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Threading dislocation reduction in strained layers
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In this article, we have developed models for threading dislocation~TD! reduction due to the
introduction of an intentionally strained layer. Three different types of dislocations have been
considered in this model: misfit dislocations~MDs!, mobile TDs, and TDs whose glide motion has
been blocked by a MD crossing the glide path of the TD~immobile TDs!. The models are based on
MD formation by the process of lateral TD motion. The strain-induced TD motion leads to possible
annihilation reactions of mobile TDs with either other mobile TDs or blocked TDs, or reactions in
which a mobile TD is converted to an immobile TD by a blocking reaction with a MD. The
evolution of the density of mobile and blocked TDs and the MD density is represented by three
coupled nonlinear first order differential equations. When blocking of TDs by MDs is not
considered, the equations have an analytical solution that shows that the final TD density should
decrease exponentially where the argument of the exponent is proportional to the product of the
reaction radius between TDs~the annihilation radiusr A! and the nominal misfit strainem . The
no-blocking limit represents the maximum possible TD reduction through the introduction of a
strained layer, regardless whether this layer has a discrete step in strain, step-grade, or continuous
strain grading. When only blocking reactions are considered~no annihilation!, again analytic
solutions to the equations are obtained which show the maximum possible plastic strain relaxation
for a discretely strained layer. Several examples of numerical solutions to the three coupled
differential equations are described for cases that include both blocking and annihilation reactions.
© 1999 American Institute of Physics.@S0021-8979~99!04901-4#
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I. INTRODUCTION

During the past 25 years a large body of research
been established on the theory and experiments for s
relaxation by misfit dislocations~MDs! for lattice mis-
matched epitaxial films~see, for example, the articles b
Beanlandet al.,1 Freund,2 and Fitzgerald3!. In the growth of
lattice-mismatched epitaxial thin films, threading disloc
tions ~TDs! are concomitantly generated with MDs. For
wide variety of electronic and optoelectronic device appli
tions, particularly for minority carrier devices, TDs are de
eterious for physical performance. In recent years there
been a substantial experimental effort to reduce TD densi
Despite the great amount of literature devoted to theoret
and experimental understanding of critical thicknesses
MD generation, there have been relatively few theoreti
efforts reported to understand the mechanisms by which
are eliminated in thin films.

a!Electronic mail: speck@mrl.ucsb.edu
1820021-8979/99/85(1)/182/11/$15.00
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In previous work on TD reduction in mismatched laye
it was shown that in laterally uniform layers, the TD dens
can only be reduced through reaction with other TDs.4,5 The
two reduction reactions are annihilation, in which TDs wi
opposite Burgers vectors meet, or fusion, in which two T
react to form a single TD.4–8 Relative motion between TDs
is necessary to bring them within a reaction distance. It w
shown that the possible sources of motion include ‘‘traje
tory’’ motion of the TDs with changing film thickness
which is due to different TDs having different line direction
~because of their Burgers vectors and slip planes!. Motion
may also be induced by condensation of point defects
TD, leading to either positive climb~vacancy condensation!
or negative climb~interstitial condensation!.5,9 Finally, TD
motion may be induced by intentional growth of a strain
layer. In this case, when the film excess a critical thickn
hc , misfit dislocation generation accompanies the glide m
tion of TDs.

The reactions among TDs can be analytically mode
using a ‘‘reaction kinetics’’ approach.4–7 In this method, the
change in TD density with an evolutionary variable, usua
© 1999 American Institute of Physics
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film thickness, can be represented by a first order differen
equation. In the simplest case, only the total TD density w
considered. In a more involved approach, a series of cou
ordinary first order nonlinear differential equations was f
mulated. Each equation represents the change in the de
of a particular character TD~determined by its Burgers vec
tor, line direction, and slip plane!. Since two TDs must reac
to reduce the TD density, each equation in the series of e
tions is a sum of terms in which the individual terms are
products of specific TD densities with a coefficient based
geometry and interaction strength between the specific c
acter TDs. In relation to chemical kinetics, the film thickne
evolution is analogous to time and the specific TD densi
are analogous to chemical reactant concentrations. The i
action constant for TD reactions, analogous to a rate cons
in chemical kinetics, is referred to as either the annihilat
radiusr A or the fusion radiusr F . These two interaction con
stants represent the distance necessary for spontaneous
tion between the TDs. Using this approach, with the f
details of the TD geometry in~001! face-centered cubic~fcc!
semiconductor heteroepitaxy, the experimentally obser
behavior of the total TD density~inversely proportional to
the film thickness! was reproduced in the solutions for th
total TD density. Additionally, the solutions for the couple
differential equations showed a saturation in TD dens
when the initial TD density had a net Burgers vector conte

The experimental observation and theoretical predict
that the TD density in relaxed buffer layers will be inverse
proportional to the buffer layer thicknessh motivates other
approaches for efficiently reducing TD densities because
TD densities, in the range of 105– 106 cm22, may require
the use of very thick buffer layers. The use of strained lay
is particularly promising as, once the strained layer exce
its critical thickness, there can be substantial lateral mo
of TDs as they generate MD segments. X-ray topogra
studies have shown that in the growth of strained layers
single crystal substrates the threading dislocations origi
ing in the substrate bend to form MD segments at strai
layer thicknesses very close to the Matthews–Blakeslee c
cal thickness.10 For growth on single crystal substrates, t
TD density is generally too low~e.g., GaAs substrates ca
typically be obtained with TD densities on the order
104 cm22! to provide a substantial MD density. Therefor
growth of thick strained layers on high quality single crys
substrates will lead to the generation of a high density
TDs during strain relaxation.

In this article we model the TD reduction during th
growth of strained layers within the framework of the ‘‘k
netic approach.’’ The underlying layer for these models,
ferred to as the substrate, is strain relaxed and has a high
density~e.g., in the range 106– 1011 cm22! which is associ-
ated with misfit relaxation processes with a further unde
ing layer. In the models developed here, we treat the con
rent TD reduction through annihilation reactions that res
from TD–TD reactions during strain-driven TD motion. Ad
ditionally, we analytically treat the blocking of mobile TD
by MDs. However, we do not include any processes t
generate new TDs. In this article, we will not attempt to fit
explain the wide range of experimental data on differ
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strained layer approaches for reducing TD density; that
topic for a future article.

II. BACKGROUND

The concept and validity of the Matthews–Blakesl
~MB! critical thickness for forming MDs in strained epitaxia
layers has been extensively explored during the past
years. We follow the recent treatment of the critical thickne
concept developed by Freund.2 In this approach, the ener
getically favorable motion of a TD connected to a MD w
evaluated as a function of misfit strainem and film thickness
h, as shown in Fig. 1. The critical thicknesshc is that for
which the equilibrium MD density is zero; for thickness
larger thanhc , it is energetically favorable for the TD to
increase the MD line length, as shown in Fig. 1~b!. This
strain-driven motion of the TD leads to both plastic relief
the misfit strain, but it also leads to increased probability
the TD segment meeting another TD segment. The MB c
cal thickness is given as the solution of

hc5
ubu

8pem cosl S 12n cos2 b

11n D lnS ahc

ubu D , ~1!

whereubu is the magnitude of the Burgers vectorb, l is the
angle between the Burgers vector and a line that lies in
film/substrate interface normal to the MD line,b is the angle
between the MD line andb, n is Poisson’s ratio, anda is the
core cutoff parameter. For the purposes of this article, we
a simplified approximation for the critical thicknesshc :

hc'
ubu
em

5
b

em
. ~2!

This approximation is justified because the product of
other terms in Eq.~1! are approximately constant~because of
the weak thickness dependence of the logarithmic term! and
have a magnitude on the order of one. We note that
asymptotic behaviors developed in this article for TD a
MD densities for large film thicknesses donot depend on the
exact value used forhc .

During the motion of TDs to generate new MDs~for h
.hc!, mobile TDs may have their motion blocked by MD
lying in the path of the moving TDs, as shown schematica
in Fig. 1~c!. The problem of TD blocking has been treated
detail by Freund and co-workers.11,12 In the models we will
develop below, once a TD has been blocked by a cross
MD, its motion will be considered arrested for all furthe
film growth. In future articles we will treat the role of ‘‘un
blocking’’ of TDs on TD reduction and strain relaxation i
strained layer growth.

The equilibrium linear MD densityrMD
equil ~the number of

MDs per unit length at or near the film/substrate interfa!
for films with thicknesses larger thanhc can be calculated
directly13 and is given as

rMD
equil5

em

ubucosl S 12
hc

h D , for h.hc . ~3!

Again, we use a simplifying approximation for the equilib
rium MD density:
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rMD
equil5

1

hc
2

1

h
, for h.hc . ~4!

If the MD density at a thicknessh is less thanrMD
equil, then the

‘‘excess’’ strainex in the system is given as

FIG. 1. Basic processes of TD motion in a strained epitaxial film.~a! An
isolated TD forh,hc and thus no motion is possible.~b! TD–MD system
for h.hc: increasing film thickness leads to the increasing configuratio
force on the TD which leads to TD motion and generation of additional M
segment length.~c! Blocking of TD motion by a MD in the slip path of the
TD.
ex5S 1

hc
2

1

h
2rMDDb. ~5!

The critical thickness concept can now be used to ill
trate misfit strain mediated TD reduction. In our previo
work, we argued that the most likely process for TD redu
tion involved annihilation or fusion reactions between TD
lying on intersecting slip planes. Consider the example
~001! fcc epitaxy shown in Fig. 2. For this example, both t
~101! and~011! slip planes have MD segments terminated
a TD. The TDs in this example have opposite Burgers v
tors,b152b2 when the outward normal sense from the fil
surface is used as the line direction for the TDs. For a la
with a misfit strainem , at h5h15hc , the TD segments
should neither move to increase nor decrease the lengt

l

FIG. 2. Motion and annihilation of TDs in strained layers.~a! Initial con-
figuration of two TDs with opposite Burgers vectors (b152b2) on inter-
secting slip planes in a film of thicknessh1&hc . ~b! Intermediate configu-
ration with TDs at the distance of the annihilation radiusr A in the film with
thicknessh2.h1 . ~c! Final configuration with MDs only~the TDs are an-
nihilated! in the film with thicknessh3.h2 .
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their MD segments. Forh5h2.hc , it is energetically favor-
able for the TDs to increase the MD segment length,
shown in Fig. 2~b!. During the process of generating ne
MD length, the TDs may fall within an annihilation radiu
r A , at which point the TDs annihilate. The product of an
hilation reaction has no threading segments and the resu
MD may have a change in orientation of its line but it mu
have a single Burgers vector~note that for the MD segment
we have changed the line direction for one of the MD s
ments after they fuse!, as shown in Fig. 2~c!. If the TD seg-
ments do not have opposite Burgers vectors, but still have
attractive force, then the two TDs will ‘‘fuse’’ and the resul
ing single TD will have a Burgers vector that is the sum
the Burgers vectors of the reacting TDs. Additionally, f
fusion, the TD will form a node with the two MD segmen
at, or near, the film/substrate interface.

In our previous work on TD reduction in homogeneo
buffer layers we considered the complete crystallogra
and TD geometry for~001! fcc semiconductor films.6,7 This
treatment included all possible TDs~Burgers vector and slip
plane combination!. For ~001! oriented films with
1
2^110&$111% slip systems, there are 24 unique character T
~each of the 4 inclined$111% slip planes has six possibl
Burgers vectors including opposite sign!. Thus, each unique
TD must be described with a separate differential equat
Each TD has a 1 in 24possibility of an annihilation reaction
with other TDs and a 6 in 24chance of a fusion reaction
When considering all possible reactions between TDs,
demonstrated that the reduction in total TD density~the sum
of all 24 individual densities! with increasing film thickness
~the solutions to 24 coupled differential equations! could be
fit to the solution of a single differential equation for th
overall dislocation density with a single coefficientK. The
value of K is proportional to the annihilation radiusr A and
also depends on the ratior F /r A and depends on geometric
parameters. For the description of overall TD reduction,
can adjust the dependencies ofK by appropriates changes t
the value ofr A . In the current approach we are interested
total TD reduction due to effective annihilation reaction
Therefore in the models below we consider only annihilat
reactions and treatr A as a phenomenological paramet
which describes the average overall reaction probability.

In models developed below, we assume that the thre
ing dislocations lie on inclined slip planes such that the m
fit strain directly leads to a resolved shear stress on the
plane. Thus, the models are directly applicable, for exam
to ~001! epitaxy of diamond structure or zinc blende sem
conductors. Note that for~0001! oriented wurzite semicon
ductors, the$hki0% planes, on which the TDs normally lie
do not have a resolved shear stress for biaxial misfit or th
mal stresses.

III. APPROACH

For the treatment of strained layers, we consider T
that have no obstacles to motion, mobile TDs with dens
rTD

m , and TDs whose motion is blocked by MDs. Th
blocked, or immobile, TDs have densityrTD

i . In all of the
modeling that follows, we only consider the relaxation of
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intentionally strained layer~misfit strainem! by MD genera-
tion through the motion of mobile TDs. That is, there is
mechanism for generating new TDs~e.g., through new half-
loop formation or multiplication!. We initially consider the
changes in TD and MD densities with differential motiondl
of the mobile TDs. The mobile TD motionl is driven by an
intentional misfit strain,em . We will later relate the differ-
ential motiondl to changes in film thicknessdh. The total
TD densityrTD

total, which is defined as the number of TDs p
unit area at the film free surface, is given as

rTD
total5r TD

i 1rTD
m . ~6!

The changes in the TD densitiesrTD
m , rTD

i , andrMD are
all related to the motion of the mobile TDs. If we assume
cross grid of MDs, as shown schematically in Fig. 3~a!, the
mean spacingl̄ between MDs will be inversely proportiona
to the rMD and for simplicity we assume there are no ge
metric factors in this relation, i.e.,l̄ 5 l /rMD ~that is, we take
the number of MD intersections with a reference line tha

FIG. 3. Plan view schematic showing the TD geometry leading eithe
annihilation reactions or TD blocking due to motion of the mobile TD
Here, a closed circle represents the initial position of a mobile TD, an o
circle represents a mobile TD after motion, and a3 represents a blocked o
immobile TD. ~a! Blocking of mobile TDs by MDs with average spacin
l̄ 51/rMD51/r3 . ~b!. Annihilation reactions:~i! between two mobile TDs;
~ii ! between a mobile TD and a blocked TD.
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perpendicular to the MD lines!. The chance of intersection o
a randomly located TD, with a MD line, due to TD motio
dl, is dl/ l̄ 5rMDdl and thusdrTD

m 52rTD
m rMDdl. At such

an intersection, a mobile TD, shown as an open circle in F
3~a!, is blocked, i.e., it is transformed into an immobile
blocked TD, shown with an ‘‘x’’ in Fig. 3~a!. The differential
motiondl of the mobile TDs will also lead to probability o
reactions between mobile TDs. If we assume that the mo
TDs will react if they fall within an annihilation radiusr A ,
then the motionDl of the mobile TD sweeps out an intera
tion areaS52r ADl, as shown in a schematic plan view
Fig. 3~b!. In the areaS, each mobile TD on average wi
encounterNm5rTD

m S other mobile TDs and thusDrTD
m 5

2NmrTD
m 52rTD

m2
S522r ArTD

m2
Dl. Taking the limit thatDl

becomes vanishingly small leads to the differential expr

sion drTD
m 522r ArTD

m2
dl. The mobile TDs may also com

within r A of blocked TDs and annihilate. In the motionDl of
the mobile TD, each mobile TD will on average encoun
Ni5rTD

i S immobile TDs. The differential change in the de
sity of mobile TDs as a result of annihilation reactions w
immobile TDs will then bedrTD

m 522r ArTD
m rTD

i dl. The
sum of the three contributions that lead to changingrTD

m is
then written as

drTD
m 52rTD

m rMDdl22r ArTD
m2

dl22r ArTD
m rTD

i dl. ~7!

Immobile TDs are generated by MDs blocking the motion
mobile TDs, i.e.,drTD

i 51rTD
m rMDdl, and eliminated by an-

nihilation with mobile TDs, i.e.,drTD
i 522r ArTD

m rTD
i dl.

Thus, the total change inrTD
i with motion is given as

drTD
i 51rTD

m rMDdl22r ArTD
m rTD

i dl. ~8!

The MDs are generated through the motion of mob
TDs, and their density changes with differential motion a

drMD51
2rTD

m dl, ~9!

where the factor of12 accounts for use of a linear MD densi
in a cross-grid array of MDs.

When the misfit strain has been relieved to its equil
rium value for the given film thickness@when ex given by
Eq. ~5! is zero#, then we consider no further MD generatio
In the models developed below, we will investigate the T
reduction and MD generation both at constant film thickn
~allowing the system to evolve towards equilibrium! and at
changing film thickness~associated with growth!. For the TD
reactions, we will only consider TD–TD reactions due to T
motion associated with MD generation—unlike our mod
for homogeneous buffer layers, we will not consider a
geometrical motion of the TDs with changing film thickne
that is associated with their line direction.

We will develop two main models for TD reduction i
strained layers. The first model intentionally neglects blo
ing of TD motion by other MDs~case I!. Although this
model may have limited applicability to discretely strain
layers, we believe that this model represents the cas
graded layers. The second model explicitly treats blocking
TDs by MDs~case II!. For both models, we consider cases
.
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which the mobile TD velocity is constant~until equilibrium
relaxation is achieved! or the mobile TD velocity is propor-
tional to the ‘‘excess strain’’ in the system.

For the purposes of compactness, we introduce the n
tion

rTD
m 5r1 ,

rTD
i 5r2 , ~10!

rMD5r3 ,

and thus Eq.~6! can be rewritten as

rTD
total5r t5r11r2 . ~11!

Additionally, we will frequently use dimensionless TD an
MD densities, film thickness, critical thickness, and Burge
vector as a result of normalization by either the annihilat
radius squared or by the annihilation radiusr A , respectively,
i.e.,

r̃15r1r A
25rTD

m r A
2,

r̃25r2r A
25rTD

i r A
2,

r̃35r3r A5rMDr A ,

h̃5
h

r A
, ~12!

h̃c5
hc

r A
,

b̃5
b

r A
,

l̃5
l

r A
.

We prefer to work with both the dimensional form and t
normalized form~dimensionless! of the coupled differential
equations and variables. The dimensional form is includ
here for the sake of the derivation. The normalized variab
and equations are used because they reduce the numb
independent parameters and the results have broader a
cability.

A. General form of the differential equations

Using the compact notation for the TD and MD densiti
given above, the coupled differential equations describ
the TD and MD evolution are given as

dr152qr1r3dl22r Ar1
2dl22qrAr1r2dl, ~13a!

dr25q~r1r3dl22r Ar1r2dl!, ~13b!

dr35 1
2r1dl, ~13c!

where the parameterq represents MDs blocking or no
blocking TD motion (q51 corresponds to blocking of TD
by MDs andq50 corresponds to no blocking!. The coupled
differential equations written in normalized form are give
as

dr̃152qr̃1r̃3dl̃22r̃1
2dl̃22qr̃1r̃2dl̃, ~14a!
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dr̃25q~ r̃1r̃3dl̃22r̃1r̃2dl̃!, ~14b!

dr̃35 1
2r̃1dl̃. ~14c!

The motion of the mobile TDs is limited either by rea
ization of complete strain relaxation (r3b5em), when there
is no driving force for continued motion, or through the
depletion by annihilation reactions and the formation
blocked TDs. Sincel is not an easily controlled experimen
tal parameter~nor is it easily measured!, in several cases we
relate the TD motion to easily realized parameters such
film thickness or growth rate.

IV. SPECIFIC CASES

We now consider several solutions to the set of coup
differential equations@Eqs.~13! or ~14!# for different bound-
ary conditions. Although the solutions are general, we w
consider examples for which the magnitude of the Burg
vector is;1–5 Å, which is in the typical range for group IV
and zinc blende semiconductors, the misfit strainem is in the
range 1024– 1021 ~although this latter value is very large,
could be easily realized in graded layer growth!, and the
annihilation radiusr A has a value in the range 500–1000 Å4

A. Case I.1: No blocking, equilibrium relaxation

In this case, we neglect any blocking of TD motion b
MD segments that lie at the strained layer/substrate interf
In this model equilibrium relaxation is achieved@see Eq.~4!#
and all TDs are assumed to generate MD segments starti
h5hc . Thus, the TD motiondl with changing film thick-
nessdh may be determined by

r35
1

hc
2

1

h
, ~15a!

dr35
dh

h2 5 1
2r1dl, ~15b!

which gives

dl5
2dh

r1h2 5
2emhcdh

br1h2 , ~16!

where we have usedhc5b/em . Since there is no blocking
r250 for all film thicknesses@i.e., q50 in Eqs. ~13! or
~14!#, this reduces the system@Eqs. ~13! or ~14!# to two in-
dependent differential equations:

dr152
4r Aem

b

hc

h2 r1dh, ~17a!

dr35
em

b

hc

h2 dh. ~17b!

These two equations can be integrated fromhc to h(.hc)
using the boundary conditions

r1uh5hc
5r1

0

and

r3uh5hc
50
f

as

d

l
s

e.

at

to give

r15r1
0 expF2BS 12

hc

h D G , ~18a!

r35
em

b S 12
hc

h D , ~18b!

whereB54r Aem /b54em /b̃. We note that it is obvious tha
Eq. ~18b! is just another form of Eq.~15a! For h5hc , there
is no strain relaxation or TD reduction, as anticipated. F
h→`,

r15r1
0 exp~2B!, ~19a!

r35
em

b
5r3

` , ~19b!

wherer3
` corresponds to the MD density for the fully relaxe

layer.
Assuming that there is no blocking of TDs by MDs or b

other TDs this solution predicts a decrease in TD density
depends exponentially on the parameterB. The misfit strain
is the most directly controlled parameter inB, and small
changes in the misfit strain can lead to substantial change
the final TD density. As a simple estimate, we takeb
52 Å, r A5500 Å and plotr1

final/r1
0 as a function of the

nominal misfit strain for the layer in Fig. 4. It can be se
that a misfit strain of 0.1% leads to a;66% TD reduction of
and a 1% misfit strain leads to a TD reduction of;99.5%.

Although this model shows that substantial TD reducti
can be achieved by a single strained layer, it is unlikely t
such reduction would be realized because of blocking of
motion by MDs. However, for the case of strain graded la
ers, in which the MDs are distributed throughout the strain
region, this model may have more applicability; this is b
cause the strain grading provides a means for TDs to byp
other MDs.

FIG. 4. TD reduction,r1 /r1
0, in the model of no TD blocking for fully

relaxed layers (h→`) as a function of the initial misfit strainem divided by
the normalized Burgers vectorem /b̃5emr A /b@5(r A /hc)#.
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B. Case I.2: No blocking, equilibrium relaxation, and
diminishing driving force

In this model, we assume that the TD velocities are l
early proportional to the ‘‘excess strain’’ for relaxation@see
Eq. ~5!# and we relate the differential TD motion to both th
TD velocity and to the film growth rate. Again in this mode
we consider no obstacles to TD motion~i.e., no blocking of
TDs by MDs!.

The TD velocity is taken as linearly proportional to th
excess strain in the system. The functional dependence
the velocity does not change the asymptotic value of the
densities provided that the TDs have zero velocity forex

50. The average TD velocityv will be given as

v5Aex5AFemS 12
hc

h D2r3bG5AF emS 12
h̃c

h̃
D 2 r̃3b̃G ,

~20!

whereA is a proportionality constant with units length/tim
The differential TD motiondl will be dl5v dt. For con-
stant film growth rate,g5dh/dt, dl5v dt5(v/g)dh, and
thus the coupled differential equations for TD and MD de
sity evolution can be written as

dr1522r Ar1
2aFemS 12

hc

h D2r3bGdh, ~21a!

dr35
1

2
r1aFemS 12

hc

h D2r3bGdh, ~21b!

or in dimensionless form

dr̃1522r̃1
2aF emS 12

h̃c

h̃
D 2 r̃3b̃Gdh̃, ~22a!

dr̃35
1

2
r̃1aF emS 12

h̃c

h̃
D 2 r̃3b̃Gdh̃, ~22b!

wherea5A/g. This system of equations can be solved n
merically since they are coupled through the variabler1 .

Since this model does not include TD blocking, the s
lutions should asymptotically approach the solutions for
and MD density given at large film thicknesses, as given
Eqs. ~19!. The rate of TD density falloff should decreas
with decreasinga values. Figure 5 shows the solutions
Eqs. ~22! for em50.01, b51022r A , r1

0r A
250.2, and fora

values of 10, 100, and 1000~if we take, for example,r A

5500 Å, thenb55 Å and r1
0583109 cm22!. These solu-

tions show that the TD density does fall with increasing fi
thickness and asymptotically approaches its saturation v
at largeh̃. Furthermore, the TD density has a faster rate
diminishment for increasing TD velocity. Figure 5 als
shows the calculated TD density for the case of equilibri
relaxation@case I.1, Eq.~18a!#. In all cases where the TD
velocity depends on the excess strain, the TD density h
higher value than that given by the case of equilibrium
laxation. This is the expected result, because equilibrium
laxation corresponds to zero excess strainex throughout the
growth.
-

for
D

-

-

-

n

ue
f

a
-
e-

C. Case II.1: Blocking, no annihilation reactions
„constant driving force …

In this case, we consider only blocking of mobile TD
by MDs, thus creating blocked TDs; there is no annihilati
of TDs. For this idealized situation, the following three equ
tions must be solved:

dr152r1r3dl, ~23a!

dr25r1r3dl, ~23b!

dr35 1
2r1dl. ~23c!

For these equations, it is obvious thatdr252dr1 and direct
integration givesr252r11C ~C is an integration constant!.
Thus only two coupled equations must be solved:

dr1

dl
52r1r3 , ~24a!

dr3

dl
5 1

2r1 , ~24b!

where

luh5hc
50, r1uh5hc

5r1
0, r2uh5hc

50,

and

r3uh5hc
50,

which leads toC5r1
0. The solution of these equations

given as

r15
4r1

0 exp~Ar1
0l!

@exp~Ar1
0l!11#2

, ~25a!

r35Ar1
0

exp~Ar1
0l!21

exp~Ar1
0l!11

, ~25b!

which have the asymptotic behavior:

FIG. 5. Thickness dependence of the TD density in strained layers in
model without blocking where the TD velocity is proportional to the ‘‘e
cess’’ strain~case I.2!. Curves are shown for differenta values~wherea is
proportional to the ratio of the TD velocity to growth rate!. Additionally, the
solution is shown for equilibrium relaxation@see Eq.~18a!#. The initial
misfit strain here isem50.01.
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lim
l→`

r150, ~26a!

lim
l→`

r35Ar1
0. ~26b!

Although these solutions neglect TD annihilation, they
demonstrate the general validity of the approach. Provi
that there is sufficient misfit strain, all mobile TDs will be
come blocked by MDs. Since each mobile TD generate
MD segment in this model, the final MD density is given
the square root of the TD density and the maximum str
relaxation is given asr3b5Ar1

0b. Taking, for example,r1
0

51010 cm22 andb52 Å, the maximum strain relaxation i
r3b5Ar1

0b5231023. It is important to note that when an
nihilation and blocking reactions are included~see the next
case! the plastic strain relaxation,r3b, will be less than that
predicted by Eq.~26b! because the density of mobile TDs
diminishing through annihilation, thus reducing the dens
of TDs that can produce new MD segments.

Let us consider strain layer growth on high quality sing
crystal substrates, e.g., GaAs with a TD density
;104 cm22, and an effective value ofb of ;2 Å. The maxi-
mum extent of strain relaxation from MDs that result fro
bending of substrate TD in the blocking limit will ber3b
5Ar1

0b5231026. Thus, it is not surprising that the ne
TDs must be generated for extensive relaxation in strai
layer growth on high quality substrates.

D. Case II.2: Blocking, reactions, incomplete
relaxation „diminishing driving force …

This case involves solutions of Eqs.~13! ~with q51!
corresponding to both TD annihilation reactions and blo
ing of mobile TDs by MDs. In this case, the TD velocity
linearly proportional to the ‘‘excess’’ strain in the system
differential equations which readily facilitates solutions
thickness, an experimental parameter, rather thanl. Al-
though the TD velocity likely has a power law or exponent
dependence on the excess strain, the TD and MD dens
for large thicknesses~asymptotic values! will not change.
The equations to be solved follow as

dr152aFemS 12
hc

h D2r3bG~r1r312r Ar1
2

12r Ar1r2!dh, ~27a!

dr25aFemS 12
hc

h D2r3bG~r1r322r Ar1r2!dh, ~27b!

dr35
a

2 FemS 12
hc

h D2r3bGr1dh, ~27c!

or in normalized form as

dr̃1

dh̃
52ab̃S 1

h̃c

2
1

h̃
2 r̃3D ~ r̃1r̃312r̃1

212r̃1r̃2!, ~28a!

dr̃2

dh̃
5ab̃S 1

h̃c

2
1

h̃
2 r̃3D ~ r̃1r̃322r̃1r̃2!, ~28b!

dr̃3

dh̃
5

ab̃

2 S 1

h̃c

2
1

h̃
2 r̃3D r̃1 . ~28c!
d

a

n

y

f

d

-
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We start by considering two representative examples
the solutions of Eqs.~28! in which either the misfit strain is
completely relaxed or all mobile TDs become blocked bef
the strain can be fully relaxed. For this example,b
51022r A , r1

0r A
250.2, a5100, andem50.001@Fig. 6~a!# or

em50.01 @Fig. 6~b!#. For the case of the initial misfitem

50.001, the normalized MD densityr̃3 asymptotically ap-
proaches a value of 0.1 for largeh̃ which corresponds to
complete strain relaxation@( r̃3 /r A)b5r3b5(0.1/r A)1022

3r A51023#. For this example, the normalized density
mobile TDsr̃1 and blocked TDsr̃2 both asymptotically ap-
proach a constant value with increasingh̃, as expected for
complete strain relaxation; as the film relaxes, there is a
minishing driving force for TD motion and new MD forma
tion. Since the misfit strain is small, the TD reduction is a
small, r̃1

final/ r̃1
0'0.65. If there were no blocking~and in this

case there is minimal blocking asr̃2
final/r̃1

final,0.1!, then, us-
ing Eq. ~19a!, a fraction change in TD densityr̃1

final/ r̃1
0

50.670 is predicted which is in close agreement with t
numerical solution.

FIG. 6. Evolution of TD and MD densities in growing strained layers@ex-
amples of solutions of the system of Eqs.~28!# in the model that includes
TD blocking by MDs and TD velocity proportional to the ‘‘excess’’ strain
~a! Growth with complete misfit strain relaxation;~b! growth with incom-
plete misfit strain relaxation. For~a! and~b! the following parameters were
used: normalized initial TD densityr̃1

05r1
0r A

250.2; a5100 ~TD velocity
parameter!; and normalized Burgers vectorb̃5b/r A50.01. The initial misfit
strain for ~a! wasem50.001 and for~b! em50.01.
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FIG. 7. Solutions of the system of Eqs.~27! or ~28! corresponding to the model that includes TD blocking by MDs and TD velocity proportional to
‘‘excess’’ strain. These plots show the thickness dependence of the total TD density and MD density in strained layers for different initial misfit sem .
~a! Total normalized TD densityr̃ t5 r̃11 r̃2(5r tr A

25r1r A
21r2r A

2); ~b! normalized MD densityr̃35r3r A; ~c! fractional residual strain (em2 r̃3b̃)/em

5(em2r3b)/em . The initial misfit strainsem50.001, 0.002, 0.003, 0.004, 0.005, 0.01, 0.02, and 0.1 are shown for each curve. For all parts the fo
parameters were used:r̃1

05r1
0r A

250.2; a5100 ~TD velocity parameter!; and b̃5b/r A50.01. The dashed line in~c! corresponds to the equilibrium residua
strain, which can be found from Eq.~3!. ~d! Dependence of the normalized MD densityr̃35r3r A on the normalized initial misfit strainem /b̃5emr A /b.
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When the strain is sufficiently large, the TDs will be
come blocked before the film fully relaxes, as shown in F
6~b! for the case whereem50.01. In this example, the nor
malized MD densityr̃3 asymptotically approaches a value
;0.27 for largeh̃ which corresponds to a plastic strain
2.731023. For complete blocking, the final value ofr̃3 can
be compared with the asymptotic behavior of Eqs.~26!
which are the solutions for the TD evolution when annihi
tion is neglected. In this case, maxr1→0r̃35Ar̃1

050.447. The

asymptotic value ofr̃3 is less thanAr̃1
0 because the value o

r̃1 decreases through annihilation reactions in addition
blocking reactions.

The solutions to Eqs.~28! are quite stable when the sy
tem either approaches complete relaxation@Fig. 6~a!# or ex-
hausts itself of mobile TDs@Fig. 6~b!#. Solutions for Eqs.
~28! for different velocity dependence on strain~i.e., cases
where the TD velocity has a power law dependence on
excess strain;v5Aex

n! have the same asymptotic values
the TD and MD densities.

For the case of complete relaxation, the extent of
.

-

o

e

e

total TD reduction~where rTD
total5r t5r11r2 or r̃TD

total5 r̃ t

5 r̃11 r̃2! increases with increasing misfit strain. Howeve
when the misfit strain exceeds the value where complete
laxation is possible~referred to as the blocking limit, i.e.
r̃1→0 for increasingh̃!, the change in total TD density i
constant for the same initial TD density. Figure 7~a! shows
the thickness dependence ofr̃ t for different values ofem

ranging between 0.001 and 0.1 for an initial TD densityr̃1
0

50.2. For misfit strains larger than;0.003, the total TD
density asymptotically approaches a value of;0.055, corre-
sponding to a TD reduction of;75%. The MD densityr̃3

also reaches a constant value for misfit strains larger t
;0.003, as shown in Fig. 7~b!. The value of the normalized
residual strain (em2 r̃3b̃)/em5(em2r3b)/em as a function
of thickness is shown in Fig. 7~c!. Again, it is clear that for
initial misfit strains less than;0.003 there are sufficient mo
bile TDs to eventually fully relax the misfit strain, wherea
for initial misfit strains greater than;0.003, the mobile TDs
become exhausted and the films have a residual misfit st
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The asymptotic values of the misfit dislocation densityr̃3 as
a function of the initial misfit strain are shown in Fig. 7~d!.

The fractional TD reduction, in the model includin
blocking and diminishing driving force with progressiv
strain relaxation, depends explicitly on the number of init
TDs. This is shown in Figs. 8~a! and 8~b!. In these examples
the initial misfit strain is 0.01,hc5r A , and a velocity param-
etera5100 was used. For small initial TD density, there
negligible reduction, as the TDs have large spacing rela
to r A and there is only a small probability of reaction
either two mobile TDs or one mobile TD and one block
TD. With increasing TD density, the probability of reactio
increases, and there is a more effective percentage reduc
as shown in Fig.8~b!.

V. DISCUSSION

The use of discretely strained layers can provide
marked reduction in TD density, as shown in the mod

FIG. 8. Influence of the initial value of the TD density on the relaxati
processes in strained epitaxial layers~for the model that includes blocking
and a linear dislocation velocity dependence on the ‘‘excess’’ strain!. ~a!
Evolution of the normalized TD densityr̃ t5 r̃11 r̃2(5r tr A

25r1r A
21r2r A

2)
with normalized film thicknessh̃5h/r A . ~b! Dependence of the maximum
possible TD reduction (r̃ t

02 r̃ t
`)/ r̃ t

05(r t
02r t

`)/r t
0 in the blocking model as

a function of the normalized initial TD densityr̃1
05r1

0r A
2. Here, the follow-

ing parameters were used: initial misfitem50.01 anda5100 ~TD velocity
parameter!.
l

e

on,

a
s

developed in this article. Discretely strained layers are p
ticularly effective at TD reduction for initially high TD den
sities. However, at lower initial TD densities, the probabili
of TD–TD reactions is diminished through the blocking
mobile TDs by MDs. When there is sufficient ‘‘excesss
strain, blocked TDs may by pass the MD segment which
in the TD glide path; however, adoption of a ‘‘bypass crit
rion’’ has not been included in our initial approach but
planned for future work.

Alternative approaches to TD reduction, such as conti
ously graded layers, may be employed for effective TD
duction at lower TD densities or for achieving over all low
TD densities. Provided that the strain grading is sufficien
slow with increasing film thickness, graded layers provi
the intrinsic advantage that the MDs are distributed throu
out the strained layer and thus blocking of mobile TDs
MD segments is avoided~for reviews for experimental re
sults on graded layers, see either Ref. 1 or 14!. Thus, the
model of no blocking of mobile TDs and equilibrium relax
ation ~case I.1! should represent the ideal limit for slowl
graded layers; the total TD density should have an expon
tial dependence on the annihilation radius and on the t
misfit strain. Further, for a slowly graded layer, the produ
of the projected misfit dislocation densityr 3

projected~projected
through the fully graded layer! and the Burgers vector shoul
be equal to the total misfit strain for the graded layer, i
r3

projectedb5em . Recent results indicate that graded layer a
proaches have had the most success in reducing TD den
for laterally uniform layers~for example, see two recent a
ticles, Refs. 15 and 16!.

In this work, we have assumed that during the growth
the strained layer there is insufficient driving force to ac
vate new sources of misfit and threading dislocations. Ho
ever, in the growth of strained layers, either where the
density is low~such as in the growth on high quality sub
strates! or where either the misfit strain or thickness is larg
then the possibility of activating sources for new MDs a
TDs may be quite high.17 The current treatment has explic
itly been concerned with reducing TD density through stra
driven motion of TDs. For real growths, however, the pos
bility of increasing the TD density through the activation
new dislocation sources is a real issue that requires car
experimental consideration. In our future work, we will e
plicitly deal with possible dislocation generation.

In our previous modeling of TD evolution in relaxe
homogeneous buffer layers, we suggested that fluctuation
the net Burgers content of the TDs may give rise to satu
tion of the final TD density, where the important fluctuatio
wavelength is on the order of or larger than the possi
lateral motion of the TDs. For the case of homogeneo
buffer layers, the extent of lateral TD motion is determin
by the trajectory of the inclined TD with increasing film
thickness. However, for strained layers, the extent of late
TD motion depends on the nominal misfit strain and t
initial total TD density. In principal, the lateral TD motio
for strained layers may be substantially larger than the lat
motion achievable for homogeneous buffer layers. The
fore, the strain-driven migration of the TDs may act to ‘‘h
mogenize’’ the spatial distribution of densities of differe
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specific TDs and thus lead to a lower value of the local
Burgers vector content and, accordingly, lower saturat
values of the TD density. Indeed, MacPherson and Good
showed that the growth of strained In0.10Ga0.90As layers on
GaAs substrates with a thicknessh'4hc leads to both an
order of magnitude reduction in TD density and also lead
reduced inhomogeneities in the distribution of thread
dislocations.18

VI. SUMMARY AND CONCLUSIONS

In this article, we have developed models for TD redu
tion due to the introduction of an intentionally strained lay
Since this effort has been focused on TD reduction, we h
not included mechanisms that would increase the TD den
~i.e., we have not accounted for any multiplication or oth
generation processes!. Three different types of dislocation
have been considered in this model: mobile TDs, immob
TDs, and MDs. The models are based on MD formation
the process of lateral TD motion and subsequent annihila
reactions of mobile TDs with either other mobile TDs
blocked TDs, or reactions in which a mobile TD is convert
to an immobile TD by a blocking reaction with a MD. Th
evolution of the density of mobile and blocked TDs a
MDs can be represented by three coupled nonlinear first
der differential equations.

The two cases in which we have an analytical solution
the coupled differential equations for TD density provi
important limits for TD behavior in strained thin films. Th
case where TD blocking by MD is not considered~case I.1!,
which may be directly applicable to slowly graded laye
gives the maximum TD reduction for a total misfit strainem ,
regardless whether the layer is discretely strained, s
graded, or continuously graded. The ratio of the final to i
tial TD density depends exponentially on the annihilati
radiusr A and on the total misfit strainem @see Eq.~19a!#.

The case where only blocking reactions were conside
~case II.1! provides the upper limit for plastic strain relax
ation for a discretely strained layer. The maximum possi
strain relaxation is simply given asr3b5Ar1

0b. Once a layer
has approached the maximum possible strain relaxa
given by the blocking limit~nearly complete diminishmen
of mobile TDs!, further increases in the layer thickness m
lead to the activation of new sources of TDs and MDs. T
result has significance in the design of discretely strai
layers or step-graded layers for TD reduction. This res
shows that in step-graded layers for TD reduction the m
strain between subsequent steps should havedecreasing
t
n
w
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g

-
.
e
ty
r

e
y
n

r-

o

,

p-
-

d

e

n

s
d
lt
t

magnitude and the subsequent steps should haveincreasing
thickness to allow for sufficient relaxation of the reduc
layer thickness.

Numerical solutions for the cases that include both an
hilation and blocking reactions have behavior bounded
the two analytic cases. The solution to these equations, w
the TD velocity is proportional to the excess strain, sh
stable solutions, thus demonstrating the general validity
the approach.
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