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Elastic fields of quantum dots in subsurface layers
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In this work, models based on conventional small-strain elasticity theory are developed to evaluate
the stress fields in the vicinity of a quantum dot or an ordered array of quantum dots. The models
are based on three different approaches for solving the elastic boundary value problem of a
misfitting inclusion embedded in a semi-infinite space. The first method treats the quantum dot as
a point source of dilatation. In the second approach we approximate the dot as a misfitting oblate
spheroid, for which exact analytic solutions are available. Finally, the finite element method is used
to study complex, but realistic, quantum dot configurations such as cuboids and truncated pyramids.
We evaluate these three levels of approximation by comparing the hydrostatic stress component
near a single dot and an ordered array of dots in the presence of a free surface, and find very good
agreement except in the immediate vicinity of an individual quantum dot. ©2001 American
Institute of Physics.@DOI: 10.1063/1.1352681#
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I. INTRODUCTION

Self-assembled quantum dots~SAQDs! have attracted
substantial recent attention because they offer the pote
for three-dimensional confinement of carriers and excit
and have ‘‘atom-like’’ electronic states.1,2 SAQD formation
is commonly observed in large mismatch epitaxy of che
cally similar materials.1,3 For example, the Stranski–
Krastanow~SK! growth of InAs ~or InxGa12xAs! on GaAs
first involves the growth of a;1 to 2 monolayer thick ‘‘wet-
ting layer’’ followed by coherent island formation.1,3 The
SAQDs may be buried by the growth of the same mater
as the underlying substrate. Subsequent growth of
strained composition on the buried dot template has b
shown to lead to vertical stacking of dots provided that
thickness of the intervening layer~‘‘spacer layer’’! is in the
order or thinner than the lateral dimensions of the dot.4

It is now clear that dot ordering is driven by the elas
field of subsurface stressors. Usually, these subsurface s
sors are buried dots themselves~which give rise to vertical
ordering!.4–9 In group IV and III–V SAQD growth, the first
dot layer does not demonstrate lateral order and subseq
layers show only vertical ordering~however, other subsur
face stressors such as regular dislocation arrays10 or buried
strained layers grown on patterned substrates11 can initiate
lateral ordering!. Buried subsurface stressors lead to a mo
lation in the stress field and associated strain field on
growth surface which affects both adatom diffusion12 and SK
island nucleation rates.13

The strain fields caused by SAQDs strongly affect
electronic properties in the vicinity of the dots.14–19 Two

a!Electronic mail: speck@mrl.ucsb.edu
4520021-8979/2001/89(8)/4523/9/$18.00
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strain effects are predominant in the electronic properties
III–V semiconductors: changes in the conduction and
lence band levels~deformation potentials! and local electric
fields due to piezoelectric effects. The conduction band
only affected by the hydrostatic strain, often referred to
the dilatation or trace of the strain tensor. The valence lev
can change both with hydrostatic and shear strain. For z
blende structures, deviatoric strains~those strains which dif-
fer from pure hydrostatic strains! give rise to piezoelectri-
cally induced electric fields.16 In the general case for zin
blende SAQDs, strain causes negligible change in the c
fined energy levels within the dots, however, the conduct
and valence levels can be changed in the surrounding ma
Further, strain can cause local piezoinduced electric fie
within the dots and in the surrounding matrix.18 Additionally,
strain can strongly modify the phonon frequencies within
dots in the surrounding material.17

Both for understanding ordering and the effects on el
tronic properties, it is important to determine the full elas
fields in the dots and surrounding matrix. The elastic fie
depend on the lattice mismatch between the dot and ma
material, the elastic properties of both the dot and the ma
the dot shape, and the position of dot with respect to the
surface. A complete solution of the elasticity problem in t
most general case is not possible in closed analytical fo
Independent of quantum dots, the general inclusion prob
was extensively developed in the pioneering work
Eshelby20,21and we address this approach in the next sect
In the SAQD field, three main methods have been applied
determine the elastic strains and stresses, namely:~i! theory
of inclusions based on the analytical solution of elastic
equations~‘‘Eshelby-like’’ or related approaches!,8,14,16,22–24

~ii ! finite element methods~FEM!,25–28 and ~iii ! atomistic
3 © 2001 American Institute of Physics
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modeling.29–31The theory of inclusions provides integral e
pressions for elastic fields which can be integrated in clo
form only for the simplest inclusion shapes, such as cy
ders or spheres. Even with the simplification of isotrop
elasticity, the known application to quantum dots so far ha
neglected the effects of the free surface. FEM is very eff
tive for particular cases but does not provide general s
tions and is furthermore affected by the choice of bound
conditions for the modeling domain. Atomistic models r
quire accurate interatomic potentials and are further
stricted to small systems of atoms in comparison with
sizes and the surrounding matrix.

In this article we apply two analytic approaches f
SAQD mechanics which include the effect of the free surfa
and the dot shape and compare these results with FEM
culations. We concentrate on the far field solutions in
analytic approaches, as our main interests are related to
ordering. However, we believe the analytic solutions are u
ful for determining the strain effects on the electronic stru
ture of the matrix.

II. MODELING OF QUANTUM DOTS

From a continuum mechanics viewpoint, a quantum
can be thought of as an inclusion of some prescribed sh
embedded in a dissimilar matrix. Due to compositional d
ferences which give rise to a lattice parameter mismatch
possibly a thermal expansion mismatch, the inclusion
surrounding matrix will be under a residual state of stre
Moreover, the inclusion may possesses different ela
moduli from the matrix material. Assuming a linear elas
response, the resulting stress fields for such problems
very cumbersome and have only been worked out ana
cally for limited geometries, including cuboids32,33 and
ellipsoids34,35 in infinite and semi-infinite domains. For th
case of an ellipsoid in an infinite matrix, the solutions for th
class of problems were originally developed by Eshelby
the 1950s.20,21

Figure 1 shows a schematic based on experimental
servations, in which a wetting layer initially forms when
material of new composition is deposited onto a substr
After the wetting layer achieves several monolayers of thi
ness, an instability in growth leads to isolated island form
tion ~future quantum dots!.1,3,4 Currently, there are also indi

FIG. 1. General schematic of a buried quantum dot~QD!. A wetting layer
~WL! is shown, which may precede the formation of an island during
deposition of a dissimilar material onto a substrate. The island~quantum
dot! is subsequently covered by additional matrix~substrate! material.
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cations that the wetting~transitional! layer may be much
thicker ~comparable with the dot height! and may posses
different chemical composition than nucleating quantu
dots. We do not address this issue in this article. Rather,
only consider the elastic field from the dot itself and do n
consider the wetting. Although there is another controve
over the actual shape of quantum dots, it is clear from tra
mission electron microscopy~TEM! studies that they ini-
tially form as four-sided pyramids. Truncation of capp
pyramids may be an illusion induced by strain fields o
served by TEM. This possibility is supported by research
reporting detailed contrast evidence in favor of sharp-cap
pyramids.4 This controversy has implications for the prese
finite-element study. However, upper levels of pyramid
dots are relatively unstrained, and therefore would add li
mechanical energy. For this reason, it is believed that
question of pyramid truncation will not have a pronounc
effect on the conclusions to be obtained by modeling.

In this article we propose a number of simplified mode
to describe the elastic field surrounding a quantum dot. T
simplest approach is to ignore the geometry of the dot a
gether, and to regard it as a point source of dilatation
prescribed strengthf V, wheref represents the mismatch an
V represents the volume of an ‘‘equivalent’’ dot, that is, t
real dot that is being simulated by the point source. T
parameterf represents the strain state developed in the qu
tum dot, relative to an equivalent volume of matrix materi
if it were not constrained by the matrix; for example, if a d
with lattice parameterad is deposited onto a substrate su
face with lattice parameteras , the misfit strainf is taken as
(as2ad)/ad . When the island is subsequently surrounded
matrix material, the constraint is uniform in three direction
hence the misfit strain components becomef d i j . Similarly, a
thermal expansion mismatch gives rise to such a dilatatio
self-strain ~also known in the literature as the stress-fr
strain or the ‘‘eigenstrain’’!, so all sources of misfit may be
incorporated into the single parameterf. Of course, such an
approach is expected to yield expressions that break dow
the general vicinity of the dot.

A powerful method for the solution of a broad spectru
of problems in elasticity derives from a consideration
point forces applied at some point in the elastic body.36,37 If
the response of a body to a point force~i.e., the Green’s
function! is known, the deformation caused by any distrib
tion of forces can be obtained by superposition. For exam
the displacement field caused by a single point force app
anywhere in an infinite elastic solid may be determined qu
straightforwardly from the field equations of elasticity.37 If
the body is finite, as in the case of a semi-infinite space
traction-free boundary condition must be satisfied, there
giving a corrective term to the displacement field for an
finite solid.

In the case of a point source of expansion, three mu
ally perpendicular pairs of forces~each pair consists of a
dipole of opposing forces of magnitudeP, separated by a
distanced along their mutual line of action! may be used~see
Fig. 2!. If one considers a cube of volumeV5d3, the aver-
age stress in the cube isP/d2, which in turn can be related to
the strains arising from the misfitf via Hooke’s law. Apply-

e

t to AIP copyright, see http://ojps.aip.org/japo/japcr.jsp
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ing such an argument to an isotropic medium, one may ar
at the relationPd5@2(11n)m/(122n)# f V, wherem is the
material shear modulus andn is Poisson’s ratio. By taking
the limit as d→0, maintainingPd constant, the complete
elastic field for a point of expansion of a given strength m
be identified. Mindlin38 and Mura34,35 have provided the ap
propriate expressions for such point sources, not only fo
generally anisotropic medium, but also for a point sou
located in a semi-infinite, isotropic medium. The prima
advantage with this method is that the expressions are c
pact, especially for the case of an isotropic medium, as il
trated in Sec. III A.

The next level of complexity would be to idealize th
quantum dot as an inclusion of some simplified shape, s
as spherical, ellipsoidal, or cuboidal. Mura34,35has developed
expressions for an ellipsoidal inclusion in a half-space in
extension of the point-source analysis described above
integrating the appropriate Green’s function over the volu
of the inclusion. Chiu32,33 has provided similar results, bu
for a cuboidal inclusion embedded in a semi-infinite m
dium. Despite these relatively simple shapes, closed f
solutions are only possible for the ellipsoid when at least t
of the semiaxes are identical, as demonstrated below. In
example to be discussed in Sec. III B, an oblate spheroid~an
ellipsoid with semiaxesa15a2.a3!, a depthh from the sur-
face, will be considered, either alone or as an ordered a
of spacingl ~see Fig. 3!. Although the stress expressions a
more cumbersome than for the point sources of dilatation~as
given below in Sec. III B!, the advantage is that a more r
alistic idealization of the quantum dot geometry is achiev
and in such a way that the effect of the aspect ratio of the
may be efficiently evaluated.

For the case of quantum dots with extreme aspect ra
for example, a relatively flat square or ‘‘penny-shape
quantum dot, the stress field may be approximated as
due to an appropriately shaped prismatic dislocation lo
the stress fields for which are well-known. As the quant
dot deviates from an extreme aspect ratio, this method
works, because the shape may be represented by an arr
prismatic dislocation loops. Li39 and Gutkin and
coworkers40,41 have exploited this equivalence for determi

FIG. 2. Point source of dilatation at distanceh from a free surface, repre
sented as a cube with infinitely small dimensiond. Three force dipolesP are
applied to the faces of this cube.
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ing the stress fields around various inclusion shapes, albe
a different context from quantum dot behavior. For the sa
of brevity, we do not outline this method in this article.

The final level of complexity undertaken in this article
to evaluate the complete stress field in the vicinity of
cuboidal or trapezoidal inclusion via the finite eleme
method ~FEM!. In other words, we model the geometrie
similar to that of Fig. 1, excluding the wetting layer. Th
FEM models can easily be expanded to include the wet
layer ~see, for example, Ref. 28!; however, we do not under
take that here since the primary goal is to make comparis
with the quantum dot models based on point sources
ellipsoidal inclusions mentioned earlier. For a typical tra
ezoidal inclusion within a matrix unit cell, elastic solution
may be approximated using a finite element mesh comp
ing one quadrant of an arbitrarily deep matrix unit cell, wi
appropriate boundary conditions imposing symmetry at
lateral faces~see Sec. III C!. The primary advantage with thi
method is that more details concerning the stress field m
be revealed, especially near the sharp corners of the in
sion. The FEM technique can readily include elastic anis
ropy combined with different elastic constants for the mat
and the dot. The disadvantage is that a mesh must be cre
for each dot geometry, and the size of the matrix mesh m
be made arbitrarily large in order to compare these res
with those of the point source or the inclusion.

To simulate this residual strain in the model presen
here, perfect bonding is assumed, and strains are imparte
a ‘‘phantom’’ thermal expansion mismatch between the
clusion and the matrix. Of course, in the system simulat
thermal expansion mismatch may or may not be a signific
effect. However, since the effect of introducing such a d
ferential expansion is to change the zero-stress lattice size
both materials, there is no analytical difference between
ferential strains induced by lattice mismatch, and those
duced by thermal expansion mismatch.

III. ELASTIC SOLUTIONS FOR SUBSURFACE
QUANTUM DOT STRESSORS

A. Point source of dilatation

For the case of a single point source of expansion
cated a distanceh from the surface, the displacement field

FIG. 3. Ellipsoidal inclusions used to model quantum dots.~a! An isolated
ellipsoidal inclusion at distanceh from the surface, with semiaxesa1 , a2 ,
anda3 in the corresponding coordinate directions.~b! A rectangular array of
the same ellipsoidal inclusions, with periodicityl in the lateral coordinate
directions.
t to AIP copyright, see http://ojps.aip.org/japo/japcr.jsp
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given by Mura.34,35We have differentiated that expression
obtain strain through the relation« i j 5

1
2(ui , j1uj ,i) and sub-

sequently used Hooke’s law, s i j 52m(« i j 1@n/(1
2n)#d i j «kk) to obtain the result

s i j 5
m f V~11n!

2p~12n! F2S 1

R1
D

,i j

2x3S 2

R2
D

,3i j

1~324n!~d3i1d3 j21!S 1

R2
D

,i j

2d3 j S 1

R2
D

,3i

2d3i S 1

R2
D

,3j

1nd i j S 4

R2
D

,33
G , ~1!

where, as before,m is the shear modulus,n is the Poisson’s
ratio, f is the mismatch,V is the dot volume, andd i j is the
Kronecker delta. The quantitiesR1 and R2 are given by
Ax1

21x2
21(x32h)2 and Ax1

21x2
21(x31h)2, respectively.

The notation (),i indicates]/]xi() while repeated indices ar
summed from 1 to 3. The use of a finite volume in the
formulas is an approximation, as discussed in the previ
section, since the expressions really derive from differen
equations and are exact for the case of a vanishingly s
inclusion. These expressions are expected to only yield r
istic results when considering target distances compared
the characteristic length of the quantum dot, for example,
stresses at the surface for cases where the quantum do
buried sufficiently beneath the surface.

In order to graphically illustrate the stress distributi
near a quantum dot and to facilitate comparisons with oth
more precise representations of the stress field, we use
trace of the stress tensorskk rather than individual compo
nents. This component is the key quantity for calculating
interaction energy between a quantum dot and an adatom
the surface, and thus the driving force for adatom diffusion
the surface. The trace is related to the pressure through
relationp52 1

3skk and is given by

skk5
2m f V~11n!2

p~12n! S 1

R2
D

,33

5
2m f V~11n!2

p~12n!

@2~x31h!22x1
22x2

2#

@x1
21x2

21~x31h!2#5/2. ~2!

The local dilatation, «kk , is given by 2p@3(1
22n)/2m(11n)#, where the quotient of elastic constants
the inverse of what is referred to as the bulk modulus. T
dilatation is of interest due to its effect on the electronic ba
structure in and near the quantum dot16 and on dot nucleation
and growth due to the surface diffusion.12 We note that in
Eqs.~1! and ~2!, all terms containingR1 comprise the solu-
tion for the case when the point source is embedded in
infinite medium, and the terms withR2 represent the correc
tion due to the presence of the free surface. Henceskk50
for an infinite solid but not for the semi-infinite solid. Th
effect of the free surface on the dilatation field of vario
inclusions was studied in greater detail by Michelet al.42,43

For the case of an ordered array of quantum dots~see
Fig. 3!, the stress field can be obtained by summing Eq.~1!
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or Eq.~2! over all dots. For a square array of dots of spac
l , the trace of the stress tensor at all locations is given

skk5
2m f V~11n!2

p~12n!

3 (
i 52`

`

(
j 52`

`
@2~x31h!22~x12 i l !22~x22 j l !2#

@~x12 i l !21~x22 j l !21~x31h!2#5/2,

~3!

whereh represents the depth of the planar array of dots. T
double sum represented in Eq.~3!, to our knowledge, has no
analytic representation; however, it can be numerica
evaluated by replacing̀ with some suitably large integer.

B. Ellipsoidal dilatated inclusion

As shown by Mura,34,35 the stress field for an ellipsoida
inclusion in a half space can be obtained by integrating
displacement field that gave rise to Eq.~1! over the domain

x18
2

a1
2 1

x28
2

a2
2 1

~x382h!2

a3
2 <1, ~4!

wherea1 , a2 , anda3 denote the semiaxes of the ellipso
along the respective coordinate directions, andh denotes the
depth of the center of the ellipsoid from the surface. F
points exterior to the inclusion, the stress components t
the form

s i j 5
m f V~11n!

2p~12n!
@2c ,i j 22x3f ,3i j 1~324n!

3~d3i1d3 j21!f ,i j 2~d3i1d3 j !f ,i j 14nd i j f ,33#,

~5!

where

c5
3

4 El

`
12S y1

2

a1
21s

1
y2

2

a2
21s

1
y3

2

a3
21sD

A~a1
21s!~a2

21s!~a3
21s!

ds ~6!

with

y1
2

a1
21l

1
y2

2

a2
21l

1
y3

2

a3
21l

51 ~7!

and

f5
3

4 El

`
12S z1

2

a1
21s

1
z2

2

a2
21s

1
z3

2

a3
21sD

A~a1
21s!~a2

21s!~a3
21s!

ds ~8!

with

z1
2

a1
21l

1
z2

2

a2
21l

1
z3

2

a3
21l

51. ~9!

The coordinate transformation foryi and zi is defined such
that

x15y15z1 , x25y25z2 ,
~10!

x35y31h5z32h.
t to AIP copyright, see http://ojps.aip.org/japo/japcr.jsp
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We have found that the integrals represented by Eqs~6!
and ~8!, which require the roots of Eqs.~7! and ~9!, respec-
tively, for l can be obtained analytically in terms of eleme
tary functions if at least two of the semiaxesa1 , a2 , anda3

are equal. Accordingly, we have chosena15a253a3 for the
example results to be displayed below. The volume of s
an inclusion is given byV512pa3

3. Here, the ellipsoid looks
round when viewed from the surface, but its thickness in
x3 direction may be varied for a basic study of the effect
aspect ratio on the stress field.

As with the point sources discussed in the previous s
tion, the stress field associated with an ordered array o
lipsoidal inclusions may be straightforwardly determined
summing Eq.~5! over all dot positions, in the precise mann
as shown for Eq.~3!.

C. Cuboidal and trapezoidal inclusions „finite-element
method …

The finite element method is best suited to modeling
elastic fields associated with inclusion geometries more c
plex than ellipsoids. For the creation of the meshes, we u
a widely available finite-element analysis software appli
tion, ABAQUS. ABAQUS permits the closely controlled gener
tion of finite-element meshes through the use of input fi
containing complete instructions for node-by-node a
element-by-element mesh specification, along with impo
tion of boundary conditions. For a typical trapezoidal inc
sion within a matrix unit cell, elastic solutions may be a
proximated using a finite-element mesh comprising o
quadrant of an arbitrarily deep matrix unit cell, with appr
priate boundary conditions imposed at the lateral fac
Meshes generated included one quarter of a cuboidal or t
ezoidal inclusion, at various depths, embedded in a matri
identical elastic properties~see Fig. 4!. The mesh uses eight
node linear brick elements withm51 andn51/3. The mis-
match strainf was taken as unity by identifying the therm
expansion strain in the inclusion,aDT, with unity. In this
fashion, any value off may be considered due to linearity.

Depths of the inclusion centroid varied between 3a3 and
12a3 , for direct comparison with point source and ellipsoid
inclusion results~recall a3 denotes the half-height of the e
lipsoidal inclusion!. The FEM domain has lateral dimension
of 6a3 in each direction, appropriate for an interinclusio
spacing of 12a3 . For the inclusion shape, truncation angl
of 0° and 30° were used~see inset, Fig. 4!. The former we
refer to as a cuboid, and the latter a trapezoid. The lat
dimension of the inclusion is determined by enforcing that
volume is identical to that of an ellipsoidal inclusion with th
same height, 2a3 . With the volume and thickness fixed
there is an inclusion base dimension associated with e
choice of truncation anglea. The inclusions consist of 125
evenly spaced elements, while the matrix elements includ
dimensional bias such that they become larger near the
walls, but smaller again as they approach the free surfac

Two general types of cases were investigated. The s
plest was the case of a single inclusion submerged in a s
infinite half space. The second type of case involved an
finite two-dimensional array of submerged inclusions. T
Downloaded 03 Apr 2001 to 128.111.70.86. Redistribution subjec
-

h

e
f

c-
l-

f
-

ed
-

s
d
i-
-
-
e

s.
p-

of

l

al
s

ch

a
ar
.
-
i-
-

e

latter is more difficult to approximate using analytical a
proaches because of the sum given by Eq.~3!. Somewhat
surprisingly, however, the periodic case presents fewer
stacles to the finite-element approach than does the sing
case.

For models of a single trapezoidal inclusion submerg
in a semi-infinite half space, we insist that normal displa
ment must vanish at the two walls in contact with the inc
sion, consistent with the division of the inclusion~and matrix
unit cell! into symmetric quadrants.

The bottom surface is constrained similarly, although
type of condition imposed at the bottom is less importa
than the depth, which should be sufficiently large to be c
sidered ‘‘far field.’’ It must be admitted that the use of th
same boundary condition as that imposed at the lateral w
in contact with the inclusion does, in fact, give rise to
similar periodicity in depth, which is not intended. Howeve
with a large dimension of matrix below the inclusion, th
effect of this depth image stress field will be minimal. W
could just as easily use a fully encastered or free bound
condition~or any other that would result in a traction-free f
field surface condition!, so long as the depth is large an

FIG. 4. Mesh used in finite element calculations of elastic fields for~a!
cuboidal (a50°), and ~b! trapezoidal (a530 °) quantum dot configura-
tions. One quarter of the domain is needed in this calculation due to four
symmetry about the longitudinal axis. The inset shows the critical par
eters used to describe the geometry of the quantum dot, including the
cation anglea. The depthh is always taken from the centroid of the quan
tum dot, and the lateral dimension of the dot is chosen such that its vol
is the same as an ellipsoidal dot discussed in Fig. 3.
t to AIP copyright, see http://ojps.aip.org/japo/japcr.jsp
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inclusion volume is small in comparison to the matrix vo
ume. Since the intention is to simulate a semi-infinite d
main, the depth of the matrix below the deepest inclus
must be ‘‘much larger’’ than the thickness of the matr
separating the inclusion from the surface. For a fini
element model limited to a relatively small number of e
ments, this requirement becomes increasingly costly w
larger quantum dot submergences. In each case, we mak
depth of the overall mesh large enough that there is at l
four times more matrix below the base of the inclusion th
above it.

The two remaining lateral walls in the mesh for the is
lated quantum dot must not reflect a symmetry betw
groups of four unit cells~to do so would imply an infinite
two-dimensional array of submerged inclusions!. Rather, we
use a condition similar to that used at the bottom surfa
that is, we require that the distance between the inclusion
the far lateral walls be large.

For the periodic case, symmetry was enforced with
zero normal displacement condition at all four lateral wa

FIG. 5. Plots of stressskk versus dot depth, for an isolated dot, for th
various models considered in this article. In all cases, the solid line is fo
ellipsoidal inclusion (a15a253a3); the dashed line is for a point source o
dilatation, the open square is for the FEM model of the cuboid, and
closed triangle is for the FEM model of the trapezoidal dot. In~a! and~b! we
show the trace of the stress tensor at the surface directly above the dot.~c!
and~d! we show the stress at the surface, evaluated at depthc/2 ~wherec is
related to the volume of the dot byc5V1/3!, above the dot. In~e! and~f! we
show the interface stress, that is, the stress evaluated just above th
matrix interface. The location of stress evaluation is further indicated in
insets. The figures in the right column@~b!, ~d!, and~f!# use a log-log scale
to illustrate the asymptotic dependence of stress on dot depth (skk;h23)
for large depths.
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so that the elastic field within the mesh is representative
an infinite two dimensional array of submerged inclusio
The zero normal displacement condition results in a mir
image stress field, which if imposed at each lateral w
appears as the intended inclusion array. Typical meshes
cluded in this investigation contained between 6000 a
10 000 total elements.

IV. RESULTS AND DISCUSSION

A. Single quantum dot

We have seen how stress fields can be obtained for
merged inclusions using the point dilatation model, the m
fitted ellipsoid model, or the finite-element cuboid and tra
ezoid models. Comparison of these fields is undertaken h
by evaluation of the trace of the stress tensor (skk) at three
points of interest: the surface directly above the dot (x3

50), a depthc/2 below the surface, wherec[V1/3, and the
upper surface of the dot~at the interface between the dot an
the matrix!. The latter location is not shown for the poin
source of dilatation, since the precise interfacial position
not defined. Throughout, Poisson’s ratio is taken as 1/3.
the ellipsoid, the aspect ratio is taken as 3, i.e.,a15a2

53a3 . For the cuboid and the 30° trapezoid, the same he
and volume are used as for the ellipsoid.

Figure 5~a! shows the variation of stress at the surfa
with inclusion depthh. As expected, the stress asympto
cally approaches zero as the inclusion is moved further fr
the surface. The same information is shown on a log-log p
in Fig. 5~b!, where it can be seen that the slope of the cur
approaches23, indicative of the 1/h3 decay of stress. More
over, the point source and ellipsoidal stresses converge a
dot exceeds 1.5 to 2 times the cube root of the volume of
ellipse c, which may be regarded as a characteristic len
for this stress field. The FEM results are shown as disc
points lying quite close to the ellipsoidal stress curve.

Figures 5~c! and 5~d! show the stress componentskk at a
depth c/2 from the surface. Again, good convergence b
tween the ellipsoid and the point source solutions occurs
the depth of the inclusion exceeds 1.5c to 2c. Both sets of
finite-element results are in good agreement with the anal
results. The calculated FEM data points in all cases thus
@Figs. 5~a!–5~d!# tend to show slightly more disagreement
the depth of the dot increases. We speculate that this is
to boundary effects, that is, artificial ‘‘image’’ componen
exist due to the four lateral faces of the mesh, as well as
bottom surface of the mesh~the latter of which is expected to
dominate more for deeper inclusions!, which are not mani-
fested in the ellipsoidal or point source solutions.

Finally, in Figs. 5~e! and 5~f!, we show the stress jus
outside of the dot as it is moved from the boundary. Int
estingly, this stress component decays to zero. This re
though not intuitive, was first noted by Eshelby9,10 and does
not hold for the other individual stress components at t
location. In fact, the stress componentskk vanishes every-
where outside the ellipsoid~and the point force! in an infinite
medium. The image errors mentioned earlier still apply
the FEM data points. In addition, the exact details of t
shape of the inclusion should be more important here tha

n

e

dot/
e

t to AIP copyright, see http://ojps.aip.org/japo/japcr.jsp



ati
ica
o

ative
icated
o

re

4529J. Appl. Phys., Vol. 89, No. 8, 15 April 2001 Romanov et al.
FIG. 6. Contour plots of the trace of the stress tensor at the surfaceskk ~in
units of fm!, for an array of quantum dots at depth 3a3 and spacingl

512a3 . In all cases, positive stresses are denoted by a solid line, neg
values are denoted by a dashed line, and a zero value of stress is ind
by the long dashes.~a! Array of point dilatations: values of the nonzer
contours are~1! 20.3, ~2! 20.2, ~3! 0.3, and~4! 0.8, with a minimum of
20.31 and a maximum of 3.3.~b! Array of ellipsoids (a15a253a3): val-
ues of the nonzero contours are~1! 20.4, ~2! 20.3, ~3! 20.2, ~4! 0.3, ~5!
1.0, and~6! 1.5, with a minimum of20.42 and a maximum of 1.8.~c! Array
of cuboids: values of the nonzero contours are~1! 20.38, ~2! 20.3, ~3!
20.2,~4! 0.3,~5! 1.0, and~6! 1.5, with a minimum of20.4 and a maximum
of 1.9. ~d! Array of trapezoids: values of the nonzero contours are~1!
20.29,~2! 20.25,~3! 20.1, ~4! 0.3, ~5! 0.7, and~6! 1.0, with a minimum of
20.28 and a maximum of 1.9.
Downloaded 03 Apr 2001 to 128.111.70.86. Redistribution subjec
ve
ted

FIG. 7. Contour plots of the trace of the stress tensor at the surfaceskk ~in
units of fm!, for an array of quantum dots at depth 6a3 and spacingl

512a3 . In all cases, positive stresses are denoted by a solid line, neg
values are denoted by a dashed line, and a zero value of stress is ind
by the long dashes.~a! Array of point dilatations: values of the nonzer
contours are~1! 20.1, ~2! 20.05, ~3! 20.02, ~4! 0.05, ~5! 0.1, and~6! 0.2,
with a minimum of20.11 and a maximum of 0.3.~b! Array of ellipsoids
(a15a253a3): values of the nonzero contours are~1! 20.1, ~2! 20.05,~3!
20.02, ~4! 0.05, ~5! 0.1, and~6! 0.2, with a minimum of20.14 and a
maximum of 0.28.~c! Array of cuboids: values of the nonzero contours a
~1! 20.1, ~2! 20.05, ~3! 20.02, ~4! 0.05, ~5! 0.1, and~6! 0.2, with a mini-
mum of 20.13 and a maximum of 0.25.~d! Array of trapezoids: values of
the nonzero contours are~1! 20.09,~2! 20.05,~3! 20.02,~4! 0.05,~5! 0.1,
and ~6! 0.15, with a minimum of20.1 and a maximum of 0.22.
t to AIP copyright, see http://ojps.aip.org/japo/japcr.jsp
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FIG. 8. Contour plots of surface stressskk ~in units of f m!, for an array of
quantum dots at depth 12a3 and spacingl 512a3 . In all cases, positive
stresses are denoted by a solid line, negative values are denoted by a d
line, and a zero value of stress is indicated by the long dashes.~a! Array of
point dilatations: values of the nonzero contours are~1! 20.005,~2! 20.004,
~3! 20.002,~4! 0.002,~5! 0.005, and~6! 0.009, with a minimum of20.0071
and a maximum of 0.0093.~b! Array of ellipsoids (a15a253a3): values of
the nonzero contours are~1! 20.006,~2! 20.004,~3! 20.002,~4! 0.002,~5!
0.005, and~6! 0.008, with a minimum of20.0072 and a maximum o
0.0093.~c! Array of cuboids. The values of the nonzero contours are~1!
20.005,~2! 20.004,~3! 20.002,~4! 0.002,~5! 0.005, and~6! 0.007, with a
minimum of 20.0066 and a maximum of 0.0083.~d! Array of trapezoids:
values of the nonzero contours are~1! 20.004,~2! 20.002,~3! 20.001,~4!
0.001,~5! 0.003, and~6! 0.005, with a minimum of20.0056 and a maxi-
mum of 0.0068.
Downloaded 03 Apr 2001 to 128.111.70.86. Redistribution subjec
the earlier cases; therefore, it is not surprising that the tr
ezoid and cuboid results show a modest level of disag
ment with the analytical solution.

B. Ordered array of dots

In this section we consider a square array of dots
various prescribed depthsh and spacingl 512a3 @see Fig.
3~b!#. We continue to use the stress trace (skk) as a basis for
comparison. Specifically, we use surface contour plots of
stress trace predicted by the point dilatation, ellipsoid, a
finite-element models. These plots for the trace of the str
tensor at the surface are shown in Figs. 6–8. No evalua
was made of differences between stresses below the sur

In Figs. 6~a!–6~d! we show stress contours for an arra
of dots at depthh53a3 . Specific values denoted by the co
tours, as well as the maximum and minimum values,
given in the caption in units off m. The extrema of the stres
distribution appear directly above a given dot, as well
directly above a square quadruplet of four dots. Of all t
depths we consider, the dissimilarities between all four
sults are most evident here, due to the close proximity of
dots to the surface. Moreover, we note the symmetry of
stress distributions due to the point dilatation and the elli
are of a circular nature, while for the cuboid and trapezo
the perfect circular symmetry is slightly broken. In oth
words, the contours reflect the shape of the particular dot
the dot moves closer to the surface, we expect this featur
become more dominant.

In Fig. 7 the corresponding results are shown for
array of dots at depthh56a3 . There is moderate quantita
tive agreement between all four models, indicating that
precise shape of the dot is a much less important facto
this depth. In addition, elements of a square-like symme
begin to appear in the stress distribution at locations remo
from the point directly above any given dot. Moreover, th
square-like motif in the stress contours in rotated by 45° w
respect to the original square lattice of dots.

Finally, in Fig. 8, the results are shown for an array
dots at depthh512a3 . A square-like symmetry to the stres
distribution ~also rotated by 45°!, similar to the previous
case, is more pervasive. The quantitative level of agreem
is good, but not nearly as good as expected for this de
Several sources of error can be identified that can explain
disagreement: in the FEM results, no image contributions
expected from the lateral walls of the mesh, since the p
odic nature of the geometry is perfectly captured. Howev
the image error from the bottom surface is expected to
most prevalent at this depth than in the earlier cases. In
dition, the number of terms needed for the sums in Eq.~3! to
obtain good convergence~applicable to the point of dilata
tion and ellipsoid arrays! became exceedingy large whenh is
greater than;10a3 , and accordingly, we are confident o
the results in Figs. 8~a! and 8~b! only to within about65%.

V. SUMMARY

We conclude that over a wide range of geometri
simple analytical models based on ellipsoids, or to some
tent based on point dilatations, may be the most effici

hed
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means of obtaining reasonable estimates of the ela
stresses associated with quantum dots. In particular,
finite-element models described in this article very clos
matched the predictions of the ellipsoidal inclusion mode
the isolated and periodic cases. This close correspond
between the analytical ellipsoid and the FEM cubo
trapezoid persists to remarkably shallow submerge
depths, indicating a potentially high usefulness in model
typical three-dimensional dot array geometries.

The exception to the close match of ellipsoid and fini
element models is the case of predicted stresses at the u
interface between the dot and the matrix. The interface lie
a region characterized by large stress gradients, which w
have an expected detrimental effect on the accuracy of
finite-element models. However, even with an exceptiona
fine mesh, differences in modeled dot shape should be
pected to give rise to variations in predicted stress value
the interface. These differences would be attributed both
variations in interface depth and to differences in local str
concentrations at the top center interface of dots of differ
shape.

Of perhaps more use to the modeler of SAQD system
that only one ‘‘primary’’ dot~or region associated therewith!
should be considered in detail, while all other dots may
approximated as ellipsoids or point sources.

Finally, we note that the calculations in this artic
clearly show that quantum dots either on the free surfac
near the free surface lead to large hydrostatic stresses
strains in the matrix. The hydrostatic strain will lead
changes in both the conduction and valence band levels.
believe that this effect should be included in the treatmen
the matrix electronic properties for near surface dots
stressors.
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