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Abstract

To better understand the ductile versus brittle fracture behavior of crystalline materials, at-
tention should be directed towards physically realistic crack geometries. Currently, continuum
models of ductile versus brittle behavior are typically based on the analysis of a pre-existing
sharp crack in order to use analytical solutions for the stress 8elds around the crack tip. This pa-
per examines the e'ects of crack blunting on the competition between dislocation nucleation and
atomic decohesion using continuum methods. We accomplish this by assuming that the crack
geometry is elliptical, which has the primary advantage that the stress 8elds are available in
closed form. These stress 8eld solutions are then used to calculate the thresholds for dislocation
nucleation and atomic decohesion. A Peierls-type framework is used to obtain the thresholds for
dislocation nucleation, in which the region of the slip plane ahead of the crack develops a distri-
bution of slip discontinuity prior to nucleation. This slip distribution increases as the applied load
is increased until an instability is reached and the governing integral equation can no longer be
solved. These calculations are carried out for various crack tip geometries to ascertain the e'ects
of crack tip blunting. The thresholds for atomic decohesion are calculated using a cohesive zone
model, in which the region of the crack front develops a distribution of opening displacement
prior to atomic decohesion. Again, loading of the elliptical crack tip eventually results in an in-
stability, which marks the onset of crack advance. These calculations are carried out for various
crack tip geometries. The results of these separate calculations are presented as the critical energy
release rates versus the crack tip radius of curvature for a given crack length. The two threshold
curves are compared simultaneously to determine which failure mode is energetically more likely
at various crack tip curvatures. From these comparisons, four possible types of material fracture
behavior are identi8ed: intrinsically brittle, quasi-brittle, intrinsically ductile, and quasi-ductile.
Finally, real material examples are discussed. c© 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Crack blunting; Dislocation nucleation; Cleavage; Atomic decohesion; Ductile vs.
brittle behavior

∗ Corresponding author. Tel.: +1-805-893-3354; fax: +1-805-893-8651.
E-mail address: beltz@engineering.ucsb.edu (G.E. Beltz).

0022-5096/01/$ - see front matter ? 2001 Elsevier Science Ltd. All rights reserved.
PII: S0 0 2 2 -5 0 9 6 (00)00042 -9



636 L.L. Fischer, G.E. Beltz / J. Mech. Phys. Solids 49 (2001) 635–654

1. Introduction

For some time, theoretical analyses of the competition between ductile and brittle
material behavior have speci8cally addressed the competition between dislocation nu-
cleation at a crack tip and cleavage. Rice and Thomson (1974) were among the 8rst to
consider this problem by speci8cally making use of elasticity solutions to solve for the
thresholds to emit a fully formed dislocation on a slip plane intersecting the crack tip.
The load for dislocation nucleation was then compared with the load required for Grif-
8th cleavage. Later versions of the Rice–Thomson model characterized this competition
in terms of critical energy release rates Gcleave for cleavage, and Gdisl for dislocation
emission. In these studies, the event possessing the lowest critical energy release rate
was predicted to dominate. Emission of a single dislocation was thought to imply that
the material would continue to emit dislocations, thus “shielding” the stress singularity
and preventing further brittle fracture. If cleavage was predicted, brittle fracture would
persist.

Rice (1992) made a great step in advancing the sophistication of these types of
analyses when he introduced a model that incorporated the Peierls (1940) disloca-
tion description. Assuming a periodic relationship between the shear stress and slip
displacement along the slip plane intersecting the crack tip, this model solves for a
distribution of slip displacement that results from far 8eld loading using a nonlinear
integral equation. Eventually, after increasing the applied load and evaluating the result-
ing slip displacement distribution, an instability is reached, and the integral equation no
longer has a stable solution. This instability marks the nucleation of a dislocation from
the crack tip. The advantage of this approach is that it avoids any use of a core cuto'
approximation for the dislocation, while providing a physically realistic mechanism for
the formation of an incipient dislocation core prior to nucleation.

Over the years, this framework has been broadened by Rice et al. (1992) and Xu
et al. (1995, 1997) to account for elastic anisotropy, cracks on bimaterial interfaces,
extended core structures, realistic slip systems, and three-dimensional dislocation ge-
ometries. Despite many improvements made in later versions of the Rice–Thomson
model, one assumption has typically been made: crack tips are initially atomically
sharp, and remain so during and subsequent to dislocation nucleation. In the current
work, we adopt the viewpoint that a “pre-blunted” crack may be used as a reference
con8guration from which a study of dislocation nucleation versus cleavage may be
undertaken. We envision a crack that is continuously blunting on the atomic scale due
to (but not limited to) previous crack tip dislocation nucleation, anelastic deformation,
di'usion of atoms from the crack tip region, or chemical reactions. The analysis would
also apply if a blunt notch were introduced arti8cially, through cutting or some other
mechanical process.

Atomic models for cracks have yielded important results pertaining to crack blunting,
and the drive to reconcile continuum models with atomistic simulation results provides
a further impetus for our current study. For example, Gumbsch (1995) and Gumbsch
and Beltz (1995) used a hybrid 8nite element-atomistic mesh (FE-At) to compare the
load required for brittle fracture with various continuum-based criteria and found good
agreement with simple mode I–II loadings where the slip plane coincided with the
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Fig. 1. A diagram of half of an elliptical crack. The ellipse has a major axis of 2a and a minor axis of 2d.
The radius of curvature of the crack tip is given by � = d2=a. The slip plane, inclined at angle �, intersects
the crack tip.

crack plane (in these cases, dislocation nucleation does not result in blunting or ledge
formation). In cases where dislocation nucleation does result in blunting, the FE-At and
continuum results did not give perfect agreement. As an additional example, SchiHtz
et al. (1996, 1997) studied the e'ects of blunt crack geometries on crack propagation.
Static simulations were conducted using a two-dimensional hexagonal lattice under
mode I and mode II loading. They found that for a “blunting height” of 10 layers
of atoms, the force required to propagate the crack was 15–20% more than that for
an atomically sharp crack. Other examples include molecular dynamic simulations by
Dienes and Paskin (1987), Paskin et al. (1985), and Farkas (1998a,b, 1999), which
overwhelmingly suggest that blunting of a sharp crack tip can signi8cantly modify the
stress 8eld around the crack tip, and=or change the favorability of crack advance or
dislocation nucleation.

In this paper, we propose to assess the fracture behavior of crystalline materials by
considering the ongoing competition between dislocation nucleation and crack injec-
tion in blunted crack tip con8gurations via continuum methods. A blunted crack tip
con8guration that is analytically tractable is used to simulate crack tip blunting at the
dislocation length scale. In this approach, two governing integral equations for dislo-
cation nucleation and crack advance are developed. The solutions for the stress 8elds,
or “kernels”, used in these equations can be found in the literature and can be ma-
nipulated into their required form in order to solve for the dislocation nucleation and
atomic-decohesion thresholds. These two threshold solutions are compared for varying
values of crack tip bluntness, and we demonstrate that four separate cases of material
fracture behavior can result. Using this method, predictions are made about the fracture
behavior of several real materials.

2. General description of model

In order to quantify crack blunting, we model the crack as a slender, elliptical
cut-out centered in an in8nite medium. The ellipse shown in Fig. 1 has a major axis
of 2a and a minor axis of 2d. The crack tip radius of curvature, given by � = d2=a,
is a measure of the “bluntness” of the crack tip. Crack advance, or “injection”, is
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assumed to occur directly ahead of the crack tip, and dislocation nucleation is assumed
to occur on the slip plane inclined at angle � that intersects the elliptical crack tip.
The model is completely two-dimensional (plane strain), and the dislocation lines are
assumed to parallel the crack front. Dislocations that have a screw component (Burgers
vector component parallel to the crack front) are not considered in this paper. An
obvious trade-o' here is that the elliptical crack tip pro8le does not retain the corner
(and its associated stress singularity) that would result, at least from a continuum
viewpoint, when dislocations emit along the slip plane – suggesting that our elliptical
representation will lead to an overestimate of the e'ects of blunting. We suggest that
the notion of a sharp corner is unrealistic at the atomic scale – not only because it
cannot not be de8ned, but because local atomic motions and relaxations are always
occurring. Our basic premise is to have some length scale that quanti8es crack blunting
on the atomic scale, in order to uncover general trends, while the exact shape to be
analyzed is a secondary detail. Future work should address the issue of rounded versus
sharp corners, however.

To calculate the energy release rate for dislocation nucleation (Section 3), a Peierls-
type treatment similar to that proposed by Rice (1992) is applied to the active slip plane
of the elliptical crack tip. The Peierls treatment assumes there is a periodic relationship
between shear stress and slip displacement along the slip plane intersecting the crack
tip. A nonlinear integral equation can be written, the solution to which must balance
the stress due to applied loads (assuming a completely elastic solid) at some position
r along the slip plane, the slip displacement stress at that position r, and the stress at
position r due to slip displacement along the remainder of the slip plane. Immediately
prior to dislocation nucleation, there exists a distribution of slip discontinuity along the
slip plane that is unstable with respect to further increases in applied stress, and the
dislocation is said to nucleate at that point. The load at which this instability occurs is
then used to determine the critical energy release rate associated with nucleation.

To calculate the energy release rate for crack propagation (Section 4), a cohesive
zone model is used. The cohesive zone calculations are very similar to the Peierls
calculations in that a nonlinear relationship between the opening stress and the opening
displacement is assumed. Again, a governing integral equation can be written to balance
the stress due to applied loads, the stress due to opening displacement, and the stress
due to opening displacement along the rest of the crack front for every point along
the crack front. With increasing applied stress, a distribution of opening displacement
develops in the region ahead of the crack tip. Ultimately, an instability is reached and
the crack is said to advance. The load applied at the moment of the instability is then
used to calculate the energy release rate associated with crack injection. The process
(dislocation nucleation or crack advance) which results in the lowest energy release
rate is then favored.

3. Dislocation nucleation

First, we consider an elliptical crack (Fig. 1) subject to remote, uniaxial tension (i.e.,
mode I fracture). The shear stresses along the slip plane due to the applied loading are
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needed for this analysis, as well as the shear “self-stresses” due to an edge dislocation
situated arbitrarily along the slip plane. These shear stress solutions are found following
the work of Muskhelishvili (1975) and Vitek (1975). Once the applicable stress 8elds
have been determined, the critical loads for dislocation nucleation are calculated for
various crack lengths and crack tip radii of curvature. The calculations reveal that
increasing crack length or crack-tip radius of curvature generally increases the critical
energy release rate for dislocation nucleation under mode I loading.

In order to solve for the shear stress along the slip plane due to the uniaxial loading,
conformal mapping is used. Speci8cally, the ellipse in the complex z-plane is mapped
to a unit circle in the 	-plane

z =
(
a + d

2

)
	 +

(
a− d

2

)
1
	

= R
(
	 +

m
	

)
; (1)

where z = x + iy; R ≡ (a + d)=2, and m ≡ (a− d)=(a + d).
Next, a plane with no crack or hole, subject to uniaxial loading � in the vertical

direction, is considered. For this case, the principal stress components are �yy = � and
�xx =�xy = 0. In general, all two-dimensional stress 8elds may be represented by a pair
of analytic functions (Muskhelishvili, 1975) �(z) and  (z), where

�xx + �yy = 2(�′(z) + L�
′
( Lz)) (2)

and

�yy − �xx + i2�xy = 2( Lz�′′(z) +  ′(z)); (3a)

��� − �rr + i2�r� = 2( Lz�′′(z) +  ′(z))e2i�: (3b)

We loosely refer to these two analytic functions as “complex potentials”, and it can
be straightforwardly shown that they take the form

�0(z) =
�
4
z;  0(z) =

�
2
z (4)

for the uniaxial 8eld described above. These complex potentials can be expressed in
terms of the mapped variable, 	, using Eq. (1):
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;  0(	) =
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2
R
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	 +
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)
: (5)

To 8nd the complex potentials for a uniaxially loaded plane with an elliptical hole, a
second set of complex potentials must be superposed with the complex potentials for
the plane under uniaxial tension such that the boundary of the elliptical hole becomes
traction free. The complex potentials which satisfy this condition are often referred to
as the image terms, �im and  im :

To 8nd these image terms, an expression for the resultant force vector must be
introduced. The resultant force vector acting on any continuous arc from A to B can
be expressed in terms of the complex potentials � and  (Muskhelishvili, 1975):

Fx + iFy = −i[�(z) + z L�
′
( Lz) + L ( Lz)]BA; (6)
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Given that the boundary of the ellipse must be traction free, Eq. (6) must vanish for
all values of z on the elliptical boundary,

(�0(z) + �im(z)) + z( L�
′
0( Lz) + L�

′
im( Lz)) + ( L 0( Lz) + L im( Lz)) = 0: (7)

In the �-plane, the transformation of this equation holds for all values of 	 on the unit
circle and is given by

(�0(	) + �im(	)) +
1
	

(	2 + m)
(1 − m	2)

( L�
′
0 ( L	) + L�

′
im( L	)) + ( L 0( L	) + L im( L	)) = 0: (8)

Since the complex potentials must be analytic outside the circular boundary, the image
terms can be found using the following Cauchy integrals described by Vitek (1975)
where the contour � lies on the unit circle of the 	-plane,
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Substituting the complex potentials �0 and  0 from Eq. (5) and simplifying gives
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1
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∫
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Using the method of residues and evaluating for the pole at 	 = 0 gives the image
terms, resulting in the complete set of complex potentials for a plane with an elliptical
hole under uniaxial tension
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4

(
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; (13)
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)
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The chain rule is used to 8nd derivatives with respect to z:

�′(z) =
d�(	)

d	
d	
dz

; �′′(z) =
d�′(z)

d	
d	
dz

;  ′(z) =
d (	)

d	
d	
dz

: (15)

These values are then used as in Eqs. (2) and (3) to 8nd the overall stress 8eld.
The same method is used to 8nd the dislocation self-stress in the vicinity of an

elliptical hole. First, the complex potentials for a dislocation located at position zd in
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a plane with no hole must be considered. These are given by Vitek (1975) as

�d
0(z) = � ln(z − zd); (16)

 d
0 (z) = L� ln(z − zd) − �

Lzd

(z − zd)
; (17)

where

� =
�bei�

4�i(1 − �)
; (18)

and � is the shear modulus, b is the magnitude of the Burgers vector, and � is the
orientation of the Burgers vector with respect to the horizontal, or in our case, the
angle of inclination of the slip plane. Once again, these complex potentials must be
transformed to the 	-plane using the transformation given by Eq. (1)
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(20)

The mapped dislocation position 	d is related to zd through Eq. (1). As was carried out
for the uniaxially loaded problem, these complex potentials must be superposed with
a second set of complex potentials, the image terms, in order to obtain the complex
potentials for a dislocation in the vicinity of an elliptical hole. This superposition results
in a traction free boundary at the elliptical hole, for which the following expression
must be true for all 	 on the unit circle:

(�d
0(	) + �d

im(	)) +
1
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d
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d
im( L	)) = 0: (21)

The image terms are extracted using the Cauchy integrals of Eqs. (9) and (10). Em-
ploying the method of residues and adding the original complex potentials (Eqs. (16)
and (17)) to the image terms gives the complex potentials for a dislocation in proximity
to an ellipse
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Eq. (15) is used to obtain derivatives with respect to z.
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It is important to recognize that multiple solutions for the edge dislocation self stress
exist, as discussed by Zhang and Li (1991). These solutions account for the distinct
situations of dislocation origination at the crack tip or at in8nity. The importance of
this distinction is that only one of these solutions is stress free when the dislocation is
removed to the elliptical boundary. The current solution is applicable for the dislocation
originating at in8nity, which can be veri8ed by setting zd = a in the equations for the
complex potentials to obtain a nonzero result. In order to obtain the desired solution
(dislocation origination at the ellipse), it is necessary to subtract the solution for a
dislocation located on the elliptical boundary (zd = a and 	 = 1). This superposition of
solutions provides a stress free solution in the limiting case when the dislocation is at
the boundary of the ellipse.

The applied stress and the dislocation self-stress are used in the governing integral
equation,

�[�(r)] = �r�(r) − 1
b

∫ ∞

0
�self
r� (r; s)

@�
@s

ds; (24)

with z = a + rei� and zd = a + sei�. The shear stress due to applied loads, assuming a
completely elastic response, is represented by �r�(r) and is obtained by combining Eqs.
(13), (14), and (15) with (3b). The dislocation self stress is represented by �self

r� (r; s);
and is obtained by combining Eqs. (22), (23), and (15) with (3b). The restoring
shear stress due to local slip displacement is represented by �[�(r)]. In this paper,
the simplest periodic relationship between shear stress and slip displacement along the
slip plane of interplanar spacing h is assumed for �[�(r)]. We use the Frenkel (1926)
relation

�[P(r)] =
(
�b
2�h

)
sin

(
2�P(r)

b

)
=
��us

b
sin

(
2�P(r)

b

)
(25)

where � is the restoring stress, P(r) is the relative atomic shear displacement between
two atomic planes at any position r along the slip plane, and �us is the unstable stacking
energy. The continuum analog to P, known as �, was introduced by Rice (1992).
While P represents the relative displacement between the centers of two atoms, � is
the extrapolation of P to an imaginary cut halfway between the slipping planes of
atoms, and is given by

�(r) = P(r) − �[P(r)]h
� : (26)

Fig. 2 shows a stylized representation of the � versus P and � versus � relationships,
both of which have a periodicity of one Burgers vector.

In our solution of Eq. (24), we seek a slip distribution �(r) such that for all r ¿ 0, the
shear stress on the slip plane predicted by the linear elastic formulation (the right-hand
side of Eq. (24)) must equal the shear stress provided by the atomic-based relation
(Eq. (25)). The numerical procedure is described by Beltz and Rice (1992). The slip
distribution is solved for increasing values of the applied mode I stress intensity factor
(de8ned as �

√
�a) up to the point of instability, beyond which the governing integral

equation can no longer be satis8ed. The stress intensity immediately prior to instability
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Fig. 2. The shear stress versus slip displacement between two atomic planes (� versus P) and the shear
stress versus slip displacement at a cut half way between those two atomic planes (� versus �).

is used to calculate the critical energy release rate for dislocation nucleation, using the
Irwin relation for mode I:

G =
K2

E∗ ; (27)

where E∗ for plane strain is given by E=(1 − �2). Since G varies monotonically with
K, the mode I stress intensity factor, it is typically used as a measure of the applied
load.

Fig. 3 shows the critical energy release rates for various values of crack length
and crack tip curvature for a slip plane inclined at � = 60◦. For all calculations in
this section, we have taken h=b = 1:414 and � = 0:3. The results show that for very
short cracks, the threshold for dislocation nucleation is reduced. This e'ect has been
shown to be tied to the T -stress, that is, a normal component of stress parallel to
the crack plane (Beltz and Fischer, 2000), and will not be addressed further in this
paper since it is likely not intrinsically connected with crack blunting. It is also clear
that increasing the crack tip radius of curvature at very small curvatures decreases the
threshold for dislocation nucleation, but at larger curvatures, increases the threshold.
This is a reasonable result when one considers a comparison of the stresses ahead of
a sharp crack and a very sharp elliptical tip. While the actual peak stress of the sharp
crack tip is larger, the stress of the elliptical tip is larger over a greater distance from
the crack tip. Recalling that a Peierls-type calculation considers the entire slip plane, it
is conceivable that the blunted crack tip, over a limited range of curvatures, will form
a dislocation more eQciently than the perfectly sharp crack tip. This would persist
until the crack tip becomes so blunt that the stress 8eld throughout the formation zone
eventually drops to levels below those of the sharp crack. Note that in the case of
the 60◦ slip plane inclination, the critical energy release rate of dislocation nucleation
eventually surpasses the sharp crack threshold when the ellipse has a crack tip curvature
of about 8ve Burgers vectors.
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Fig. 3. Critical energy release rates of dislocation nucleation for various crack lengths and crack tip curvatures
for mode I loading of an elliptically shaped crack with a slip-plane inclination of � = 60

◦
.

At 8rst glance, it may seem unphysical to provide results for � on the order of one
atomic spacing or less. As discussed in Section 2, there are several possible sources of
blunting on the atomic scale, such as prior dislocation nucleation. The emission of a
single dislocation would impart a step of approximately b; hence, we associate this as
the characteristic length of blunting, and feel justi8ed in claiming � ≈ b in this case.
Of course, this is an approximation, in that we use continuum mechanics at the extreme
lower length scale at which it is valid. Our motivation for using a few values of �
less than b is primarily mathematical: we needed to verify that our solutions approach
the limiting case of a sharp crack in the limit as � → 0. Moreover, the framework we
propose in Section 5 makes use of a conceptual smooth transition from a sharp crack
to a blunt crack.

When we use the results of this section to discuss ductile versus brittle response
(Section 5), several additional factors should be kept in mind:

(a) Our determination of the threshold load for dislocation nucleation has not ex-
plicitly considered the e'ects of tensile stress across the slip plane. Argon (1987) has
argued that shear softening by tensile forces across the slip plane is a critical element
in dislocation nucleation. Several analyses of this e'ect have appeared, including work
by Sun et al. (1993), Beltz and Freund (1994), Xu et al. (1995, 1997), and Beltz
and Fischer (1999). The latter studies quantify this e'ect through the use of a reduced
value of �us, that is, the area under the stress versus displacement curves of Fig. 2.

(b) Several studies of crack tip dislocation nucleation suggest that ledge formation at
the crack (which must occur if the nucleated dislocation has an edge component of the
Burgers vector) gives rise to an extra resistance to slip, localized just near the crack
tip. Atomistic studies by Gumbsch and Beltz (1995) suggest this might partially ex-
plain why continuum models for dislocation nucleation tend to underestimate the loads
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observed in atomistic models. Xu et al. (1995, 1997) have proposed a modi8cation to
Eq. (25) that accounts for this e'ect, as well as tension-shear coupling. For mode III
cracks with the same elliptical geometry as used in this paper, Beltz and Fischer (1999)
found a weak to moderate increase in the critical G for dislocation nucleation when
incorporating this ledge e'ect, and a weak to moderate decrease when incorporating
tension-shear coupling — not inconsistent with earlier studies.

(c) Since dislocation nucleation (which is really thought to occur in the form of
incipient loops) is a three-dimensional process, susceptible to thermal activation, our
(inherently 2D) model neglects these aspects — that is, it is essentially appropriate
for the temperature T = 0 response. It is generally thought that an increase in T eases
dislocation nucleation.

(d) Dislocation processes not directly associated with nucleation from a crack tip may
actually control mechanical response in many situations. The relative ease or diQculty
of dislocation nucleation in a solid with low dislocation mobility (e.g., silicon) may be
irrelevant if dislocations cannot be suQciently swept away from the crack tip region.
In the other extreme, solids with a high density of mobile dislocations may never build
up enough stress at a crack tip to meet a dislocation nucleation (or fracture) threshold,
again rendering dislocation nucleation an irrelevant phenomenon.

4. Atomic decohesion

The most commonly used method to study brittle crack advance is the GriQth (1920)
theory, that is, the critical G for fracture is given by 2�s (�s is the surface energy).
Later developments include the cohesive zone model of atomic decohesion (Barenblatt,
1959, 1962), which is very similar to the Peierls treatment of dislocation nucleation in
that a relationship between the stress and displacement is assumed to exist along the
entire length of the plane ahead of a crack. This relationship is intended to capture the
nonlinear aspects of atomic separation. In the cohesive zone model, the stress versus
displacement relationship is no longer periodic in nature, and is oftentimes taken as a
universal bonding relation described by Smith and Banerjea (1988) and Hong et al.
(1994, 1995).

By representing the opening displacement along the crack front as a continuous
distribution of in8nitesimal dislocations oriented such that their extra half planes point
towards the crack front as seen in Fig. 4, a modi8ed version of Eq. (24) can be used
as the governing integral equation

�[�(r)] = �yy(r) − 1
b

∫ ∞

0
�self
yy (r; s)

@�
@s

ds: (28)

This equation reTects the equivalence between an opening pro8le and an array of
dislocations. The analysis presented in this section involves replacing the usual sharp
crack with an elliptical crack in order to understand the e'ect of blunting on continued
crack advance.

To physically describe the atomic decohesion of two previously unstressed atoms,
an increasing applied tensile stress is required to increase the separation between the
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Fig. 4. In8nitesimal dislocations representing the distribution of opening displacement along a crack front
with a tensile component of loading.

two atoms until a peak stress is reached, beyond which the attractive forces of the two
atoms begin to decay. In our case, the opening stress due to opening displacement is
taken as universal bonding relation mentioned earlier,

� =
2�sP
L2 e−P=L (29)

where L is the separation of the two atomic centers at the peak stress in the tensile
stress versus opening displacement relationship (can be thought of as the characteristic
length associated with decohesion). The peak stress is then simply found by substituting
L for P in Eq. (29) to obtain �p = (2�s=L)e−1. The variable � is the continuum analog
to P,

� = P − L2�
2�s

: (30)

We note that the variables P and � are used here to denote atomic separation, although
we use the same notation to represent slip displacement in the previous section.

From this point on, the cohesive zone analysis is nearly analogous to the dislocation
nucleation analysis. The di'erences are that the stresses are tensile rather than shear
along a crack plane, and the plane undergoing separation is not inclined (which simpli-
8es the analysis). The same complex potentials derived in Section 3 are applicable to
the cohesive zone model. Here, the stress component �yy is required, which is obtained
by combining Eqs. (2) and (3a):

�yy = 2Re{�′(z)} + Re{ Lz�′′(z) +  ′(z)}: (31)

The solution procedure is identical to that for Eq. (24). Fig. 5 shows the critical
energy release rates associated with decohesion for several values of crack tip radius
of curvature. We ultimately intend to compare these results with those for dislocation
nucleation, hence, all variables have been normalized just as in Section 3 (Fig. 3).
This requires the speci8cation of the ratios �us=2�s (which we subsequently denote as
q) and L=b. For this case, q= 0:125, which is characteristic of a more ductile material,
and L=b = 0:25 (this corresponds to a peak stress �p=E∗ ≈ 0:15). The results indicate
that increasing the crack length increases the threshold for atomic decohesion. More
importantly, increasing the crack tip radius of curvature also increases the threshold
for atomic decohesion. Unlike dislocation nucleation, there is no initial depression of
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Fig. 5. Critical energy release rates of atomic decohesion for various crack lengths and crack tip radii of
curvature for mode I loading of an elliptically shaped crack with q = �us=2�s = 0:125 and L=b = 0:25.

Fig. 6. Critical energy release rates of atomic decohesion for various crack lengths and crack tip radii of
curvature for mode I loading of an elliptically shaped crack with q = 0:2 and L=b = 0:4.

the threshold for slight increases in blunting. In fact, atomic decohesion appears to be
more sensitive to the e'ects of blunting and increases quickly with increases in �=b.

In Fig. 6, the parameter values are changed to q= 0:2 and L=b= 0:4 (corresponds to
a peak stress �p=E∗ ≈ 0:058). The general trends are identical. For very sharp cracks,
the GriQth condition is recovered in both cases, i.e., the critical G=�b for fracture is
given by 2�s=�b or (2q�2h=b)−1. While �p has no e'ect on sharp cracks, it does appear
to play a role in the threshold for blunt cracks, an e'ect which is discussed in further
detail by Beltz et al. (1999).
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5. Ductile versus brittle behavior

The competetion between slip processes and decohesive processes is not only com-
petitive, but also an interactive one, in which incipient shear on one slip plane may
a'ect incipient opening on the crack plane or vice versa. The interaction these pro-
cesses has been studied by Beltz and Schmauder (1994) and we will work with the
approximation that each process is isolated. Accepting this limitation, as well as the
others discussed at the end of Section 3, we now consider whether conditions for
dislocation nucleation will or will not be met prior to cleavage, in the spirit of Rice
and Thomson’s (1974) model. In this section, the solutions for the dislocation nucle-
ation and atomic decohesion thresholds will be compared for various realistic material
parameters. We show that four broad possibilities exist, and that materials should be
classi8ed with consideration of the ongoing competition between crack propagation and
dislocation nucleation as the crack tip curvature evolves. We limit our analyses to a
relatively long crack (a=b = 104) so that some of the short crack e'ects (as seen in
Figs. 3, 5, and 6) may be ignored.

5.1. Intrinsically brittle behavior

Intrinsically brittle materials cleave rather than nucleate dislocations from a crack
tip when loaded. GriQth’s theory has traditionally been used to determine the critical
energy release rate of cleavage for these materials. This theory assumes a perfectly
sharp crack tip, which is a good assumption for materials that have large dislocation
nucleation thresholds. However, other methods are required to calculate the critical load
to initiate crack from an initial Taw that is not crack-like. Using the Rice–Thomson
model, many materials can be classi8ed as intrinsically brittle. Recall, however, that
(1) only sharp cracks are used for this calculation, and (2) only the 8rst dislocation
nucleation is considered. Therefore, a material that does not emit dislocations when the
crack tip is perfectly sharp, but that may emit dislocations when the crack tip has a
radius of curvature of several Burgers vectors, is still classi8ed as intrinsically brittle
in the Rice–Thomson model.

Considering the e'ects of crack tip geometry makes it possible for us to draw a
distinction between intrinsically brittle and quasi-brittle fracture. The intrinsically brit-
tle material ought to be de8ned as one that will cleave prior to dislocation nucle-
ation for all values of crack tip radius of curvature. Therefore, the critical energy
release rate associated atomic decohesion will be less than the critical energy re-
lease rate for dislocation nucleation for all values of crack tip radius of curvature.
The types of materials that generally exhibit intrinsically brittle fracture behavior are
ceramics below their ductile-to-brittle transition temperature and glasses below their
glassy transition temperature. At room temperature, plastic deformation is negligible in
these types of materials due to strong ionic or covalent bonding and complex atomic
structures. Since glasses have an amorphous atomic structure, the Peierls treatment for
dislocation formation is not applicable, but the crystalline structures of some ceram-
ics can be considered. Some of the more common ceramic crystalline con8gurations
are diamond cubics and rock salts. Silicon is a crystalline semiconductor with a di-
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Table 1
Silicon material parameters

� h=b � L=b �us (J m−2) �s (J m−2) q

0.218 0.354 54:7
◦

0.308 2.02 1.56 0.647

Fig. 7. Comparison of atomic decohesion and dislocation nucleation thresholds in silicon, an intrinsically
brittle material.

amond cubic structure, and we use it as an example of intrinsically brittle material
behavior.

Here, the physical parameters for silicon used to guide our calculation are found
in Sun et al. (1993) and Beltz (1992), and are summarized in Table 1. Essentially,
�us and �p are large compared with 2�s and �p, respectively. Fig. 7 shows the critical
energy release rates of dislocation nucleation and atomic decohesion for the described
silicon slip system. In this case, the critical energy release rate associated with atomic
decohesion is lower than the critical energy release rate for dislocation nucleation for
all values of crack tip radius of curvature — thus indicating that silicon is intrinsically
brittle. Although we have chosen a speci8c slip geomtry, the basic conclusion holds
for other geometries as well.

5.2. Quasi-brittle behavior

Like the intrinsically brittle material, the quasi-brittle material generally cleaves rather
than emits dislocations from a relatively sharp crack tip that is loaded. However, at
some 8nite radius of curvature of the crack tip, the dominant behavior becomes dis-
location nucleation. Since an initially sharp crack cleaves (stays sharp), the only way
to contemplate this scenario would be for a blunt crack to evolve from some other
mechanism than dislocation nucleation from a sharp crack, e.g., removal of material
via a chemical interaction, di'usion, or mechanically. This type of material would be
characterized as intrinsically brittle by the Rice–Thomson analysis, but the likelihood
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Fig. 8. Ductile versus brittle comparison for iron, indicating quasi-brittle behavior.

Table 2
Iron material parameters

� h=b � L=b �us (J m−2) �s (J m−2) q

0.290 0.943 54:7
◦

0.133 0.860 1.42 0.302

of cleavage would be ultimately lower than for the types of materials previously dis-
cussed. The Rice–Thomson theory has no means of determining under what conditions
this type of material may nucleate dislocations rather than cleaving, because it only
considers sharp cracks.

Using the present analysis, the conditions (or parameters) that would favor this kind
of behavior can be suggested. Initially, the critical energy release rate associated with
atomic decohesion will be lower than that for dislocation nucleation (see Fig. 8), which
suggests that a sharp crack will remain sharp in this type of material. However, if an
initial Taw can somehow be introduced (rather than evolving from a sharp crack) that
has a radius of curvature that is larger than some crossover value (the intersection of
the two energy release curves), the material will nucleate dislocations provided that
there are no local perturbations in the crack tip that may initiate stable cleavage. We
speculate that certain bcc metals might fall into this de8nition of “quasi-brittle” material
behavior.

Using the physical parameters for �-Fe, primarily obtained from work done by Shas-
try and Farkas (1996), the thresholds for dislocation nucleation in the (1=2)[1 1 L1](L2 1 L1)
slip system for a crack running on the (0 1 L1) plane, in the [0 1 1] direction, are cal-
culated. The material property values used to calculate the critical energy release rate
curves in Fig. 8 are summarized in Table 2. The curves suggest that this slip system
of iron does exhibit quasi-brittle behavior — but that it may be a very unstable situa-
tion. The region over which cleavage is the dominant mechanism is very narrow, and
requires that there be essentially no crack blunting to propagate in a brittle fashion. A
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Table 3
Aluminum material parameters

� h=b � L=b �us (J m−2) �s (J m−2) q

0.345 0.4142 70:5
◦

0.279 0.0920 0.565 0.0814

Fig. 9. Comparison of atomic decohesion and dislocation nucleation thresholds in aluminum, an intrinsically
ductile material.

crack tip curvature of approximately one Burgers vector makes dislocation nucleation
the energetically favorable mechanism. However, as previously discussed, any local
perturbation to the crack tip curvature could reinitiate brittle behavior.

5.3. Intrinsically ductile behavior

In direct contrast with an intrinsically brittle material, the intrinsically ductile ma-
terial will always nucleate dislocations regardless of the initial crack geometry. For
intrinsically ductile materials, we calculate the thresholds for dislocation nucleation
and atomic decohesion and note that the value of the dislocation nucleation threshold
is lower than the atomic decohesion threshold for all values of crack tip curvature.
Also, the extent to which the crack geometry evolution increases the threshold for
dislocation nucleation is determined.

Most room temperature fcc metals, such as aluminum, are good examples of intrin-
sically ductile materials. Their unstable stacking energies are typically low. Using the
material properties suggested by Sun et al. (1993) (shown in Table 3), the critical en-
ergy release rates of dislocation nucleation are compared to those of atomic decohesion
for aluminum. It is obvious from Fig. 9 that dislocation nucleation is preferred for all
values of �, indicating that a crack, somehow formed, would blunt rather than advance.
As with the purely brittle behavior (e.g., silicon), this result is very insensitive to the
actual geometry used for the calculation.
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5.4. Quasi-ductile behavior

Using the method of categorizing materials by their fracture behavior, outlined here, a
quasi-ductile material would be one that nucleates dislocations at very sharp crack
geometries, but reinitiates a sharpening of the crack front, via atomic decohesion, upon
reaching a signi8cantly blunt crack tip con8guration. Like quasi-brittle materials, there
is a crossover between the two threshold curves at a speci8c crack tip curvature. The
Rice–Thomson analysis cannot predict this type of behavior because only the 8rst
dislocation nucleation is used to determine the overall material fracture behavior.

We speculate that good candidate systems for this type of fracture behavior include
metal–ceramic interfaces. It is to be understood, however, that metal=ceramic interfaces
represent the crudest application of our theory in its current form, since the present
analysis applies to homogeneous, isotropic solids. The metal, being fairly ductile, would
initially favor dislocation nucleation and blunting of the crack tip. However, the bond-
ing of these interfaces are not as strong as those of a monolithic material, and cannot
continue to support the loads required to promote further blunting and massive dislo-
cation motion within the metal layer. For example, retaining a nominal value of �s,
while signi8cantly reducing the peak stress �p, has been shown possible by introducing
certain impurities onto a MgO=Ag or MgO=Al interface (Hong et al., 1994, 1995). Un-
fortunately, we have found insuQcient material data for any particular material system
to provide a complete numerical illustration of this case. Further discussion of this
“quasi-brittle” behavior has been given by Beltz et al. (1999).

6. Summary and conclusions

Until recently, most models for understanding ductile versus brittle response have
been based on an analysis of a sharp crack. This has contributed to a disparity between
the results of continuum and atomistic studies. In this paper, considering the e'ects
of crack tip blunting on the competition between dislocation nucleation and atomic
decohesion has yielded a model that predicts four distinct types of material fracture
behavior. Intrinsically brittle material behavior occurs when the threshold for atomic
decohesion is lower than the threshold for dislocation nucleation for all values of
crack tip radius of curvature. Intrinsically ductile behavior occurs when the threshold
for dislocation nucleation is always lower than the threshold for atomic decohesion.
Quasi-brittle materials cleave when their crack tips are fairly sharp but will nucleate
dislocations if their crack tip curvature is greater than some threshold value while
quasi-ductile materials will nucleate dislocations at sharp crack tips and cleave upon
reaching a threshold crack tip curvature.

The fundamental assumptions made in this theoretical framework are that the crack
tip evolves into an elliptical pro8le, dislocation nucleation occurs on only one activated
slip plane which intersects the crack tip at some angle of inclination, and atomic deco-
hesion occurs directly along the crack front. The framework also utilizes the Peierls-type
description of incipient zones of slip and opening displacement, thereby eliminating no-
tions associated with the core cuto' parameter. While we primarily focused on mode
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I edge dislocation nucleation, the analysis can very straightforwardly be expanded to
account for all three modes of loading and combined edge and screw components.

At present, this model is limited to predicting the early competition between disloca-
tion nucleation and cleavage for an isotropic material, and lacks the ability to account
for larger scale phenomena like the accumulation of far 8eld plasticity or the intersec-
tion of grain boundaries in a polycrystalline material. For the case of plasticity, the
applied energy release rates should rigorously be de8ned as those based on the local
“screened” crack tip 8eld, which can di'er from the macroscopic 8eld due to other
dislocations or nonlinear e'ects in the system.

The shielding e'ect of previously emitted dislocations which would result in the
geometric blunting of the crack tip can lower the local stress 8eld around the crack
and therefore increase the critical applied loads for dislocation nucleation and cleavage.
Although emitted dislocations are assumed to be swept suQciently far away that these
shielding e'ects in the near tip calculations may be ignored, the importance of external
dislocations and plastic dissipation on the ductile versus brittle competition have been
shown to play a critical role in the actual applied loads necessary to maintain the local
loads described in this paper.

In closing, this study has incorporated the e'ects of crack tip blunting into an an-
alytical methodology for determining the thresholds of competing atomic-scale failure
mechanisms. In so doing, the competition between ductile and brittle fracture mech-
anisms reveals four possible types of material behavior. The respective roles of the
parameters �s; �us; �p; and �p in this competition have been clari8ed.
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