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Abstract. A hybrid atomistic—finite-clement model is compared with the continuuwm-based
Peierls-Nabarro model for several crack orientations in a nickel crystal. Both methods
incorporate the same embedded-atom potential for Ni, in order to make the comparison as
valid as possible. The agreement (expressed in terms of a stability diagram showing envelopes
in loading space where fracture or dislocation nucleation are likely to occur) is excellent in the
case of a crack lying on a {111} plane, with a crack front running along a (211)-type direction,
subject to mixed-mode I-1I loadings. That orientation involves disiocation nucleation on the
prolongation of the crack plane, and hence no ledge is formed upon dislocation nucleation. In
other geometries considered (involving a crack on a {100}-type plane), the agreement seems
to get poorer with increasing size of the ledge that is created when a dislocation nucleates,
In all geometries, the atomistic model shows that incipient dislocation-like features are present
before dislocation nucleation takes place, which serves as additional validation of the continuem
Peierls—Nabarro model.

1. Introduction

In recent years, the competition between brittle fracture and plasticity at cracks in metallic
crystals has been studied within two broad frameworks, namely from a continuum mechanics
standpoint as well as an atomistic standpoint. Examples of the former date as far back as
the model of Rice and Thomson [1], which sought to compare the Griffith cleavage load
with the load required to make a pre-existing dislocation line ahead of a crack unstable,
and models which evolved from that, which most recently are based on the Peierls—Nabarro
model of a dislocation [2—6]. Furthermore, continuum modelling of the ductile versus brittle
nature of materials is certainly not limited to models on the dislocation scale; an extensive
literature exists on continuum plasticity theory applied to cracks in metals, and a relevant
example includes the single-crystal plasticity theory of Saeedvafa and Rice [7, 8] applied to
copper crystals.

Early examples of atomistic models used to study processes at a crack tip via computer
simulation (see, e.g., [9-13]) exclusively made use of pair potentials to model the interatomic
interaction, The availability of multibody interatomic potentials such as the embedded-
atom method (EAM) due to Daw and co-workers [14-16] has made the atomistic approach
even more attractive. To provide these models with realistic properties without excessive
computational effort, the lattice region containing the crack tip can be embedded in a
continaum. In earlier studies, the continuum was adapted to an analytical solution for the
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stress field surrounding a crack [17]. A commeon difficulty with such a hybrid model is the
proper treatment of the interface between the lattice and the continuum, especially if the
interface is sought to respond flexibly to changes in atomic positions. The problem arises
from the different nature of the internal forces which act in the two regions; in contrast
with a classical (‘local’) continuum, infernal forces in an atomistic region possess a finite
range. Conceptually, the simplest way of producing a flexible boundary is to represent the
continuum region by finite elements (FEs). In earlier FE models, the problem was dealt
with by coupling several atoms to each element at the interface [12]. This causes force
oscillations at the interface to cancel out, but the procedure tends to make the FE continuum
unable to respond to local stress gradients. A more recent method of coupling the atomistic
core region to a FE continuum has been published by Kohlhoff and co-workers [18, 19] that
provides minimum disturbance at the interface. The model is commonly referred to as the
FE model combined with atomistic modelling (FEAt) and will be described in further detail
below.

Unfortunately, experimental work aimed at comparisons with the various models is still
at an infant stage; aside from preliminary quantitative work by Ohr [20] and Chiao and
Clarke [21], most experiments have been qualitative in nature, such as the investigation
of directional cracking and segregation effects in copper bicrystals and copper—sapphire
interfaces by Wang and co-workers [22, 23],

Even amongst the different models, little is known about their relationship. Aside from
some initial comparative efforts by Thomson and co-workers [24-26], Sun and co-workers
[27-29] and Hoagland and Heinisch [30], not much investigation has been done into the
differences between the various models. The purpose of this paper is to provide a detailed
comparison of results between the Peierls model, recently developed by Rice and co-workers
[3-5,27,29] and Sun and Beltz [28], and atomistic calculations making use of the FEAt
mode] developed by Kohlhoff ef af [18, 19] and Gumbsch [31].

2. The combined finite-clement-atomistic method

We briefly review the model developed by Kohlhoff er af [18,19] and Gumbsch [31] that
combines a lattice region and a continuum region via a transition zone. The continuum is
described by linear elastic FEs. The atomistic region is modelled with an EAM potential
for nickel given by Foiles er af [15]. The region in which the continuum and the lattice
overlap provides a smooth transition between the atomistic core and the continuum region.
Details of the coupling and the justification for the transition zone can be found in [19],
where the transition is discussed in terms of Kroner's [32] ‘non-local elasticity’ theory.

A schematic outline of the model is depicted in figure 1. The outermost FE nodes are
prescribed to the positions according to the anisotropic linear elastic solution for a sharp
crack given by Sih and Liebowitz [33]. To guarantee that the system size is large enough
to allow the application of linear elasticity at the outer border of the FE region, the required
size of the model and the relative sizes of the atomistic and continuum regions have been
determined by size scaling tests on the configuration described later as model A under pure
mode I {opening) load [31]. We use about 70 x 70 lattice parameters for the total size of
the model and about 10 x 10 lattice parameters for the atomistic region. Periodic boundary
conditions of minimal length are applied along the crack front.

The determination of the critical loadings to failure, i.e. crack extension, retreat or
dislocation emission is carried out as follows: for a given loading, characterized by the
relative amounts of mode I, II and I loadings, we first determine the magnitude of the
Griffith stress intensity factor IE'G such that the total energy release rate G = G+ G+ Gy
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Figure 1. FEAt model of a crack tip in an FCC crystal. An atomistic zone is embedded in
a continuum described by FEs: coupling is provided by a transition region consisting of two
zones, as discussed in the text.

equals twice the surface energy. We then apply the displacements from the linear elastic
solution for a load K = ozKG to all FE nodes and atoms, keeping the outermost FE nodes
fixed at these positions and relax all other degrees of freedom of the whole model using a
conjugate-gradient algorithm [34,35] until the sum of the forces on all atoms and FE nodes
falls below 10~% eV A~ (which results in very well converged models). We then vary o,
usually very close to unity, until we find a load K at which the crack is stable. By that, we
mean that the atomically sharp crack tip must stay at the position of the linear elastic crack
field and must not heal, advance or emit dislocations. Doing so we can allow all atoms
within interaction distance to interact and do not need to specify a prier! which bonds are
broken, which has introduced some kind of arbitrariness into earlier models [19]. Having
found a stable configuration, we can use it as our starting point for further loading and
unloading. This is possible in an atomistic model because, unlike a crack in a continuur,
the crack in a discrete lattice can withstand a certain loading range until it becomes unstable.
This effect is usually referred to as lattice trapping [36]. For the models discussed here,
i.e. cracks in a close-packed FCC lattice and a rather ‘soft’ interatomic potential, the lattice
trapping range Ae = ot — o~ is small and amounts to only a few per cent of o, More
details about the boundary conditions and the loading procedure have been given elsewhere
[31].

It seems worthwhile pointing out that this method of loading an atomistic crack is in itself
consistent with the outer boundary condition for an atomically sharp crack tip. We thereby
deliberately restrict ourselves to geometries which can support an atomically sharp brittle
crack, in order to avoid having to deal with ill-defined starting conditions. If the requirement
of a stable crack as a starting point is relieved and the linear elastic continuum solution is
directly used as a starting configuration, unrealistic results, such as Lomer dislocations at the



600 P Gumbsch and G E Beltz

crack tip, are found [37,38]. Furthermore, following this procedure allows us to approach
criticality gradually and to analyse the critical configurations associated with both dislocation
emission as well as brittle fracture much more precisely than by taking ‘snapshots’ of the
emerging partial dislocations out of an unstable configuration as previously attempted [30].

We would also like to make one point regarding the anisotropic elastic formulation for
the continuum quantities discussed in this paper that does not seem to receive wide attention
in the literature: the anisotropic formulation considered here assumes that the z axis (along
the crack front) is perpendicular to a mirror plane of the lattice, so that the in-plane field
quantities are decoupled from the antiplane quantities. If this is not true, the assumption
that a mirror plane is present is only good as an approximation [28).

3. The Peierls-Nabarro framework

3.1. Basic features of the model

Recent analyses of dislocation emission from a crack tip by Rice and co-workers [3-
5,27, 28] are based on the Peierls-Nabarro [39, 40] model of a straight-line dislocation. This
model combines atomistic descriptions of the dislocation core with continuum elasticity in a
physically realistic fashion and describes the process of a dislocation core nucleated from nil
at a crack tip. Similarly to the Peierls-Nabarro model of a dislocation core, the nucleating
incipient dislocation at a crack tip is depicted as follows: a distribution of discontinuity in
the displacement field across the slip plane is assumed to obey a sinusoidal law of shear
stress versus displacement and is embedded in a linear elastic medium surrounding the crack.
The main advantage of the new approach is the elimination of the ill-defined dislocation core
cut-off radius r; used by Rice and Thomson [1]. A physical property identified by Rice [4],
the unstable stacking energy y,;, is the key to the analysis of dislocation emission from a
crack tip in the Peierls framework. Other parameters relating to the so-called ‘tension—shear
coupling” effect are included as well and replace y,, in more refined treatments. We note
that the newer approach contains no account of the energy of the ledge formed at the crack
tip by the emergent dislocation; however, one of the purposes of this paper is to speculate
on its importance, in light of the FEAt results.

Additional reservations should be made here regarding the Peierls-type analysis for
dislocation emission. Recent atomistic studies by Thomson and co-workers [24-26] indicate
that the Peierls model may underestimate the critical loading for dislocation emission by as
much as 50% when the slip plane is tilted with respect to the crack plane. The agreement of
the two types of approach is good in the case of coplanar crack and slip planes. Whether the
discrepancy is due to the discrete nature of the system, resulting in lattice trapping in the slip
process, or the so-called ledge effect remains open for further research. Furthermore, we
note that the Peierls model does not take into account stress-induced surface reconstructions,
which may alter the predictions by the Peierls model and the Griffith cleavage condition,

Since all crystals are anisotropic and most existing atomistic simulations correspond to
anisotropic crystals, the Peierls framework for dislocation emission in this paper will be
based on work of Sun and Beltz [28] that incorporates anisotropic elasticity.

3.2. Integral equation formulation for combined tension and shear

In its original form, Rice [4] showed analytically that, when a slip plane is a prolongation
of a crack plane, the ‘applied’ energy release rate G must attain the value of ¥s for an
incipient dislocation to become unstable and then to emit. This result is valid for general
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anisotropic materials, provided that there is a pure edge dislocation under mode 1I loading,
or a pure screw dislocation under mode III loading. Of more interest, however, are cases
involving inclined slip planes and/or arbitrary Burgers vector orientations with respect to the
dislocation line. An approximation to such problems would invoke the concept of effective
stress intensity factors KT obtained by projecting relevant shear stresses onto the inclined
plane and in the direction of the Burgers vector. This procedure has been described in
detail by Sun and Beltz [28] and will not be used in this paper. Rather, we use an exact
integral-equation treatment for the general case involving inclined slip planes and mixed
edge and screw components, including tension—shear coupling.

Let us consider the general scenario: suppose that a slip plane intersects the crack plane,
that the intersection line is also the crack front, and that the slip plane makes an angle & with
the crack plane. Assume that the crack tip is loaded by (K, K2, K3) = (K1, Kr. Kiir)s
the K, here are the local (and screened) siress intensity factors near the crack tip. Assume
that the crack does not extend. The stress concentration near the crack tip is relieved by an
emergent zone of displacement discontinuity {&(r), ds(r), 8;(r)} across the slip plane, i.e.
an incipient dislocation. The incipient slip zone is illustrated in figure 2.
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Figure 2. An incipient dislocation, represented by
a distribution of sliding and opening displacement,
develops along a slip plane inclined at angle & with
\ \ } respect to the crack plane in response to mixed-
RPN B P BN mode loading prescribed by K; and K;;. A periodic
0 0.5 1 15 2 relation is assumed to relate the shear stress and the
&b sliding discontinuity in the continuum modelling.

The edge slip direction is along r, the normal direction is along ¢ with the unit
directional vector ., and the screw slip direction is along z. The edge component is
8,(r) = w}t(r)—u; (r) and the screw component 8,(r) = ut (ry—u; (r); the discontinuity in
the opening direction dg(r) = u;"(r) —ug (r) =nq [} (ry—uz(r)]. The slip direction in the
slip plane has the unit directional vector denoted s = (cos ¢, 0, sing) inthe r, 8, z coordinate
system. The sign convention for the angle ¢ of the slip direction is that ¢ is defined as
positive when the slip direction rotates from the r axis toward the z axis. The displacement
discontinuity across the slip plane in that direction is §;(r) = 5,84(r) = selut (r) —uz (M)
The incipient profile §,(s} is modelled here as a continwous distribution of an individual
dislocation at focation s of an infinitesimal Burgers vector

db, = [—M ds] 49
ds
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which in turn will exert stresses

(2)

G3a(r) = gug(r, 5: 6) [—M ds}

ds
on a point r along the slip plane. The Green functions g,s(r,s; 8) so defined can be
obtained by solutions of a line dislocation interacting with the crack tip in the anisotropic

linear elastic medium [28]. It can be shown that the Green functions 8ap(r.8;0) can be
expressed in the form

A kg @]
- 9)——\/7[ a3+ a(r/s, 8] @)

r—s
where 87w Aqp is the inverse of the pre-logarithmic matrix appearing in the expression
for the energy of a straight dislocation line positioned along a crack front. Following
anisotropic elastic crack theory [33], the Irwin formula for G, the elastic energy relcase
rate, is G = K,A.3Kg. Further details regarding the stress functions Lop(r,5;0) and

hag(r, s; #) may be found in [28].
The force balance at a material point r along the slip plane gives the following equation
of equilibrium:

oo :

8 = 05u(0)+ [ g1p(r.5,6) [— () ds:l @)
where (@, 8) = (r, 8, z) which is also denoted as (1, 2, 3), and o0, (), the unrelaxed stresses
from the crack loading K., are given as Uaa(") = Fog(8}Kz/~/2mr. The functions Faﬁ(e)
give the angular dependence of the linear elastic asymptotic stress field around a crack in an
anisotropic body and are derived and conveniently tabulated in [33]. The term oy, [8,(r)1is
the lattice-restoring shear and tension stress against the displacement d1sc0nt1nu1tles across
the slip plane at point r, with which a potential ®[8,(r)] is associated, such that

AB[E(r)]
“350) ®)

Equations (4) and (5) constitute a complete set of equations which may be solved
simultaneously by numerical methods.

We also apply the constrained slip path approximation here. Let the shp be constrained
to the direction s (the same as b) that makes an angle ¢ with the r axis in the slip plane,
8e(r) = [8s(r) cos ¢, 85(r), 8;(r) sin @] and the stress T = oy, cos ¢+ os, sing and o = oyy.
We seek the condition under which the profile becomes unstable, after which a dislocation
can emerge and move away from the crack tip until it is stopped by the lattice resistance,
by the Peierls stress o, or by interaction with distant dislocations. We obtain the following
equations:

0ea[8(r)] =

eff

K: b ds, oo
1[55(?‘},85(]‘)] = .\/2_3-;—,- _£ g”(r 58, ¢) (S) ds_‘/o‘ Z12(r, 520, ¢) 56‘(5) ds
6)
Kgff o) 2
ol8:(r). d(r)] = WrT —fo &a(r,5;0,9) % (S)d —fo 8n(rs; 8, ¢)d89(s) ds
0]

where

K = 2mricos pal.(r, ) + sin P04 (1, )] = 5o () Fup(8) K5 (8)
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and

K = 2rafy(r.0) = Fos(8)Kp. @)

These are defined for the singular stresses o)., of, and 6, at the crack tip under external

loading before the emergence of the incipient profile. The functions g1y, £z, Bzt and £z
are stress functions for a straight dislocation at a crack tip:

B11(r, 8:8) = 5, (@) gap(r. 5; 6)sp(gh) (10a)
£12(r, 5, 0) = 54 (P)gaa (1, 5, 6} (106)
g (r. 5,0) = galr, s; 8)s, () (10c)
En(r, 5;,0) = gu(r,s.6). (10d)

All these terms and functions can be obtained from the singular field of a loaded crack tip
and from the solution for a dislocation near a crack tip using anisotropic elasticity theory
[41-43].

The terms t[d;(r), 8o(r)] and o[8;{r}, 8p(r)] are lattice-restoring shear and tension
stresses against the displacement discontinuities across the slip plane; a potential
D& (r), 82(r)] is assumed to exist, such that

<
18,00, b)) = o e an
dP[8;{r), 3o (r)]
385(r)

Modelling of the constitutive law ®[8;(r)}. 8¢(+)] from EAM results for Ni, Al, NizAl and
Fe, and from density functional studies of 5i has been provided by Sun er af [27] in the
form of an analytical representation, which is discussed further by Beltz and Rice [3, 5.
The form for nickel, based on the EAM results of Foiles et a/ [15] and which may be found
explicitly in [27], is used for the calculations discussed in this paper. Equations (6)—{12)
constitute a complete set of equations which can be solved simultaneously to determine the
critical loading and the corresponding incipient configuration. The solutions are obtainable
numerically, by use of the Newton-Raphson method and Chebyshev polynomials of the
second kind (see, e.g., Beltz and Rice [S] and Erdogan and Gupta [44]).

o [85(r), dp(r)] = (12)

3.3. The shear-only model

In a shear-only model, where only slip displacements and shear stresses are considered, a
simpler set of equations exists:

eff

K: o _ dé, ()
= —_ — L5106, ds.
t[d;s(r)] T fo gu(r.s:8,¢) s (13)
Equation (13) is accompanied by a sinusoidal law
T(As) = (wyys /b) sin(2m Ay /b) (14)

where 4, is the refative atomic sliding displacement between the two adjacent slipping
atomic layers, which is related to §;, the displacement discontinuity across the slip plane,
by

8 = A, — (b/2m) sin(2w A, /b). (15)
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4. Model geometries for comparison

Two orientations of nickel, together with two schemes for mixed-mode loading, are chosen
to give three situations for comparison in this study. For later convenience, we denote them
with letters as follows. Orientation A consists of a crack on the (100) plane, with the crack
front running along the [011] direction. The crack propagation direction is thus [011]. The
crack is oriented such that the crack plane intersects {111}-type slip planes along the crack
front, at angles of £54.7° (or £125.3°). Furthermore, since the (011) plane is a mirror plane
in the FCC structure, the anisotropic elastic formulation used here is exact. The loadings
considered are predominantly mode I however, we vary the relative amounts of mode II
or mode I components. It is common in the fracture literature to define a phase angle ¥
such that

tan W = K;; /K or tan ¥ = K1/ K; (16)

depending on which loading mixture is under consideration. Hence, ¥ = (° corresponds
to pure mode I, while increasing ¥ signifies increasing mode mixity.

Orientation B consists of a crack on the (111) plane, with the crack front running
along the [211] direction. The crack propagation direction is again [011]. The crack tip is
oriented such that the only intersecting {111}-type slip plane is the crack plane itself. Here,
the Peierls—Nabarro type of analysis has the feature that it reproduces a fracture process
for cases when cleavage is favoured [3,27]. This orientation has the slight drawback that,
since {211} planes are not mirror planes in the FCC structure, the anisotropic elasticity
formulation is at best an approximation. Since this approximation is expected to become
less accurate as out-of-plane loadings are added, we consider only mixed-mode I-II loading
for orientation B.

Ni (001) [011] erack
mode LI loadings

0.35
03 Figure 3.  Stabitity dia-
i gram for a Ni (001) [011]
crack subject to mixed-mode
0.25 1 -1l loadings. Circles rep-
1 resent dislocation nucleation,
= 02 . triangles denote the stabil-
5= p ity envelope for the main
0.15 4 crack, and diamonds and
] squares indicate cleavage on
0.1 3 the inclined (—54.7°) plane.
Furthermore, open symbols
0.05 originate from the Peterls—
Nabarro contineum  model
g and closed symbols are from

08 085 09 095 I 105 11 115 12 e FEAtmodel The bro.
KT/KI ken line represents the Grif-
G fith cleavage condition.
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5. Results and discussion

3.1, Orientation A, mode I-II loadings

A ‘stability’ diagram, showing the envelope (in K;—K; space) where cleavage or dislocation
nucleation has not occurred yet, is shown in figure 3. Both axes are normalized to K g, the
value of needed for Griffith cleavage under pure mode I conditions. Inherent in the atomistic
results is a finite range of stress intensity factors for a given phase angle, below which crack
healing would occur, and above which the crack would continue to extend. The atomistic
results show three distinct regimes. Below a phase angle of approximately 10°, the failure
mode is cleavage along the (100) plane, i.e. the original crack plane, Between 10° and 15°,
the failure mode is cleavage along a {111}-type plane inclined at —54.7° with the original
crack plane. At larger phase angles, the failure occurs by the emission of a Shockley partiai
dislocation of pure edge type (i.e. ¢ = 0) on the {111}-type plane at —125.3°.

As expected. the Peierls—Nabarro type of analysis applied to the slip planes inclined at
+54.7° and +125.3° gives energy release rates at instability that are large compared with G
for Griffith crack propagation; hence, these possibilities are not considered further. For the
time being, consider the possibility that an instability occurs on the plane at —54.7°. The
Pejerls-Nabarro result predicts that G for this instability drops below the Griffith cleavage
vatue at a phase angle of 14°, which is in very good agreement with the FEAt model.
This possibility for cleavage on the inclined plane assumes that dislocation nucleation is
suppressed on the plane at —125.3° and is only mentioned to illustrate that fracture-like
instabilities on planes other than the crack plane are in excellent agreement with the atomic
model. A coupled Peierls—Nabarro solution cannot be applied to the slip plane at —125.3°,
because the potentials in [27] lose their validity for cases involving relatively small amounts
of tension, or compression, acting across the slip plane. This is aggravated by numerical
problems associated with the lack of a precise physical meaning of §; when it becomes
negative. Hence, for this case, a shear-only type analysis is considered. As seen in figure 3,
dislocation emission (of an edge-type Shockley partial) on the plane at —125.3° becomes
favourable when the phase angle is increased beyond approximately 2°. This is in stark
contrast with the atomistic model, which predicts that the dislocation emits at much larger
phase angles and therefore at much higher effective shear stress intensities on the glide
plane.

3.2. Orientation A; mode I-TH loadings

The loading diagram for this case, showing K,—K;;, space, is shown in figure 4(a). The
atomistic model predicts that cleavage occurs along the (100) crack plane for phase angles
below approximately 7°. For larger amounts of mode HI loading, the failure mode is
emission of a partial dislocation on the plane inclined at 54.7° to the crack plane (due to the
symmetry of this situation, this could occur at +54.7°). This Shockley partial dislocation
is mixed, 1.e. ¢ = 60°. Note that there still is a finite ‘trapping’ range when cleavage
dominates, ie. there is a range of loadings between which the crack neither extends nor
heals.

The Peieris-Nabarro model gives a transition phase angle of approximately 4°, i.e. 3°
less than that predicted by the atomistic model. The corresponding effective values K&/ of
K, at dislocation nucleation are 0.206 MPa m'/? in the FEAt model and 0.166 MPa m'/2
in the Peierls-Nabarro model. The agreement, while markedly better than in the previous
case involving mode II loadings and a pure edge dislocation, is still only moderate.
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Ni (100) {011} crack
mixed mode VT loading

016 | @ ' 1
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Figure 4. (2) Stability diagram for a Ni
(0013 [011] crack subject to mixed-mode I~
III loadings. Circles represent dislocation
nucleation and triangies denote the stability
envelope for the main crack. Open symbols
are from the Peierls-Nabarre continuum
maodel and full symbols are from the FEAt
model. () Atomic positions prior to
instability n the same crack.

One remark should be made about the actual crack tip geometry of the (100) [011]
crack displayed in figure 4(b). The precise atomistic ‘position’ of the crack tip can be such
that the last intact bond connects atoms from the upper left to the lower right of the crack
tip, which we usually chose, or vice versa. The atom movements for dislocation emission
in mixed-meode I-IIT loading at the transition from brittle cleavage to dislocation emission
always involve the breaking of this bond. Therefore, the dislocation on the (111} glide
plane inclined at +54.7° with respect to the crack plane is generated on the (111) plane just
ahead of the crack tip. This poses the question of whether a crack tip position associated
with the last bond connecting the atoms at the upper and the lower left of the crack tip (i.e.
a crack with one more bond closed) would behave any differently. We therefore repeated
the calculations under mixed-mode I-II loading with crack tips moved backwards by ap/4
in order to study the effect. The resulting stability regime was identical with the original
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regime (figure 4(a)) except for the point where dislocation emission occurs first. This
point was shifted to 1% lower loads and the atom movements upon failure indicate that
the additional connected bond first opened and, upon opening of the second bond (i.e. the
crack tip bond of the original model), the dislocation was formed and emitted. Due to the
negligibly small differences in both the critical load to failure and the qualitative failure
behaviour we conclude that the precise location of the crack tip is not important for this
crack system.

In figure 5 the relative atomic shear and opening quantities from the FEAt description
of nickel are displayed. As noted in section 3.2, A refers to a relative atomic displacement
(normal to the slip plane denoted Ay, and parallel to the slip plane in the direction of the
Burgers shear displacement denoted A,). Moreover, the & quantities refer to a displacement
discontinuity across the slip plane, which can be viewed as the non-linear contributions that
result when the displacements according to the linear elastic solution for the sharp crack
tip are subtracted from A. For each quantity, the results are plotted for the two separate
(but equivalent) slip systems at +54.7°. Although there is in principle symmetry, only one
plane undergoes dislocation nucleation (the left diagrams) owing to an immediate relaxation
of stresses due to the dislocation. These quantities are shown just prior to the instability for
various phase angles (this corresponds to Griffith cleavage for phase angles less than 7°); in
addition, the profile is shown just following dislocation nucleation in the case of ¥ = 7°,
It is evident that the atomistic displacement results suggest that incipient dislocation-like
features are present before dislocation nucleation takes place, which serves as additional
validation of the continuum Peierls-Nabarro model. Since these displacement profiles tend
to vary rapidly as the critical load for instability is reached, it is rather difficult to compare
the profiles to the Peierls-Nabarro results; the situation is aggravated since the actual critical
instability loads differ in this case between the two models. Hence, we defer comparison
of displacement results to the next example.

3.3. Orientation B; mode I-II loadings

As already mentjoned, this orientation has the feature that the slip plane of interest is also
the crack plane. The stability diagram is shown in figure 6. There is a very good agreement
between the Peierls~Nabarro and atomistic models in this case; the critical ratios of X [ to
K, associated with the change from brittle to ductile behaviour are virtually the same in
the two models; they differ by approximately 1°. Additionally, the effective K -values at
dislocation nucleation are 0.175 MPa m*/? and 0.181 MPa m"/? for the FEAt and Peierls
models, respectively.

Overall, the findings presented thus far suggest that the extent of the agreement between
the two models can be understood, in part, by consideration of the ‘ledge’, or the free
surface created when a dislocation emits from a surface or a crack tip. The Peierls—Nabarro
framework for dislocation formation and emission at a crack has never satisfactorily included
an account of the energy formed at such an atomic-scale ledge. Physically, it would seem
reasonable that this added energetic term would tend to restrict dislocation nucleation, i.e.
the Peierls—Nabarro model, as it stands, cught to underestimate the critical load for emission,
Indeed, with the exception of the (111) crack used in the third example, that seems to be
the case for the systems studied in this paper. The prospects for future modelling of the
ledge effect are discussed as part of the following section.

Finally, comparisons of slip profiles at instability are given in fisure 7. The various
models are qualitatively similar in that the FEAt model does suggest that incipient features
slowly build up prior to instability, and that the ‘width’ of the shear features prior to
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Figure 5. (a) Shear discontinuity profile 8;(+) at the onset of unstable behaviour for
symmetrically located planes inclined at £54.7° (<, left; —, right} in the (001} [011] orientation.
The phase angle denotes mode T-II mixity. All results are taken from the FEAt model,
Dislocation nucleation on the plane at +54.7° occurs for phase angles greater than 7°, as
indicated by the results just prior to and subsequent to emission. (b) Relative atomic sliding
A;(r) at onset of unstable behaviour for symmetrically located planes inclined at £:54.7° in
the (001) [011] orientation (mode I-II loading). (c) Opening discontinuity profile 35(r) at
onset of unstable behaviour for symmetrically located planes inclined at £54.7° in the (001)
[011] orientation {(mode I-III loading). (4) Relative atomic opening Ag(r) at onset of unstable
behavicur for symmetrically located planes inclined at £54.7° in the (001} [011] orientation
(mode I-1IF loading).

dislocation nucleation is of the order of several atomic spacings. Quantitative comparison
is difficult, however, because these displacements strongly depend on loading near the
instability point.

5.4, Enhancements to the models

The Peierls treatment has the primary advantage over earlier dislocation emission models
in that it does not consider an already-formed dislocation, i.e. it gives a realistic physical
description (in two dimensions) of the actual nucleation of a dislocation at a crack. However,
when the model is used to actually evaluate the ductile versus brittle behaviour of materials,
such as for nickel in this paper, it must be realized that much more is occurring. The model
does not take into account other processes which occur on various length scales away from
the crack. These include but are not limited to incipient dislocation activity on competing
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Figure 6. Stability diagram

for a Ni (111) [211] crack sub-
ject to mixed-mode I-1I load-
ings. Circles represent dislo-
cation nucleation and all other
shapes correspond to various
cleavage modes. Open symbols
are from the Peierls—Nabarro
continuum model and full sym-
bols are from the FEAt model.

slip planes at the crack tip, fully formed dislocations in various arrangements and distances
from the crack, other defects such as boundaries and point defects, dislocation mobility,
three-dimensional aspects, such as the (physically realistic) nucleation of dislocation loops,
and other material inhomogeneities. Continuum models that remove many of the above
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Figure 7. (2) Shear discontinuity profile 8:(r) at onset of unstable behaviour for a slip plane
lacated at 0° (FEAt model, left; Peierls model, right) in the (111) [211] orientation, The phase
angle denotes mode I-Il mixity. Relative atomic sliding A, (+) at onset of unstable behaviour for
a slip plane located at 0° (FEAt model, left; Peierls model, right) in the (11} [211] orientation.
The phase angle denotes mode 1-11 mixity.{(c} Opening discontinuity profile dg{r) at onset of
unstable bekaviour for a slip plane located at 0° (FEAt model, left; Peierls model, right) in the
(111) [211] orientation. The phase angle denotes mode I-II mixity. (4) Relative atomic opening
Ag(r) at onset of unstable behaviour for a slip plane located at 0° (FEAt model, left; Peierls
model, right) in the (111) [211] orientation. The phase angle denotes mode I-iI mixity.

assumptions are currently under consideration [45-48], and some of them are discussed in
this section.

5.4.1. Multiple-slip-plane effects. The issue of incipient dislocation activity on planes
other than the nucleation plane was addressed by Beltz and Schmauder [49]. A mathematical
model that accounts for two slip planes (inclined at different angles with respect to the crack
plane) was presented, and preliminary results for nickel indicated that incipient shear and/or
opening discontinuities on slip planes other than the primary plane did not significantly
affect the critical load for dislocation nucleation, For example, in a Peierls—-Nabarro model
for nickel that incorporated the same slip potential as in this paper, the critical load to
nucleate 2 dislocation under mode I loading was determined when firstly the only slip or
opening discontinuity permitted consisted of a {111} plane inclined at 70.53° and secondly,
in addition to the plane at 70.53°, displacement discontinuities were allowed to develop
along another {111} plane that was the prolongation of the crack (0°). The nucleation load
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Figure 7. (Continued)

along another {111} plane that was the prolongation of the crack (0°). The nucleation load
in the multiplane model was found to be approximately 8% larger. Whether this weak
‘shielding’ effect is important in other orientations has yet to be investigated; however,
it seems reasonable to assume that it would never exceed 8-10% for typical orientations.
Of course, interactions of all possible failure planes are already taken into account in the
atomistic model.

3.4.2. The ledge effect. Another phenomenon already mentioned in this paper, and the
subject of much debate, is the effect of the ledge that is formed when a dislocation is emitted
from the crack tip region. As with multiple-slip-plane effects, the ledge effect is explicitly
treated in the atomistic model but is completely ignored by the Peierls—Nabarro model, The
results of this paper suggest that the Peierls modelling could benefit by accounting for the
ledge energy, at least in cases involving the production of a relatively large step (e.g. large
edge components of & on an inclined slip plane. At first glance, one might attempt to add
an energy term that depends linearly on the slip at the crack tip; unfortunately, that has the
effect of introducing a Dirac singular term into the force balance implied by equation (6a) or
(13). Several procedures for overcoming this difficulty have been proposed. The apparent
singularity in force can be avoided by introducing a weighting function as a measure of
displacement [50] or alternatively by use of a lattice-restoring force that varies from steady
state as a crack or free surface is approached [29]. Additionaily, Schoeck [51] has described
a method that incorporates the ledge energy into the energetics of Peierls~Nabarro dislocation
formation at cracks. Ultimately, the most physically realistic continuum-based description
of the ledge effect may be based on a Peierls-Nabarro treatment of a dislocation core ahead
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of a continually blunting crack, a problem currently under consideration [52,53]. These
formulations have not yet evolved to the state where detailed comparison with atomistic
models for a particular material can be undertaken.

5.4.3. Temperature effects. The analyses of dislocation nucleation presented in this paper
rigorously hold true at 0 X, i.e. thermal effects are neglected, except possibly through a weak
temperature dependence of the elastic copstants that enter the analysis. The FEAt model
could be modified to account for temperature by utilizing molecular dynamics, rather than
statics, in the inner atomistic region. The Peierls framework can also be modified to account
for temperature by making use of an activation energy concept; the problem reduces to that
of finding a *saddle-point’ configuration of slip, and calculating the difference in energy
between the activated state and a pre-nucleation state. Such calculations have been carried
out in two dimensions by Rice and Beltz [45] and Xu ez af [46]. To be realistic, however,
the thermal activation process is inherently three dimensional and so would be expected to
take place over a localized region (in the form of a dislocation loop that jumps out). For
simple slip geometries, the three-dimensional problem bas been analysed in detail in an
approximate fashion by Rice and Beltz [45], Schoeck and Piischl [54], and more exactly by
Xu et al [46].

6. Semmary

We have demonstrated that a basic premise for continuum models of dislocation nucleation
and crack propagation based on the Peierls-Nabarro model is valid, namely, that stable
incipient slip- and/or opening-like features are formed prior to instability. For the specific
case of nickel, reasonably good agreement (in terms of loadings associated with dislocation
nucleation or crack propagation) between the Peierls model and the FEAt model is attained
provided that orientations are considered which involve the creation of relatively small ledge
areas when a dislocation nucleates and emits. The presence of the ledge retards dislocation
nucleation; hence, in those cases, the Peierls model underestimates critical loadings for
nucleation compared to the FEAt model.
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