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DISLOCATION NUCLEATION AT
METAL-CERAMIC INTERFACES

G. E. BELTZt and J. R. RICE
Division of Applied Sciences, Harvard University, Cambridge, MA 02138, U.S.A.

Abstract—The ductile vs brittle behaviour of metal-ceramic interfaces is discussed within an atomistic
framework, in which the mechanical response of an interfacial crack is assumed to be ultimately controlled
by the competition between atomic decohesion and dislocation nucleation ahead of the crack tip. As in
later versions of the Rice-Thomson model, this competition may be evaluated in terms of the parameters
G geave » the energy release rate for cleavage of the metal-ceramic interface, and G, the energy release rate
associated with the emission of a single dislocation within the metal. The various models of dislocation
nucleation are discussed, with emphasis on an approach which makes use of Peierls-like stress vs displace-
ment relations on a slip plane ahead of a crack tip. A recent analytical result by Rice shows that for a
mode II or III shear crack, with a slip plane parallel to the crack plane, a dislocation is emitted when
G =1y, (G is the energy release rate corresponding to the “screened” crack tip stress field and y,, is the
“unstable stacking” energy associated with the sliding of atomic planes past one another). This treatment
permits the existence of an extended dislocation core, which eliminates the need for the core cutoff radii
required by the Rice-Thomson model of emission. Results are presented here for the nucleation of
dislocations under more realistic assumptions for metal-ceramic cracks, namely, the emission on inclined
slip planes within a mixed-mode crack-tip field. The specific case of a copper crystal bonded on a {221}
face to sapphire is analyzed, and the results are used to interpret the recent experimental observations of
Beltz and Wang [4cta metall. mater. 40, 1675 (1992)] on directional toughness along this type of interface.

Résumé—Le comportement fragile-ductile des interfaces métal/céramique est discuté en supposant que la
réponse mécanique d’une fissure interfaciale est contrdlée finalement par la compétition entre la décohésion
atomique et la germinaton de dislocations en avant de I'extrémité de la fissure. Comme dans les deniéres
versions due modéle de Rice et Thomson, cette compétition peut étre évaluée en fonction du parameétre
G, du taux de libération de I'énergie pour le clivage de I'interface métal/céramique et de Gy, , le taux
de libération de I’énergie associée 4 'émission d’une seule dislocation a P'intérieur du métal. Les différents
modéles de germination de dislocations sont discutés, en insistant sur une approche qui utilise une pseudo
contrainte de Peierls, fonction des relations de déplacement dans un plan de glissement en avant de
Pextrémité d’une fissure. Un résultat analytique récent de Rice montre que pour un mode 11 ou III de
fissure de cisaillement, avec un plan de glissement paraliéle au plan de la fissure, une dislocation est émise
lorsque G =17,; (G est le taux de libération de |’énergie correspondant au champ de contrainte “écranté”
de 'extrémité de la fissure et y,, est I'énergie d’“‘empilement instable” associée au glissement des plans
atomiques I'un sur 'autre). Ce traitement permet I'existence d’un coeur de dislocation étendu, ce qui élimine
la nécessité de connaitre les rayons de coupure du coeur exigés par le modéle de Rice et Thomson. Les
résultats sont présentés ici pour la germination de dislocations avec des hypothéses pus réalistes pour des
fissures métal/céramique, c’est-a-dire I'’émission sur des plans de glissement inclinés dans un champ de mode
mixte 4 'extrémité de la fissure. Le cas spécifique d’un cristal de cuivre [ié sur une face {221} 4 du saphir
est analysé et les résultats sont utilisés pour interpréter les observations expérimentales récentes de Beltz
et Wang [Acta metall. mater. 40, 1675 (1992)] sur la ténacité directionnelle sur ce type d’interface.

Zusammenfassung—Das duktile Bruchverhalten im Gegensatz zum sproden von Grenzflichen zwischen
metallischen und keramischen Werkstoffen wird im atomistischen Rahmen besprochen unter dem
Gesichtspunkt, daf der mechanische Reaktions-ablauf eines Grenzflichenrisses letztlich von der Konkur-
renz zwischen atomistischen Spaltungsbruch und Versetzungskeimbildung vor der RiBspitze abhingt. Wie
in spiiteren Versionen des Rice-Thomson Modells, konnte diese Konkurrenz bewertet werden nach Para-
metern Gg,,.., die Energiefreigaberate fiir Spaltungsbruch der metall-keramischen Grenzfliche, und G,
die Energiefreigaberate fiir Emission im Metall einer einzelnen Versetzung. Es werden die verschiedenen
Modelle von Versetzungskeimbildung besprochen, mit Betonung auf eine Methode in der ein Peirls-
dhnlicher Spannung-Verschiebungszusammenhang auf einer Gleitebene vor einer RiBspitze verwendet wird.
Ein vor kurzem analytisches Ergebniss von Rice zeigt, daB fiir Mode II order III Schubrisse mit Gleitebene
parallel mit der RiBebene, wenn G = y,, besteht (G ist dic Energiefreigaberate in Bezug auf das locale
plastisch “abgeschirmte” RiBspitzenspannungsfeld und y,, ist die “unbestindige Stapelenergie” die mit dem
Aneinandervorbeigleiten von atomistischen Ebenen verbunden ist). eine Versetzung emittiert werden wird.
Diese Behandlung erlaubt die Existenz eines ausgedehnten Versetzungskernes, welches die Notwendigkeit
der Kernabschnittradien wie bei dem Rice-Thomson Modell von Emission eriibrigt. Ergebnisse werden
hier vorgestellt unter mehr realistischen Annahmen fiir metall-keramische Risse, ndmlich die Emission an
Gleitebenen innerhalb gemischt-Mode RiBspitzenfeldern, die beziiglich der bestehenden RiBebene schrige
sind. Der spezifische Fall von {221} Kupferkristallfidchen gefiigt an Saphir ist analysiert und die Ergebenisse
werden angewandt die kiirzlichen Beobachtungen von Beltz und Wang [4cta metall. mater. 40, 1675 (1992)}
iiber die richtungsabhingige Zihigkeit an diesén Arten von Grenzflichen zu erkliren.
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INTRODUCTION

The issue of the ductile vs brittle response of an
interface is treated here, with special emphasis on the
emission of dislocations at metal-ceramic interfaces.
The aspect examined here is that the ductile vs brittle
behaviour of an interface can be partially understood
in terms of a competition which occurs on atomic
length scales: the emission of dislocations vs cleavage
decohesion. (Unless otherwise specified, all discussion
concerning the behaviour of dislocations is assumed
to be in reference to the metallic part of the interface;
it is understood, however, that in certain circum-
stances the role of dislocation activity in the ceramic
may be important also.) A convenient way to
parameterize this competition was first introduced in
conjunction with some of the later versions [2-6] of
the Rice-Thomson model {7}, and makes use of the
quantities G.,.., the energy release rate for cleavage,
and G, the energy release rate associated with the
emission of a single dislocation on a slip plane
emanating from the crack tip. In Fig. 1, the basic
premise of the model is illustrated: if Gyeye < Gyiat»
then the crack propagates in a brittle manner, and the
interface is said to be intrinsically brittle; conversely,
if Gy < Gueves then a dislocation is spontaneously
emitted thus blunting and “shielding” the crack tip
from further increases in applied loading. The energy
release rates here should rigorously be interpreted as
those based on the local (“screened”) crack tip field,
which can differ from the macroscopic field due to
additional dislocations or other nonlinear effects. The
motion of surrounding dislocations in the metal are
not accounted for in this treatment, and hence the
model is regarded as an oversimplification of the
actual crack tip response. Depending on the ease of
moving those pre-existing dislocations in the metal,
and hence on temperature and loading rate, it may
happen that local stresses adequate to meet the
cleavage condition G = G, are not attained, even
in systems for which G,.,,. < Ggq, prior to onset of
some more ductile fracture mode such as hole growth
and/or shearing off.

The primary purpose of this paper is to review the
various models of dislocation emission, leading up to
the most recent treatment which solves the elasticity
problem of a traction-free crack with a Peierls-type
stress vs displacement relation being satisfied as a
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Fig. 1. Atomistically sharp crack on the left, showing the
competition between dislocation emission (upper right) and
cleavage decohesion (lower right).
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boundary condition along a slip plane ahead of the
crack tip. A review of the experimental effort in this
area is also given, which includes work that has
centered on the direct observation of dislocation
emission from crack tips and work which has
successfully utilized Rice-Thomson ideas to predict
the directional toughness along interfaces involving
copper. Finally, numerical results from the analysis of
dislocation nucleation in one such type of specimen
are presented;, the specimen consists of copper
bonded on a {221} face to sapphire, a configuration
discussed in [6], and has been mechanically tested in
recent work by Beltz and Wang [1].

Although the primary focus of this paper is on
dislocation emission, a word should be said about
cleavage. In the specimens that are discussed later, a
critical assumption is that Gg,,. is identical at two
crack tips which are being compared; it is the differ-
ence in Gy, which should give rise to a difference in
toughness. The Griffith criterion for crack growth in
the absence of plasticity may be used to estimate the
energy release rate for cleavage (e.g. [5, 8])

Gcleave = 2)’5 (1)

where 2y, is twice the surface energy and, and corre-
sponds to the reversible work of fracture. For inter-
facial fracture, 2y generalizes to 2y,,, and is given by

e =75+ 75— 4% 03]
The parameters 7}, y% and y}? correspond to the
surface free energies of materials 1 and 2, and the
interfacial free energy prior to separation. A more
sophisticated treatment of decohesion is given by the
cohesive zone model, which attempts to take into
account the non-uniform decohesion that occurs as a
crack propagates. In this model, two joined elastic
media are initially in contact and decohere within a
“transition” zone. A stress vs separation relation
¢ =¢(d) is assumed to apply along the decohering
interface. Application of a well-known J-integral
calculation gives [9, 10]

G = f " 6(8) d5 = 2y, @)
V]

in cases when the decohesion zone is much smaller
than the overall crack length [5, 9]. Note that this is
the same result predicted by the Griffith model.
Lattice simulations of fracture, in cases for which
decohesion is not accompanied by shear-like relax-
ations between atoms at the crack tip, confirm the
Griffith condition [11] except for a modest increase
due to lattice trapping.

EXPERIMENTAL OBSERVATIONS

Dislocation emission from crack tips has been
directly observed by the use of several experimental
techniques. In work by Burns [12], etch pit techniques
were employed to observe edge dislocations on slip
planes which emanated from a crack which had been
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cut parallel to the {110} planes in lithium fluoride.
X-ray topography has been used by Michot and
George [13] to carry out similar observations in
silicon. Possibly the most notable observations of
dislocation emission is the TEM work of Ohr 14, 15],
which has the advantage that emission could be
observed in situ in several materials, including f.c.c.
and b.c.c. metals with a high resolution, typically on
the order of a few angstroms. In these experiments,
the critical applied stress intensity factor K, to
emit a dislocation was measured; they were in
reasonably good agreement for several metals
with the theoretical values of K, as predicted by
the Rice-Thomson model. More recently, Chiao
and Clark [16] directly observed emitting dis-
locations in silicon and claimed reasonable
agreement of the inferred K, with Rice-Thomson
modeling.

The first convincing evidence that the macroscopic
behaviour of an interface could be understood based
on the competition between dislocation emission and
cleavage was given by Wang and Anderson [4], in
their work on symmetric tilt bicrystals of copper. In
this work, a directional effect on the toughness of the
grain boundary in a £9[110](221) bicrystal was ob-
served, in which two specimens were cut and notched
along the boundary such that a crack would run in
the opposite directions {T14] and {113], respectively.
The specimens were fatigued under a cyclic mode I
loading of increasing amplitude. The specimen with
the [1T4] cracking direction broke along the inter-
face when the maximum normal stress reached
o =28.1 MPa, corresponding to G ~28J/m’. An
intergranular fracture surface with cleavage
“tongues” was observed. The other specimen, with a
cracking direction of [T14], was loaded under identi-
cal conditions and eventually fractured at a normal
stress of 76.7 MPa. The fracture surface contained
large regions of ductile transgranular fracture and
plastic tearing, and the G value, > 210 J/m?, was
beyond the reliably measurable range fracture mech-
anics. The only difference between these two speci-
mens was the cracking direction, hence it was
concluded that the difference in ease with which
dislocations could be nucleated at each crack tip was
the cause of this behaviour. Further, continuum
plasticity analyses by Saeedvafa [17] and Oritz et al.
[18], suggested very little difference in the stress state
ahead of the crack tip, for the two growth directions,
and do not suggest a more macroscopic explanation
of the experiments.

Most recently, Beltz and Wang [1] have performed
experiments on copper crystals bonded on the same
{221} face to sapphire, to form a layered beam
subjected to four-point bending. Again, a directional
dependence of toughness was observed. In their
experiment, the ductile direction was observed to be
[113), the opposite of the ductile direction with the
Wang-Anderson bicrystal specimen. This result was
predicted by theory, however, and is elaborated on
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later in this paper in terms of the Peierls-type nucle-
ation model; it follows from different mode I/II
mixity in the two specimens.

EARLY MODELS

The earliest attempts at quantitatively understand-
ing the factors that control the ductile vs brittle
behavior at a crack tip were due to Armstrong [19]
and to Kelly et al. [20]. The latter proposed that the
response of a crystal or grain boundary should be
treated by comparing the ratio of the largest tensile
stress to the largest shear stress close to a crack tip
with the ratio of the ideal cleavage stress to the ideal
shear stress. Armstrong [19] compared the applied
stress necessary to meet the Griffith condition with
the stress to shear apart a dislocation dipole near a
crack tip, and thereby noted the importance of
the dimensionless combination ys/ub (ys = surface
energy, u = shear modulus, b = Burgers vector) as an
index of how relatively easy it was for the shear
process to occur before cleavage. Subsequently Rice
and Thomson [7] modeled the formation and emis-
sion of a dislocation from the near-tip region in a
(previously) dislocation-free crystal, and considered
the ductile vs brittle response of a crystal as a
competition between cleavage decohesion and dislo-
cation emission. Their analysis showed, likewise, the
importance of large ys/ub and also of low core energy
(large r./b, where r, is the core cut-off radius in their
analysis) for ductile response.

As explained in the introduction, recent treatments
of the Rice-Thomson model have evolved to charac-
terizing the crack-tip competition in terms of the
parameters G, and Ggq. In its original form, the
Rice-Thomson model treated dislocation emission by
two alternate methods; both proceed by assuming the
existence of a freshly generated dislocation at a
relatively small distance (turning out to be less than
a few atomic spacings) away from the crack tip, on
a slip plane which intersects the crack front. A
drawback to both, as well as the Peierls-type model
to be discussed later, is that the analysis may be
straightforwardly applied only to cases in which the
slip plane(s) intersect the crack front. Following [2],
however, we may envision a scenario in which
dislocations are emitted when a moving crack front
undergoes local deviations which bring it into line
with a potentially active slip plane. Another draw-
back common to both treatments is that they
inevitably involve the core cutoff radius, an uncertain
parameter [21]; in fact, the basic definition of a
dislocation “core” becomes vague as a dislocation
is being nucleated.

The first method assumes the dislocation line is
straight. Utilizing an elasticity solution for the dislo-
cation in the presence of a crack tip, the force on a
dislocation can be determined as a function of dis-
tance from the tip and the applied stress intensity
factor(s). For a crack on a bimaterial interface,
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consisting of joined isotropic solids, the force is given
by Rice et al. [6] as

4rr | 1—v,

b

+ 7 [Re(Kr“)S; + Im(Kr*)Sy + Ky Sl (4)
r

where 7 is the distance from the tip, b is the length of

the Burgers vector, ¢ is the orientation of the Burgers

vector in the slip plane, and

¢ ZhO)os¢ o _ZhOkosd
1 \/E H 11 \/ﬁ 3
Slll = :‘.‘_}‘,i(t‘))s_mq& . (5)

N

Here the angular functions Z,;(8) of superscripts I,
IT and III appear in the interfacial near-tip stress field,
which for dissimilar isotropic materials is given by the
form (see [22, 23] and references therein)

1 .
Gup = \/ﬁ [Re(Kr)Z1s(0) + Im(Kr*)Z 1 (0)

+KuZG ) (@ p=r6,2). (6

The functions Z,;(0) correspond to tractions across
the interface at 8 =0 of tensile, in-plane and anti-
plane shear type, so that

Kr*

(Op+i6,9)9=0= )

J2nr

Ky is the familiar mode I1I stress intensity factor, and

K is the single complex stress intensity factor which

characterizes the inherently coupled in-plane modes.
The parameter ¢ is given by

€= 1 I [(3 —dv)u + 1/#2:'
Y+ (G —4v)/my

2n ®
where u and v refer to the shear modulus and
Poisson’s ratio, respectively. Subscript 1 refers to the
material on top, occupying 0 < & < x, which is taken
to be the metal, and subscript 2 refers to the ceramic
phase. We have X4,(0) = Z%(0) = 2 (0) = 1 and the
full functions X,5(9) are given in [6] and can be
extracted from discussions of the bimaterial elastic
singular field (e.g. [22]).

In this generalization of the first Rice-Thomson
approach to interfacial cracks, emission of a dislo-
cation is said to occur when the stress intensity
factors are large enough to make f vanish when the
position r is equal to one core radius away from the
tip, i.e. setting equation (4) equal to zero for r =r,
gives the emission criterion. This procedure ensures
that the Peach—Koehler force on the dislocation is
larger than the image force tending to draw the
dislocation back into the tip for all r > r.. In order
to carry out this procedure, Rice et al. {6] have taken
advantage of the fact that Kr® is a slowly varying
function of r. Since the nucleation process typically
occurs on length scales of order b, Kr* is replaced
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with Kb* when determining the emission criterion.
(The real part of Kb* must be positive to assure that
any predicted material interpenetrations from the
oscillating singularity are limited to a subatomic, and
hence irrelevant, length scale.) Once the critical stress
intensity factors are determined, it is more convenient
to express nucleation in terms of an energy release
rate. The Irwin-type energy release expression for a
bimaterial crack is

l—v, 1—v KR 1 1\K%4
G = RS Y
( m + M )4COSh21t€+ u +-u2 4

&)

The final result for in-plane loadings is [6]
mb?
A =v)d —a)r,

x[ cos ¢ + (1 —v,)sin ¢ tan ¢ ]’
4./ cosh ne(Z15(@)cos '+ Z5(0)sin )

(109)
where a is one of the Dundurs parameters, which are
given by

de =

_ A=) — (L =)y
A =v)m+ A =y’
g = 1 =2v)py — (1= 2v))
2 (1=w)u+ A =v)im
The quantity ¥’ is known as the atomic scale phase
angle and is the phase angle of Kb*; it is related to the
macroscopic phase angle ¥ of Kh*, associated with
macroscopic specimen dimension A, by

V' =y —eln(h/b). (12)

The atomic scale phase angle characterizes the ratio
of mode II to mode I loading on atomic length scales
from the crack tip.

A second method for determining an emission
criterion presupposes the existence of a dislocation
loop ahead of a crack tip; the details of this method
for bimaterial interfaces have not been worked out.
The energy of the loop configuration (in a homo-
geneous material) may be calculated; it is the sum of
contributions from the self energy of the half-loop,
the core energy, and the surface energy of the ledge
created at the crack tip, less the work done by applied
loads to expand the loop to a given radius. For the
simple case of mode I loading, the energy is given by
[3,4,7,24]

E= 7zr|:Ab2 ln(s—'zm) + Em,,]
e’b

+ 2rEjpy —3.5br2SK; (13)

an

where 4 =(2 —v)u/8n(1 —v) is the prelogarithmic
energy factor and is roughly 10% of the shear
modulus, and m is a constant of order 1-2 [25). Here
Eore = Ab*In(b/r.) and E, . is the energy of the ledge
left by the crack tip blunting. The critical stress
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intensity factor for emission and radius r at instability
are found by [2, 3}

0E _ 0 O'E _

a0 et
The derivatives are at fixed Kj; the first condition
characterizes equilibrium states (r and X pairs) and
the second the K value at which the energy ceases to
be a minimum at a given state (transition from
92E[0r? > 0 at lower K| to 02E[dr* <0 at higher K;).
The solution for r is, however, typically of the order
b, whereas equations such as (13) are relatively
unambiguous only for r > b.

Earlier versions of the Rice-Thomson model en-
deavored to reveal the effect of slip plane orientation
and combined K|, Kj;, Ky, loading modes on dis-
location emission, and to extend the formulation to
an interface containing segregated solute atoms. The
greatest effect of impurity atoms seems to be on G,
through a lowering of 2y, (for “normal” segregators)
[8]. Dislocation emission may also be influenced,
however, through a possible solute pinning effect
[26]), and it is also plausible that some segregants,
initially on a crack-containing interface, could segre-
gate along the core of an emerging dislocation and
affect nucleation (as discussed in connection with
hydrogen by Anderson et al. [27]). The emission of
dislocations in dissociated form has been treated
extensively in [3, 24].

0. (14)

PEIERLS-TYPE NUCLEATION MODEL

(1) Summary of new approach

As pointed out in the last section, previous models
for calculating G, were based on elasticity theory for
complete dislocations, and required a knowledge of
the core cutoff radius r, and the core energy E_,.
[2, 7, 24). Argon [28] and, more recently, Schéck [29]
have recognized that a full dislocation is likely to
emerge unstably from an incomplete, incipient dis-
location at the tip, but a reasonably exact treatment
of the phenomenon has been given only recently [30].
That treatment, reviewed here, solves the elasticity
problem of a traction-free crack with a Peierls-type
stress vs displacement relation being satisfied as a
boundary condition along a slip plane ahead of the
crack tip. Once this interfacial “constitutive” relation
is specified, and the elasticity problem solved, there is
no need for core cut-off parameters. The advantage
of this method is that it allows for the existence of an
extended dislocation core during nucleation, and
eliminates uncertainty involved with choosing the
core parameters.

To summarize the new approach [30], assume now
the existence of a Peierls-type shear stress 7(=a,, on
0 =0 in the case now discussed) vs relative atomic
displacement (denoted A,) relation such as the sinu-
soidal representation in Fig. 2(a); A, denotes the shift
of one atomic plane relative to another at the slip
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Fig. 2. Expected form of the shear stress t vs: (a) relative
atomic displacement A, and (b) displacement discontinuity

e

surface. This curve gives the shear stress needed to
locally shear atoms with respect to one another on a
given slip plane, and is the fundamental input to the
Peierls—Nabarro dislocation model [31,32). The
initial slope of such a curve corresponds with an
appropriate shear modulus. The parameter b is the
length of a Burgers vector and represents the period-
icity of the stress—displacement relation. This type of
data has been calculated through the use of pair
potentials or the embedded atom method by several
researchers [11,33, 34, 35]. The integral of such a
curve from A, =0 to the unstable equilibrium pos-
ition at which the shear stress next vanishes (at
A, =b/2 in simple cases) has been called [30] the
unstable stacking energy, denoted y,,; the role of this
parameter in the dislocation nucleation process is
discussed shortly.

Consider a semi-infinite crack subject to mode II
loading, in which this Peierls-type stress vs displace-
ment relation is taken to be the constitutive relation
on a slip plane which is a coplanar with the crack (see
Fig. 3). With the exception of the slip plane, the
material is here taken as an isotropic, linear elastic
solid with shear modulus u and Poisson’s ratio v;
some results, like equations (17) and (18) to follow,
do not require those assumptions [30). Define &, as the
displacement discontinuity on a mathematical cut
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Fig. 3. Geometry for evaluation of the J-integral in the far
field (I',.) and on a path which surrounds the slit which
represents a slip plane (I'y;,).

coincident with the slip plane. We relate 6, to the
displacement A, of the atomic planes at +#4/2 from
the cut by

th
b w9 —uI= 8,5

15)
where h is the interplanar spacing. This idealized
cut represents the slip plane, and by adding to
the displacement discontinuity 8, across the cut (in
what is otherwise considered a linear elastic contin-
uvum) the additional “elastic” displacement ht/u, we
simulate approximately the relative displacement
A, =06,+ ht/u between atomic planes a distance &
apart. If 7 is now plotted vs 4,, the curve becomes
skewed so as to give an infinite slope at the origin [see
Fig. 2(b)]. The integral of t over half of a cycle
remains equal to y,,, however.

In the ensuing calculation, the J-integral [10] is
used to predict an emission criterion for the situation
just discussed, in a manner closely related to its
application to tensile decohesion summarized in con-
nection with equation (3). Within this framework, an
“incipient dislocation™ exist if the function 6,(r) is
nonzero as distance r approaches zero. Evaluation of
the J-integral on the path Iy, in Fig. 3 gives

l—vK2=G

J= % (16)

when the slit length is much smaller than the
crack length (or any other overall length scale
associated with the crack-containing elastic body).
The quantity G is the energy release rate that
would ensue if the crack were to move as a classical
singular crack (without a shear or decohesion zone
at its tip) quasi-statically under the given value
of K.

Evaluation of the J-integral on the path I',; (see
Fig. 3) gives

R 98, %up
J= —f T—dr =J' t(d,) do, an
0 or 0

where it is assumed that 6,(r) has decayed effectively
to zero for some sufficiently large distance R,
(typically, of order 5b). The parameter J, is the
displacement evaluated at r = 0.
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If a 7 vs &, curve of the form shown in Fig. 2(b) is
assumed, then a plot of J vs d,;, would rise monoton-
ically until 8,, = b/2, then J would have to decrease
to continue along the locus of static solutions, thus
giving instability to the atomic configuration under
a monotonically increasing external load. The
dislocation nucleation criteria is therefore

b2
o = J‘ 7(9,) 6, = yys.

0

(18)

More generally, the integral extends to the first value
of 3, > 0 at which energy ® = ftdJ, has a maximum.
Thus, G = y,, is the condition for nucleation of a pure
edge dislocation, on a slip plane ahead of the crack
tip and parallel to the crack plane; the corresponding
Ky is, from (16) and (18)

! 2u
Kiis = .
i} <1 _v>7ua

The derivation for a screw dislocation under a
mode III loading proceeds in a similar manner, again
with the result G = y,, and, because G = Ky;*/2u

K =/ 2uy,,. (20)

Further for combined mode II and mode III loading,
and under conditions for which the foregoing 7 vs 6,
relation is now assumed to apply for slip that is
restricted in a direction at angle ¢ with the normal to
the crack front (so that the final Burgers vector b is
oriented at angle ¢), the result [30] is

ki cos ¢ + Kt sin ¢

_ \/(%)I:cos"d) +(1—v)sin2¢]vu- @1)

Complications arise, however, when we include in
the model the effects of normal tractions and dilatant
opening across the slip plane. This situation occurs if
a mode I-type loading is added to the mode II
situation just discussed, or in more realistic cases
when the slip plane is inclined with respect to the
crack plane. There are no reasons to assume that a
given t vs 4, curve retains its shape if tension is
superposed; hence the effect of superposed tension on
the “effective” y,, must be investigated. Argon [28]
and Cheung et al. [36] have already noted the import-
ance of softening in shear due to large tensile stresses
across a slip plane.

19)

(2) Combined tension and shear relations

Let A, be the relative atomic separation across the
slip plane (see Fig. 4). Analogous to the case for
shearing, a suitable displacement variable for the
mathematical cut representing the slip plane may be
defined

2
5o=u§+)—“5_)=Ao—£—d~
2ys

(22

The quantity 2yg/L is an effective Young’s modulus
for tension across the slip plane and corresponds to
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\/r o®

Fig. 4. Schematic showing the measures of relative atomic
displacements in the r (shear) and 8 (opening) directions.

the initial slope of the d(=0y) vs A, relation to be
discussed shortly [8]. Here a particular form of the t
vs A, and o vs A, relations are chosen for the purpose
of solving some particular problems. Assume that the
curve in Fig. 2(a) is a sinusoid (commonly known as
the Frenkel sinusoid [30])

2nA
1T = .n.y_“.’ s]n<_1t__£>

where the amplitude factor is chosen such that

bf2
J T(Ar) dAr = Yus+

0

(23)
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Requiring, as in the discussion of equation (15), that
dv/d(A,/h)=p when A,=0 then shows that
Y. = #b?/2n*h when the Frenkel form is adopted.
Here we take the sinusoid to be the proper form for
7 when A, is zero, understanding that the y, which
enters it is that for unrelaxed shear. The correspond-
ing relation for tensile decohesion is assumed to be
g= %Ag e ML (25)
when A, =0. This is an example of a stress vs
separation relation as discussed in connection with
equation (3), and follows from the well-known fit,
with energy proportional to —(L + Ag)exp(—Ay/L),
to the universal bonding correlation of Rose et al.
[37-39]. The parameter L has been suggested as
scaling with the Thomas-Fermi screening length;
here it can be loosely interpreted as the character-
istic length associated with the decohesion process
(o reaches its maximum, at A, =0, when A;=L).
The constants on the right-hand side are chosen to
enforce
J; a(Ag) dA, = 2ys (26)
as required by the definition of 2yq.

For general loadings the functions t(A,, A,) and
a(A;, Ay) must be derivable from a potential function
which corresponds to the energy per unit area on the
slip plane through the relations

oY ib 4
T= (7_A, , 0= a—A; @n
which are equivalent to the requirement
o Ot
= 2
0A, 04 28)
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We now proceed by assuming the following general-
ized forms for t(A,,Ay) and (A, A;) involving
functions 4A(A,), B(A,) and C(A,) to be determined

=4 (A,)sin(znbA')

g =[B(A)A— C(A)le™ ™.

(29a)
(29b)

Enforcing equations (24), (26) and (28) with C(0),
and requiring that v and ¢ vanish as A, becomes
unbounded, leads to the following as the most general
possible expressions for functions 4, B and C

w 2T
O
x {g(1 —e~do/y— -7 ﬁe—Ae/L (30a)
1-p/ L

B(A) = 3}; {1 ~ (%-Z-E)ﬁnZ(”TA')} (30b)

_2ysp(1 —q) . (7A,
C)= L 1-p sin b (30c)
where
e _AF

and where Af is the value of A, after shearing to the
state A, = b/2 under conditions of zero tension, ¢ =0
(i.e. relaxed shearing). The parameter p is referred to
here as the “dilation parameter.” It is possible to
obtain an explicit form for ¥ by combining equations
(29) and (30) and then integrating; in fact when g = p,
it is the same form used by Needleman [40] in
conjunction with the analysis of the decohesion of a
viscoplastic block from a rigid substrate. Embedded
atom method fits to material properties have been
employed to estimate L/b, ¢ and p; the results of two
such studies [34,35] are used as a guideline for
estimating the parameters used in this investigation.
Recent estimates suggests that ¢ ranges from 0.05 to
0.08 in f.c.c. materials, assuming a dislocation is
emitted as a pair of partials {34]. Estimates for b.c.c.
materials, based on results in [11, 35, 41}, show that
q is about 0.12 for iron and may be as large as 0.3 for
others.

(3) Solutions involving inclined slip planes

Consider again a semi-infinite crack on an interface
consisting of joined isotropic materials, with material
1 on top. Let a slip plane emanate from the crack tip
at some angle 0 with respect to the crack plane (see
Fig. 5); this plane is modelled as a semi-infinite
mathematical cut which obeys the constitutive re-
lations developed in the previous section. Without
loss of generality, we may restrict the cut to reside
within material 1. Let r denote the distance from the
crack tip along the cut. Assume that the loading is
in-plane; hence equilibrium may be imposed across
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Fig. 5. Geometry used for the analysis of dislocation
emission on an inclined slip plane.

the slip plane for a given complex stress intensity
factor K

t[8.(r), 69(r)]——{Re[Kr“]x @6

N

+ Im[Kr )z %(8; )}
H a‘srds
__—Zn(l—v,)I gu(",s)—

669
2n(1 — )J. g12(7, 5)
(32a)

al6.(r), 50(’)]-—— {Re[Kr*|Z5(6; €)

T

+ Im[Kr* ]z}, (0 )}
H 0o ds
“3d—v) ), gZI(r’S)'é;'

# © 00,
—"——2“(1 - VI)L &x(r, S)E ds.
(32b)

The first term on the right hand side of each integral
equation is the linear elastic contribution to the stress,
given by the asymptotic interfacial crack tip field; the
second term in each is due to the nonlinear shear and
opening displacements along the cut, which is mod-
elled as a continuous distribution of infinitesimal
dislocations. The kernel functions g,,, g5, &5, and g,
are taken from the elasticity solution for a dislocation
in the presence of an interfacial crack, and may be
found in complex form in [42]. Combining with
equation (9), so that the equations are expressed in
terms of the applied energy release rate and the
atomic scale phase angle gives

GE* , )
t[3,(r), 35(r)) = cosh ne /-—- {Re[e¥ (r/5)1275(0)
+ Im{e¥ (/612 5(6)}
7 06,
_27:(—11-;_)‘[ g”(r,s)——ds

l—v )I 812("’3)—‘d3
(33a)
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GE* ,
a[8.(r), 05(r)] = cosh me /—— {Re[e¥ (r/b)1Z1(0)
+ Im[e¥(r/b)*1Z 3(6)}

L) aar
_21t(1 —Vl)J'o gxu(r,s) 3s ds

h ® 05,
2’[(1 _vl)L g22(r,s) ] ds
(33b)

The integration variable s also denotes distance from
the crack tip along the slip plane, and 1/E* is the
average of (1 —v)/2u.

Equation (33) may be solved numerically for par-
ticular values of G, ¥’ and 8 by mapping the region
0 <r < o onto the domain —1 <# < +1 (and like-
wise for s) via the transformations

1479 1+¢

r=»> =7’ =b ¢

The domains of 1 and ¢ are then discretized and the

coupled integral equations (33) are pointwise en-
forced at values of n given by

22— 1)
2n+1)°

Integration is carried out by discretizing the domain
of & in the following manner

(34)

7, = cos i=1....,n+1. (35

& =cos s, J=1,...,n (36)

n+1
and making use of the Gauss—Chebyshev integration
formulae [43]). We used n =40 for the results noted
here. The resulting set of nonlinear algebraic
equations are solved by choosing a low value
of G, and iterating to convergence with the
Newton-Raphson method. In most cases, conver-
gence is obtained after only two or three iterations.
The applied G is then incremented, and the solution
procedure is repeated using the previous solution as
the initial guess. As solutions are obtained for in-
creasing G, the determinant of the Jacobian matrix J
of the nonlinear algebraic equations is monitored. In
all cases observed, this parameter rapidly decreases
towards zero in a narrow range of G (see [44] for
examples). When this determinant is zero, the
equations become singular and hence no solution is
possible. The sharp decrease of det J is interpreted
here as the onset of instability, i.e. the emission of the
dislocation, and the solution procedure is halted.

(4) Applications to single crystal Cu/sapphire inter-
Jaces

The specimen analyzed here is a four-point bend
specimen consisting of a single crystal of copper
bonded to a thinner sapphire layer (see Fig. 6). The
sapphire layer is cracked to the interface and a central
crack continues along the interface in two opposing
directions. This type of specimen was originally ana-
lyzed by Charalambides et al. [45] and Suo and
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Fig. 6. Diagram of the specimen analyzed: a copper single
crystal with {221} face bonded to sapphire; loaded in
bending with crack tips along [110].

Hutchinson [46] for the testing of linear elastic inter-
facial fracture mechanics concepts; the usefulness of
the specimen for checking a possible directional effect
resulting from the use of an asymmetrically aligned
metal single crystal was pointed out in [6]. An
advantage to this type of specimen is that when
the crack is long compared with the thickness of the
notched layer A, the stress intensity factor has the
following form, which is independent of crack length

K = Y(a, B, h/H)Mh =2~ ¥ebHE)  (37)

where M is the applied moment per unit length, and
Y and ¢ are dimensionless functions of the thickness
ratio and the Dundurs parameters a and f. The
functions ¥ and y may be found in [42] and [46).

The intent of the four-point bend specimen is to
compare crack growth in two opposing directions in
the same specimen during the same mechanical test.
The orientation of the copper analyzed here is the
same as that used in the experiments of Wang and
Anderson [4] and Beltz and Wang [1]: the (221) face
of the copper crystal is bonded to the sapphire
surface, with the short dimension of the interface
parallel to the [110] direction in the copper. Once a
crack runs through the sapphire and branches onto
the interface in both directions, the crack fronts at
both ends lie along the intersection of a pair of {111}
slip planes of the copper crystal with the interface.
The crack growth directions are hence [T14] and [114].
Because of the asymmetry of the copper crystal, the
crack oriented to run in the [113) direction encounters
slip planes which are aligned at 15.8° and 125.3°,
respectively, while the crack oriented to run in the
[T14] direction encounters slip planes inclined at 54.7°
and 164.2°.

As discussed in [6], the atomic scale phase angle for
this type of Cu/sapphire specimen and the type of
loading under consideration is approximately —79°,
and thus involves a very substantial mode II com-
ponent. Although two possible slip planes are avail-
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able at each crack tip, it has been shown [6, 47] that
dislocation emission in this type of specimen is poss-
ible only on the slip planes at 125.3° for the crack
which runs in the [1T3] direction and 164.2° for the
crack which runs in the [T14] direction. The other two
slip planes have resolved shear stresses which favor
dislocation motion fowards the crack tip, causing the
crack walls to be driven together, and hence are
uninteresting cases. The solution procedure described
in the preceding section was hence carried out for
Y= -79° 0@ =125.3 and 164.2°, and other elastic
constants appropriate to copper and sapphire. The
parameter ¢ was taken as 0.08 and p was taken as 0.0
and 0.1; the latter value of p leads to a higher degree
of coupling in the stress vs displacement relations, but
does not affect the general conclusions of this study.
We neglect elastic anisotropy of the joined solids, as
for the simplified analysis outlined above.

NUMERICAL RESULTS

In Figs 7(a) and 8, the applied energy release rate
G [y, is plotted as a function of the crack tip opening
displacement 5%/b for the two angles of interest. In
these figures, the y,, is that for unrelaxed shear. Here
b is the Burgers vector of the partial (i.e. b,m,/\/ 3).
When 0 =125.3° (ie. crack growth in the [1T3]

(a)
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e
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Fig. 7. The applied energy release rate vs: (a) 6/* and
(b) 5% for the two values of p; slip plane at 8 = 125.3°.
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Fig. 8. The applied energy release rate vs 3'? for the two
values of p; slip plane at 0 = 164.2°.

direction), unstable nucleation of the first partial
occurs at G/y, =1.839 for p =0, and instability
occurs at G/y,, = 1.715 for p =0.1. When 0 = 164.2°
(crack growth in the [T14] direction), unstable
nucleation occurs at Gy, = 12.55 for p =0 and at
Gy, =11.69 when p =0.1. There is more than a
factor of 6 difference in G, for crack growth in the
opposing directions (regardless of p); hence, it is
concluded that dislocation nucleation is preferred in
[114] direction, and blunting should be favored in this
growth direction. This result is consistent with the
experimental observations of Beltz and Wang [1] on
this type of interface. It is the substantial mode
II/mode I ratio here which renders as ductile the
direction which was brittle in Wang and Anderson’s
[4] mode I loaded bicrystal, and vice versa.

At instability, the shear displacments at the crack
tip are greater than b/2, and this effect is more
marked for the case of 8 = 164°. Recall, however,
that the result that 6%°/b=0.5 is only valid for
the simple case of a mode II shear crack in a
homogeneous material. More importantly, note that
the plots of G/y, vs 6%/b (with one exception)
become locally flat at instability, indicating a local
maximum in G/y,,. In the case when 6 = 125.3° and
p = 0.1, the results for G/y,, vs 8%°/b [see Fig. 7(b)]

LA S I L LA B B B N M A R A B B St B

8=1253°
p=00

—me--p=0l

5/

[+] 1 2 3 4 5
b

Fig. 9. Displacement profiles for § = 125.3° at various load
levels up to instability.
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Fig. 10. Displacement profiles for 6 = 164.2°, at various
load levels up to instability.

illustrate the possibility that instability may also be
associated with opening along the slip planes rather
than shearing; this follows from the fact that G/y,,
never reaches a maximum with respect to 6'°/b, but
does reach a local maximum with respect to 857/b
(despite the fact that /b begins to diminish prior to
instability).

In Figs 9 and 10, the shear displacement profiles
are given for various levels of applied load up to
instability; these figures dramatically illustrate the
“birth” of a dislocation. The characteristic length
over which 4§, is appreciable is roughly (2-3)b. This
length gives a measure of the “halfwidth” of the
incipient edge dislocation that exists at the crack tip.
If the Peierls—Nabarro dislocation model is applied to
a single edge dislocation (not in the presence of a
crack tip) and halfwidth is given by 4/2(1 — v), where
h is the interplanar spacing [48]. This quantity is
arbitrarily defined as the distance over which
b/4 <A, <b/2, and is equal to about 0.75b for the
isolated dislocation (assuming b = h, to be consistent
with the way the equations were set up in this study).
Applying the same definition to the incipient dislo-
cation gives a width of about 2b. The fact that the
dislocation core seems to be wider prior to emission
adds more uncertainty to the Rice~-Thomson
equations for nucleation, which make use of a
core cut-off concept. The greater width also makes
use of the Peierls—Nabarro concept yet more appli-
cable for dislocation nucleation from a crack tip
than it is for a dislocation in an otherwise perfect
crystal.

The specific results shown apply for nucleation of
one of two partial dislocations for the copper crystal
orientation considered. Whereas the second partial
nucleates at ¢ = 0°, the first does so at ¢ = 60°. Our
numerical procedures are not yet adequate to deal
with the latter case, but an elementary estimate based
on equation (21) from [30] with ¢ =60° suggests
that each G will increase by a factor of (4 —3v) ~3
to nucleate the second partial, thus retaining the factor
of 6 difference between nucleation levels for the two
cracking directions considered.
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SUMMARY

An improved, Peierls-type model has been pre-
sented for modelling the nucleation of dislocations
from cracks along interfaces. The advantage of the
model is that nonlinear effects which are inherently
associated with extended dislocation cores are realis-
tically handled. The results justify this approach,
since the incipient dislocations analyzed here dis-
played larger cores than when present in a perfect
crystal. Predictions of the model for copper/sapphire
interfaces are in general agreement with experimental
observations on bend specimens consisting of copper
bonded on a {221} face to sapphire. The agreement
indicates that the different fracture behaviour of
metal-ceramic interfaces may be understood, at least
qualitatively, by comparing the values of crack tip
energy release rate for dislocation emission from the
crack tip against that for cleavage decohesion of
the boundary.
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