact treatments
for the general cases involving inclined slip planes and mixed edge and screw com-
ponents, including tension—shear coupling.

The combined tension—shear model

Suppose an incipient profile {8, (r), 8;(r), 6. (r)} develops on an inclined slip plane,
in response to the stress concentration at the crack tip under combined K, loading,.
which is similar to Fig. 1. We assume that the profile is predominantly shear, with
small opening displacements.

The incipient profile {3,(s)} is, as before, modeled here as a continuous distribution
of an individual dislocation at location s of an infinitestmal Burgers vector
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[—(dd,(s)/dsyds], which in turn will exert stresses gy, (r) = g, (r,5;6)
[—{(dd; (5)/ds)ds] on a point r along the slip plane. Therefore, the Green’s functions
g.5(r,5;0) so defined can be obtained by solutions of a line dislocation inter-
acting with the crack tip in the anisotropic linear elastic medium. Some details are
presented in the Appendix. The force balance at a point r along the slip plane gives
equations of equilibrium,

%0

déﬁ (S)

oy, 5, 0) [— — ds] , (35)

00, [0(1)] = 05, (r) +J ds

0

where (o, f) = {r,8,z), but also denoted as (1, 2, 3), and aﬁx(mthe unrelaxed stress
from the crack loading K., are given as 64,(r) = Fp()Ky/\/2mr, as in the previous
section.

The term 6,,[0.{r)] is the lattice restoring shear and tension stress against the
displacement discontinuities across the slip plane at point r, with which a potential
®[d, ()] is associated, such that
0P[6(r)]

88,(r)
Equations (35) and (36) constitute a complete set of equations to be solved sim-
ultaneously.

We remark about properties of the Green’s functions g,; (, 55 6). It can be shown
that

00, [0(r)] = (36)

gaﬁ(r’S;g} :E r—s » (37)

1 f [AD " +hy(rfs, 0)]
-

where the following properties of the function A, (1, ) are of interest : first,
hy(1,0) =0, (38)

in order to have proper stress fields in the linear elastic medium near the dislocation
point s. Furthermore, the Rice-Thomson image force theorem for a dislocation line
at a crack tip implies that dh,, (f = 1, 0)/0r is antisymmetric for indices o and B, i.e.

ok, (1 =1,0)/0t =0, (39a)
Ohgo(t = 1,0)/01 = 0, (39b)
oh_(t=1,0)/61 = 0, (39¢)
Bhyo(t = 1,0)/0t+0hy (1 = 1,0)/01 = 0, (39d)
Oh,.(t = 1,0)/01+8h.,(t = 1,0)/0t = 0, (39%)
Bhy,(t = 1,0)/01+ 0he.(t = 1,0)/0t = 0. (39f)

The conditions given by (38) and (39) are trivially satisfied for 0 = 0, 1.e. h(r/s, 0) = 0.
Further details regarding the stress functions g,,4(r, s ; 8) are presented in the Appendix.

We also apply the constrained slip path approximation here. Let the slip be con-
strained to be along the direction s (the same as b) that makes an angle ¢ with the r
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axis in the slip plane, 3,(r) = [0,(r) cos ¢, 3(r), 3(r) sin @] and the stress T = g, cos
¢+oy, sin ¢ and o = g, We seek the condition under which the profile becomes
unstable, after which a dislocation emerges and moves away from the crack tip until
being stopped by the lattice resistance, the Peierls stress 6,. or by interactions with
distant dislocations, etc. We obtain the following equations :

1[8,(r), 0y(r)] = ijl Guiilr,s:0, ¢)d() (—st—f Gialr.s;0,¢) - O”(s)
N4 0 o
(40
a[d,(r). 8p(n)] = — = —f G (7,530, 4) do. (‘)dgv J‘ " Gna(r 510, 0) 9?&(2(1
V 2nr 0 o
(41)

where K" = \/2rn [cos ¢ oy, (r, ) +sin ¢ 07.(r, 0)] = s,(¢p) Fu(HK, and KI'=
\//fnp'm,(,(i ) = F,;(0) K. These are defined for the singular stresses a7, o). and o),
at the crack tip under external loading before the emergence of the incipient profile.
The functions gy, i, g-; and g, are stress functions for a straight dislocation at a
crack tip: gy (r.8:0) = 5,09) gup (r.8:0) sp(@), Gz (r,5:0) = 5(¢) g2 (r.5:0), Gy
(r,5;60) = gs, (r.5:8) s{¢p) and Jon (r,5:8) = g (r,5:6). All of these terms and
functions can be obtained from the singular field of a loaded crack tip and solution
of a dislocation near a crack tip using the anisotropic elasticity formulation see ¢.g..
Atkinson (1966), Asaro (1975) and Suo (1989).

The terms t[d,(r). 8,(r}] and o[d,(r), 0¢(r)] are lattice restoring shear and tension
stresses against the displacement discontinuities across the slip plane: a potential
P@[5,(r), 8,(r)] 1s assumed to exist, such that

dD[3,(r), du(r)]
ad.(r) ’

t[0,(r), 0u(r)] = (42)

2,() )

a[0,(r). 8y(r)] =

Modeling of the constitutive law ®[d (r). 5,{r)] from EAM results for Ni, Al, Ni;Al
and Fe, from sources noted above, and from density functional studies of Si by
Kaxiras and Duesbery (1993), Duesbery er af. (1990). Huang et /. (1991) and Huang
(1992) have been provided in Sun et a/. (1993), Rice et al. (1992) and Sun (1993). The
same potential from such atomic models is used here. The analytic representations of
the stresses and the potentials can be found in Beltz and Rice (1991), Rice er al. (1992)
and Sun et al. (1993). Equations (40)-(43) constitute a complete set of equations
which can be solved jointly to determine the critical loading and corresponding
incipient configuration. The solutions are obtaindble numerically, by use of the New-

Erdogan (1975) and Erdogan and Guptd (1972)].
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Fig. 4. The angular distribution of the singular shear stress o,,(r, (})\/E;/KI = F,»(8) near crack tip A
under mode [ loading in EAM-Fe ; anisotropic versus isotropic formulations.

The shear-only model

In the shear-only model, where only the slip displacements and shear stresses are
considered, there exists a simpler set of equations,

Sﬁ' e d(Sé "
3,00 = - f gur (r5:0.9) 2
\/272:?‘ ¢ 5

ds. (44)

Equation (44) is accompanied by a sinusoidal law
(A = (my./b) sin (2mA,/b), (45)

where A, is the relative atomic sliding displacement between the two adjacent slipping
atomic layers, which is related to 4, the displacement discontinuity across the slip
plane, by

8, = A~ (b/27) sin (27A,/b). (46)

EXACT RESULTS AND CONCLUSIONS

The significance of anisotropic elasticity

The anisotropic effect is surveyed initially in three parts. It appears in the angular
dependence of the singular shear stress a§, (r, 6) near a crack tip under pure tensile
loading, ie. F;,(0) in previous notation. In isotropic elasticity, F,(8) = cos’
{(6/2) sin (6/2), corresponding to the dashed curves in Figs 4-7. Figures 4 and S show
the comparison of anisotropy with isotropy for a crack growing in the [010] direction,
with crack front along [100] and crack planes on (001) planes (crack 4) in EAM-Fe
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Fig. 5. The angular distribution of the singular shear stress a,,(r, 0) V”E&;/K, = F,(0) near crack tip A
under mode 1 loading in EAM-AL ; anisotropic versus isotropic formulations.

and EAM-AL We note that the anisotropic results have significantly different shapes
from the isotropic ones, more so in bee than fee. Also, Figs 6 and 7 show results for
EAM-Fe using crack orientations B ([110]-[001]-[111]) and C ([01 1]-[0T1]-[100]).
Figure 8 shows the function g,,(r, s, 0) b, which is part of the equation for g,(r)
and is the key function in the shear-only model, for crack A. Here, the slip plane is
tilted so that § = 45°, asis appropriate for Fe. The figure shows the Cauchy singularity
(1/x) as implied by (36). It is seen that a similar shape of the function results

0.5 llllfrl]lllllv’l]|l|||||]i|\ll!v||‘l_vl l!l{lfl]ﬁ"j
- EAM Fe [1 -1 0] [0017][110} , -7
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O (degrees)

Fig. 6. The angular distribution of the singular shear stress o,,(r, ) V”%/’K[ = F,-(0) near crack tip B
under mode I loading in EAM-Fe : anisotropic versus isotropic formulations.
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Fig. 7. The angular distribution of the singular shear stress a,,(r, &) \/2;/1([ = F|,(0) near crack tip C
under mode 1 loading in EAM-Fe ; anisotropic versus isotropic formulations.

for anisotropic and isotropic formulations, though their numerical values are not
identical.

Finally, the critical loading G, as determined in the shear-only model is shown in
Fig. 9 as a function of inclination angle § of the slip plane, in anisotropic and isotropic
formulations for crack 4 in EAM-Fe under pure mode [ loading and for emission of
a dislocation of pure edge character. The anisotropic effect is numerically significant ;
it differs from the curve obtained using isotropic elasticity, which can overestimate or
underestimate the anisotropic results, depending on 6.

1m T T I T T T I T T T T
i EAM Fe 1
50 L 8=45",5=5b _
691‘ (I') | anisotropic ]
£;:(1,5.6) }3} ! .
(GPa) T §
a ]
50 L a
_100 t: RS SN S T ) E'» PO N R SR ST SRS W ST ]
0 2 4 6 8 10 12
r/b

Fig. 8. The distribution of the stress ,(r, #) = g,,(+, 5,8} & produced by an edge dislocation of Burgers
vector b located at s = 55 on a 45 tilted slip plane in crack tip A4 ; anisotropic versus isotropic formulations.
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Fig. 9. The critical load G, as a function of inclination angle 0 for dislocation emission from ecrack 4 in
EAM-Fe under mode T loading as determined in the shear-only model: anisotropic versus isotropic
formulations.

A survey of anisotropic effects on critical loadings

Consider the case where the slip plane is coplanar with the crack plane and ¢ = 0.
As mentioned previously, the critical loading G, for dislocation emission is equal to
Yu in the shear-only model. The tension effect on dislocation emission in model A,
using anisotropic elasticity with EAM-Fe, is analysed by varying the amount of tensile
loading with respect to shear loading. ¥ = arctan (K,/K). Figure 10 shows the results.
The critical G,{y/) in the isotropic formulation, taken from Fig. 3.2(b) of Sun ¢f al.
{1993), accompanies those in the anisotropic formulation. it shows that by the proper

EAM-Fe
7 _I TTT T [v‘|1 T lTﬁ”"v [ T I‘l_r] TTrTT Il TTT | T T T ] TT
a & isotropic, shear-only ?
6 ? ! "yus = Yus(r) - [Yus(U) - Yus(r)] (T[/Z - Wj.!
5 F A
rG.=27, : isotropic, 6—1T ]
2 % 4 O: anisotropic, 6T p
>~ F 3
~3r 7
O L
2 - )
[ exact (6-1 coupling) :
1 + J
0 EL#.I,U.I‘.HIH.JIM.l.L.r,..‘l.uj;uj
0 20 40 60 80

phase angle, y = arc tan (K / Kp

Fig. 10. The critical load G, as a function of the phase angle ¥ of loading for edge dislocation emission

{rom crack 4 in EAM-Fe on a coplanar slip plane. as determined in the tension—shear coupled model:

anisotropic versus isotropic formulations. Fitting by the isotropic shear-only model with the tension
reduced unstable stacking energy 7., () is also shown.
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Fig. 11. The critical loading G4 as a function of the inclination angle 6 for edge dislocation emission from
crack 4 in EAM-Fe under mode I loading, as determined in the effective approximation ; shear-only and
tension-shear coupled models (scaled by 7'}, anisotropic formulation.

treatment of anisotropic effects, the two formulations render almost the same results
in the tension-shear coupling model. That seems more general than the following
case: as was shown previously, in the case of orthotropic crack and coplanar crack
and slip planes, both formulations would predict the same G value for edge dislocation
emission in the shear-only model. As in Sun et al. (1993) with isotropic elasticity, the
combined tension—shear model in the anisotropic formulation is fitted by the modified
shear-only model, which uses the tension reduced y,, (1), namely,

Gd (‘/’) = yus(‘//)/Sinz lp., (47)

where y () = 74 — [y — 32 (n/2 — ) for tension reduction. The modified shear-
only model gives a good description. The same « coefficient applies to both anisotropic
and isotropic results. For EAM-Fe, o 1s 0.84].

We further illustrate anisotropic effects for the case of a tilted slip plane making an
inclination angle 8 with the crack plane when the crack is loaded in pure mode I
Results are presented for crack orientations 4, B and C in bcc EAM-Fe. Here the
angle # ranges from 40 to 120” and angle ¢ = 0°. These 8 and ¢ angles may not be
the actual inclination and screw/edge mixing angles for a slip system in the crack
orientation models 4, B and C; we merely intend to show the dependence of the
critical loading G4 upon anisotropic medium effects. The critical loading as a function
of inclination angle , expressed as G, as determined in the combined tension-shear
model (labeled o-7), shear-only model (labeled 1) and effective shear intensity factor
model in the anisotropic elasticity formulation for model 4 is shown in Fig. 11, crack
B in Fig. 12 and C in Fig. 13. The effective stress approximation gives a good
description of the general shape, although it overestimates the loading by about 20%,
compared to the numerical results of the shear-only model. The combined tension
and shear model further reduces the loading by 10-15%.
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Fig. 12. The critical loading G, as a function of the inclination angle ¢ for edge dislocation emission from
crack B in EAM-Fe under mode [ loading, as determined in the effective approximation ; shear-only and
tension—shear coupled models (scaled by 7). anisotropic formulation.
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Fig. 13. The critical loading G, as a function of the inclination angle 8 for edge dislocation emission from
crack € in EAM-Fe under mode 1 loading, as determined in the effective approximation : shear-only and
tension—shear coupled models (scaled by y{¥), anisotropic formulation.

A scheme for rough estimates

From the above discussions, we devise a procedure for calibrating the effective
stress intensity factor method on the basis of exact numerical solutions, including
tension—shear coupling. Let the critical stress intensity factor K, as estimated from
the effective method, be multiplied by a factor 5 so as to equal the shear-only K. The
n factor ranges from 0.86 to 0.95. The tension—shear coupling is handled by the
tension reduced y, (/) value, which was treated in Sun ef al. (1993), though in isotropic
formulations. It was shown that this tension-reduced unstable stacking energy is valid
for EAM-NI, -Al, -Fe and -Ni;Al, but less well for DFT/LDA-Si. We expect that it
will work equally well in the anisotropic formulation.
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Table 2. Critical loading G,/ for dislocation emission from an anisotropic crack under
mode 1 loading

Material Crack orient B¢ (%) Eff. T T # recipe
Fe A (—45, 35.3) 2996 2740 10.58% 0.9577
Fe B (—90, 54.7) 11.85 9.144 8.106 0.8785
Fe C (—90, 35.3) 2380 1948 17.75 0.9058
Ni D (54.7, 60) 3202 29.06 22.09 0.9528
Ni E (35.3, 0y 10.48 9.92 8.103 0.9720
Al D (54.7, 60) 2840 2572 19.85 0.9518
Al E (35.3,0) 11.54  10.89 8.705 0.9716
Al F (90, 30) 10.71 8.315 7.664 0.8813
Ni;Al D (54.7, 60) 30.27 2843 17.91% 0.9557
Ni;Al E (353,0) 11.65 1040 8.342 0.9698
Si, glide D (547, 60) 29.13 2670 2.959% 0.9574
Si, glide E (353, 0) 11.66  10.89 2.041% 0.9665
Si, glide Ft (90, 30) 10.27 7.879 5.784 0.8758
Si, glide Gt (70.5, 0) 6.521  5.253 3.226 0.8975
Si, glide Gt (70.3, 60) 2056 17.97 4.729% 0.9348
Si, shuffle D (54.7, 30) 11.26 9.560 2.642% 0.9213
Si, shuffle E (35.3, 30) 1454  13.69 1.979% 0.9702
Si, shuffle Fy (50, 0) 8243  6.166 6.345 0.8649
Si, shuffle Gt {70.5, 30} 8082 6.669 3.882% 0.9084

T The in-plane elasticity is taken to be decoupled from the anti-plane elasticity to simplify
the treatment, which is only approximate.

I The instability may correspond to decohesion along the inclined slip plane rather than
dislocation emission.

We can summarize individually for each common crack orientation and the easiest
slip system (i.e. 8, ¢ angles) listed in Table 1. The critical loading for dislocation
emission under mode I loading is summarized in Table 2, as determined by the three
methods. The critical condition under pure mode I loading was determined via the
numerical procedure, the shear-only model and the effective model. By comparing
two solutions for the same situation, we obtain the #» coefficient for each crack
orientation and slip system (i.e. angles € and ¢). Here we assume the coefficient # is
unique for each set of 8 and ¢ angles, which approximately holds true for every
material. The tension-shear coupling would reduce the loading at the critical
condition, and the results are also presented in Table 2. The tension-shear coupling
is approximated by the tension reduced y,,. The tension reduced 7, in terms of the
phase angle ¥ is

Yo () = 2 —alyld — 21 (m/2— ), (48)
where the phase angle is for the effective shear versus tensile stress intensity, i.e.
Y = arctan (K, /K,). 49

The coefficient « is from Sun ez al. (1993) for tension-shear coupling. It is different
for each EAM material and slip system. In particular, & has the values 1.323, 1.145,
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0.969 and 0.841 for Ni, Al, Ni;Al and Fe as modeled by EAM, respectively. For
DFT/LDA-Si, 2 for the glide set 1s determined to be 7.249. The a for the shuflie set
was determined to be —2.234, Such estimates give good results, within a few percent
for G under pure mode 1.

We accordingly give the procedure for a rudimentary estimate of the critical loading
for dislocation emission from a crack tip:

(A) Find the effective stress intensity factor for r—0—z coordinates, so as to find the
K. and K, under general loading (K. K,;, Ky;;), and then the phase angle .

{B) Find the tension reduced 7,.() according to (48).

(C) Apply the calibrated equation for the critical condition, using the appropriate
coeflicient.

K. =1/ 7ap(0. ). (50)

This procedure gives an estimated error within the range +7% in G when applied
to typical cases.

As can be seen in Table 2, the parameter # is of about the same value in different
materials for each crack orientation and (6, ¢) angle. For example, regarding emission
of the first Shockley partial in crack [ (54,7, 607), n is about 0,954 ; in crack £ (54.7 .
607, it is 0.968 for 11-Ni, 111-Ni, Al, Ni;Al and Si (ghide set).

Conclusion and summary

The meaning of the critical loading for dislocation emission from a crack tip given
in Table 2 can be elucidated by comparison with available atomistic simulations of
loaded crack tips of EAM-Fe {Cheung et ¢/., 1991) and EAM-Al (Hoagland ef «f..
1990). The preliminary comparison was presented in Sun (1993), The critical loading
for each crack orientation and material listed in Table 2 is compared with those based
on the isotropic formulations in Table 4 of Sun er al. (1993). It is also useful to
compare to the Griffith cleavage for crack extension when G, = 2y, s0 as to predict
the intrinsic ductile versus brittle response.

For crack 4 in EAM-Fe, for which the usual slip system has § = 45" and ¢ = 35.3"
with respect to the crack tip, the anisotropic G is 2.4 times the isotropic one in the
shear-only model ; in the combined tension—shear model, even the instability is differ-
ent in that the anisotropic model gives crack branching while the isotropic model
gives dislocation emission. The two & values are similar, though. For crack B,
the combined tension-shear G values for dislocation emission in the anisotropic
formulation are 40% less than the isotropic equivalent ; for crack C, the anisotropic
G is 2.4 times the isotropic . Therefore, the anisotropic formutation is essential for
EAM 2z-Fe.

For fcc materials, the G values in the two formulations are about 10-25% different.

To illustrate that the anisotropic formulation can be important even for the
smaller differences, we present results for NizAl in two crack orientations under
mode I loading. In the anisotropic formulation we use ), = 2.516x 10" Pa,
Cin= 1370 10" Pa and Cu = 1.262x 10" Pa, which are the fitted elastic



Dislocation nucleation from a crack tip 1927

moduli via the EAM functions. In the corresponding isotropic problem we use the
Voigt averaged elastic moduli of the threc elastic constants, namely,
U= (C,—C+3CL/5=098064x 10" Pa, 1= (C),+4C,,—2C)/S = 1.094 x 10"
Pa, and the corresponding Poisson ratio v is 0.263,

For crack extension under pure mode 1, the critical loading can be determined by
the Griffith condition, i.e. G. =y, +7,. for cleaving along a perfect crystal plane,
where y,, and 7y, are the surface energies of the two cleaved surfaces. Expressed in
terms of the crack extension force, the cleavage condition is the same for both
anisotropic and isotropic elasticity.

We treat the crack orientations D and £ for Ni;AlL For crack tip orientation D
with the (001) crack plane, growing along [110], with a {110] front, the slip plane is
(111), and the inclination angle # = 54.7°. The first emitted Shockley partial would
correspond to ¢ = 60°. In the shear-only model, the solution of the critical condition
in the anisotropic formulation gives Gy/7,, = 28.43. Using the isotropic formulation,
the shear-only model gives G4/y,, = 22.79. Here, the isotropic approximation gives a
19.9% discrepancy. G, for crack orientation D equals 3.51 J m 2, while G, is, using
the relaxed value of 0.315 J m~? for y,, equal to 8,96 ] m~? with the anisotropic
treatment. Because G is much larger than G, the (001) cracks are brittle. The isotropic
treatment gives a (7, equal to 7.18 J m~?, and thus predicts that the (001) cracks are
brittle.

In the tension—shear coupled model, the critical condition for dislocation emission
from crack D in the anisotropic formulation is that G, = 5.59 J m ™ with the consti-
tutive law for the first Shockley partial slip as determined in Sun et al. (1993) for
Ni;AL Hence, crack D is predicted to be brittle against emission of the first Shockley
partial. In the isotropic formulation, G4 = 5.77 J m ™%, which is greater than G,. Hence,
the isotropic formulation gives a 3.2% discrepancy from the anisotropic, and also
predicts that {001} cracks growing along {110) are in a brittle crack orientation. The
G values cited are close enough to G, that thermal activation would be an important
factor, allowing nucleation when G, = G..

Crack tip orientation £, with a (110) crack plane, growing along [001], with a [110]
front, is associated with the (111) slip plane, hence the inclination angle 6 is 35.3",
The first Shockley partial that is emitted would correspond to ¢ = 0° here. In the
shear-only model, anisotropic formulation, the solution of the critical condition gives
the Gy/y,, = 10.39, 50 Gy is 3.27 Y m™2 For crack F to extend, the G, is 3.65 I m™.
Because G, is lower than G, the {110} cracks growing along (001> are ductile.
However, using the isotropic formulation, Gy, = 12.21, which means that G, is 3.85
Jm~? and is greater than G, for cleavage. Here, the isotropic formulation not only
gives a 17.5% discrepancy with the anisotropic but also predicts that crack £ s brittle,
which 1s contrary to the anisotropic prediction.

To differentiate the similar critical loading conditions for dislocation emission and
cleavage in this case, the results of the tension—shear coupled model are also presented.
In the anisotropic formulation, G, = 2.60 J m~* with the tension-shear coupled law
for the first Shockley partial slip ; hence, crack Eis predicted to be ductile for emission
of the first Shockley partial. The isotropic formulation gives G, = 3.025 J m~2, which
is less than G,.. Here, the isotropic formulation gives a 16.3% discrepancy, and also
predicts that {110} cracks growing along <001) are ductile.
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As we might expect to be the general trend, the bee structure is more anisotropic
than the fcc structure (including Ni, Al, NijAl and Si). The difference in the critical
G between isotropic and anisotropic formulations for bee materials is larger than in
fcc materials. Such differences should correlate with the anisotropic factors of these
materials, 2C4,/(C,; — C,,), which are 7.00 for Fe, 3.24, 3.01 and 2.20 for Ni, Al and
Ni;Al, respectively, and 1.56 for Si (the smallest of these materials).

In the tension—shear model, the two formulations may present different instability
modes of either dislocation nucleation or crack branching, as described above for
EAM o-Fe. The anisotropic G values may be less or greater than the isotropic
correspondents. For EAM z-Fe, the anisotropic formulation results are 2.4 times the
isotropic ones in crack C, and similar for the effective approximation model, the
shear-only and tension—shear coupled model ; in crack A, the anisotropic formulation
values are again 2.4 times the isotropic ones in the effective approximate model and
shear-only model. However, in crack B, the anisotropic formulation results are 40%
less than the isotropic ones, similarly in the effective approximation model, the shear-
only and tension-shear coupled model. In the fcc lattices, Ni, Al and Ni,Al, we
conclude that the two formulations give results with a difference in the range of + 10—
25%. For DFT-LDA-SI, both the glide and shuffle slip systems, the two formulations
are very similar ; the difference in the critical G is less than 14%. In the tension—shear
coupled model, the two formulations give the same instability for dislocation emission
or crack branching, and the difference is less than 4%. We may conclude that for Si,
the isotropic formulation is a good approximation. It would consequently support
the use of the isotropic formulation in the analysis of activation energy for dislocation
emission in Si by Rice and Beltz (1994) and Beltz and Rice (1994).

As mentioned previously, the validity of the Peierls model can be limited by several
phenomena. Recent atomic studies by Zhou er al. (1994) showed that the critical
loading for dislocation emission can be quite different from the predicted values by
the Peierls model in the tilted slip plane case. A possible cause of the discrepancy is
due to the discrete nature of the system, resulting in lattice trapping or the ledge
effect. The atomistic simulations by Becquart er al. (1993) show that the surface
reconstruction of near-tip crack surfaces is an important factor influencing the con-
dition for dislocation emission. These are open questions for further research.

COUPLING BETWEEN IN-PLANE AND ANTI-PLANE ELASTICITY

So far, we assumed that the z axis along the crack front is perpendicular to a mirror
plane for the lattice, so that the in-plane field quantities are decoupled from the anti-
plane ones. If this were not true, the assumption is only good as an approximation.
For the exact method of treatment for the coupled case, see Stroh (1958), Barnett
and Asaro (1972) and Suo (1989).
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APPENDIX: DISLOCATION AND CRACK TIP INTERACTIONS IN
AN ANISOTROPIC ELASTIC MEDIUM

The functions £,,(r. 5. 0) and g,,(r. s, 0) are required for treating the problem of a dislocation
interacting with a crack. The stress distribution around the tip in an anisotropic medium
without a dislocation and with one has been solved, originally by Stroh (1958), Atkinson
(1966), Barnett and Asaro (1972), Asaro (1975) and summarized by Suo (1989) using the stress
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Fig. Al. A dislocation interacting with crack tip in an anisotropic medium.

function method. Here, we prove two elegant theorems regarding the functions g.,(r. s, ). The
scenario is illustrated in Fig. Al. Suppose a dislocation of Burgers vector b, is located at (s, 6)
in a polar coordinate systemn from the crack tip. The local polar coordinate system at the
dislocation core is (p, @).

Near the dislocation, the stress g,(p, w) behaves like 1/p. From Rice (1985), we deduce that

. 1 A;'h, .
h{wyo(p, w) = — ———, when p is small, (A1)
4 p
where h.(w) is the unit vector in the direction of increasing w. Note that the right hand side of
(A1} is independent of ¢, which results from the equation of force equilibrium, We can
transform vectors and tensors in (A1} from an {x, ¥, 2) coordinate system denoted in Latin
indices to (1.8, 7) denoted in Greek indices o and B by a tensor transformation, by a rotation
of angle § around the z axis. Further, setting w equal to 8, we obtain
1 ¢ {4y —~ Ih

Tunlp.) = 7o = (A2)
when p is small,

From the Atkinson (1966) solution and Suo (1989) treatment of a dislocation interacting
with a crack tip in an anisotropic medium, we can show that when the dislocation lies in front
of the crack tip on the crack plane, i.e. ¢ = 0, the stress o,,(r) ahead of the crack tip and in the
plane is

-
Tos Al
) = o [n i 3
72,() 4z \/F Py (A3)
From (52) we can deduce that the stress infensity factors induced by the dislocation are
!
Ki = e e ’.".”1])" A4
2/2ns " (A9

where i = 1, 2 and 3 for mode II, I and 111, which was given by Rice (1985). We also observe
that (A3) satisfies (A2).

For a dislocation lying on the inclined slip plane as shown in Fig. Al, we write the gen-
eralization of (A3) as

, b [AY R,
o‘,;x(r,{}}sggﬂ(ns;g}bﬂ:Z;\/; .[./,\_i’Lmi—M {A3)

-3

In order to satisfy (A2) when p = r—s is small, we demand that
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(1 =1,0) =0, (A6)

in order to have proper stress fields in the linear elastic medium near the dislocation point s.
Furthermore, the Rice-Thomson image force theorem (1974), which was generalized by Asaro
(1975) to anisotropic elasticity, and further generalized by Rice (1985) to the sector-wise
different anisotropic elasticities at a crack tip. for a dislocation line at a crack tip implies that

Chyy (1 = 1,0)/0t is antisymmetrical for indices o and f. (A7)

Equation (A7) is proven next. We point out that (A6) and (A7) are generalizations from
isotropic results deduced by Rice (private communication).
From Rice (1985), the attraction force received by the dislocation should be
. b, b b AY b,
= T X R A
1 8ns 8ms (A8)

We can obtain the image force f, by the following procedure. Consider the stress field of (AS5)
and decompose it into the field of a dislocation in an uncracked crystal, plus another term
which is bounded at the dislocation. That other term, evaluated at r = s and multiplied by 5,.
gives the Peach—K 6hler force, which must be consistent with (A8). Thus we establish that

by dh,y (1 = 1,0)[0t by = 0, (A9)

which is equivalent to (A7). We have omitted the details.



