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Elastic fields of quantum dots in subsurface layers

A. E. Romanov
A. F. loffe Physico-Technical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia

G. E. Beltz and W. T. Fischer
Department of Mechanical and Environmental Engineering, College of Engineering,
University of California, Santa Barbara, California 93106

P. M. Petroff and J. S. Speck?
Materials Department, College of Engineering, University of California, Santa Barbara, California 93106

(Received 22 August 2000; accepted for publication 11 January) 2001

In this work, models based on conventional small-strain elasticity theory are developed to evaluate
the stress fields in the vicinity of a quantum dot or an ordered array of quantum dots. The models
are based on three different approaches for solving the elastic boundary value problem of a
misfitting inclusion embedded in a semi-infinite space. The first method treats the quantum dot as
a point source of dilatation. In the second approach we approximate the dot as a misfitting oblate
spheroid, for which exact analytic solutions are available. Finally, the finite element method is used
to study complex, but realistic, quantum dot configurations such as cuboids and truncated pyramids.
We evaluate these three levels of approximation by comparing the hydrostatic stress component
near a single dot and an ordered array of dots in the presence of a free surface, and find very good
agreement except in the immediate vicinity of an individual quantum dot.2001 American
Institute of Physics.[DOI: 10.1063/1.1352681

I. INTRODUCTION strain effects are predominant in the electronic properties of

I1I-V semiconductors: changes in the conduction and va-
Self-assembled quantum dofSAQDS have attracted |ence hand levelédeformation potentiajsand local electric

substantial recent attention because they offer the potential s que to piezoelectric effects. The conduction band is
for three-dimensional confinement cg gcarrlers and excitongy affected by the hydrostatic strain, often referred to as
and have “atom-like” electronic stat€s. SAQD formation  yhe gilatation or trace of the strain tensor. The valence levels
is commonly observed in large mismatch epitaxy of chemi 5 change both with hydrostatic and shear strain. For zinc

. . . '3 .
cally similar materials:® For example, the Stranski— piange structures, deviatoric straifisose strains which dif-
Krastanow(SK) growth of InAs (or In,Ga,,AS) on GaAs  fe from pure hydrostatic straingjive rise to piezoelectri-

first '”VOI\’?S the growth of a-1 to 2 monolayer thick “wet- 4y induced electric field In the general case for zinc
ting layer” followed by coherent island formatid?. The _ blende SAQDs, strain causes negligible change in the con-
SAQDs may be buried by the growth of the same material§ina energy levels within the dots, however, the conduction
as the underlying substrate. Subsequent growth of thg,qyalence levels can be changed in the surrounding matrix.
strained composition on the buried dot template has beepy,ther strain can cause local piezoinduced electric fields
shown to lead to vertical stacking of dots provided that theithin the dots and in the surrounding mattadditionally,
thickness of the intervening layérspacer layer) is b the  strain can strongly modify the phonon frequencies within the
order or thinner than the lateral dimensions of the“dot. dots in the surrounding materil.

_ It is now clear that dot ordering is driven by the elastic Both for understanding ordering and the effects on elec-
field of subsurface stressors. Usually, these subsurface strgssic properties, it is important to determine the full elastic

sors are buried dots themselvgghich give rise to vertical  fie|4s in the dots and surrounding matrix. The elastic fields

. 4-9 .
ordering.” " In group IV and I1I-V SAQD growth, the first  genend on the lattice mismatch between the dot and matrix
dot layer does not demonstrate lateral order and subsequeyerial, the elastic properties of both the dot and the matrix,

layers show only vertical orderinhowever, cﬁ)her SUbsUT- e dot shape, and the position of dot with respect to the free
face stressors such as regular dislocation affaysburied g, face A complete solution of the elasticity problem in the

strained layers grown on pattemed substrdtean initiate o general case is not possible in closed analytical form.

lateral ordering Buried subsurface stressors lead to a mOdumdependent of quantum dots, the general inclusion problem
lation in the stress field and associated strain field on the, o extensively developed in the pioneering work of

growth surface which affects both adatom diffusfoand SK Eshelby®2Land we address this approach in the next section.

island nucleatlon rates. In the SAQD field, three main methods have been applied to
The strain fields caused by SAQDs stronglylgaﬁect thegetermine the elastic strains and stresses, nartiglheory
electronic properties in the vicinity of the do&s™ Two o inclusions based on the analytical solution of elasticity
equationg“Eshelby-like” or related approachg81#16:22-24
dElectronic mail: speck@mrl.ucsb.edu (i) finite element method$FEM),5~28 and (jii) atomistic
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cations that the wettindgtransitiona) layer may be much
thicker (comparable with the dot heighind may possess
different chemical composition than nucleating quantum
dots. We do not address this issue in this article. Rather, we
only consider the elastic field from the dot itself and do not
consider the wetting. Although there is another controversy
over the actual shape of quantum dots, it is clear from trans-
mission electron microscopyTEM) studies that they ini-
tially form as four-sided pyramids. Truncation of capped
pyramids may be an illusion induced by strain fields ob-
served by TEM. This possibility is supported by researchers
FIG. 1. General schematic of a buried quantum @D). A wetting layer  ranorting detailed contrast evidence in favor of sharp-capped
(WL) is shown, which may precede the formation of an island during the .4 . . L
deposition of a dissimilar material onto a substrate. The islaugntum pyramlds. This controversy has |mpI|cat|ons for the present
dot) is subsequently covered by additional matisubstrate material. finite-element study. However, upper levels of pyramidal
dots are relatively unstrained, and therefore would add little
) ) ] ] ) mechanical energy. For this reason, it is believed that the
modeling?®~*! The theory of inclusions provides integral ex- gy estion of pyramid truncation will not have a pronounced
pressions for elastic fields which can be integrated in closed¢act on the conclusions to be obtained by modeling.
form only for the simplest inclusion shapes, such as cylin- |, his article we propose a number of simplified models
ders or spheres. Even with the simplification of isotropiC gescribe the elastic field surrounding a quantum dot. The
elasticity, the known application to quantum dots so far havesimplest approach is to ignore the geometry of the dot alto-
neglected the effects of the free surface. FEM is very eﬁec'gether, and to regard it as a point source of dilatation of

tive for pa.rn:c:ulz?]r cases bf‘f does nothpro;:@e gefneral solusrescribed strengthv, wheref represents the mismatch and
tions and is furthermore affected by the choice o boundarx/ represents the volume of an “equivalent” dot, that is, the

conditions for the modeling domain. Atomistic models re-real dot that is being simulated by the point source. The

quire accurate Interatomic potent|qls and are further rharametef represents the strain state developed in the quan-
stricted to small systems of atoms in comparison with do{)

) dth i . um dot, relative to an equivalent volume of matrix material,
Slzes anc the surrounding matrix. . if it were not constrained by the matrix; for example, if a dot
In this article we apply two analytic approaches for

) e with lattice parameteny is deposited onto a substrate sur-
SAQD mechanics which include the effect of the free surfacq,ace with lattice parametes, , the misfit strairf is taken as

and t.he dot shape and compare these results with FEM ¢ as—ay)/ay. When the island is subsequently surrounded by
Cmatrix material, the constraint is uniform in three directions;

rdering. However. we believe the analvii lutions ar Rénce the misfit strain components becdmg . Similarly, a
ordering. Mowever, we believe the anaiylic SOIUtions are Us€y, o g expansion mismatch gives rise to such a dilatational

ful for determining the strain effects on the electronic struc-. ¢ .. (also known in the literature as the stress-free

ture of the matrix. strain or the “eigenstrain), so all sources of misfit may be
incorporated into the single parametfelOf course, such an
Il. MODELING OF QUANTUM DOTS approach is expected to yield expressions that break down in
From a continuum mechanics viewpoint, a quantum dothe general vicinity of the dot.
can be thought of as an inclusion of some prescribed shape A powerful method for the solution of a broad spectrum
embedded in a dissimilar matrix. Due to compositional dif-of problems in elasticity derives from a consideration of
ferences which give rise to a lattice parameter mismatch opoint forces applied at some point in the elastic btf/.If
possibly a thermal expansion mismatch, the inclusion andhe response of a body to a point forGee., the Green’s
surrounding matrix will be under a residual state of stressfunction) is known, the deformation caused by any distribu-
Moreover, the inclusion may possesses different elastition of forces can be obtained by superposition. For example,
moduli from the matrix material. Assuming a linear elastic the displacement field caused by a single point force applied
response, the resulting stress fields for such problems aamywhere in an infinite elastic solid may be determined quite
very cumbersome and have only been worked out analytistraightforwardly from the field equations of elasticifylf
cally for limited geometries, including cuboifs® and  the body is finite, as in the case of a semi-infinite space, a
ellipsoid$** in infinite and semi-infinite domains. For the traction-free boundary condition must be satisfied, thereby
case of an ellipsoid in an infinite matrix, the solutions for thisgiving a corrective term to the displacement field for an in-
class of problems were originally developed by Eshelby infinite solid.
the 19508021 In the case of a point source of expansion, three mutu-
Figure 1 shows a schematic based on experimental olally perpendicular pairs of force@ach pair consists of a
servations, in which a wetting layer initially forms when a dipole of opposing forces of magnitud® separated by a
material of new composition is deposited onto a substratedistanced along their mutual line of actiormay be usedsee
After the wetting layer achieves several monolayers of thickFig. 2). If one considers a cube of volumé=d3, the aver-
ness, an instability in growth leads to isolated island forma-age stress in the cube®d?, which in turn can be related to
tion (future quantum dojs->* Currently, there are also indi- the strains arising from the misfitvia Hooke’s law. Apply-

Matrix

Substrate

Downloaded 03 Apr 2001 to 128.111.70.86. Redistribution subject to AIP copyright, see http://ojps.aip.org/japo/japcr.jsp



J. Appl. Phys., Vol. 89, No. 8, 15 April 2001 Romanov et al. 4525

% A
P X3 h
I ,P|n s
'?1— j_P-_ | Léaa-_ iV
e — / 2
P —f:@_-: / :

Vs
P ‘P a)

FIG. 3. Ellipsoidal inclusions used to model quantum d¢ds An isolated
ellipsoidal inclusion at distande from the surface, with semiaxes, a,,
andag in the corresponding coordinate directiofts. A rectangular array of
FIG. 2. Point source of dilatation at distanedrom a free surface, repre- the same ellipsoidal inclusions, with periodicityin the lateral coordinate
sented as a cube with infinitely small dimensibThree force dipole® are  directions.

applied to the faces of this cube.

b)

ing the stress fields around various inclusion shapes, albeit in
a different context from quantum dot behavior. For the sake
Bf brevity, we do not outline this method in this article.

The final level of complexity undertaken in this article is

ing such an argument to an isotropic medium, one may arriv
at the relatiorPd=[2(1+ v) u/(1—2v)]fV, whereu is the
tmhate}rlallt Shejlr rgodulgst QH@ISPF;OISSOHtS ;atlﬁ' By takllntg to evaluate the complete stress field in the vicinity of a
eIZst:(r:n;ieﬁjsfoTa bor?na;lgfaelzzlggnsioﬁogfsaagi\’/enestrceonng;?hen?aycumidal or trapezoidal inclusion via the finite element
) o S . method (FEM). In other words, we model th metries
be identified. Mindlif® and Murd@*3*have provided the ap- ethod (FEM). In other words, we model the geometrie

) _ . similar to that of Fig. 1, excluding the wetting layer. The
propriate expressions for such point sources, not only for #EM models can easily be expanded to include the wetting

generally anisotropic medium, but also for a point sourcelayer(see for example, Ref. 28however, we do not under-

located in a semi-infinite, isotropic medium. The PrIMary take that here since the primary goal is to make comparisons

advantage \.Nith this method is that_ the e>_<pressi.ons aré Conih the guantum dot models based on point sources and
pact, especially for the case of an isotropic medium, as IIILISéllipsoidal inclusions mentioned earlier. For a typical trap-

tratezlfihlen nseex('i. l!i/’z‘l' of complexity would be to idealize the ezoidal inclusio.n within a matri>§ gnit cell, elastic solutiong

. . L ay be approximated using a finite element mesh compris-
quantum_ dot as an _|nclu5|0n of some S|m5pllf|ed shape, sucﬁg one quadrant of an arbitrarily deep matrix unit cell, with
as spherical, ellipsoidal, or cuboidal. M&ta°has developed appropriate boundary conditions imposing symmetry at the

expres_sions foran e.IIipsoidaI inclusion in a ha_lf—space in AMateral facegsee Sec. Il @ The primary advantage with this
gxten5|9n of the pomt.-source an’aIyS|s _descrlbed above b|¥1ethod is that more details concerning the stress field may
integrating the appropriate Green'’s function over the volum

%e revealed, especiall he sh f the inclu-
) . 233 ) o , especially near the sharp corners of the inclu
of the |nclu_5|on: Ch'Ef' has prowdeq similar .“?S‘%'FS' but sion. The FEM technique can readily include elastic anisot-
for a cuboidal inclusion embedded in a semi-infinite me-

di Despite th latively simple sh losed f ropy combined with different elastic constants for the matrix
ium. Despite these relatively simple shapes, closed oMM,y ihe got. The disadvantage is that a mesh must be created
solutions are only po_ssuble_: for the ellipsoid when at least W8y each dot geometry, and the size of the matrix mesh must
of the semiaxes are |dent_|cal, as demonstrated below. _In ﬂl?e made arbitrarily large in order to compare these results
ex_amp_le tq be d|s_cussed in Sec. lll B, an oblate spheanid with those of the point source or the inclusion.
?Illpso@”mgth sem!gxea(;:z;t2h>a3)l, a depthh from tge snér- To simulate this residual strain in the model presented
ace, will be considered, ether alone or as an ordere arraI¥ere, perfect bonding is assumed, and strains are imparted by
of spacingl (see Fig. 3. Although the stress expressions are

b than for th int f dilatzttis a “phantom” thermal expansion mismatch between the in-
more cumbersome than for the point sources ot dila N clusion and the matrix. Of course, in the system simulated,
given below in Sec. Il B, the advantage is that a more re-

Co o . ) thermal expansion mismatch may or may not be a significant
alistic idealization of the quantum dot geometry is achieved b y y g

. . ffect. However, since the effect of introducing such a dif-
and in such away that the effect of the aspect ratio of the d rential expansion is to change the zero-stress lattice size for
may be efficiently evaluated.

. _both materials, there is no analytical difference between dif-

f | latively flat ¥ h dﬁerential strains induced by lattice mismatch, and those in-
or example, a relatively Tial square or "penny-snapec y .o by thermal expansion mismatch.

guantum dot, the stress field may be approximated as that
due to an appropriately shaped prismatic dislocation loopy;. ELASTIC SOLUTIONS FOR SUBSURFACE
the stress fields for which are well-known. As the quantumQUANTUM DOT STRESSORS

dot deviates from an extreme aspect ratio, this method still
works, because the shape may be represented by an array'ot‘.if
prismatic dislocation loops. B} and Gutkin and For the case of a single point source of expansion lo-
coworker§®* have exploited this equivalence for determin- cated a distanck from the surface, the displacement field is

Point source of dilatation
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given by Mura®***We have differentiated that expression to or Eq.(2) over all dots. For a square array of dots of spacing
obtain strain through the relation; = %(ui,jJruj'i) and sub- 7, the trace of the stress tensor at all locations is given by
sequently used Hooke's law, ojj=2u(s;;+[v/(1

2
—v)]8;jek) to obtain the result - 2pfV(1tv)
m(1—v)
pufV(1+v) ( 1 2) ,
o= T Xa| — o o 2 +h2— _./2_ __/2
O-IJ 277(1_7/) R]_ Jij 8 R2 3 % E 2 [ (X3 ) (Xl | ) (X2 J )]

1 1 e 1 [ —1)%+ (%= )%+ (xg+ )27
+(3—4v><53i+53,-—1>(R—2) —53,-(—) @3)
i 3i

_ R
M 2 whereh represents the depth of the planar array of dots. The
4 double sum represented in E), to our knowledge, has no
+vo; ( Rz) @) analytic representation; however, it can be numerically
evaluated by replacing with some suitably large integer.

1
- 53i R2

where, as beforey is the shear modulug; is the Poisson’s
ratio, f is the mismatchy is the dot volume, and; is the
Kronecker delta. The quantitieR; and R, are given by 435 ] o
VEH X2+ (xg— )2 and \x2+x2+ (xz+h)?, respectively. Ag shpwn by Mura*3°the stress flgld for an elllpsqldal
The notation () indicatesd/dx;() while repeated indices are inclusion in a half space can be obtained by integrating the
summed from 1 to 3. The use of a finite volume in thesedisplacement field that gave rise to Ed) over the domain
formulas is an approximation, as discussed in the previous x:2 x/2 (x;—h)?
section, since the expressions really derive from differential —7+-——Z+—=—=<1, (4)
equations and are exact for the case of a vanishingly small ! 2 a
inclusion. These expressions are expected to only yield realwherea,, a,, andaz denote the semiaxes of the ellipsoid
istic results when considering target distances compared withlong the respective coordinate directions, ardknotes the
the characteristic length of the quantum dot, for example, thelepth of the center of the ellipsoid from the surface. For
stresses at the surface for cases where the quantum dots @@nts exterior to the inclusion, the stress components take
buried sufficiently beneath the surface. the form
In order to graphically illustrate the stress distribution

3

B. Ellipsoidal dilatated inclusion

- . . wnfV(1+v)
near a quantum dot and to facilitate comparisons with other, o= —[ i~ 2X3h 5j+(3—4v)
more precise representations of the stress field, we use the 2m(1-v)
trace of the stress tenser, rather than individual compo- X(3i+ 03— 1) b ij— (83t 63)) ,ij + 4v6i b zal,
nents. This component is the key quantity for calculating the ’ '
interaction energy between a quantum dot and an adatom on ®)

the surface, and thus the driving force for adatom diffusion atvhere
the surface. The trace is related to the pressure through the

yi o Y: Y3
relationp= — o, and is given by i oy 5 2 4 ; s
" 3 (> ajt+s as;ts azts ®
+v)2 ~2
Ukk:z,uf\/(—lv) i 4 )y J(aj+s)(as+s)(a5+s)
m(1—v) R2 .
with
2 _
2,us(1+ V) [2(X3+ h)? X1 ZXE;Z @ yi N yg . yg B .
m(1=v) DX+ (xath)?] az+\  as+N  aitn
The local dilatation, ., is given by —p[3(1 and
—2v)2u(1+v)], where the quotient of elastic constants is 72 22 22
the inverse of what is referred to as the bulk modulus. The 1-| — o > G 23
dilatation s of interest due to its effect on the electronic band 3 (»__\aits axts azts ®
structure in and near the quantum@and on dot nucleation NN \/(a§+s)(a§+s)(a§+ s)
and growth due to the surface diffusithWe note that in .
Egs.(1) and(2), all terms containind?; comprise the solu- with
tion for the case when the point source is embedded in an Zi zg zé
infinite medium, and the terms witR, represent the correc- 2 + + =1 9

2
tion due to the presence of the free surface. Hemge=0 apth - ath  agth
for an infinite solid but not for the semi-infinite solid. The The coordinate transformation fgt andz; is defined such
effect of the free surface on the dilatation field of4\2/%iousthat
mcIt::smns was studied in greater detail by Micleglal X =V1=21, Xp=Ya=2p,
or the case of an ordered array of quantum deée (10)
Fig. 3), the stress field can be obtained by summing &y. Xz=y3+h=2z;—h.
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We have found that the integrals represented by Ejs.
and (8), which require the roots of Eq$7) and(9), respec-
tively, for A can be obtained analytically in terms of elemen-
tary functions if at least two of the semiaxas, a,, anda,
are equal. Accordingly, we have chosey= a,= 3as for the
example results to be displayed below. The volume of such
an inclusion is given by = 127ra§. Here, the ellipsoid looks
round when viewed from the surface, but its thickness in the
Xz direction may be varied for a basic study of the effect of
aspect ratio on the stress field.

As with the point sources discussed in the previous sec-
tion, the stress field associated with an ordered array of el-
lipsoidal inclusions may be straightforwardly determined by
summing Eq(5) over all dot positions, in the precise manner
as shown for Eq(3).

A EERNN

\

C. Cuboidal and trapezoidal inclusions  (finite-element
method )

The finite element method is best suited to modeling of
elastic fields associated with inclusion geometries more com-
plex than ellipsoids. For the creation of the meshes, we used
a widely available finite-element analysis software applica-
tion, ABAQUS. ABAQUS permits the closely controlled genera-
tion of finite-element meshes through the use of input files
containing complete instructions for node-by-node and
element-by-element mesh specification, along with imposi-
tion of boundary conditions. For a typical trapezoidal inclu- a) b)
sion within a matrix unit cell, elastic solutions may be ap-
proxima‘[ed using a finite-element mesh Comprising ondlG. 4. Mesh used in finite element calculations of elastic fields(&pr

; ; ; ; : _cuboidal (@=0°), and(b) trapezoidal ¢=30 °) quantum dot configura-
quadrant of an arbltrar”y dGEp matrix unit cell, with appro tions. One quarter of the domain is needed in this calculation due to fourfold

priate boundary C(_)nditions imposed at the Iate_ral facessymmetry about the longitudinal axis. The inset shows the critical param-
Meshes generated included one quarter of a cuboidal or trapters used to describe the geometry of the quantum dot, including the trun-

ezoidal inclusion, at various depths, embedded in a matrix ofation anglex. The depthh is always taken from the centroid of the quan-
identical elastic propertie(see Fig. 4 The mesh uses eight- Fum dot, and the Iater_al dl_men5|on _of the dot_ is ghosen such that its volume
A . . ; is the same as an ellipsoidal dot discussed in Fig. 3.
node linear brick elements with=1 andv=1/3. The mis-
match strainf was taken as unity by identifying the thermal
expansion strain in the inclusiomAT, with unity. In this latter is more difficult to approximate using analytical ap-
fashion, any value of may be considered due to linearity. proaches because of the sum given by B). Somewhat
Depths of the inclusion centroid varied betweeay &nd  surprisingly, however, the periodic case presents fewer ob-
12a5, for direct comparison with point source and ellipsoidal stacles to the finite-element approach than does the singular
inclusion resultgrecall a; denotes the half-height of the el- case.
lipsoidal inclusion. The FEM domain has lateral dimensions For models of a single trapezoidal inclusion submerged
of 6a; in each direction, appropriate for an interinclusionin a semi-infinite half space, we insist that normal displace-
spacing of 12;. For the inclusion shape, truncation anglesment must vanish at the two walls in contact with the inclu-
of 0° and 30° were usetbee inset, Fig. ¥ The former we  sion, consistent with the division of the inclusitend matrix
refer to as a cuboid, and the latter a trapezoid. The lateralnit cell) into symmetric quadrants.
dimension of the inclusion is determined by enforcing thatits ~ The bottom surface is constrained similarly, although the
volume is identical to that of an ellipsoidal inclusion with the type of condition imposed at the bottom is less important
same height, &;. With the volume and thickness fixed, than the depth, which should be sufficiently large to be con-
there is an inclusion base dimension associated with eactidered “far field.” It must be admitted that the use of the
choice of truncation angle. The inclusions consist of 125 same boundary condition as that imposed at the lateral walls
evenly spaced elements, while the matrix elements include im contact with the inclusion does, in fact, give rise to a
dimensional bias such that they become larger near the faimilar periodicity in depth, which is not intended. However,
walls, but smaller again as they approach the free surface.with a large dimension of matrix below the inclusion, the
Two general types of cases were investigated. The simeffect of this depth image stress field will be minimal. We
plest was the case of a single inclusion submerged in a semgould just as easily use a fully encastered or free boundary
infinite half space. The second type of case involved an ineondition(or any other that would result in a traction-free far
finite two-dimensional array of submerged inclusions. Thefield surface condition so long as the depth is large and
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so that the elastic field within the mesh is representative of
= 4 an infinite two dimensional array of submerged inclusions.
\§ 3 The zero normal displacement condition results in a mirror
o 2 image stress field, which if imposed at each lateral wall,
1 appears as the intended inclusion array. Typical meshes in-
0 cluded in this investigation contained between 6000 and
1 hic 10 10000 total elements.
b)
IV. RESULTS AND DISCUSSION
= 1 _
2 0.8 - A. Single quantum dot
\i 06 t:i 01 We have seen how stress fields can be obtained for sub-
o 04 0.01 merged inclusions using the point dilatation model, the mis-
02 5.5 fitted ellipsoid model, or the finite-element cuboid and trap-
o 001 ] he 10 ezoid models. Comparison of these fields is undertaken here
by evaluation of the trace of the stress tensogJ at three
d points of interest: the surface directly above the dej (
=0), a depthc/2 below the surface, where=V?*3, and the
= 0.3 = 4 upper su_rface of the doat tht_a intgrface between the dot qnd
‘:x o \i‘ fird the matrix. .The .Iatter.locatlon is npt s.hown fpr the .p.omt.
6 0.4 o 001 source of dilatation, since the precise interfacial position is
02 : A not defined. Throughout, Poisson’s ratio is taken as 1/3. For
0 0.901 the ellipsoid, the aspect ratio is taken as 3, i@.=a,
0.0001 =3a;. For the cuboid and the 30° trapezoid, the same height
0 2 4 6 8 hlc 1 h/c 10

and volume are used as for the ellipsoid.
e) f) Figure 5a) shows the variation of stress at the surface
FIG. 5. Plots of stressr, versus dot depth, for an isolated dot, for the with inclusion depthh. As eXPeCtEd.’ th.e stress asymptoti-
various models considered in this article. In all cases, the solid line is for arpa”y approaches zero as the inclusion is moved further from
ellipsoidal inclusion &, =a,=3ay); the dashed line is for a point source of the surface. The same information is shown on a log-log plot
dilatation, the open square is for the FEM mode_l of the cuboid, and thein Fig. 5(b), where it can be seen that the slope of the curves
closed triangle is for the FEM model of the trapezo[dal dotarand(b) we approaches—S, indicative of the ]”3 decay of stress. More-
show the trace of the stress tensor at the surface directly above the @t. In . . .
and(d) we show the stress at the surface, evaluated at dgptiwherec is over, the point source and ellipsoidal stresses converge as the
related to the volume of the dot fry=\/*3), above the dot. Iife) and(f) we ~ doOt exceeds 1.5 to 2 times the cube root of the volume of the
show the interface stress, that is, the stress evaluated just above the defflipse ¢, which may be regarded as a characteristic length
matrix interfgce. Thg Iocati‘on of stress evaluation is further indicated in thefor this stress field. The FEM results are shown as discrete
insets. The figures in the right colunfitb), (d), and(f)] use a log-log scale . . . . .
to illustrate the asymptotic dependence of stress on dot degg-0°) points lying quite close to the ellipsoidal stress curve.
for large depths. Figures %c) and 5d) show the stress componany, at a
depthc/2 from the surface. Again, good convergence be-
tween the ellipsoid and the point source solutions occurs as
inclusion volume is small in comparison to the matrix vol- the depth of the inclusion exceeds d ® 2c. Both sets of
ume. Since the intention is to simulate a semi-infinite do-finite-element results are in good agreement with the analytic
main, the depth of the matrix below the deepest inclusiorresults. The calculated FEM data points in all cases thus far
must be “much larger” than the thickness of the matrix [Figs. §a)—5(d)] tend to show slightly more disagreement as
separating the inclusion from the surface. For a finite-the depth of the dot increases. We speculate that this is tied
element model limited to a relatively small number of ele-to boundary effects, that is, artificial “image” components
ments, this requirement becomes increasingly costly wittexist due to the four lateral faces of the mesh, as well as the
larger quantum dot submergences. In each case, we make thettom surface of the mesthe latter of which is expected to
depth of the overall mesh large enough that there is at leastominate more for deeper inclusignsvhich are not mani-
four times more matrix below the base of the inclusion tharfested in the ellipsoidal or point source solutions.
above it. Finally, in Figs. %e) and 5f), we show the stress just
The two remaining lateral walls in the mesh for the iso-outside of the dot as it is moved from the boundary. Inter-
lated quantum dot must not reflect a symmetry betweerstingly, this stress component decays to zero. This result,
groups of four unit cellgto do so would imply an infinite though not intuitive, was first noted by Eshell§ and does
two-dimensional array of submerged inclusipridather, we not hold for the other individual stress components at this
use a condition similar to that used at the bottom surfacelocation. In fact, the stress componeny, vanishes every-
that is, we require that the distance between the inclusion andhere outside the ellipsoi@nd the point forcein an infinite
the far lateral walls be large. medium. The image errors mentioned earlier still apply to
For the periodic case, symmetry was enforced with ahe FEM data points. In addition, the exact details of the
zero normal displacement condition at all four lateral walls,shape of the inclusion should be more important here than in
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FIG. 6. Contour plots of the trace of the stress tensor at the susfgcén FIG. 7. Contour plots of the trace of the stress tensor at the susfgcén

units of fu), for an array of quantum dots at deptla;3and spacing” units of fu), for an array of quantum dots at deptlaggand spacing”
=12a5. In all cases, positive stresses are denoted by a solid line, negative 12a;. In all cases, positive stresses are denoted by a solid line, negative
values are denoted by a dashed line, and a zero value of stress is indicatedlues are denoted by a dashed line, and a zero value of stress is indicated
by the long dashega) Array of point dilatations: values of the nonzero by the long dasheqa) Array of point dilatations: values of the nonzero
contours arg1) —0.3,(2) —0.2, (3) 0.3, and(4) 0.8, with a minimum of contours argl) —0.1,(2) —0.05,(3) —0.02,(4) 0.05,(5) 0.1, and(6) 0.2,

—0.31 and a maximum of 3.3b) Array of ellipsoids @;=a,=3a3): val- with a minimum of —0.11 and a maximum of 0.3b) Array of ellipsoids
ues of the nonzero contours a® —0.4,(2) —0.3,(3) —0.2, (4) 0.3, (5) (a;=a,=3a3): values of the nonzero contours 4f¢ —0.1,(2) —0.05,(3)
1.0, and(6) 1.5, with a minimum of-0.42 and a maximum of 1.8c) Array —0.02, (4) 0.05, (5) 0.1, and(6) 0.2, with a minimum of—0.14 and a

of cuboids: values of the nonzero contours étg —0.38, (2) —0.3, (3) maximum of 0.28(c) Array of cuboids: values of the nonzero contours are

—0.2,(4) 0.3,(5) 1.0, and(6) 1.5, with a minimum of-0.4 and a maximum (1) —0.1, (2) —0.05,(3) —0.02,(4) 0.05,(5) 0.1, and(6) 0.2, with a mini-
of 1.9. (d) Array of trapezoids: values of the nonzero contours @ne mum of —0.13 and a maximum of 0.2%d) Array of trapezoids: values of
-0.29,(2) —0.25,(3) —0.1,(4) 0.3,(5) 0.7, and(6) 1.0, with a minimum of  the nonzero contours afé) —0.09,(2) —0.05,(3) —0.02,(4) 0.05,(5) 0.1,
—0.28 and a maximum of 1.9. and(6) 0.15, with a minimum of-0.1 and a maximum of 0.22.
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S Sw S TT__iis the earlier cases; therefore, it is not surprising that the trap-
77 \Q‘:”’/\ii“\';/\gf ezoid and cuboid results show a modest level of disagree-
\< ,\ R 2@ AR ment with the analytical solution.

:S\\/Z"§‘\\\/ﬁ,’-§ 357

4\1 \l\o)// "l‘\o 4 (ty
2N ARG 5 AR B. Ordered array of dots
OXCIOE < secton we cons
52\\/43\\\\/521‘\/5; 'In this segtlon we consider a square array of dpts at

‘,/\/. (\l{’ ol)>\, u{’ o/i)\, ,\:{ various prescribed depthsand spacing”=12a5 [see Fig.
fz/\\n},’n:/’ NS AN 3(b)]. We continue to use the stress traog,)) as a basis for
\< ?ﬁ’@>~<>, - comparison. Specifically, we use surface contour plots of the

A PN stress trace predicted by the point dilatation, ellipsoid, and
P o " finite-element models. These plots for the trace of the stress

T e T tensor at the surface are shown in Figs. 6—8. No evaluation
N \/ N was made of differences between stresses below the surface.
\( )( + In Figs. @a)—6(d) we show stress contours for an array
>\/cv'-\\\\|\//’c =" of dots at depthih=3as. Specific values denoted by the con-
_:,';,"/*‘\\\:\:_:/ TS N tours, as well as the maximum and minimum values, are
()’( @ O 0 given m_the caption in units dfu. The ex_trema of the stress
I 77 - distribution appear directly above a given dot, as well as

}2,‘ ('\(’\ff, ; directly above a square quadruplet of four dots. Of all the
77 min- depths we consider, the dissimilarities between all four re-
_<\pa’\\ / ( 2N sults are most evident here, due to the close proximity of the

N RN S RN NN dots to the surface. Moreover, we note the symmetry of the
1 0 + stress distributions due to the point dilatation and the ellipse

T~ D T are of a circular nature, while for the cuboid and trapezoid,
f’/\\i‘?’/\‘\ﬁ‘ﬁ/\\\ﬁ the perfect circular symmetry is slightly broken. In other
\& _& _\2@ AR words, the contours reflect the shape of the particular dot. As
‘S'\\/{i‘\:,\\/,g‘}i \//’f the dot moves closer to the surface, we expect this feature to
—/7/‘“{:2/“\\;‘/: 5’\\‘& become more dominant.

\& :&@?:\6@\’ 0 In Fig. 7 the corresponding res_ults are shown fqr an

:\Q\\//f’\\:\\//{":\\//?‘ array of dots at depth=6a3. There is mo_der_ate_quantlta-
_/:'//\\\§\\ P 4/',/\\\{\; 4’,/\\‘:\_ tive _agreement between gll four models, !ndlcatmg that the
: 2:@- - 1 precise shape of Fhe dot is a much less important factor at
9 ;&\/’9’:\\\\/{,\\&\//; thls.depth. In addltlon, elemepts.of a square-hlge symmetry
SN W W begin to appear in the stress distribution at locations removed

- 0 + from the point directly above any given dot. Moreover, this
square-like motif in the stress contours in rotated by 45° with

respect to the original square lattice of dots.

Finally, in Fig. 8, the results are shown for an array of
dots at depthh=12a;. A square-like symmetry to the stress
distribution (also rotated by 45} similar to the previous
case, is more pervasive. The quantitative level of agreement
is good, but not nearly as good as expected for this depth.
Several sources of error can be identified that can explain the
disagreement: in the FEM results, no image contributions are

d) expected from the lateral walls of the mesh, since the peri-
odic nature of the geometry is perfectly captured. However,

- 0 + the image error from the bottom surface is expected to be
FIG. 8. Contour plots of surface stresg, (in units of f ), for an array of qut prevalent at this depth than in the earlier C_ases' In ad-
quantum dots at depth a2 and spacing’=12a5. In all cases, positive dition, the number of terms needed for the sums in(Bpto
stresses are denoted by a solid line, negative values are denoted by a daslmdotain good convergend@pplicable to the point of dilata-

line, and a zero value of stress is indicated by the long dasiearray of tion and eIIipsoid arraysbecame exceedingy |arge whiiis
point dilatations: values of the nonzero contours(aye-0.005,(2) —0.004, . .

(3) —0.002,(4) 0.002,(5) 0.005, and6) 0.009, with a minimum of-0.0071  dréater than~10a;, and accordingly, we are confident of
and a maximum of 0.0098b) Array of ellipsoids @,=a,=3as): values of  the results in Figs. @ and 8b) only to within about+5%.
the nonzero contours afé) —0.006,(2) —0.004,(3) —0.002,(4) 0.002,(5)
0.005, and(6) 0.008, with a minimum of—0.0072 and a maximum of
0.0093.(c) Array of cuboids. The values of the nonzero contours (aje

—0.005,(2) —0.004,(3) —0.002,(4) 0.002,(5) 0.005, and6) 0.007, with a ; ;
minimum of —0.0066 and a maximum of 0.008@l) Array of trapezoids: We conclude that over a wide range of geometries,

values of the nonzero contours @@ —0.004,(2) —0.002,(3) —0.001,(4) simple analytical models based on ellipsoids, or to some ex-

0.001,(5) 0.003, and(6) 0.005, with a minimum of-0.0056 and a maxi- tent based on point dilatations, may be the most efficient
mum of 0.0068.

V. SUMMARY
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