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ABSTRACT 

The analysis of dislocation emission from a crack tip within the Peierls framework [Rice (1992) J. Mech. 
Phys. Solids 40, 239-271 ; Rice ef ul. (1992) Topics in Fracture und Fatigue, pp. I-58; Sun et al. (1993) 
Mater. Sci. Engng A170, 67-851, heretofore developed for isotropic solids, is generalized to take into 
account elastic anisotropy. An incipient dislocation core, represented in terms of a critical configuration at 
the crack tip, is determined numerically (most simply in the shear-only version of the model, but also for 
a combined tension-shear version that includes tension-shear coupling constrained by atomic modeling). 
These solutions improve upon approximations based on an effective shear stress intensity. For fee crystals 
and intermetallics, the nucleation event analysed is that of a set of partial dislocations emitted sequentially. 
The anisotropic formulation accounts for corrections as large as 30% in the critical value of the stress 
intensity factor for atomic decohesion, or cleavage. The anisotropic critical crack extension force for 
dislocation emission may be greater or less than its isotropic counterpart. For an embedded-atom-method 
(EAM) model of bee r-Fe, the anisotropic values can be as large as 2.4 times the isotropic ones in one 
crack orientation; in another crack orientation, the values are as much as 40% less than the isotropic 
analogs. For fee structures (EAM nickel, aluminum and Ni,Al), the difference is within a k IO-25% range. 
For silicon, the isotropic formulation is good, with less than a 14% difference from the anisotropic 
counterpart. The anisotropic effects are found to increase with a standard ratio of elastic anisotropy, and 
are important for predicting intrinsic ductile versus brittle response. 

INTRODUCTION 

The recent analysis of dislocation emission from a crack tip by Rice (1992) is based 
on the Peierls-Nabarro model (Peierls, 1940 ; Nabarro, 1947) for a straight line 
dislocation. This model combines atomistic descriptions of the dislocation core with 
continuum elasticity in a physically realistic fashion and describes the process of a 
dislocation core nucleated from nil at a crack tip. In the same way as in the Peierls- 
Nabarro model of a dislocation core, the nucleating incipient dislocation at a crack 
tip is depicted as follows: a distribution of discontinuity in the displacement field 
across the slip plane obeys a sinusoidal law of shear stress versus displacement, and 
is embedded in a linear elastic medium surrounding the crack. The main advantage 
of the new approach is the elimination of the ill-defined dislocation core cut-off radius 
ro, used in the earlier pioneering work by Rice and Thomson (1974). The newly 
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identi~ed physical property by Rice (1992), a solid state parameter y’,,,. the l~~I~~t~~~t1 
.st{~~,k~n~~ mayy. is now the key to the analysis of dislocation emission from a crack 
tip in the Peierls framework. We note that the newer approach contains no account 
of the energy of the ledge formed at the crack tip by the emergent dislocation. and it 
remains to be seen how important that factor is. 

Additional reservations should be made here regarding the Peierls-type analysis for 
dislocation emission. Recent atomistic studies by Zhou et al. (1994) indicate that the 
Peierls model may underestimate the critical loading for dislocation emission by as 
much as 500/u when the slip plane is tilted with respect to the crack plane. The 
agreement of the two types of approaches is good in the case of coplanar crack and 
slip planes (Zhou ct LII., 1993). Whether the discrepancy is due to the discrete nature 
of the system. so as to result in lattice trapping in the slip process or the so-called 
ledge effect, remains open for further research. The atomistic sin~~~latiolls of crack 
tips in RuAl (Becquart ct cd.. 1993) showed that surface reconstructions may be 
induced under mode I loading on the near-tip crack surfaces, and may determine 
whether or not the dislocation is emitted. We note that the Peierls model does 
not take into account stress-induced surface reconstructions, which may alter the 
predictions by the Peierls model and the Griffith cleavage condition. These issues are 
generic in nature, and likely are beyond the scope of what the Peierls model can 
handle. 

Furthermore. we note that the embedded-atom-method (EAM) representation of 
“real” iron is only fair: it does not directly consider magnetic effects, and can only 
mimic their consequences in fitting the vacancy energy and the requirelnent that 
energy of bee be lower than fee and hcp structures. The fit to the elastic constants is 
only f’air because of this requirement. Interested readers should consult the original 
paper (Harrison cr al.. 1990) for details. However, despite this, it is still appropriate 
that we compare the predictions of the Peierls type analysis with the observations in 
molecular dynamics (MD) simulations using the same EAM potential by Cheung and 
Yip (1990, 1994), Cheung (1990), and Cheung et al. (1991). 

It has been determined that the tensile stress across a slip plane ahead of a crack 
tip has the effect of decreasing the critical loading required to emit a dislocation: 
evaluation of the effect is important for understanding ductile versus brittle response. 
The details of estimating the tension- shear coupling parameters and a systematic 
study of coupling effects were carried out by calculating the criteria for dislocation 
nllcleation for a wide range of these parameters, and results were presented in Rice ff 

drl. (19923, Sun rt al. (19931, and Sun (1993). 
The Peierls concept has also been used in a recent analysis of dislocation nucleation 

by Sch6ck (1991). His analysis was somewhat more approximate compared to Rice’s 
(I 992) Peierls type analysis and did not uncover the exact critical core configuration 
of the nucleated dislocation within the Peierls framework. There, a simple mrctcm 
function was instead assumed for the core and used for variational determination. 

Since all crystals are anisotropic and most existing atomistic MD simulations 
correspond to unisotrcjppic crystals, the problem of dislocation emission from a crack 
tip should be analysed based on the anisotropic elasticity formulation. The objective 
of this work is to generalize the analysis of dislocation nucleation at a crack tip within 
the Peierls framework from the previous isotropic elasticity formulation to anisotropic 
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elasticity. Some preliminary work towards that end, giving shear-only results for 

coincidental crack and slip planes, was reported by Rice et al. (1992). 
After a brief description of anisotropic elasticity, dislocation emission from a crack 

tip is first treated in the approximation of an effective shear stress intensity factor and 
without tension-shear coupling. The exact numerical solutions improve upon the 
approximate treatments based on an effective shear stress intensity. The incipient 
dislocation core and its critical configuration at the crack tip is exactly solved numeri- 
cally, most simply in the shear-only version of the model, but also for a combined 
tension-shear version that includes tensionshear coupling constrained by atomic 
models. This is done for several EAM metals, as well as silicon, with parameters of 
slip constitutive laws estimated by density functional theory in the local density 
approximation (Huang et cd., 1991 ; Huang, private communication; Kaxiras and 
Duesbery, 1993), referred to as DFT-LDA Si, following Rice et al. (1992), Sun et ul. 
(1993), and Sun (1993). For the fee crystals and intermetallics, the nucleation event 
analysed is that of a set of partial dislocations emitted sequentially. Results are 
compared to those of the isotropic formation. 

CRACK EXTENSION 

The energy release rate of a loaded crack tip in an anisotropic medium is 

G = &A,,& (1) 

where K, = (K,, K2, KJ = (K,,, K,, K,,,) is the external loading and A,,] is the appro- 
priate matrix for the crack orientation in the anisotropic material. The Einstein 
summation convention is used in this article, namely, repeated dummy indices indicate 
summation. The matrix Az,j is real and symmetric and can be represented by the elastic 
constants in the crack coordinate system, and has, in general, off-diagonal elements 
[see Stroh (1958), Bilby and Eshelby (1968), Barnett and Asaro (1972) and Suo 
(1989)]. The elastic constants for the EAM materials for anisotropic calculations are 
the fitted results by these atomic models, not the experimental values. The elastic 
constants and EAM functions used in this work have the following sources: Ni are 
from Foiles et al. (1986) and Foiles and Daw (1987) ; Al, Hoagland et al. (1990) ; 
Ni,AI, Foiles and Daw (1987) ; x-Fe, Harrison et al. (1990). Those for Si are the 
experimental values, listed by Hirth and Lothe (1982). 

For convenience, capital letters are used to label crack orientations in cubic crystals, 
which are listed in Table 1. The coordinate system is : the x, axis is the crack extension 
direction, I? is normal to the crack plane, and x3 is along the crack front. For instance, 
a crack on the (001) plane growing along the [IOO] direction is labeled as crack A, 
and along the [ 1 IO] direction as crack B. 

Equation (1) is used to calculate the critical loading K,, for crack extension under 
mode I loading corresponding to the Griffith condition, that is, G = 2y,, where ys is 
the surface energy. For crack A in EAM-Fe, with ys equal to 1.83 J m-‘, K,a is 0.864 
MPa 6 in the isotropic formulation, but 0.665 MPa d& in the anisotropic for- 
mulation, which is 23% less than the isotropic value. For the isotropic calculation, 
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Lattice Crack model 
..--.- __-. 

bee A 
bee B 
bee C 
fee D 
fee E 
fee F 
fee G 

.Y,-.Y~-s~. crack coord. Slip system 
-______ ._~_. __~~ 

[OlO]-[OOl]-[loo] (I/2) [I ii1 (011) 
[ilo]-[OOII-[i 101 (112) [I171 (ilo) 
101 ~~-[oi1]-[loo] (1:‘2) [I Ii] (01 I) 
[irol-[oollq IO] (16) 11211 (Iii) 
[oolpji loI-[i 101 

_ _ 

[I I I]-[1iol-[1121 
(i;h) [i1Zj (11 I) 
(1x5) [211j (IIT) 

pi2]-p1 I]-[1 101 (I:h) jf121 (TIT) 

jr = 0.691 x IO” Pa and v = 0.323, which are Voigt averages of the anisotropic elastic 
constants for EAM-Fe. 

According to isotropic elasticity, the Griffith condition under pure mode I loading 
would be the same for the crack to extend along any direction in a given plane. 
However, in an anisotropic elastic crystal, the different crack extension directions 
have different A,,, matrices, and therefore require different critical pure mode I load- 
ings. Even with the same value of G equal to 27, for (001) crack planes in a cubic 
crystal, a crack growing along [ 1001 (crack A) or [ 1 lo] (crack B) would require 
different amounts of mode I loading for extension. For EAM-Fe, crack A, K,(, is 

0.665 but for Bit is 0.778 in units of MPa Jm, a 15% difference. Since the anisotropic 
formLllation is necessary for detert~lining the c~~ndition of crack extension. we may 
expect it is also important for dislocation emission. 

DERIVATION OF CRITERIA FOR DISLOCATION NUCLEATION WITHIN 
THE EFFECTIVE SHEAR STRESS INTENSITY FACTOR APPROXIMATION 

In this section, we first treat the problem of dislocation emission from a crack tip 
within the effective shear stress intensity factor K, approximation (Rice, 1992; Rice 
rt ul., 1992). Let us consider the general scenario: suppose that a “soft” slip plane 
intersects the crack plane and that the intersection line is also the crack front, and 
that the slip plane makes an angle 8 with the crack plane. Assume that the crack tip 
is loaded by (K,. K2. K3) = (K,,. K,, K,,,) ; the r\; here are the local and screened stress 
intensity factors near the crack tip. Assume that the crack does not extend. The stress 
concentration near the crack tip is relieved by an etnergcnt zone of displacement 
discontinuity {6,.(r), 6,(r), ii,(r)) across the slip plane, i.e. an incipient dislocation. 
The incipient slip zone is illustrated in Fig. 1. 

The edge slip direction is along Y, the normal direction is along H with the unit 
directional vector n and the screw slip direction is along Z. The edge component is 
J,.(r) = tl: (r) -u,. (r) and the screw component d,(r) = UT (I’) -u;- (1.) ; the dis- 
continuity in the opening direction S,,(r) = u;(r) --UC (1.) = n,[u,t (P) --II; (v)]. The slip 
direction in the slip plane has the unit directional vector denoted s = (cos 4,0, sin 4) 
in the r, 8, z coordinate system. The sign convention for the angle 41 of the slip 
direction is that 4 is defined as positive when the slip direction rotates from the r axis 
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Fig. 1. An incipient dislocation, represented by a distribution ofsliding and opening displacements, develops 
along a tilted slip plane at angle H with respect to the crack plane in response to the mixed loading K,, and K,. 

toward the z axis. The displacement discontinuity across the slip plane in that direction 

is 6,(r) = ~,S,(T) = s, [US+(Y)-26;(r)]. 
The lattice restoring stresses at one point r in the slip plane are assumed to be 

only a function of the local displacement discontinuity a,%(r) in the slip direction s. 
Afterwards only the slip on that direction is considered, namely, [6,(r), 6,(r)] = [cos 
4, sin ~$1 6,v(v). We present the details for the constrained path approximation later. 
The modeling of such lattice restoration against shear slip, in a way that also involves 
opening, has been presented in Sun et al. (1993) and Sun (1993), with empirical 
interatomic potentials in the EAM and with reference to DFT-LDA studies by others 
(Huang et al., 1991 ; Huang, private communication ; Kaxiras and Duesbery, 1993). 

We first analyse the case of coincidental slip and crack planes, i.e. 0 = 0, and derive 
the nucleation criterion. There the mathematics simplifies, and an exact analytical 
solution is possible via the J-integral method in the shear-only model. The case of an 
inclined slip plane is approximately treated based on the effective stress intensity 
factor. Though such an approximate method tends to overestimate the critical loading 
for dislocation emission, it establishes a conceptual framework. In the next section, 
we present exact numerical solutions and also treat tension-shear coupling. 

Analysis of coincident crack and slip plunesfbr gtwral loading and Burgers Cector angle 

We follow the derivation in Rice (1992), using the J-integral argument, but instead 
using anisotropic elasticity, which was partially outlined in Rice et al. (1992). The 
path independent J-integral is 

J = 
s 

[ni W(G) -IZ,(T,~~ dz+/dx,] ds, 
r 

(2) 

where W is the strain energy density, crXli is the stress tensor, u is the displacement 
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Fig. 2. A semi-infinite crack tip is loaded by K,,. while an incipient shear zone of edge character on the 
coplanar plane with the crack relieves the singular shear stress field. J-Integrals are evaluated along the far 

and slit paths. 

held, n is the unit normal vector pointing outward from the path I, and s is the arc 
length. The integral path starts from any traction-free point on the lower crack 
surface. surrounds the crack tip, and ends on any traction-free point on the upper 
crack surface. The J-integral is path independent as long as the elastic properties are 
independent of X, and the equilibrium condition is satisfied. 

Figure 2 shows the J-integral paths around the crack tip. Suppose the incipient slip 
zone is small compared to the overall size of the crack and specimen, so that we can 
treat the crack as embedded in an infinite medium and the stress near the tip is 
dominated by the singular field prescribed by K,. This is verified by the numerical 
solutions to be presented in the next section. since the incipient zone is appreciable 
over the length of eight or less units of h ahead of the crack tip. The crack is treated 
as semi-infinite and the concept of small scale yielding is valid. It is a well known 
result that evaluation of the J-integral along the path Ir‘,, which is far from the shear 
zone but still is small compared to crack length yields J = G, i.e. 

J = G = K&K,,. (3) 

The emergent slip zone relaxes the singular stress field near the tip. If the stress 
relief is not complete, there would be some remnant singular stress components, which 
are describable by the stress intensity factor at the tip K,,,,,, = [K,,,,,,. K2 ,,,,, ). PC;,,,,,]. 
Evaluating the J-integral along a path closely embracing the slit thus yields two parts : 
the first arises from integration on a circular path I, with an ever-shrinking radius 
around the crack tip, resulting from the crack tip singularity. and the second from 
integration over I-,,,,. 

where rr2% is the stress across the slip plane for which we assume there exists a potential 
O(6) such that 
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028 = w4/ad,j, (5) 

and is related to the 6,. The integration of the second term in (4) is easily carried out. 

The integral is identical to @(6(,,,,), an elegant result in that it depends only on the 
displacement discontinuity at the tip. Therefore, J evaluated along Tsllt is 

Combining (3) and (6) relates the K, to the potential @(6,,,,,), 

KA,,J$ - K~tip&&(t,~j = Q(&,,). (7) 

From (7), we obtain information about the slip displacement 8Z(tlrj at the tip via 
the lattice potential @(a,,,,,) if we know how the KZctlpj is determined by the shear zone 

process under loading K,. 
As a simplification, we treat the slip process zone {h;J~1)} as a pure shear process, 

i.e. the dilational opening does not enter directly into the formulation of the mechanics 
problem, which means putting constraints on the opening, e.g. 6,, = 0, or coo = 0. The 
modeling involving dilational opening takes into account the effect of the tension 
coupling, and the result is a reduction in the critical loading for dislocation nucleation. 
A simple but approximate procedure to account for such a reduction is to use y::,), i.e. 
the relaxed value instead of the unrelaxed value for y,,, in our formulation (Rice et 

al., 1992). A full account of tensionshear coupling is presented in Sun et ul. (I 993). 
The lattice potential @(6,., 6,) = constrained, (5,) is a function of two independent 

variables, the slip displacements 6, and 6,, and is periodic along the s(4) direction 
defined to be parallel to the Burgers vector and has a maximum called yU5, the unstable 
stacking energy. The pathway for 6 in the two dimensions of the slip displacements 
6,. and 6, going from zero, through the maximum point, and finally ending at one 
Burgers vector b is a saddle-like path in the slip plane of the lattice potential @(a,., 
6,] = constrained, 8;) for full slip. In the direction which is perpendicular to the saddle 
path the lattice potential @(6,., 6,, = constrained, 6,) rises rapidly. Assume that the slip 
displacement 6(r) is constrained strictly along s(d), in the so-called constrained path 
approximation (Rice, 1992), 

6,(r) = (6,,(u) cos $,O, S,(r) sin $) E 6,(r) s,(4), (8) 

where s,(4) = (cos 4, 0, sin 4). The assumption of the constrained path is excellent, 
especially in crystals for which the saddle path is straight, such as in Ni, Al and NijAl 
in the Shockley partial route. 

The stress g2J1) at a point r on the slip plane that is arbitrarily close to the crack 
tip is determined, by definition, by the stress intensity factor at the tip K~~,,p~ and may 
be singular, i.e. 

The shear stress component z(r) along the s(4) direction is Z(T) = s,(4) g2Jr), which 
must be balanced by the lattice restoring force Z(U) = s,(4) +.D(s)/&5,, where we recall 
that the 6, are set to s,6, in this expression. Since the lattice restoring force Z(Y) at the 
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tip cannot be arbitrarily large, the stress intensity factor along ~(4) at the tip must 

vanish, 

~~(#)~~~,i~~ = Klttipl COS 4 +K3(iip) sin 4 =L 0. (10) 

Moreover, the stress intensity factor at the tip Kr(tip) must be a linear superposition 
of applied K, and the K,,, that are induced by the incipient dislocation zone slips 
{6,(v)). The slip zone (8,J(r)> is readily modeled as a continuous distribution of 
dislocations with Burgers vector b, = -drd8,(r)/dr. The single line dislocation at r 
of Burgers vector b,{ when the dislocation is coplanar with the crack plane produces 
a stress intensity factor KS, (Rice, 1985), 

(11) 

The stress intensity factor produced by! the shear zone {bg(r)j is then the integration 
over the entire continuous dislocation distribution. Consequently, we obtain 

where 6 is an operator acting on {h,{(y)}, 

We put in the constrained path approximation 6,,(r) = .s,] 6,?(r) and obtain 

&tip) = K-l- CA,‘s,(& 

where the term C arises from 6 acting on {8,$(y)), 

However, there exists another method to find the term C without having to solve for 
d,(r) : combining (14) with (10) and solving for C gives 

s..(ql)K.. 

“=-Gxi. (16) 

The stress intensity at the tip is completely determined by (14) and (16), and is 
combined with (7). After a few algebraic steps, we arrive at 

where we have used the fact that the matrices II%,~ and &/1’ are symmetric. 
The variable g in (17) would become G, the crack extension force, under special 

circumstances provided that the matrix AX,, is diagonal and : (1) either for pure edge 

dislocation nucleation under pure K, = K,, loading, or (2) pure screw dislocation 
nucleation under pure K3 = K,,, loading. The condition for dislocation nucleation in 
these two special cases is then G = yL1\, which is the same as in the isotropic formulation. 
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Fig. 3. The periodic relation of shear stress (solid curve) and its associated potential (dashed curve) versus 
the slip displacement within the Peierls concept. Each is scaled by its maximum and the displacement by h. 

The relation expressed by (17) connects the solution of the shear zone (6,1(~)} to 
the applied loading {K,}. Due to the periodic nature of the lattice potential Q(6) in the 
constrained path expressed by 6,(v) = s,(4) 6,(r) in the slip process. there correspond 
multiple solutions A, C, A’, C’, etc., to one set of loadings K,, as shown in Fig. 3. 
Point A represents the stable solution, while point C is the unstable after-critical 
solution for the incipient shear zone of the first dislocation. The critical solution 
corresponds to point B, when the lattice potential D(6) takes the maximum value yUS. 
The solutions A’ and C’, etc., correspond to the second dislocation nucleation 
processes, respectively. The dislocation nucleation criterion for the first dislocation is 

(18) 

where we have defined p (4) = s,(4) A$’ ~~(4). It is interesting to note that the term 
s,(4) K, of combination of shear K, and anti-plane shear loadings K3 can be regarded 
as the shear stress intensity factor along the s,(4) direction in the slip plane. 

We note that (14) can be rewritten as 

A,jzKz<tlpj -A,,,K, = C&J(~). (19) 

The term ApzKz determines the displacement discontinuity between the crack surfaces 
behind the crack tip, 

AU&) = U;(Y) - U; (Y) = 4,/$&,K,, (20) 

in the absence of any shear zone {6p(~)} (Rice, 1985). Thus, A,, K, can be termed the 
displacement intensity factors in analogy with the stress intensity factor K,. Equation 
(19) can also be interpreted as follows: the displacement intensity factors A,, K, 
remain unchanged near the tip, along both the crack opening direction and the 
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direction perpendicular to the s,(rj~). for partial relief of singular stress in the con- 
strained path approximation. 

Nucleation of’dissociatrd dislocatiorzs on coincidental cr-mck awl slip pl~lrws 

Frequently, dissociated partial dislocations are formed in metals, e.g. Shockley 
partials in fee crystals, and partials connected by faulted planes such as the anti-phase 
boundary (APB), complex stacking fault (CSF) and superlattice intrinsic stacking 
fault (SISF) in intermetallics. It is likely that dislocation emission in fee materials 
consists of sequentially emitted partials rather than the full dislocation. 

We consider now the emission of paired partials in the same manner as Rice 
(1992). but using anisotropic elasticity, understanding that the interpretation of those 
formulae are to bc corrected as in a note appended to Rice et ul. (1992) to account 
for the partials forming in a definite ordered sequence rather than competitively. The 
slip plane is presumed to be coplanar with the crack surfaces for simpler mathematical 
manipulations. The first partial is labeled A, with slip direction at angle & with the t 
direction in the slip plane, while the second partial is labeled B, with slip direction at 
angle $I~. 

The emission of the first partial occurs in an anisotropic medium when the 
nucleation condition expressed in (I 8) is reached. 

K., = S,($4A)Kz = &&4A) = K,,.. (21) 

The emitted partial has two effects on the nucleation of the second : (1) shielding 
of the loading and (2) offset of the lattice potential from zero to the value of the 
stacking fault energy so that the energy barrier for the second partial nucleation is 

(;‘u - I’sI). 
The shielding of the loading depends on the location of the emitted partial as 

expressed by (1 1). The emitted partial dislocation will be treated as a line defect ; the 
self-consistency is ensured by the fact that it is far away from the shear zone of the 
second partial at the crack tip. Its stable equilibrium position is found from the 
condition that the force exerted on it in the slip plane vanishes (the larger of the two 
roots of the following equation). i.e. the balance of the Peach- ~Kiihler force and the 
attractive forces of the stacking fault energy and the image force in the slip plane, 

,f’, = K.,h,&2nr, -I!,,-+,f; = 0, (22) 

where ,f; is the image force on the partial dislocation in a slip plane and has been 
derived by Asaro (1975) and Rice (1985). 

(23) 

The glide motion of the first partial also experiences a friction force (To h,, from lattice 
resistance, the Peierls stress op; hence the term ybr should be replaced by (~,,+o,h,) 
in (22). The Peierls stress op is of order 10e4 to lO-‘l+ (Hirth and Lothe. 1982). For 
fee metals, we estimate o,h, to be 10-j ++,b,4 and j’,,r to be l/3 ;‘,I, z 0.01 ,~,,,,,h,, (Rice. 
1992; Rice et al., 1992) so that the lattice friction ~,h,~ is about 1% of I’\~, which is 
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justifiably neglected for fee metals here. For the position of the first partial. a relation 
is found by solving (22) in connection with (21) and (23), 

(24) 

Its position is estimated to be lo-50 times b,4 away from the tip. The stress intensity 
factor is now shielded by the emitted first partial dislocation according to (1 l), 

The shear stress intensity factor along the s,(@J direction is KB = ~~(4~) K, and for 
the screened stress intensity factor Ki = ~~(4~) K,*, 

Kg = KB--ul (4~2 $,d)Krl +v(~B, 4dJ-3 (26) 

where 

rl (4R, $A) = S,(&&I,~~‘S,&&J = 

~,(CMAz$q&?M 

P($A) 

The emission of the second partial dislocation occurs when 

(27) 

The two effects of the emitted first partial have been incorporated into the nucleation 
condition expressed in (28). 

Approximute nucleation condition in the case qf u tilted slip plane 

If the slip plane is inclined at an angle H with the crack plane, the exact solution 
can only be obtained by numerical methods [see Beltz (1992), Rice et al. (1992) and 
Sun et 01. (1993) and also the next section]. We would project the singular stress 
concentration and the A,,i matrix from the main crack onto the slip plane, then treat 
such a projected case as if the crack were coplanar with and just behind the slip plane. 
This method of projection is only rudimentary, and must be checked by the numerical 
solution. We will observe that this projection method is justified, though approximate. 

The approximation occurs in two steps. First, we adopt the concept of the eJ5xtit.e 

stress intensity,fuctor.r KT as proposed by Rice (1992). These effective stress intensity 
factors K’,“‘ are defined through the stress components a&r) in the slip plane with 
x = (r, 0, Z) from the general loading K = (K,, Kz, K3) = (K,,, K,, K1,,) on the main 
crack, 

such that 

(29) 
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We have 

(30) 
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k_cts 

cF,,.(r) = a 
&ii. 

k’$. = Fr,](@Kii. (31) 

Secondly, we find the proper A$ matrix for crack extension force G, for a crack 
extending along the r direction such that G,. = K’,“R$‘K~. The A!$ matrix is related 
to the A,, matrix by 

A’J/=R A-.R. rp n: ti;. 

where R is the rotation matrix, 

cos e sin 8 0 

-sin0 cost9 0 

0 0 I 

(32) 

(33) 

It is easily shown that the inverse of the A$ matrix, A$‘-’ = R,,j A,’ R,:,. 

The dislocation nucleates on the inclined plane when the condition expressed by 
(18) is satisfied, but here in the context of the effective stress intensity concept and 
the A$/ tnatrix for the inclined plane, that is 

/ 
s,($ffcrc = J-,“,Y(cb, 81, (34) 

where p (4: 0) = ~~(#)A~~-’ s,<(4). 

INTEGRAL EQUATION FORMULATION FOR THE PROBLEM OF 
DISLOCATION EMISSION FROM A CRACK TIP 

In the previous section, the dislocation emission criterion was approximately 
obtained by the effective stress intensity factor K’,” and A$, obtained by the projection 
method, when the slip plane is inclined with respect to crack planes. Should the 
normal stress also be taken into account, the critical nucleation criterion can no longer 
be determined by the J-integral even in the coplanar slip and crack planes case, but 
only be determiiled exactly by numerical methods. We now present exact treatments 
for the general cases involving inclined slip planes and mixed edge and screw com- 
ponents, including tension-shear coupling. 

The combined tension-shear model 

Suppose an incipient profile (6,. (r), 6() (r), 6, (r)} develops on an inclined slip plane, 
in response to the stress concentration at the crack tip under combined K, loading. 
which is similar to Fig. 1. We assume that the profile is predominantly shear, with 
small opening displacements. 

The incipient profile (Ls,(s)~ is, as before, modeied here as a continuous distribution 
of an individual dislocation at location s of an in~nitesimal Burgers vector 
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[ - (d~~(~)/d~) ds], which in turn will exert stresses (T&Y) = gls (r, s ; 8) 
[-(da, (s)/ds) ds] on a point Y along the slip plane. Therefore, the Green’s functions 
gzB(r,s; 0) so defined can be obtained by solutions of a line dislocation inter- 
acting with the crack tip in the anisotropic linear elastic medium. Some detaits are 
presented in the Appendix. The force balance at a point Y along the slip plane gives 
equations of equilibrium, 

> (35) 

where (a, #?) = (r, O,z), but also denoted as (1, 2, 3), and aiz($the unrelaxed stress 
from the crack loading KS, are given as 5&(v) = ~~~(~)~~~~/2~~, as in the previous 
section. 

The term a&&(r)] is the lattice restoring shear and tension stress against the 
displacement discontinuities across the slip plane at point Y, with which a potential 
@[a, (r)] is associated, such that 

awwi 
5,,[6(r)] = --- 

au4 
(36) 

Equations (35) and (36) constitute a complete set of equations to be solved sim- 
ultaneously. 

We remark about properties of the Green’s functions gNii (r. s: 8). It can be shown 
that 

g,/7 fr, s ; @ = L s [A$+’ +h,&‘/s, fl)] J 4x Y Y-S 
(37) 

where the following properties of the function /z,,~ (t, H) are of interest : first, 

&,1(1,0) = 0, (38) 

in order to have proper stress fields in the linear elastic medium near the dislocation 
point s. Furthermore, the Rice-Thomson image force theorem for a dislocation line 
at a crack tip implies that d/z,,{ (t = 1, @/dt is antisymmetric for indices x and 8, i.e. 

ah,(j (t = 

ah,,(t = 

dh,;(t = 

&,(t = 1) @)/at = 0, (394 

al7~~~(~ = 1, B)/& = 0, (39b) 

ah,,(t = 1, oyat = 0, (39c) 

1, e)/at+ah,,.(t = 1, e>/at = 0, (39d) 

1, Q)/dt+dh;,(t = 1. @/at = 0, WeI 

1) H)/u”t + ah,;(t = 1, e>/at = 0. (39f) 

The conditions given by (38) and (39) are trivially satisfied for H = 0, i.e. h&r/s, 0) = 0. 
Further details regarding the stress functions&r, s; 0) are presented in the Appendix. 

We also apply the constrained slip path approximation here. Let the slip be con- 
strained to be along the direction s (the same as b) that makes an angle C#I with the r 
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axis in the slip plane, (5,(r) = Ib~,(p)c0~(6,6,(r).ii,(r) sin ~$1 and the stress 5 = c~,!. cos 
$+o, sin $ and G = cxoij. We seek the condition under which the profile becomes 
unstable, after which a dislocation emerges and moves away from the crack tip until 
being stopped by the lattice resistance, the Peierls stress r~,,. or by interactions with 
distant dislocations, etc. We obtain the following equations : 

(41) 

where and 

5 (’ 

K:” = ~~ [cos gb a::, (I”, @+-sin d, a::((~, O)] = s,(cb) F,,j(B)K,j K’,” = 
-TV(T,,,,(~, 19) = Fz,j(@ K,j, These are defined for the singular stresses c$,., C$ and c$,, 

at the crack tip under external loading before the emergence of the incipient profile. 
The functions g,,, g12, &, and gz2 are stress functions for a straight dislocation at a 

crack tip: ,4rr (r.s;0) = s,(4) gX/j (r,,s:O) s,)(4), gls ( r.s; II) = s,(fj) ,Yr2 (r,s:(f), ,q2, 
(r, s ; 0) = glz (r, s ; 0) s,(4) and & ( r,.s; 8) = grl (r. s; 0). All of these terms and 
functions can be obtained from the singular field of a loaded crack tip and solution 
of a dislocation near a crack tip using the anisotropi~ elasticity forrn~ilati~~n see e.g.. 
Atkinson (1966), Asaro (1975) and Suo (1989). 

The terms z[S,(r),S(,(r)j and o[b,(r),J,,(r)] are lattice restoring shear and tension 
stresses against the displacement discontinuities across the slip plane: a potential 
@[(Z,(r), 6,,(r)] is assumed to exist, such that 

i)@[&(l.), s,,(r)] 
r[S,(r), S,,(r)] = __--__- 

(36,(r) ’ 

&D[S,(r), S,,(r)] 
C@,(Y). d,,(r)] = -__- ~ 

i-&(r) 

(42) 

(43) 

~odeiin~ of the coIlstitLlti~~e law @[S,(t-). 6,(v)] from EAM results for Ni. Al, Ni,AI. 
and Fe, from sources noted above, and from density functional studies of Si by 
Kaxiras and Duesbery (1993), Duesbery rt al. (I 990). Huang et ul. (I 99 1) and Huang 
(1992) have been provided in Sun et ul. (1993). Rice it nl. ( 1992) and Sun (1993). The 
same potential from such atomic models is used here. The analytic representations of 
the stresses and the potentials can be found in Beltz and Rice ( 199 1 ), Rice er al. (1992) 
and Sun et ul. (1993). Equations (40)--(43) constitute a complete set of equations 
which can be soived jointly to determine the critical loading and corresponding 
incipient configuration. The solutions are obtainable numerically, by use of the New- 
ton--Raphson method and Chebyshev polynomials of the second kind [see, e.g.. 
Erdogan (1975) and Erdogan and Guptd (1972)]. 
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crack tip A 

In the shear-only model, where only the slip displacements and shear stresses are 
considered, there exists a simpler set of equations, 

(44) 

Equation (44) is accompanied by a sinusoidal law 

r(A) = (w,J~) sin (271A,lh), (45) 

where A,, is the relative atomic sliding displacement between the two adjacent slipping 
atomic layers, which is related to 6,, the displacement discontinuity across the slip 
plane, by 

6, = A, -(b/271) sin (27cAJh). (46) 

EXACT RESULTS AND CONCLUSIONS 

The si@?cmce c$‘anisofropic elasticity 

The anisotropic effect is surveyed initially in three parts. It appears in the angular 
dependence of the singular shear stress a,% (r, f?) near a crack tip under pure tensile 
loading, i.e. F,,(B) in previous notation. In isotropic elasticity, F&0) = co? 
(Q/2) sin (e/2), corresponding to the dashed curves in Figs 4-7. Figures 4 and 5 show 
the comparison of anisotropy with isotropy for a crack growing in the [OlO] direction, 
with crack front along [IOO] and crack planes on (001) planes (crack A) in EAM-Fe 
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Fig. 5. The angular distribution of the singular shear stress (T,), (r, 0) d ‘Tiy/K, = F,I(H) near crack tip A 

under mode I loading in EAM-AI ; anisotropic versus isotropic formulations. 

and EAM-Al. We note that the anisotropic results have significantly different shapes 
from the isotropic ones, more so in bee than fee. Also, Figs 6 and 7 show results for 
EAM-Fe using crack orientations B ([ilO]-[OOl]-[ill]) and C ([Ol l]-[Oil]-[loo]). 

Figure 8 shows the function g,,(~, s, 0) 6, which is part of the equation for cr,J~) 
and is the key function in the shear-only model, for crack A. Here. the slip plane is 
tilted so that 0 = 45 ‘, as is appropriate for Fe. The figure shows the Cauchy singularity 
(l/s) as implied by (36). It is seen that a similar shape of the function results 
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0.3 

0.1 
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-0.3 
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-180 -120 -60 0 60 120 180 
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Fig. 6. The angular distribution of the singular shear stress o,,, (r. 0) v, /G/K, = FIL(CJ) near crack tip B 

under mode I loading in EAM-Fe : anisotropic versus isotropic formulations. 
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Fig. 7. The angular distribution of the singular shear stress IT,,,(~, O),,‘%/K, = F,,(O) near crack tip C 
under mode 1 loading in EAM-Fe ; anisotropic versus isotropic formulations. 

for anisotropic and isotropic formulations, though their numerical values are not 
identical. 

Finally, the critical loading Cd as determined in the shear-only model is shown in 
Fig. 9 as a function of inclination angle B of the sIip plane, in anisotropic and isotropic 
fo~u~at~ons for crack A in EAM-Fe under pure mode I loading and for emission of 
a disfoeation of pure edge character. The anisotropic effect is nurneri~a~~y significant; 
it differs from the curve obtained using isotropic elasticity, which can overestimate or 
underestimate the anisotropic results, depending on B. 

6 8 10 12 

r/b 

Fig. 8. The distribution of the stress ~&r, f?) = g, j (r, s, 8) b produced by an edge dislocation of Burgers 
vector b located at s = 58 on a 4Y tilted slip plane in crack tip ,4 ; anisotropic versus isotropic formuiations. 
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Fig. 9. The criticai load G‘,, as a function of inclination angle I! for dislocation emission from crack A m 
EAM-Fe under mode 1 loading as determined in the shear-only model: anisotropic versus isotropic 

formulations. 

Consider the case where the slip plane is coplanar with the crack plane and C$I = 0. 
As mentioned previously, the critical loading Gd for dislocation emission is equal to 
y,,, in the shear-only model. The tension effect on dislocation emission in model A, 
using anisotropic elasticity with EAM-Fe. is analysed by varying the ~~n~oLlnt oftensile 
loading with respect to shear loading. $ = arctan fK,,iK,). Figure 10 shows the results. 
The critical G,(G) in the isotropic formulation, taken from Fig. 3.2(b) of Sun cf ai. 
(1993), accompanies those in the anisotropic formulation. It shows that by the proper 

EAM-Fe 
I ,-rTTl, I I, I I I,, I 1, I,, I,, I, I 

----- isotropic, shear-only 

Y,,(‘) - Cx IY”,‘“’ ~ Y”,“‘I (rm - w 

0: anisotropic, a--z 
~ 
? 

-1 
; 

Fig. 10. The critical load G‘,l as a function of the phase angle I// of loading for edge dislocation emission 
from crack A in EAM-Fe on a coplanar slip plane. as determined in the tension-shear coupled model: 
anisotropic versus isotropic formulations. Fitting by the isotropic shear-only model with the tension 

reduced unstable stacking energy ;‘.\ (I/J) is also shown. 
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Fig. I I. The critical loading Gd as a function of the inclination angle H for edge dislocation emission from 
crack A in EAM-Fe under mode I loading, as determined in the effective approximation ; shear-only and 

tension-shear coupled models (scaled by yg’), anisotropic formulation. 

treatment of anisotropic effects, the two formulations render almost the same results 
in the tension--shear coupling model. That seems more general than the following 
case : as was shown previously, in the case of orthotropic crack and coplanar crack 
and slip planes, both formulations would predict the same G value for edge dislocation 
emission in the shear-only model. As in Sun et nf. (1993) with isotropic elasticity, the 
combined tension-shear model in the anisotropic formulation is fitted by the modified 
shear-only model, which uses the tension reduced :tUS (II/), namely, 

cd($) = y,,(rl/)!sin” $. (47) 

where 1;,,($) = $4 -cc[l/t:’ -$J](n/2- $) for tension reduction. The modified shear- 
only model gives a good description. The same cx coefficient applies to both anisotropic 
and isotropic results. For EAM-Fe, a is 0.841. 

We further illustrate anisotropic effects for the case of a tilted slip plane making an 
inclination angle 8 with the crack plane when the crack is loaded in pure mode 1. 
Results are presented for crack orientations A, B and C in bee EAM-Fe. Here the 
angle B ranges from 40“ to 120” and angie d, = 0”. These B and 4 angles may not be 
the actual inclination and screw/edge mixing angles for a slip system in the crack 
orientation models A, B and C; we merely intend to show the dependence of the 
critical loading Gd upon anisotropic medium effects. The critical loading as a function 
of inclination angle 0, expressed as Gd as determined in the combined tension---shear 
model (labeled o--z), shear-only model (labeled z) and effective shear intensity factor 
model in the anisotropic elasticity formulation for model A is shown in Fig. 1 I, crack 
B in Fig. 12 and C in Fig. 13. The effective stress approximation gives a good 
description of the general shape, although it overestimates the loading by about 20%, 
compared to the numerical results of the shear-only model. The combined tension 
and shear model further reduces the loading by IO- 15%. 



1924 YUEMIN SUN and G. E. BELT2 

25 

0 

0 30 60 90 120 
0 (degrees) 

Fig. 12. The critical ioading G, as a function of the inclination angle H for edge dislocation emission from 
crack B in EAM-Fe under mode I loading, as determined in the effective approximation: shear-only and 

tensionshear coupled models (scaled by yt,t’). anisotropic formulation. 

20 
v=o I$=0 
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Fig. 13. The critical loading G,, as a function of the inclination angle 8 for edge dislocation emission from 
crack C in EAM-Fe under mode 1 loading, as determined in the effective approximation : shear-only and 

tension-shear coupled models (scaled by ;a%‘), anisotropic formulation. 

From the above discussions, we devise a procedure for calibrating the effective 
stress intensity factor method on the basis of exact numerical solutions, including 
tension-shear coupling. Let the critical stress intensity factor &, as estimated from 
the effective method, be multiplied by a factor q so as to equal the shear-only Kd. The 
11 factor ranges from 0.86 to 0.95. The tension-shear coupling is handled by the 
tension reduced yUs(ll/) value, which was treated in Sun rt al. (1993), though in isotropic 
formulations. It was shown that this tension-reduced unstable stacking energy is valid 
for EAM-Ni, -Al, -Fe and -Ni,Al, but less well for DFT/LDA-Si. We expect that it 
will work equally well in the anisotropic formtllation. 



Material Crack orient 

Fe 
Fe 
Fe 
Ni 
Ni 
Al 
Al 
AI 
Ni,AI 
N&AI 

Si. gfide 
Si, glide 
Si, glide 
Si. glide 
Si, glide 
Si, shuffle 
Si, shuffle 
Si, shuffle 
Si, shufhe 

(-45, 35.3) 
(-90, 54.7) 
(-90, 35.3) 

(54.7. 60) 
(35.3, 0) 

(54.7: 60) 
(35.3, 0) 
(90, 30) 

(54.7,60) 
(35.3, 0) 

154.7, SO) 
(35.3,O) 
(9% 30) 
(70.5,O) 

(70.5, 60) 
(54.7, 30) 
(35.3, 30) 

(90; 01 
(70.530) 

Eff. t 

29.96 27.40 
II.85 9.144 
23.80 19.48 
32.02 29.06 
IO.48 9.92 
28.40 25.72 
I I.54 10.89 
IO.71 x.315 
30.27 28.43 
1 f .05 10.40 

29.13 26.70 
11.66 10.89 
10.27 7.879 
6.521 5.253 

20.56 17.97 
11.26 9.560 
14.54 13.69 
8.243 6.166 
8.082 6.669 

U-T 

10.581 
8.106 

17.75 
22.09 

8.103 
19.85 
8.705 
7.664 

17.91: 
8.342 

q recipe 
---- 

0.9577 
0.8785 
0.9058 
0.9528 
0.9720 
0.9518 
0.9716 
0.8813 
0.9557 
0.9698 

2.9596 0.9574 
2.0411 0.9665 
5.784 0.8758 
3.226 0.8975 
4.7292 0.9348 
2.6421 0.9213 
1.979$ 0.9702 
6.345 0.8649 
3.882:: 0.9084 

f The in-plane elasticity is taken to be decoupled from the anti-plane elasticity to simplify 
the treatment, which is only appro~illlat~. 

$The instability may correspond to decohesion along the inclined slip plane rather than 
dislocation emission. 

We can summarize individually for each common crack orientation and the easiest 
slip system (i.e. 0, 4 angles) listed in Table 1. The critical loading for dislocation 
emission under mode I loading is summarized in Table 2, as determined by the three 
methods. The critical condition under pure mode I loading was determined via the 
numerical procedure, the shear-only model and the effective model. By comparing 
two solutions for the same situation, we obtain the y coefficient for each crack 
orientation and slip system (i.e. angles If and 4). Here we assume the coeflicient y is 
unique for each set of 0 and $ angles, which approxinlately holds true for every 
material. The tension-shear coupling would reduce the loading at the critical 
condition, and the results are aiso presented in Table 2. The tension-shear coupling 
is approximated by the tension reduced yUS. The tension reduced y,, in terms of the 
phase angle ii/ is 

7’US($) = rz -,~lVS’ -A?l(42 - $1, (48) 

where the phase angle is for the effective shear versus tensile stress intensity, i.e. 

Q!J = arctan (&j&j. (49) 

The coefficient 01 is from Sun et ai. (1993) for tension-shear coupting, It is different 
for each EAM material and slip system. In particular, CI has the values 1.323, 1.145, 
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0.969 and 0.84I for Ni, At, N&AI and Fe as modeled by EAM, respective&. For 
DFT,iLDA-Si, x for the glide set is determined to be 7.249. The Q for the shutfie set 
was determined to be -2.234. Such estimates give good results, within a few percent 
for G under pure mode I. 

We accordingly give the procedure for a rudimentary estimate of the critical loading 
for dislocation emission from a crack tip : 

(A) Find the effective stress intensity factor for ~-0-z coordinates, so ;1s to find the 
/ir; and K, under general loading (K,. K,,, &,), and then the phase angle {I. 

(B) Find the tension reduced ;a,,i($) according to (4X). 
(C) Apply the calibrated equation for the critical condition, using the a~~ro~r~ate #i 

coefhcient. 

K, ‘=: q %j;;,&fi, i$>. (50) 

This procedure gives an estimated error within the range &7% in Gd when applied 
to typical cases. 

As can be seen in Table 2, the parameter 17 is of about the same value in different 
materials for each crack orientation and (f1, &) angle. For example, regarding emission 
of the first Shockley partial in crack I) (54.7 ,60’), ~1 is about 0.954: in crack E (54.7 . 
60 ‘), it is 0.968 for II-Ni, III-Ni, Al, Ni3Al and Si (glide set). 

The meaning of the critical loading for dislocation emission from a crack tip given 
in Table 2 can be elucidated by comparison with available atomistic simulations of 
loaded crack tips of EAM-Fe (Cheung rt ai., 1991) and EAM-AI (Hoagland (‘f r/i., 
1990). The preliminary comparisan was presented in Sun (I 093), The critical loading 
for each crack orientation and m:tterial listed in Table 2 is compared with those based 
on the isotropic formulations in Table 4 of Sun et al. (1993). It is also useful to 
compare to the Griffith cleavage for crack extension when G, = 21’~ so as to predict 
the intrinsic ductile versus brittle response. 

For crack 14 in EAM-Fe, for which the usual slip system has H -1 45 and 4 = 35.3 
with respect to the crack tip, the anisotropic G is 2.4 times the isotropic one in the 
shear-only model : in the combined tension-shear model, even the instability is difTer- 
ent in that the anisotropic model gives crack branching while the isotropic model 
gives dislocation emission. The tvvo G values are simifar, though. For crack B, 
the combined tensionshear G values for dislocation emission in the anisotropic 
formulation are 40% less than the isotropic equivalent; for crack C, the anisotropic 
G is 2.4 times the isotropic G. Therefore, the anisotropic formulation is essential for 
EAM %-Fe. 

For fee materials, the G values in the two formulations are about LO-25% different. 
in both the shear-only and tension+hear coupled models. 

To illustrate that the anisotropic formulation can be important even for the 
smaller differences, we present results for Ni,Al in two crack orientations under 
mode I loading. In the anisotropic for~~u~dtion we use C,, = 2.516 x 10" Pa, 
* 

cj,= 1.370x IO i1 Pa and C, = 1,242 x IO”’ Pa, which are the fitted elasric 
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moduti via the EAM functions. fn the correspond~~~g isotropic problem we use the 

Voigt averaged elastic moduh of the three elastic constants, namely, 

p = (C,,-C12+3C,&j = 0.9864 x 10” Pa, 1 = (C,, +4C,>-2C+,)j5 = 1.094 x 10” 

Pa, and the corresponding Poisson ratio v is 0.263. 
For crack extension under pure mode I, the critical loading can be determined by 

the Griffith condition, i.e. G, = ys, + y,?. for cleaving along a perfect crystal plane, 
where ;j,, and ys2 are the surface energies of the two cleaved surfaces. Expressed in 
terms of the crack extension force, the cleavage condition is the same for both 
anisotropic and isotropic elasticity. 

We treat the crack orientations D and E for N&AI. For crack tip orientation D 
with the (001) crack plane. growing aIong [ilO], with a [I IO] front, the slip plane is 
(1 TI), and the inclination angfe ii = 54.7’. The first emitted Shockley part&I wouid 
correspond to c, = 60’,. in the shear-only modei, the solution of the critical condition 
in the anisotropic formulation gives G&J,, = 28.43. Using the isotropic formulation, 
the shear-only model gives G,/~u, = 22.79. Here, the isotropic approximation gives a 
19.9% discrepancy. G, for crack orientation D equals 3.51 J mp2, while Gd is, using 
the relaxed value of 0.315 J rnp2 for y,,,, equal to 8.94 J m-’ with the anisotropic 
treatment. Because Cd is much larger than G,, the (001) cracks are brittle. The isotropic 
treatment gives a G, equal to 7.18 J rnA2, and thus predicts that the (001) cracks are 

brittle. 
in the tension-shear coupled model. the critical condition for dislocation emission 

from crack D in the anisotropic formulation is that G, = 5.59 J rn-’ with the consti- 
tutive taw for the first Shockley partial slip as determined jn Sun et ul. (1993) for 
N&AI. Hence, crack L) is predicted to be brittle against emission of the first ShockIcy 
partial. fn the isotropic formulation, Gd = 5.77 J m-‘, which is greater than G,. Hence, 
the isotropic formulation gives a 3.2% discrepancy from the anisotropic, and also 
predicts that {OOl). cracks growing along (I IO> are in a brittle crack orientation” The 
Gd values cited are close enough to G, that thermal activation would be an important 
factor, allowing nucleation when Gd z G,. 

Crack tip orientation E, with a (i 10) crack plane, growing along [OOI], with a [I IO] 
front, is associated with the (I i I) slip plane, hence the inclination angle B is 35.3’ . 
The first Shockiey partial that is emitted would correspond to 4 = 0” here. In the 
shear-only model, anisotropic formulation, the solution of the critical condition gives 
the Gd/;loa = 10.39, so Gd is 3.27 J m-‘. For crack E to extend, the Gc is 3.45 J m-“. 
Because Gci is lower than G_ the \‘I 10) cracks growing along (OOl> are ductile. 
However. using the isotropic formulation, G,&:,,, :I 12.21, which means that Gci is 3.85 
J rn-’ and is greater than G, for eteavage. Here, the isotropic formulation not only 
gives a 17.5% discrepancy with the anisotropic but also predicts that crack E is brittle, 
which is contrary to the anisotropic prediction. 

To differentiate the similar critical loading conditions for dislocation emission and 
cleavage in this case, the results of the tension-shear coupled model are also presented, 
In the anisotropic formulation, G, = 2.60 J mu2 with the tensionshear coupled law 
for the first Shockley partial slip; hence, crack E is predicted to be ductile for emission 
of the first Shockley partial. The isotropic formulation gives Cd = 3.025 J rnb2, which 
is less than G,. Were, the isotropic formuiation gives a 16.3% discrepancy, and also 
predicts that {I 10) cracks growing along (001 > are ductile. 
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As we might expect to be the general trend, the bee structure is more anisotropic 
than the fee structure (including Ni, Al, Ni,Al and Si). The difference in the critical 
G between isotropic and anisotropic formulations for bee materials is larger than in 
fee materials. Such differences should correlate with the anisotropic factors of these 
materials, 2C,,/(C,, -C,,), which are 7.00 for Fe, 3.24, 3.01 and 2.20 for Ni, Al and 
Ni,Al, respectively, and 1.56 for Si (the smallest of these materials). 

In the tension-shear model, the two formulations may present different instability 
modes of either dislocation nucleation or crack branching, as described above for 
EAM cc-Fe. The anisotropic G values may be less or greater than the isotropic 
correspondents. For EAM x-Fe, the anisotropic formulation results are 2.4 times the 
isotropic ones in crack C, and similar for the effective approximation model, the 
shear-only and tensionshear coupled model ; in crack A, the anisotropic formulation 
values are again 2.4 times the isotropic ones in the effective approximate model and 
shear-only model. However, in crack B, the anisotropic formulation results are 40% 
less than the isotropic ones, similarly in the effective approximation model, the shear- 
only and tension-shear coupled model. In the fee lattices, Ni, Al and Ni?Al, we 
conclude that the two formulations give results with a difference in the range of ) IO- 
25%. For DFT-LDA-Si, both the glide and shuffle slip systems, the two formulations 
are very similar; the difference in the critical G is less than 14%. In the tension-shear 
coupled model, the two formulations give the same instability for dislocation emission 
or crack branching, and the difference is less than 4”/0. We may conclude that for Si, 
the isotropic formulation is a good approximation. It would consequently support 
the use of the isotropic formulation in the analysis of activation energy for dislocation 
emission in Si by Rice and Beltz (1994) and Beltz and Rice (1994). 

As mentioned previously, the validity of the Peierls model can be limited by several 
phenomena. Recent atomic studies by Zhou ef al. (1994) showed that the critical 
loading for dislocation emission can be quite different from the predicted values by 
the Peierls model in the tilted slip plane case. A possible cause of the discrepancy is 
due to the discrete nature of the system, resulting in lattice trapping or the ledge 
effect. The atomistic simulations by Becquart et ul. (I 993) show that the surface 
reconstruction of near-tip crack surfaces is an important factor influencing the con- 
dition for dislocation emission. These are open questions for further research. 

COUPLING BETWEEN IN-PLANE AND ANTI-PLANE ELASTICITY 

So far, we assumed that the : axis along the crack front is perpendicular to a mirror 
plane for the lattice, so that the in-plane field quantities are decoupled from the anti- 
plane ones. If this were not true, the assumption is only good as an approximation. 
For the exact method of treatment for the coupled case, see Stroh (1958), Barnett 
and Asaro (1972) and Suo (1989). 
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APPENDIX: DISLOCATION AND CRACK TIP INTERACTIONS IN 
AN ANISOTROPIC ELASTIC MEDIUM 

The functions Fy,!(v. .s, II) and gT,j(,‘, v. 0) are required for treating the problem of a dislocation 
interacting with a crack. The stress distribution around the tip in an anisotropic medium 
without a dislocation and with one has been solved. originally by Stroh (lY58). Atkinson 
(I 966). Barnett and Asaro (1972). Asaro (I 975) and summarized by Suo ( 1989) using the stress 
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Fig. A I. R dislocation interacting with crack tip in art anisotropic medirrm. 

Function method. Here, we prove two efegant theorems regarding the functions ~+(Y, s, 0). The 
scenario is illustrated in Fig. AI. Suppose a dislocation of Burgers vector bij is located at (s, 0) 
in a polar coordinate system from the crack tip. The local polar coordinate system at the 
dislocation core is (/j, LC)). 

Near the dislocation, the stress CT&. w) behaves like I/p. From Rice (1985), we deduce that 

where h&to) is the unit vector in the direction of increasing cu. Note that the right hand side of 
(Al) is independent of (0, which results from the equation of force equilibrium, We can 
transform vectors and tensors in (A If from an (s, J+, ;) coordinate system denoted in Latin 
indices to (l: 0, -7) denoted in Creek indices 3: and jj by a tensor transforn~atjon~ by a rotation 
of angle 8 around the z axis. Further, setting ~0 equal to 0, we obtain 

when p is small. 
From the Atkinson (1966) solution and Suo (1989) treatment of a dislocation interacting 

with a crack tip in an anisotropic medium, we can show that when the dislocation lies in i*ront 
of the crack tip on the crack plane, i.e. 0 = 0, the stress a?,(r) ahead of the crack tip and in the 
plane is 

From (52) we can deduce that the stress intensity factors induced by the dislocation are 

(A4) 

where i = 1, 2 and 3 for mode II, I and III, which was given by Rice (1985). We also observe 
that (A3) satisfies (AX). 

For a dislocation lying an the inclined slip plane as shown in Fig. A I, we write the gen- 
eralization of (A3) as 

In order to satisfy (A2) when p = T--S is small. we demand that 
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h&t = 1,O) = 0. (A6) 

in order to have proper stress fields in the linear elastic medium near the dislocation point s. 
Furthermore, the RiceeThomson image force theorem (1974). which was generalized by Asaro 
(1975) to anisotropic elasticity, and further generalized by Rice (1985) to the sector-wise 
different anisotropic elasticities at a crack tip. for a dislocation line at a crack tip implies that 

SI,,~(~ = 1. H)!i?t is antisymmetrical for indices x and /j. (A7) 

Equation (A7) is proven next. We point out that (A6) and (A7) are generalizations from 
isotropic results deduced by Rice (private communication). 

From Rice (1985). the attraction force received by the dislocation should be 

(A8) 

We can obtain the image force,f;. by the following procedure. Consider the stress field of (AS) 
and decompose it into the field of a dislocation in an untracked crystal, plus another term 
which is bounded at the dislocation. That other term, evaluated at Y = s and multiplied by h,. 
gives the Peach-Kohler force. which must be consistent with (A8). Thus we establish that 

h, c%,/j(r = 1,0):&h,, = 0. 

which is equivalent to (A7). We have omitted the details 

(A9) 


