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Abstract—The current analysis presents a model for cleavage fracture in the presence of dislocation
plasticity. We build on a framework developed in an earlier paper [Lipkin et al.. Acta maier. 44, 1287
(1996)], wherein an elastic core is embedded about the crack tp in a plastically deforming medium. This
model provides a mechanism by which cleavage-type crack growth could proceed concomitantly with
significant plastic dissipation. The present model is amended to account for the large strain gradients in
the immediate vicinity of the crack tip. Such gradients are thought to lead to extensive local hardening.
A simple, continuum-based model is used to identify a characteristic length scale ahead of the crack tip,
within which the material cannot plastically deform subject 1o the crack-tip stress field. An expression is
derived for the crack-tip shielding afforded by the plasticity prior to initiation of fracture. The strong
dependence of toughness on-the ideal work of fracture indicates a possible mechanism for such vaned
phenomena as segregation-induced embrittlement. ductile-to-brittle transition, stress corrosion cracking

and constrained fracture in metal-ceramic composites. Copyright © 1996 Acta Metallurgica Inc,

1. INTRODUCTION

Early fracture models drew a sharp distinction
between *brittle” and *“ductile” fracture. Ideally
brittle (or Griffith) fracture is based on the balance
between the elastic energy stored in a cracked body
(with its surrounding loading system) and the energy
associated with the newly created fracture surfaces
[1} By contrast, fully plastic fracture is typically
characterized by crack-tip blunting and hole growth
[2, 3]. In practice, however, fracture processes can
generally exhibit characteristics attributable to both
types of behavior. Orowan’s assertion that the
Griffith criterion for brittle fracture be modified to
include the plastic work dissipated in the crack-tip
process zone [4] was the first attempt to bridge the
gap between ductile and brittle fracture models.
Rice’s recognition that the amount of plastic work
dissipated during the fracture process has a strong
functional dependence on the surface (or Griffith)
energy itself (the “vaive” effect) [5] further empha-
sized the importance of plasticity in nominally brittle
fracture processes. Quantification of this valve effect,
culminating tn a relation between atomic-scale
decohesion and large-scale plastic dissipation, is the
motivation for our present work.
Segregation-induced interfacial embrittlement in
metals and metal-ceramic couples [6, 7] is a prime
example of the strong role played by plastic
dissipation in an otherwise cleavage-type fracture.
Previous attempts at quantifying the valve effect,
notably those by Thomson [8], Suc e ai. [9] and Jokl
er al. [10], have identified the existence of the

inherently nonlinear coupling between the crack-tip
decohesion and the surrounding plastic deformation.
However, these models fall short of a self-consistent
description of the fracture process in terms of
measurable material parameters. In an earlier paper
[11], we presented a simple model that quantified the
coupling between the Griffith energy and the plastic
work in terms of the interfacial work of adhesion,
yield strength and work-hardening exponent.
Although this approach provides valuable insight
inta the interaction between two processes occurring
on drastically different length scales, there is an
underlying—and somewhat tenuous—assumption
that a relatively large (~ I gm) dislocation-free core
exists at the crack tip. Presently, we reformulate our
model in the context of strain-gradient plasticity
theory, lifting the requirement of a dislocation-free
core, In so doing, we arrive at an inherent material
length scale within which dislocation plasticity is
inhibited and at the shielding ratio of the macroscopi-
cally measured toughness to the work of adhesion.

2. THE MODEL
2.1. The plastic zone

Figure 1 illustrates the physical basis for the
following discussion. A plastically deforming body
containing a pre-existing, sharp crack is loaded in
opening mode by remote tractions, allowing for a
plastic zone to develop about the crack tip. The
material surrounding the crack tip is allowed to
plastically deform and strain harden, following the
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large-strain limit of the generalized Ramberg-
Osgood constitutive law

_ (E&Y
TFiow = Un(ﬁo_o> - (l)

where G 15 the effective stress (defined as \/éTﬁfh
where s; 1s the stress deviator). o, is the uniaxial
yield stress. &, is the effective plastic strain (defined as
Jiee). E is Young's modulus. 7 is the work-
hardening exponent, and § is an empirical prefactor
of order unity (f = 3/7 in the original Ramberg—
Osgood formulation {12]).

The asymptotic stress field in the vicinity of the
crack tip is taken from solutions presented by
Hutchinson {13] and Rice and Rosengren [14],
henceforth referred to as HRR. The effective stress
about the crack tip is

f,: Kg nAl +ay
5~ ac(ﬂ, ?) &40 ), (2)

o

where r is the distance ahead of the crack tip and K, .
is the applied, or far-field, stress intensity factor that
characterizes the elastic field well beyond the plastic
zone. (We assume small-scale yielding, wherein the
plastic zone remains small in relation to other length
scales in the problem.) The parameter ¢ characterizes
the state of constraint, taking on the value 1 for plane
stress and | — v for plane strain, where v is Poisson’s
ratio. The factors 4. and [, are weak functions of the
work-hardening exponent, and are determined
numericalty in the HRR formulation.

2.2, Crack-tip strain-gradient plasticity (HRR-type
field)

As for any asymptotic continuum formulation, the
HRR field nominally extends to the very crack tip.
However. highly nonlinear behavior at the atomic
length scale supersedes the attainment of singular
stresses. To avoid unphysical stresses in such regions,
realistic interatomic potentials have been employed
by previous researchers [15]. Presently, we show that
under certain conditions the validity of convention-
ally accepted continuum asymptotic fields can break
down at substantially larger-than-atomic length
scales.

Recently, Fleck er @l. [16]) have noted that, in the
presence of large plastic strain gradients, conven-
tional plasticity formulations must be severely
modified at length scales far exceeding atomic
dimensions—usually of the order of 1 ym. (More
detailed discussion of the theoretical and exper-
imental basis of strain-gradient plasticity is found in
Ref. [16] and references therein.) As we shall describe
below. the strain-gradient concept defines a length

1The fourth-order o.d.c. was solved on a Silicon Graphics
workstation using a shooting method similar to that
described in Refs [13] and [14].
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scale within which the fiow strength of the materiai
exceeds the magnitude of the singular stress field.
This length scale. which has hitherto been ill-defined
in the application of plasticity theory to cracks.
allows a self-consistent estimate of the core size.
The local flow strength of a plastically deforming
material is related to the local disiocation density, pr,
through a modified Orowan-Taylor relation [17-20]

Grow = 2Eby/ pr. k)

where z is a constant prefactor of order unity, E is
Young's modulus, and b is the magnitude of the
Burgers vector. In conventional crystal hardening
theory, all of the dislocations are “statistically
stored,” whether they existed prior to deformation or
arose during deformation via various dislocation-
generating sources. However, as argued by Ashby
[21]. an additional distribution of dislacations is
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Fig. |. Schematic illustration of the fracture model. {a) The
plastic zone surrounding a remotely loaded, sharp crack.
(b) 1dealized stress distribution ahead of the crack tip. As
the crack tp is approached. one moves from the far-field
K-dominant region to the plastically deforming zone and
finally to the core region. Enforcement of stress continuity
defines the location of the boundary between the core and
surrounding plastic zone.
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“geometrically necessary” to maintain displacement
compatibility in spatially gradient strain fields.
Therefore, the total dislocation density is the sum of
the statistically stored and geometrically necessary
densities (pr = pc + ps)- In fact, where local strain
gradients become large—as will be shown to occur
near crack tips—the geometrically necessary disloca-
tion density can far exceed the statistically stored
contribution (pg > ps), allowing the flow strength in
such regions to be estimated as

Gron = 2EB./pe. (4)

For isotropic plasticity following J:-deformation
theory, the density of geometrically necessary
dislocations is directly proportional to the effective
curvature, .

-~ L
ZESS (5

The effective curvature represents the scalar magni-
tude of the plastic component of the curvature tensor,
¥ in a manner similar to the relation between
effective strain and the strain tensor}

Xe = /30000 (6)

The curvature tensor is, in turn, related to the plastic
strain field, &

X5 = €witllys (N
where e, is the permutation tensor (defined in the
Appendix) and
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For a crack exhibiting an HRR singularity, the
asymptotic strain field is

r 2 Ll =n
e = ﬁ%(l;_l ’f(;z) &(6. ). (8)

from which the effective curvature field for an HRR
singularity can be calculated explicitly

o ;_Eﬁ i Kﬁ,: LAY + n)
)(e - \/; E (ﬁ!n r2+no.§) vt(eu ")~ (9)

The function ¥, results from differentiation of the
angular functions &,, as described in the Appendix.
Combining equations (4), (5) and (9), we can identify
the asymptotic strain-gradient induced hardening
distribution about the crack tip

3 1201 +n)
Oow = (%)ly“a ﬂvebGOE(l_f;: rzlil;f;:) R (10)

tHenceforth, Einstein summation convention over repeated
indices 1s assumed.
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2.3 The core

From equation (10) we find that the rate of
hardening due to geometrically necessary dislocations
diverges as the crack tip is approached. For realistic
values of the work-hardening exponent (# ranging
from 0 to 0.5), the flow strength attains an
approximately inverse-r singularity. Meanwhile, the
HRR asymptotic solution predicts that the stress
field has at most an inverse-, /r singularity (LEFM),
with no singularity whatsoever in the limit of perfect
plasticity [exponent is —n/(1 + n) for HRR]. Thus,
approaching the crack tip. the rate of increase of the
flow strength exceeds the divergence of the stress
field. As a conseguence, a point is reached ar which
material sufficiently close 1o the crack tip can no longer
plastically deform under the prevailing crack-1ip stress

field. This condition 1s analogous to the definition of

the elastic core in the previous model; to retain
generality, the characteristic dimension thus defined
is henceforth referred to simply as “'the core”.

To this point, the crack tip has been tacitly
assumed to be stable against dislocation emission. We
defer consideration of the consequences inherent to
this assumption until the Discussion section. In the
absence of dislocation emission, the stress field inside
the core retains an elastic singularity described by a
crack-tip stress intensity factor, Ky, [8). (Note that
the assumptions just made rely on the additional
conditon that the elastic core remain large enough
compared to atomic dimensions for continuum
elasticity theory to be valid.) The effective stress in
the immediate vicinity of the crack tip can therefore
be evaluated from linear-elastic fracture mechanics
(LEFM)

(n

The angular dependence of the stress field is conveyed
through the function 7, where 2 _/mAfcos(6/2) is
8 — 8+ 35—3cos(d) for plane strain and
' 5 — 3 cos(0) for plane stress.

2.4. Core size and shielding ratio

It remains to establish the location of the boundary
across which the scaling of the stress field switches
from HRR [equation (2)] to LEFM [equation (11)],
and subsequently to evaluate the degree of crack-tip
shielding afforded by the plastic zone.

At the point of incipient fracture, the crack-tip
stress intensity must attain its critical value, K*.
Using the Irwin relation, we can restate the fracture
criterion in terms of the critical energy release rate,
@or

L gk,

Kl.up i

(12)

Iyl

where % is the inherent Griffith toughness. The
value of 4™ is simply the work of adhesion, W,4, of
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the solid-solid interface—a material parameter that
can be calculated from atomistic models or estimated
using various experimental techniques.

As seen from Fig. 1(b), the location of the interface
corresponds to the crossover point at which the flow
strength [equation (10)] exceeds the stress attain-
able in 2 homogeneous HRR crack-tip field. (This
empirical construction does not in itself guarantee
compatibility, but has been used in limited circum-
stances to provide boundary conditions at elastic—
plastic interfaces.) At distances closer to the crack tip
than the core length, the stress is insufficient to induce
plastic flow and the stress field is described by
equation (11). Equations (2), (10} and (11) represent
a system of three equations in three unknowns.
Enforcing continuity of effective stress across the core
boundary, ¥ = R,, along a fixed direction (say @ = 0),
we find that '

(13)

and

gx  (BL N[ B W\'T"
W~ (&3 é)(g»é ba,) (14)
where %7 /W,y defines the crack-tip shielding ratio.
For conciseness, we define g,z\/%azﬁve, where
the subscript » serves to emphasize the functional
dependence of g on the work-hardening exponent.

2.5. Thermal effects

Thus far, the thermal contribution to the flow
strength has been neglected. Adding a thermal
component, 6*(T), to equation (4), we find that the
shielding ratio must satisfy

/g: ?.f (%>-1.2(K gf )mu-m

A bﬂ' o Wad

» a =l =-n)
+£‘--(KE‘—) =1, (1%

Wad

whete

The temperature dependence of ¢* can be written
(18.22)

* o l.-..
c¥(T)=¢ (0)(1 - Tc(é))’ (16)

where T is the absolute temperature and T, defines the
critical temperature above which there is sufficient
thermal energy to overcome barriers to dislocation
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Table L. Selected values of HRR parameters under plane strain and
plane stress conditions for 8 =0

Plane strain Plane stress
n & L, V. &. I v,
0.0 | 37 — 1 25 —
0.1 Q.67 45 0.039 1.00 10 0.90
0.2 0.46 5.0 0.059 0.99 34 0.95
03 0.30 54 0.070 0.98 38 0.96
04 0.18 57 0.077 0.98 4.0 0.97
0.5 0.09 59 0.082 0.97 4.2 0.97

motion by thermal activation alone [e.g. at T> T,
*(T) =0 and the solutions for shielding ratio and
core size revert to those given in eguations (13) and
(14)]. The thermal component of 4, is assumed tc be
much smaller than the overall magnitude of ¢, and is
thus neglected. As a final complication, an implicit
dependence of a*(0) on W, is anticipated in equation
(16). The explicit form of this dependence has yet to
be determined and is not considered in the present
analysis. The dependence of 7. on the strain rate, &,
is described by an Arrhenius relation through the
Helmholtz free energy change, AF, required to
overcome the barrier to dislocation motion [18, 22]

T=— 8F

k ln(—b ”"fi"”)

£

a7

where k is Boltzmann's constant, vs 18 the Debye
frequency, 4 is the distance moved by the dislocation
for every barrier it overcomes, and p, is the density
of mobile dislocations.

3. DISCUSSION

Using appropriate values for the proportionality
constants in equations (13) and (14) (Table 1), the
shielding ratios and core sizes are plotted in Figs 2(a)
and (b), respectively, for a range of work-hardening
exponents. The core size is generally much larger
than the Burger’s vector, suggesting that the use of
continuum approximations is reasonable. The posi-
tive slopes of the shielding ratio curves in Fig. 2(a)
indicate that the strain-gradient model does predict a
synergistic coupling between the macroscopic tough-
ness (attributed to plastic deformation) and the
inherent material toughness (represented by the ideal
cleavage energy, W.4). Such behavior is in qualitative
agreement with observations of segregation-induced
embrittlement [23-26], whence a slight reduction in
the work of adhesion leads to a dramatic decrease in
the macroscopic toughness.

Combining equations (15) and (16), we can plot the
temperature dependence of the shielding ratio
(Fig. 3). A sharp transition from ductile Chigh
shielding ratio) to brittle (low shielding ratio)
behavior is evident. The temperature at which the
transition occurs corresponds to the brittle-to-ductile
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Fig. 2. Variation of (a) shielding ratio and (b) core size with
the work of adhesion for a range of work-hardening

exponents. All curves were calculated using & = 1, § = 3/7,
v=1/3 and Ejo. = 1000.

transition temperature, below which background
dislocation mobility is effectively frozen out (i.e. the
thermal activation, kT, falis sufficiently below the
activation energy for overcoming the lattice stress).
As expected, the transition occurs more readily for
materials having a greater thermal sensitivity of flow
strength {larger *(0)]. As described in the previous
section, the lack of an explicit relationship between
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Fig. 3. Dependence of the shielding ratio on temperature for

varying values of the ratio ¢*(0)/6.0., illustrating the onset

of a ductile-to-brittle transition associated with suppression
of background plasticity.
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Fig. 4. Strength-toughness dependence predicted on the
basis of the strain-gradient model.

a*(0) and W, precludes further quantification of the
brittle—ductile transition. However, closely associated
with the temperature dependence of toughness is
strain-rate dependence. As indicated in equation (17),
increasing strain rate has the effect of increasing 7..
Setting the absolute temperature constant and
steadily increasing the strain rate is therefore
analogous to moving from right to left along the
curves of Fig. 3. Therefore, materials that are
especially susceptible to embrittlement at low
temperatures are also expected to behave in a brittle
manner at high loading rates.

An interesting implication of the present model is
that it predicts the often-observed phenomencn of
strength—toughness correlation in plastically deform-
ing materials. This can be illustrated by inverting the
abscissa of Fig. 2(a). The resulting plot of toughness
as a function of yield strength is shown in Fig. 4.
It has long been observed that metal alloys exhibit
an inverse relationship between yield strength and
fracture toughness [27, 28], but this phenomenon has
heretofore eluded quantitative explanation. Specifi-
cally, attempts to improve the strength of alloys by
work-hardening invariably lead to decreased tough-
ness (conversely, decreasing the vyield strength by
thermal annealing raises the toughness). Such
behavior has been observed in other material systems
having a strongly coupled fracture process, such as
transformation-toughened zirconia, in which the
cohesive energy dictates the extent of the transform-
ation zone [29].

It may be useful at this point to briefly compare the
present model to the elastic core formulation of
Ref. [11]. Nominally, the two descriptions of the
fracture process are very similar. Both models allow
for a sharp, Griffith-type crack tip to coexist with
background plasticity. Both predict a strong coupling
between the crack tip and the surrounding plastic
zone, as evidenced by the positive slope of the
shielding ratio curves. In both, a characteristic core
dimension is determined, within which no plastic
deformation occurs. The main distinction between
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the two approaches lies in the physical model used to
identify the core size.

In the original model, a dislocation-free zone is
postulated to exist directly surrounding the crack tip.
Using a standard correlation in crystal hardening
theory [17), the fiow stress is related to the dislocation
spacing (or dislocation cell size)

com  EB
Ohgw = R -

(18)

&M% can be thought of as the maximum effective flow
stress to which the material has hardened, expected
to occur directly at the interface between the elastic
core and the surrounding plastic zone. The shielding
ratio based on this relation is [t1]

gg( Wm:l {0 =nin

W o (bae) . (19
and the core size at initiation of fracture is

R _E(Wa\"'

ke (bcrn) ' @0

Note the absence of an explicit dependence of core
size on either yield strength or work-hardening
coefficient in equation (20).

Although a dislocation-free zone model allows
determination of a core dimension, it is based on the
tenuous premise that the dislecation spacing immedi-
ately surrounding the crack tip is the characteristic
length governing the core size. In such a case, the core
size is proportional to the distance from the crack tip
to the next-nearest dislocation (e.g. R o p7'3).
Strain-gradient plasticity theory, however, suggests
that the dislocation spacing is not the characteristic
length scale. In fact, the dislocation spacing becomes
vanishingly small (continuum limit) approaching the
crack tip, inducing strain-gradient hardening local to
the crack tip. In general, then, the core encompasses
a large number of immobile dislocations and the
length scale is therefore determined not by the
dislocation spacing but by the strain gradient.

Although the model presented above allows for a
relatively sweeping characterization of a class of
fracture problems, several issues remain to be
addressed. These are: (1) dislocation emission from
the crack tip; (2) breakdown of continuum asymp-
totic solutions at both very fine and very large length
scales; and (3) the discrepancy between dislocation
and continuum plasticity formulations. Although we
make no attempt to resolve these issues in the present
contribution, their consideration may prove critical in
subsequent attempts at bringing theoretical and
experimental results into closer agreement.

The first point refers to the apparent neglect of
possible dislocation emission in the preceding
analysis. Identifying the criterion for dislocation
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emission from the crack tip with a critical ratio of
unstable stacking fault energy to work of adhesion
[30]. we can superimpose the criterion for first
dislocation emission (a vertical line) on Fig. 2(a).
However, satisfaction of the criterion for first
dislocation emission does not in itself preclude the
ability of the fracture process to proceed in a
cleavage-type manner. In fact, the criterion for
subsequent emission i expected to be more
conservative due to the back stress from the emitted
dislocation. while a singular stress is still retained at
the singly-blunted crack tip, facilitating the propa-
gation of a cleavage crack [31]. Therefore, although
moderate dislocation emission is expected to perturb
the stress field directly adjacent to the crack tip
[r/b = 1 in Fig. 1(b)], the cleavage process may still
proceed in approximate accordance with the present
model.

The second limitation refers to the simplifying
assumptions made in identifying the stress field
ahead of the crack tip. As stated from the start, the
present analysis is founded on a small-scale yielding
approximation in order to simplify the description of
the loading field. Perhaps more restrictive is the use
of asymptotic solutions to the stress and strain fields.
Clearly, higher-order terms can affect the estimates of
the core size and shielding ratio. Similarly, an error
is introduced in our neglect of statistically stored
dislocations in equation (4), with the consequence of
slightly underestimating the flow strength. Lastly,
the strain-gradient material is embedded within the
plastic zone without any modification of the pre-

- vailing stress fields. A fully consistent treatment—

though likely to be analytically intractable—may
provide improved accuracy in attempts to make
direct comparisons with experimental data [32].
The final issue for concern refers to the apparent
incongruity between the dislocation plasticity treat-
ment [as epitomized by the Taylor relation, equation
(4)] and continuum plasticity [e.g. Ramberg—Osgood
constitutive property, equation (1)]. Dislocation
plasticity makes no allowances for “‘weak™ or
“strong™ interactions between dislocations. In fact,
the only constitutive behavior fully consistent with
the Orowan-Taylor relation is parabolic hardening.
On the other hand, continuum plasticity makes
allowances for & wide range of hardening behavior,
ranging from perfectly-plastic (7 = 0) to parabolic
(n=0.5). To some extent, the resoluticn to this
apparent inconsistency is simply to allow each
constitutive description to govern over the length
scale for which it was intended. At the dislocation
scale, discrete dislocation-dislocation interactions
must lead to local resistance to flow according to
equation (4). At the macroscopic scale, various
dislocation accommodation and relaxation mechan-
isms can reduce the apparent flow resistance from the
parabolic limit. Where the deformation-free core is
involved (length scales <10%), the use of a
dislocation-based model [equation (4)] seems
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justified. In describing the surrounding elastic—plastic
field (length scales »10°%), the use of a continuum-
based model [equations (1) and (2)] seems equally
Justified.

4. SUMMARY

We have proposed that a number of fracture
phenomena exhibiting cleavape-type fracture in the
presence of dislocation plasticity can be explained
on the basis of a simple model accounting for the
coupling between the plastic deformation and the
ideal (Griffith) fracture energy. Specifically, our
results show that the effect of ideal fracture energy on
the plastic dissipation is synergistic, with slight vari-
ations in Griffith energy affecting order-of-magnitude
changes in toughness. Further, we suggest a means
by which temperature and strain-rate effects can
be incorporated, demonstrating the capacity of the
model to predict sharp transitions from ductile to
brittle fracture regimes. Suggested applications of the
model include segregation-induced embrittlement
observed in a number of metals and metal-ceramic
interfaces, the ductile-to-brittle transition in both
metals and ceramics, the strain-rate dependence of
fracture toughness and the strength-toughness corre-
lation in metals.
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APPENDIX

Strain Gradients in a Mode-1 HRR Crack-Tip Field
Using the definition of the permutation tensor. e,

0. n=k n=jork=j

ewy = < — 1. n. k. jis an odd permutation of 1,2, 3

+1. n,k.jis an even permutation of 1,2, 3

(AD

it is possible to write out the curvature tensor of equation
(7) explicitly in terms of the plastic strain field componentst

€32 — £123 €232 — Em3 En3 — £323

. (A2
Y= )8ns — &y Ena— Bnag Eng — &
&1 = Enr B — Enr Ev — &2

It should be noted that symmetry of the strain tensor
requires that & = &:. Equation (A2} is substantially reduced
when the state of constraint is established. For example,
because the strain field is uniform along the out-of-plane
direction under both plape strain and plane stress con-
ditions, we can set &1 = 0 and £ = ¢n = 0. Furthermore,

tFor clarity, the designation “pl” has been omitted. It is
implicitly assumed that both the curvature tensor
and strain components are associated with plastic
deformation.
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incompressibility requires that &x = — (en + £22), reducing
the curvature tensor under plane stress 1o

0 0 — (12 =+ &2
= 0 0 B+ £21 |, plane siress.
iz — €z &2t — Eng 0

(A3)

Further simplification of the curvature tensor obtains under
plane strain conditions, whence ¢ = en =& =0

0 0 0
x= 0 0 0 |, plane strain.
gy —anz O

(A4)

i1 — &2

The respective strain-component derivatives can now be
determined using the HRR strain field. Defining an
orthogonal basis in cylindrical coordinates such that
(x:, X2, X3} corresponds to (r,#,z) and (éx), éx, 6x3) to

CLEAVAGE FRACTURE

(6r. rof. é2), and combining with the HRR strain field given
in cquation (8), the relevant derivatives of the strain
companents can be determined

Cia — ) Eur —ﬁi? _ﬁ_ Kf.x TR
{E-ﬂz}‘ { eu.,.}- E (fm r‘?)

-1\,
x (m)al‘i(0> ) . (AS)
8;,,41(9, H)

The effective curvature can now be calculated using
equations (6) and (A3)}(A3)

1.y 1. N . ) Bt
(] +nara+smn) +(] +”i:mnf-ﬁru_u) + (& + Erve) +(1 +n£,,+]+"£w),plane stress

— K]
L (Bil r—’(z?) %0.n),  (AB)
where
1 1
(AT}

(-'—1 .:. P En + Emﬁ) + (l l & + 5,g_n) , plane strain



