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Abstract--The current analysis presents a model for cleavage fracture in the presence of dislocation 
plasticity. We build on a framework developed in an earlier paper [Lipkin et al., Acta mater. 44, 1287 
(1996)], wherein an elastic core is embedded about the crack tip in a plastically deforming medium. This 
model provides a mechanism by which cleavage-type crack growth could proceed concomitantly with 
significant plastic dissipation. The present model is amended to account for the large strain gradients in 
the immediate vicinity of the crack tip. Such gradients are thought to lead to extensive local hardening. 
A simple, continuum-based model is used to identify a characteristic length scale ahead of the crack tip, 
within which the material cannot plastically deform subject to the crack-tip stress field. An expression is 
derived for the crack-tip shielding afforded by the plasticity prior to initiation of fracture. The strong 
dependence of toughness on.the ideal work of fracture indicates a possible mechanism for such varied 
phenomena as segregation-induced embrittlement, ductile-to-brittle transition, stress corrosion cracking 
and constrained fracture in metal--ceramic composites. Copyright © 1996 Acta Metallurgica Inc. 

1. INTRODUCTION 

Early fracture models drew a sharp distinction 
between "brittle" and "ductile" fracture. Ideally 
brittle (or Griffith) fracture is based on the balance 
between the elastic energy stored in a cracked body 
(with its surrounding loading system) and the energy 
associated with the newly created fracture surfaces 
[1]. By contrast, fully plastic fracture is typically 
characterized by crack-tip blunting and hole growth 
[2, 3]. In practice, however, fracture processes can 
generally exhibit characteristics attributable to both 
types of behavior. Orowan's assertion that the 
Griffith criterion for brittle fracture be modified to 
include the plastic work dissipated in the crack-tip 
process zone [4] was the first attempt to bridge the 
gap between ductile and brittle fracture models. 
Rice's recognition that the amount of  plastic work 
dissipated during the fracture process has a strong 
functional dependence on the surface (or Griffith) 
energy itself (the "valve" effect) [5] further empha- 
sized the importance of plasticity in nominally brittle 
fracture processes. Quantification of this valve effect, 
culminating in a relation between atomic-scale 
decohesion and large-scale plastic dissipation, is the 
motivation for our present work. 

Segregation-induced interracial embrittlement in 
metals and metal-ceramic couples [6, 7] is a prime 
example of the strong role played by plastic 
dissipation in an otherwise cleavage-type fracture. 
Previous attempts at quantifying the valve effect, 
notably those by Thomson [8], Suo et al. [9] and Jokl 
et al. [10], have identified the existence of  the 

inherently nonlinear coupling between the crack-tip 
decohesion and the surrounding plastic deformation. 
However, these models fall short of a self-consistent 
description of the fracture process in terms of 
measurable material parameters. In an earlier paper 
[11], we presented a simple model that quantified the 
coupling between the Griffith energy and the plastic 
work in terms of the interfacial work of adhesion, 
yield strength and work-hardening exponent. 
Although this approach provides valuable insight 
into the interaction between two processes occurring 
on drastically different length scales, there is an 
underlying--and somewhat tenuous--assumption 
that a relatively large ( ~  I/~m) dislocation-free core 
exists at the crack tip. Presently, we reformulate our 
model in the context of strain-gradient plasticity 
theory, lifting the requirement of a dislocation-free 
core. In so doing, we arrive at an inherent material 
length scale within which dislocation plasticity is 
inhibited and at the shielding ratio of the macroscopi- 
cally measured toughness to the work of  adhesion. 

2. THE MODEL 

2. I. The plastic zone 

Figure 1 illustrates the physical basis for the 
following discussion. A plastically deforming body 
containing a pre-existing, sharp crack is loaded in 
opening mode by remote tractions, allowing for a 
plastic zone to develop about the crack tip. The 
material surrounding the crack tip is allowed to 
plastically deform and strain harden, following the 
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large-strain limit of the generalized Ramberg- 
Osgood constitutive law 

/E A" 
: ' ( i t  

where 6.o~ is the effective stress (defined as x/~s,,so, 
where s,, is the stress deviator), tro is the uniaxial 
yield stress, gr is the effective plastic strain (defined as 
\/ir,,e~,), E is Young's modulus, n is the work- 
hardening exponent, and fl is an empirical prefactor 
of order unity ([] = 3/7 in the original Ramberg-  
Osgood formulation [12]). 

The asymptotic stress field in the vicinity of the 
crack tip is taken from solutions presented by 
Hutchinson [13] and Rice and Rosengren [14], 
henceforth referred to as HRR. The effective stress 
about the crack tip is 

scale within which the flow strength of the material 
exceeds the magnitude of the singular stress field. 
This length scale, which has hitherto been ill-defined 
in the application of plasticity theory to cracks, 
allows a self-consistent estimate of the core size. 

The local flow strength of a plastically deforming 
material is related to the local dislocation density, pr, 
through a modified Orowan-Taylor relation [17-20] 

6~o~ = ~Eb.~/ pr, (3) 

where ~ is a constant prefactor of order unity, E is 
Young's modulus, and b is the magnitude of the 
Burgers vector. In conventional crystal hardening 
theory, all of the dislocations are "statistically 
stored," whether they existed prior to deformation or 
arose during deformation via various dislocation- 
generating sources. However, as argued by Ashby 
[21], an additional distribution of dislocations is 

e = ~ro co(0, n), (2) 

where r is the distance ahead of the crack tip and K,.~ 
is the applied, or far-field, stress intensity factor that 
characterizes the elastic field well beyond the plastic 
zone. (We assume small-scale yielding, wherein the 
plastic zone remains small in relation to other length 
scales in the problem.) The parameter ~ characterizes 
the state of constraint, taking on the value 1 for plane 
stress and 1 - v-" for plane strain, where v is Poisson's 
ratio. The factors 8e and L, are weak functions of the 
work-hardening exponent, and are determined 
numerically in the HRR formulation.I" 

2.2. Crack-tip stra#l-gradient plasticity (HRR-type 
&/d) 

As for any asymptotic continuum formulation, the 
HRR field nominally extends to the very crack tip. 
However. highly nonlinear behavior at the atomic 
length scale supersedes the attainment of singular 
stresses. To avoid unphysical stresses in such regions, 
realistic interatomic potentials have been employed 
by previous researchers [15]. Presently, we show that 
under certain conditions the validity of convention- 
ally accepted continuum asymptotic fields can break 
down at substantially larger-than-atomic length 
scales. 

Recently, Fleck et al. [16] have noted that, in the 
presence of large plastic strain gradients, conven- 
tional plasticity formulations must be severely 
modified at length scales far exceeding atomic 
dimensions--usually of the order of I/~m. (More 
detailed discussion of the theoretical and exper- 
imental basis of strain-gradient plasticity is found in 
Ref. [16] and references therein.) As we shall describe 
below, the strain-gradient concept defines a length 

+The fourth-order o.d.e, was solved on a Silicon Graphics 
workstation using a shooting method similar to that 
described in Refs [13] and [14]. 
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Fig. 1. Schematic illustration of the fracture model. (a) The 
plastic zone surrounding a remotely loaded, sharp crack. 
(b) Idealized stress distribution ahead of the crack tip. As 
the crack tip is approached, one moves from the far-field 
K-dominant region to the plastically deforming zone and 
finally to the core region. Enforcement of stress continuity 
defines the location of the boundary between the core and 

surrounding plastic zone. 
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"'geometrically necessary" to maintain displacement 
compatibility in spatially gradient strain fields. 
Therefore, the total dislocation density is the sum of 
the statistically stored and geometrically necessary 
densities (pr = p~ + ps)- In fact, where local strain 
gradients become large--as will be shown to occur 
near crack tips--the geometrically necessary disloca- 
tion density can far exceed the statistically stored 
contribution (pG>>ps), allowing the flow strength in 
such regions to be estimated as 

~,o~ ..~ ~Ebx/-~G. (4) 

For isotropic plasticity following J.,-deformation 
theory, the density of geometrically necessary 
dislocations is directly proportional to the effective 
curvature, Ze 

po ~ ~. (s) 

The effective curvature represents the scalar magni- 
tude of the plastic component of the curvature tensor, 
Z p~, in a manner similar to the relation between 
effective strain and the strain tensor? 

Z~ = x/~'/.~ Z~l . (6) 

The curvature tensor is, in turn, related to the plastic 
strain field, a nt 

Z~ P' (7) = e . k / g i / , k  

where e,,~ is the permutation tensor (defined in the 
Appendix) and 

"=  ~ X k "  

For a crack exhibiting an HRR singularity, the 
asymptotic strain field is 

2 1 ( I  + n) ¢_ 
e~' = E ~fll. ra~ ] gu(0. n), (8) 

from which the effective curvature field for an HRR 
singularity can be calculated explicitly 

X¢ = E kflh r 2 +"fro: ~e(0, n). (9) 

The function ~o results from differentiation of the 
angular functions g0, as described in the Appendix. 
Combining equations (4), (5) and (9), we can identify 
the asymptotic strain-gradient induced hardening 
distribution about the crack tip 

~{~t ~" 2 12. +~, 
r 2 * ° O o :  

2.3. The core 

From equation (10) we find that the rate of 
hardening due to geometrically necessary dislocations 
diverges as the crack tip is approached. For realistic 
values of the work-hardening exponent (n ranging 
from 0 to 0.5), the flow strength attains an 
approximately inverse-r singularity. Meanwhile, the 
HRR asymptotic solution predicts that the stress 
field has at most an inverse-x/r singularity (LEFM), 
with no singularity whatsoever in the limit of perfect 
plasticity [exponent is - n / ( l  + n) for HRR]. Thus, 
approaching the crack tip. the rate of increase of the 
flow strength exceeds the divergence of  the stress 
field. As a consequence, a point is reached at n'hich 
material su.~ciently close to the crack tip can no longer 
plastically deform under the prevailing crack-tip stress 
.field. This condition is analogous to the definition of 
the elastic core in the previous model; to retain 
generality, the characteristic dimension thus defined 
is henceforth referred to simply as "the core". 

To this point, the crack tip has been tacitly 
assumed to be stable against dislocation emission. We 
defer consideration of the consequences inherent to 
this assumption until the Discussion section. In the 
absence of dislocation emission, the stress field inside 
the core retains an elastic singularity described by a 
crack-tip stress intensity factor, K,p [8]. (Note that 
the assumptions just made rely on the additional 
condition that the elastic core remain large enough 
compared to atomic dimensions for continuum 
elasticity theory to be valid.) The effective stress in 
the immediate vicinity of the crack tip can therefore 
be evaluated from linear-elastic fracture mechanics 
(LEFM) 

e = ).(0) K~.,~p. (11) 

The angular dependence of the stress field is conveyed 
through the function 2, where 2x//-n2/cos(0/2 ) is 
\ / 8 v ' - -  8v + 5 -  3cos(0) for plane strain and 
,,/5 - 3 cos(0) for plane stress. 

2.4. Core size and shielding ratio 

It remains to establish the location of the boundary 
across which the scaling of the stress field switches 
from HRR [equation (2)] to LEFM [equation (! 1)], 
and subsequently to evaluate the degree of  crack-tip 
shielding afforded by the plastic zone. 

At the point of incipient fracture, the crack-tip 
stress intensity must attain its critical value, ~lp. 
Using the Irwin relation, we can restate the fracture 
criterion in terms of  the critical energy release rate, 

K,.,p---, _/1 ff'¢~PE, (12) 

"tHenceforth, Einstein summation convention over repeated where ff~,o is the inherent Griffith toughness. The 
indices is assumed, value of ~'P is simply the work of adhesion, W,d, of 
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the solid-solid interface--a material parameter that 
can be calculated from atomistic models or estimated 
using various experimental techniques. 

As seen from Fig. 1 (b), the location of the interface 
corresponds to the crossover point at which the flow 
strength [equation (10)] exceeds the stress attain- 
able in a homogeneous HRR crack-tip field. (This 
empirical construction does not in itself guarantee 
compatibility, but has been used in limited circum- 
stances to provide boundary conditions at elastic- 
plastic interfaces.) At distances closer to the crack tip 
than the core length, the stress is insufficient to induce 
plastic flow and the stress field is described by 
equation (11). Equations (2), (10) and (11) represent 
a system of three equations in three unknowns. 
Enforcing continuity of effective stress across the core 
boundary, r = P~, along a fixed direction (say 0 = 0), 
we find that 

T = t,~; aoj tg .~ -D-&-~. ) (13) 

and 

w, A,-. 
Wad = ~a~ ¢ ] \g .¢  bao,] ' (14) 

where (97/Wad defines the crack-tip shielding ratio. 
2 2 For conciseness, we define g, = x/~-~ fl~,, where 

the subscript n serves to emphasize the functional 
dependence of g on the work-hardening exponent. 

2.5. Thermal effects 

Thus far, the thermal contribution to the flow 
strength has been neglected. Adding a thermal 
component, a*(T), to equation (4), we find that the 
shielding ratio must satisfy 

~//g.~ (Wad'S- I 2/: ~ "~I/2(I -n, 

+ 6,ao ~: Wad/ = 1, (15) 

where 

x=/---~ 

The temperature dependence of a* can be written 
[18, 22] 

a*(T) = a * ( 0 ) ( 1 -  T ~ ) ) '  (16) 

where T is the absolute temperature and 7", defines the 
critical temperature above which there is sufficient 
thermal energy to overcome barriers to dislocation 

Table 1. Selected values of HRR parameters under plane strain and 
plane stress conditions for 0 = 0 

Plane strain Plane stress 

n s° h 9° a, h ~'° 
0.0 1 3 . 7  - -  1 2 . 5  - -  

o. 1 0.67 4.5 0.039 1.00 3.0 0.90 
0.2 0.46 5.0 0.059 0.99 3.4 0.95 
0.3 0.30 5.4 0.070 0.98 3.8 0.96 
0.4 0.18 5.7 0.077 0.98 4.0 0.97 
0.5 0.09 5.9 0.082 0.97 4.2 0.97 

motion by thermal activation alone [e.g. at T/> 7",, 
a*(T) = 0 and the solutions for shielding ratio and 
core size revert to those given in equations (13) and 
(14)]. The thermal component of go is assumed to be 
much smaller than the overall magnitude of go and is 
thus neglected. As a final complication, an implicit 
dependence of ~r*(0) on W~d is anticipated in equation 
(16). The explicit form of this dependence has yet to 
be determined and is not considered in the present 
analysis. The dependence of  T, on the strain rate, ~, 
is described by an Arrhenius relation through the 
Helmholtz free energy change, AF, required to 
overcome the barrier to dislocation motion [18, 22] 

AF 

/ 
where k is Boltzmann's constant, Vd is the Debye 
frequency, d is the distance moved by the dislocation 
for every barrier it overcomes, and pm is the density 
of mobile dislocations. 

3. DISCUSSION 

Using appropriate values for the proportionality 
constants in equations (13) and (14) (Table 1), the 
shielding ratios and core sizes are plotted in Figs 2(a) 
and (b), respectively, for a range of work-hardening 
exponents. The core size is generally much larger 
than the Burger's vector, suggesting that the use of 
continuum approximations is reasonable. The posi- 
tive slopes of the shielding ratio curves in Fig. 2(a) 
indicate that the strain-gradient model does predict a 
synergistic coupling between the macroscopic tough- 
ness (attributed to plastic deformation) and the 
inherent material toughness (represented by the ideal 
cleavage energy, W=d). Such behavior is in qualitative 
agreement with observations of segregation-induced 
embrittlement [23-26], whence a slight reduction in 
the work of adhesion leads to a dramatic decrease in 
the macroscopic toughness. 

Combining equations (15) and (16), we can plot the 
temperature dependence of the shielding ratio 
(Fig. 3). A sharp transition from ductile (high 
shielding ratio) to brittle (low shielding ratio) 
behavior is evident. The temperature at which the 
transition occurs corresponds to the brittle-to-ductile 
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Fig. 2. Variation of (a) shielding ratio and (b) core size with 
the work of adhesion for a range of work-hardening 
exponents. All curves were calculated using ~( = l, # = 3/7, 

v = 1/3 and E/ao = lO00. 

transition temperature, below which background 
dislocation mobility is effectively frozen out (i.e. the 
thermal activation, kT, falls sufficiently below the 
activation energy for overcoming the lattice stress). 
As expected, the transition occurs more readily for 
materials having a greater thermal sensitivity of flow 
strength [larger a*(0)]. As described in the previous 
section, the lack of  an explicit relationship between 
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Fig. 3. Dependence of the shielding ratio on temperature for 
varying values of the ratio a*(O)/#eao, illustrating the onset 
of a ductile-to-brittle transition associated with suppression 

of background plasticity. 

0¢~ 0'02 0104 0106 0"08 0"~0 

Oo/(W.,,b-b 
Fig. 4. Strength-toughness dependence predicted on the 

basis of the strain-gradient model. 

a*(0) and Wad precludes further quantification of the 
brittle-ductile transition. However, closely associated 
with the temperature dependence of toughness is 
strain-rate dependence. As indicated in equation (I 7), 
increasing strain rate has the effect of increasing To. 
Setting the absolute temperature constant and 
steadily increasing the strain rate is therefore 
analogous to moving from right to left along the 
curves of Fig. 3. Therefore, materials that are 
especially susceptible to embrittlement at low 
temperatures are also expected to behave in a brittle 
manner at high loading rates. 

An interesting implication of the present model is 
that it predicts the often-observed phenomenon of 
strength-toughness correlation in plastically deform- 
ing materials. This can be illustrated by inverting the 
abscissa of Fig. 2(a). The resulting plot of toughness 
as a function of yield strength is shown in Fig. 4. 
It has long been observed that metal alloys exhibit 
an inverse relationship between yield strength and 
fracture toughness [27, 28], but this phenomenon has 
heretofore eluded quantitative explanation. Specifi- 
cally, attempts to improve the strength of alloys by 
work-hardening invariably lead to decreased tough- 
ness (conversely, decreasing the yield strength by 
thermal annealing raises the toughness). Such 
behavior has been observed in other material systems 
having a strongly coupled fracture process, such as 
transformation-toughened zirconia, in which the 
cohesive energy dictates the extent of the transform- 
ation zone [29]. 

It may be useful at this point to briefly compare the 
present model to the elastic core formulation of 
Ref. [11]. Nominally, the two descriptions of the 
fracture process are very similar. Both models allow 
for a sharp, Griffith-type crack tip to coexist with 
background plasticity. Both predict a strong coupling 
between the crack tip and the surrounding plastic 
zone, as evidenced by the positive slope of the 
shielding ratio curves. In both, a characteristic core 
dimension is determined, within which no plastic 
deformation occurs. The main distinction between 
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the two approaches lies in the physical model used to 
identify the core size. 

In the original model, a dislocation-free zone is 
postulated to exist directly surrounding the crack tip. 
Using a standard correlation in crystal hardening 
theory [17], the flow stress is related to the dislocation 
spacing (or dislocation cell size) 

~Eb 
- m , ,  = ( 1 8 )  O'fi°~" Rc " 

ff~o~X can be thought of as the maximum effective flow 
stress to which the material has hardened, expected 
to occur directly at the interface between the elastic 
core and the surrounding plastic zone. The shielding 
ratio based on this relation is [11] 

(w:A<,-,>,o 
W,~ oc ~,ff~ao) ' (19) 

and the core size at initiation of  fracture is 

R, E ( W.d'~ - ~ 
--~ oo ~ \ bao,] " (20) 

Note the absence of an explicit dependence of core 
size on either yield strength or work-hardening 
coefficient in equation (20). 

Although a dislocation-free zone model allows 
determination of a core dimension, it is based on the 
tenuous premise that the dislocation spacing immedi- 
ately surrounding the crack tip is the characteristic 
length governing the core size. In such a case, the core 
size is proportional to the distance from the crack tip 
to the next-nearest dislocation (e.g. R oc p-~2). 
Strain-gradient plasticity theory, however, suggests 
that the dislocation spacing is not the characteristic 
length scale. In fact, the dislocation spacing becomes 
vanishingly small (continuum limit) approaching the 
crack tip, inducing strain-gradient hardening local to 
the crack tip. In general, then, the core encompasses 
a large number of immobile dislocations and the 
length scale is therefore determined not by the 
dislocation spacing but by the strain gradient. 

Although the model presented above allows for a 
relatively sweeping characterization of a class of 
fracture problems, several issues remain to be 
addressed. These are: (1) dislocation emission from 
the crack tip; (2) breakdown of continuum asymp- 
totic solutions at both very fine and very large length 
scales; and (3) the discrepancy between dislocation 
and continuum plasticity formulations. Although we 
make no attempt to resolve these issues in the present 
contribution, their consideration may prove critical in 
subsequent attempts at bringing theoretical and 
experimental results into closer agreement. 

The first point refers to the apparent neglect of 
possible dislocation emission in the preceding 
analysis. Identifying the criterion for dislocation 

emission from the crack tip with a critical ratio of 
unstable stacking fault energy to work of adhesion 
[30], we can superimpose the criterion for first 
dislocation emission (a vertical line) on Fig. 2(a). 
However, satisfaction of the criterion for first 
dislocation emission does not in itself preclude the 
ability of the fracture process to proceed in a 
cleavage-type manner. In fact, the criterion for 
subsequent emission is expected to be more 
conservative due to the back stress from the emitted 
dislocation, while a singular stress is still retained at 
the singly-blunted crack tip, facilitating the propa- 
gation of a cleavage crack [31]. Therefore, although 
moderate dislocation emission is expected to perturb 
the stress field directly adjacent to the crack tip 
[rib ~ 1 in Fig. l(b)], the cleavage process may still 
proceed in approximate accordance with the present 
model. 

The second limitation refers to the simplifying 
assumptions made in identifying the stress field 
ahead of the crack tip. As stated from the start, the 
present analysis is founded on a small-scale yielding 
approximation in order to simplify the description of 
the loading field. Perhaps more restrictive is the use 
of asymptotic solutions to the stress and strain fields. 
Clearly, higher-order terms can affect the estimates of 
the core size and shielding ratio. Similarly, an error 
is introduced in our neglect of statistically stored 
dislocations in equation (4), with the consequence of 
slightly underestimating the flow strength. Lastly, 
the strain-gradient material is embedded within the 
plastic zone without any modification of the pre- 
vailing stress fields. A fully consistent t reatment--  
though likely to be analytically intractable--may 
provide improved accuracy in attempts to make 
direct comparisons with experimental data [32]. 

The final issue for concern refers to the apparent 
incongruity between the dislocation plasticity treat- 
ment [as epitomized by the Taylor relation, equation 
(4)] and continuum plasticity [e.g. Ramberg43sgood 
constitutive property, equation (1)]. Dislocation 
plasticity makes no allowances for "weak" or 
"strong" interactions between dislocations. In fact, 
the only constitutive behavior fully consistent with 
the Orowan-Taylor relation is parabolic hardening. 
On the other hand, continuum plasticity makes 
allowances for a wide range of hardening behavior, 
ranging from perfectly-plastic (n = 0) to parabolic 
(n = 0.5). To some extent, the resolution to this 
apparent inconsistency is simply to allow each 
constitutive description to govern over the length 
scale for which it was intended. At the dislocation 
scale, discrete dislocation--dislocation interactions 
must lead to local resistance to flow according to 
equation (4). At the macroscopic scale, various 
dislocation accommodation and relaxation mechan- 
isms can reduce the apparent flow resistance from the 
parabolic limit. Where the deformation-free core is 
involved (length scales <10*b), the use of a 
dislocation-based model [equation (4)] seems 
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justified. In describing the su r rounding  elast ic-plast ic  
field (length scales >> 104b), the use of  a con t inuum-  
based model  [equations (1) and  (2)] seems equally 

justified. 

4. SUMMARY 

We have proposed that  a n u m b e r  of  fracture 
p h e n o m e n a  exhibi t ing cleavage-type fracture in the 
presence of  dis locat ion plasticity can be explained 
on  the basis of  a simple model  account ing  for the 
coupl ing between the plastic de format ion  and  the 
ideal (Griffith) fracture energy. Specifically, our  
results show that  the effect of  ideal f racture energy on 
the plastic dissipat ion is synergistic, with slight vari- 
a t ions  in Griffith energy affecting order -of -magni tude  
changes  in toughness.  Fur ther ,  we suggest a means  
by which tempera ture  and  s t ra in-rate  effects can 
be incorpora ted ,  demons t ra t ing  the capacity of  the 
model  to predict  sharp  t ransi t ions  f rom ductile to 
brit t le f racture regimes. Suggested appl icat ions  of  the 
model  include segregat ion-induced embr i t t lement  
observed in a n u m b e r  of  metals  and  meta l -ce ramic  
interfaces, the ducti le-to-bri t t le  t ransi t ion in bo th  
metals  and  ceramics, the s t ra in-rate  dependence  of  
fracture toughness  and  the s t rength- toughness  corre- 
lat ion in metals. 

Acknowledgements--The authors would like to thank 
L. M. Brown (Cambridge) for helpful discussions leading 
to the preparation of this manuscript. DML thankfully 
acknowledges the ONR for his NDSEG Fellowship 
and GEB would like to acknowledge support from the 
LLNL Seaborg Institute for Transactinium Science. This 
work was partially supported by the MRL program of the 
National Science Foundation under award # D M R -  
9123048. 

REFERENCES 

1. A. A. Griffith, Phil. Trans. R. So('. Lond. A 221, 163 
(1920). 

2. G. Hahn, M. Kanninen and A. Rosenfeld. A. Rev. 
Mater. Sci. 2, 381 (1970). 

3. R. M. McMeeking, J. Mech. Phys. Solids 25, 357 
(1977). 

4. E. Orowan, Trans. Inst. Engrs. Shipbuilders Scot. 89, 
165 (1945). 

5. J. R. Rice, Proc. 1st Int. Con/~ Fracture (edited by T. 
Yokobofi, T. Kawasaki and J. L. Swedlow), p. 309. 
Sendal, Japan (1966). 

6. E. D. Hondros and M. P. Seah, Int. Metals Rev. 222, 
262 (1977). 

7. A. G. Evans and B. J. Dalgleish. Mater. Sci. Engng A 
162, I (1993). 

8. R. Thomson, J. Mater. Sci. 13, 128 (1978). 
9. Z. Suo, C. F. Shih and A. G. Varias, Acta metall, mater. 

41, 1551 (1993). 
10. M. L. Jokl, V. Vitek and C. J. McMahon Jr, Acta 

metall, mater. 28, 1479 (1980). 
11. D. M. Lipkin and G. E. Beltz, Acta mater. 44, 1287 

(1996). 
12. W. Ramberg and W. R. Osgood, National 

Advisory Committee on Aeronautics (NACA), TN 902 
(1943). 

13. J. W. Hutchinson, J. Mech. Phys. Solids 16, 13 & 337 
(1968). 

14. J. R. Rice and G. F. Rosengren, J. Mech. Phys. Solids 
16, 1 (1968). 

15. G. I. Barenblatt, Adz'. appl. Mech. 7, 55 (1962). 
16. N. A. Fleck, G. M. Muller, M. F. Ashby and J. W. 

Hutchinson, Acta metall, mater. 42, 475 (1994). 
17. G. 1. Taylor, Proc. R. Soc. Lond. A 145, 362 (1934). 
18. D. Hull and D. J. Bacon, Introduction to Dislocations, 

3rd ed., p. 243. Pergamon Press. New York (1989). 
19. G. E. Beltz, J. R. Rice, C. F. Shih and L. Xia, Acta 

metall, mater. 44, 3943 (1996). 
20. M. D6ner, H. Chang and H. Conrad, J. Mech. Phys. 

Solids 22, 555 (1974). 
21. M. F. Ashby. Phil. Mag. 21, 413 (1970). 
22. A. Seeger, Dislocations and Mechanical Properties of  

Crystals (edited by J. C. Fisher, W. G. Johnston. R. 
Thomson and T. Vreeland, Jr), p. 243. John Wiley and 
Sons, New York (1957). 

23. J. P. Hirth and J. R. Rice, Metall. Trans. A 11, 1501 
(1980). 

24. J. S. Wang and P. M. Anderson. Acta metall, mater. 39, 
779 (1991). 

25. D. Korn, G. Elssner. H. F. Fischmeister and M. Rfihle, 
Acta metall, mater. 40, s355 (1992). 

26. D. M. Lipkin, D. R. Clarke and A. G. Evans. 
unpublished work (1994). 

27. A.J. Birkle, R. P. Wei and G. E. Pellissier. Trans. ASM 
59, 981 (1966). 

28. R. W. Hertzberg, Deformation and Fracture Mechanics 
of  Engineering Materials. 2nd ed.. p. 353. John Wiley & 
Sons. New York (1983). 

29. M. V. Swain and L. R. F. Rose. J. Am. Ceram. Soc. 
69, 511 (1986). 

30. J. R. Rice, J. Mech. Phys. Solids 40, 239 (1992). 
31. L. L. Gann and G. E. Beltz, work in progress. 
32. A numerical strain-gradient plasticity treatment of the 

stress about a crack tip in a plastic solid is currently 
being carried out by J. W. Hutchinson and co-workers. 

A P P E N D I X  

Strain Gradients in a M o d e - I  H R R  Crack-Tip Field 

Using the definition of the permutation tensor, e,k, 

I O, n = k , n = j o r k = j  

e,k, =- , - 1 ,  n, k , j  is an odd permutation of l, 2, 3 

+ 1, n, k , j  is an even permutation of 1, 2, 3 

(Al) 

it is possible to write out the curvature tensor of equation 
(7) explicitly in terms of the plastic strain field componentst 

I~13,2 -- ~12.3 823,2 - -  E22,3 ~33.2 - -  e32 ,3 [ .  
q 

J el2.1 - -  ~11.2 ~22.1 - -  ~21.2 ~32.1 ~31,2 

(A2) 

It should be noted that symmetry of the strain tensor 
requires that eii= e,. Equation (A2) is substantially reduced 
when the state of constraint is established. For example, 
because the strain field is uniform along the out-of-plane 
direction under both plane strain and plane stress con- 
ditions, we can set e0.3 -- 0 and gu = ~23 = 0. Furthermore, 

tFor  clarity, the designation "pl" has been omitted. It is 
implicitly assumed that both the curvature tensor 
and strain components are associated with plastic 
deformation. 
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incompressibility requires that e~3 = - (ell + e:,_), reducing 
the curvature tensor under plane stress to 

- -  (~11.2 + ~2L2)] 
Z :  ~ 0 0 ~i,.,~._2, j ,  planestress. 

~12.1 - -  El i .2  ~22,1 - -  ~21.2 

(A3) 

Further simplification of  the curvature tensor obtains under 
plane strain conditions, whence e~3 = e_,3 = e .  = 0 [0 

7. = 0 0 , plane strain. (A4) 
~12.1 - -  ~11.2 ~22,1 - -  ~21.2 

The respective strain-component derivatives can now be 
determined using the HRR strain field. Defining an 
orthogonal basis in cylindrical coordinates such that 
(x .  x:, x3) corresponds to (r, 0, z) and (~,x~, ~x:, ~x3) to 

(dr, rdO. ~:), and combining with the HRR strain field given 
in equation (8), the relevant derivatives of  the strain 
components can be determined 

I t ~ 2 I l l  + h i  

e,.: =- "~eo.o S -- E t f l L r 2 + " a g l l  

x 

L ~,,.,,(O,n) J 

The effective curvature can now be calculated using 
equations (6) and (A3)-(A5) 

fT_ r (A6) 

where 

1 ~ I ) :  + ~ e,, + ~ g~ , plane stress 

(A7) 


