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Recently, three-dimensional structured ceramic composites with large threshold streng
(i.e., stress below which there is zero probability of failure) have been fabricated utilizin
an architecture consisting of relatively stress-free, elongated prismatic domains, sep
rated by thin compressive walls. We build upon prior work on laminate architectures, wi
the common feature that these structures are all susceptible to fracture. Typically, the
three-dimensional structures consist of thin shells of mullite that surround alumin
Cracks, originating from large flaws within the ceramic body, are arrested by the su
rounding compressive layers until a specific stress level is attained (i.e., the thresho
strength), resulting in a truncation of the strength distribution in the flaw region. A
preliminary stress intensity solution has shown that this arrest is caused by a reduction
the crack driving force by the residual compression in the compressive walls. This soluti
also predicts that the threshold strength is dependent not only on the magnitude of
residual compression in the walls but also on the dimensions of both phases. A fin
element model is presented that utilizes a penny-shaped crack in the interior of suc
structure or half-penny-shaped crack emanating from the edge of such a structure. O
going analytical and experimental work that is needed to more fully understand this arre
phenomenon and its application towards the development of reliable, damage-tolera
ceramic components are discussed.@DOI: 10.1115/1.1831296#
lo
1 Introduction
The major drawback of ceramics as structural materials is th

brittleness. Brittle materials contain an unknown variety of crack
and flaws that are inadvertently introduced during processing a
surface machining@1,2#. The high brittleness makes ceramic part
extremely prone to impact damage, often resulting in catastrop
failure. A concept which plays a central role in the study of crac
arrest in brittle materials is the threshold strength—that is, a stre
below which the probability of failure vanishes. This phenomeno
increases the damage tolerance of ceramics and will allow en
neers to design reliable ceramic components for structural app
cations. It has been shown by Rao et al.@3# and Hbaieb and Mc-
Meeking @4,5#, that thin compressive layers, within a lamina
ceramic, arrest large cracks, and produce a threshold stren
These laminates have been shown to exhibit threshold strength
accordance with finite element modeling of the crack propagati
process. Typically, the laminar plates are composed of alternat
layers of Al2O3 and a mullite/Al2O3 mixture. Residual compres-
sive stresses in the layers can arise due to differential strain
tween the layers caused by one or more of the following: diffe
ential thermal contraction~or expansion! during cooling ~or
heating!, a change in volume due to a crystallographic phas
transformation, or molar volume change associated with the fo
mation of a reaction product.

Since laminates are simply two-dimensional structures, they a
only effective at arresting a crack inone direction. Three-
dimensional structured ceramic composites have been fabrica
that yield a threshold strength in other dimensions. This is bei
accomplished by assembling fibers and spheres using colloi
processing techniques and coating these geometries with ano
material. The coated fibers and spheres are then consolidate
produce a material with a periodic structure that includes layers
compression that can arrest cracks propagating in all three dim
sions@6#. One type of three-dimensional structure consists of rel
tively stress-free, elongated prismatic domains, separated by t
compressive walls~see Fig. 1!. This is the central idea underlying
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the present study. To understand the mechanics of fracture in this
architecture, a simple analytic model and several finite element
analyses are carried out to study the threshold strengths for differ-
ent configurations.

Our analysis proceeds in the following way. First, the three-
dimensional ceramic structure is simplified as an infinitely long
cylindrical structure and a crack is modeled as a penny-shaped
crack in the interior. The longitudinal axis of the cylinder is per-
pendicular to the plane of the crack and is assumed to nominally
be in tension. The problem is then extended to a semi-infinite
structure with a half-penny-shaped crack emanating from the edge
of such a structure. Stress intensity factors are calculated for these
two configurations as a crack grows from the tensile section into
the compressive section. The stress intensity factors are used to
determine the threshold stress, that is, the level needed to extend
the crack through the compressive layers to produce catastrophic
failure.

2 Problem Formulation
The physical system that provides the basis for the following

discussion is a three-dimensional architecture consisting of elon-
gated prismatic domains, separated by thin compressive walls, as
shown schematically in Fig. 1.

2.1 Analytic Model for an Idealized Cylindrical
Structure. As an approximation, we assume the three-
dimensional architecture to be an infinitely long cylindrical struc-
ture. The structure consists of concentric cylinders, alternating
between tensile and compressive zones, the innermost being a
tensile zone. As a representative model, Fig. 2 shows three con-
centric cylinders with radiir a , r b , and r c , respectively. The
thickness of the compressive layer is given byt5r b2r a . Assume
a preexisting penny-shaped crack of diameter Fig. 2~a! spans the
diameter of the tensile layer. In the following analyses, we deter-
mine the stress intensity factors for a crack when it extends into
the compressive zone, that is, forr a,a,r b . The stress intensity
factors are used to determine the applied threshold stress,s thr ,
needed to extend the crack through the compressive layers to pro-
duce catastrophic failure.

A stress intensity factorK can be determined by superimposing
the two stress fields: the applied stress field and the residual stress
3;
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Fig. 1 „a… Schematic and „b… micrograph of a three-dimensional ceramic architecture. As a
material example, the solid core consists of alumina „Al2O3…, while the thinner, compressive
coating-like phase consists of a mixture of mullite and Al 2O3 „micrograph courtesy of M.
Snyder ….
r
field, as depicted in Fig. 3. Each stress field is applied to the sa
penny-shaped crack of diameter 2a and each has its own known
stress intensity factor.

Before we carry out the superposition, let us assume that t
cylindrical structure is infinitely long and subject only to uniform
Vol. 72, MAY 2005
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tension,sa , at the remote boundary. The stress intensity factor fo
this case is readily available and given by Tada@7# as:

Kapplied52saAa

p
F~a/r c!, (1)
Transactions of the ASME
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whereF(a/r c) is a dimensionless correction function given by

F~a/r c!'

120.5
a

r c

10.148S a

r c
D 3

A12
a

r c

. (2)

The correction function depends on geometry of the structure
as Eq.~2! shows, as radial dimension of the cylinder approac
infinity ( r c→`), the correction function approaches unity, that
F(a/r c)→1. For purposes of this study, it is not feasible to use
infinite value forr c and we must accept a finite value, which
reflective of the real three-dimensional structure. For our ge
etries, the magnitude ofF(a/r c) ranges from about 1.01 to abo
1.375. The arbitrariness in the choice ofr c , which sets the back
ground stress, is one disadvantage of the using cylindrical m
to represent the stresses in what really is a periodic structure

We now return our attention to the superposition scheme ou
in Fig. 3. The applied stress issa , the magnitude of the residua
compression issc ~defined to be a positive number! and the re-
sidual tension is denoted ass t . The first stress field on the righ

Fig. 2 Schematic of an infinite cylindrical structure containing
a penny-shaped crack in its interior „tensile … phase
Journal of Applied Mechanics
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hand side of the ‘‘equality’’ is a tensile stress of magnitude (sa
2sc), applied at the remote boundary, to a cracked specimen that
doesnot contain residual stresses~with F'1). The stress inten-
sity factor for this stress is given by the first term on the right side
of Eq. ~3!. The second stress field is a tensile stress of magnitude
(sc1s t), applied only to the crack within the tensile region. Its
stress intensity factor is given by the second term on the right side
of Eq. ~3!. The two superimposed stress fields sum to that shown
on the left-hand side of Fig. 3. The stress intensity factor for the
two superimposed stress fields is thus given by:

K5~sa2sc!
2

p
Apa1

2

Apa
~sc1s t!E

0

r a j

Aa22j2
dj. (3)

The integrand in Eq.~3! is due to a ring load of radiusj which is
integrated with intensitys t1sc up to a radiusr a . Evaluating the
integral and simplifying gives:

K52saAa

p
12s tAa

p
22~sc1s t!Aa

p
A12S r a

a D 2

. (4)

The first term in Eq.~4! is recognized as the stress intensity factor
for a penny-shaped crack in an applied tensile field, while the
remainder of the expression is negative. Thus, the stress intensity
factor initially decreases when the crack extends into the compres-
sive shell of the material, and fracture resistance correspondingly
increases. The analytical result in Eq.~4!, for the stress intensity
factor, is compared with calculated stress intensity factor, in
Section 3.

Using elasticity theory, it can be shown that the magnitude of
the axial tensile stress (0,r ,r a and r b,r ,r c) is given by:

s t5
E8DaDTt~ t12r a!

r c
2

, (5)

and, similarly, the magnitude of the axial compressive stress (r a
,r ,r b) is given by:

sc5
E8DaDT~r c

22t222tr a!

r c
2

, (6)

whereE85E/(12n), E is Young’s modulus,n is Poisson’s ratio,
Da is the difference in thermal expansion between the two mate-
rials, andDT is the temperature relative to a datum at which the
Fig. 3 Stresses in a loaded cylindrical ceramic architecture can be obtained via superposition
MAY 2005, Vol. 72 Õ 383
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Fig. 4 Schematic of the semi-infinite cylindrical structure with a half-penny shaped crack
emanating from the free surface
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thermal residual stresses are zero. In Eqs.~5! and ~6!, DaDT is
taken to be a positive number. The derivation of Eqs.~5! and ~6!
is given in Appendix A.

In general, the stress intensity factor in Eq.~4! decreases mono
tonically as the crack grows through the compressive layer
hence, the crack grows stably until it reaches the interface with
next tensile zone as the applied stress is increased. Howev
can be shown that above a critical value of applied stress
functionK(a) reaches a local minimum in the compressive zo
If the crack were to reach this location, it would continue to gr
unstably until reaching the interface with the tensile layer. Fur
discussion of this critical applied stress is given in Appendix B
this paper, we avoid parameter regimes that lead to a minimu
K(a) prior to the crack reaching the tensile zone.

Assuming the threshold stress occurs when the crack
reached the interface with the tensile zone, one can identiK
with Kc anda with r a1t and solve forsa to arrive at:

s thr5
Kc

2
A p

r a1t
1

sct~ t12r a!

t~ t12r a!2r c
2

1scS r c
2

r c
22t~ t12r a!

DA12S 1

11t/r a
D 2

. (7)

By substituting Eq.~6! into ~7! we can write the normalize
threshold stress as:

s thr

E8DaDT
5

Kc

2E8DaDTAr a

A p

11t/r a
2S r a

r c
D 2S t

r a
D S t

r a
12D

1A12S 1

11t/r a
D 2

. (8)

Equations~7! and~8! show that the threshold strength for a cyl
drical composite increases with the fracture toughness of the
layer material, the magnitude of the compressive stress an
thicknesses of the various layers. These expressions are ana
to those worked out for laminate architectures in earlier w
@3–5#, in that they give very similar trends with regard to t
variation ofs thr with crack geometry. Most importantly, they a
low one to design cylindrical ceramic architectures with
knowledge that failure will not occur below this value of stres

This theoretical model ceases to apply when a variety of r
istic effects prevail. For example, elastic mismatch is not
counted for; that is, we assume the effective Young’s modulusE8
is identical in both phases. In addition, we assume the c
384 Õ Vol. 72, MAY 2005

wnloaded 05 Sep 2008 to 128.111.50.115. Redistribution subject to ASME
-
and,

the
er, it
the

ne.
ow
her
. In
m in

has
y

n-
thin-

the
ogous
ork
he
l-
he
s.
eal-
ac-

ack

propagates radially on its original plane through the various
phases. While this straight crack propagation has been observed
occur in many experiments, a phenomenon known as bifurcatio
can alternatively occur, where the crack may branch from it
original plane after penetrating into the compressive layer@3#.
This effect has been shown to increase the threshold strength b
yond what is calculated here, but does imply that the physica
mechanisms considered in this section are not universally app
cable. While the finite element method discussed in the next se
tion can be extended to consider cases that involve elastic mod
lus mismatch and bifurcation, we submit that the results presente
in this work still provide invaluable guidance on the design of
three-dimensional architectures that are fracture resistant. In add
tion, the current work provides a level of confidence before ex
tending the FEM model to more complex geometries.

2.2 Cracks Emanating From a Surface. The second case
we consider is a half of a concentric cylindrical structure with a
half-penny-shaped crack emanating from the edge, as shown sch
matically in Fig. 4. The motivation for this geometry is that ce-
ramic composites of this type are typically tested in bending, with
surface cracks initiating from the surface in maximum tension.

For a half-space with a half-penny-shaped crack emanatin
from the edge and subject to tensile loading at the remote boun
ary, the stress intensity factor is well known and is given by Tad
@7# as:

K5
2

p
saApaF~u!, (9)

whereF(u) is given by:

F~u!'1.21120.186Asinu ~10°,u,170°!. (10)

Given that we are using a finite value for the cylindrical diameter
the result by Tada can only be used as an approximation to o
results.

Equations~9! and~10! show the stress intensity factor is depen-
dent on the angleu, measured from the edge of the structure.
However, this dependence is relatively weak. For a crack emana
ing from a free surface, the state of stress varies from plane stra
in the interior of the plate to plane stress at the surface. Henc
using a crack-opening displacement method to calculate the stre
intensity factors can give erroneous results so Eq.~10! is limited
to internal angles. Raju and Newman@8# use a nodal-force
method, which requires no prior assumption of either plane stres
or plane strain, to obtain the stress intensity factors of semiellip
tical surface cracks. Their results seem to suggest that the stre
Transactions of the ASME
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intensity factor varies strongly near the surface, indicating t
need for substantial mesh refinement in this regime. Because
this complication we defer consideration of cracks at the po
where they intersect the surface to future work.

For the case of residual stresses in a semi-infinite cylindric
structure there is no analytical solution available for stress inte
sity factors and we must rely solely on finite element analysis.

3 FEM Models for Stress Intensity Factors
Stress intensity factors are calculated using the commercial

nite element codeANSYS @9#. Recall the two cases considered; tha
is, an infinitely long cylindrical structure with a penny-shape
crack in the interior and a semi-infinite structure with a hal
penny-shaped crack emanating from the edge.

3.1 Full Penny-Shaped Crack. We first consider the struc-
ture of concentric cylinders with an embedded penny-shap
crack, as shown in Fig. 2. Figure 5 shows a typical finite eleme
model with eight wedges. Given the symmetry of the problem
only one-eighth of the body is modeled. The 20-node brick e
ments are used in the analysis. The first row of elements arou
the crack tip is modeled with singular elements, with the midsi
nodes placed at the quarter points, to account for ther 21/2 singu-
larity in stresses and strains at the crack tip. The stress inten
factors are calculated with a displacement extrapolation method
outlined in theANSYS theory manual@9#.

A typical dimension for the Al2O3 tensile cells in the three-
dimensional architecture is 2r a5450mm. For the compressive
layers, a mixture of mullite and Al2O3 , typical dimensions range
from 23 to 90mm @10#. Two configurations are considered here
one in which the thickness of the compressive layer is equal to
diameter of the tensile cell, that is,t52r a , and with 2r a
5200mm; one in which the compressive layer is one tenth th
diameter of the tensile cell, that is,t52r a/10, for a thickness of
tensile layer 2r a5450mm. In the former,t/2r a51, and in the
latter, t/2r a51/10. In both configurations, the elastic constants
the tensile and compressive zones are considered to be ident
The reason we choose two different thickness ratios is that
smaller one is comparable to the experimental dimensions used
Lange et al.@6,10# and the larger one is comparable to ratios us
in finite element studies on laminates@4#.

Figure 6 shows the calculated stress intensity factors for
thickness ratio oft/2r a51. The results are plotted versus norma
ized crack length, as the crack extends from the tensile la
through the compressive layer. The results are shown separa
for the stress intensity factorKapplieddue to the externally applied

Fig. 5 Typical finite element model with singular elements
around the crack tip
Journal of Applied Mechanics
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load, and for the stress intensity factorK residualdue to the residual
stress caused by thermal mismatch. The theoretical results fo
Kapplied and K residual, given by Eq.~4!, are plotted on the same
graph for comparison. As the figure shows, there is good agree
ment between the theoretical and computed results.

In Fig. 7, we show the calculated stress intensity factors for a
thickness ratio oft/2r a51/10. Again, the results are shown sepa-
rately for Kapplied due to the externally applied load, andK residual
due to the material mismatch. The theoretical results forKapplied
andK residualare plotted on the same graph for comparison. As in
the previous case, there is good agreement between the theoreti
and calculated results.

3.2 Half-Penny-Shaped Crack Emanating From the Sur-
face. We next consider the second geometry—half of a cylindri-
cal structure with a half-penny-shaped crack emanating from th
edge, as shown in Fig. 4. The same two configurations are con
sidered as for the full-penny-shaped crack, that is, a configuratio
where the thickness of the compressive layer is equal to the diam
eter of the tensile cell, and a configuration where the compressiv
layer is one tenth the diameter of the tensile cell. The finite ele
ment calculations are carried out in a similar fashion as in the
previous section. Only one-fourth of the body is modeled, given
the symmetry of the problem.

Fig. 6 Comparison of calculated and theoretical stress inten-
sity factors. Tensile and compressive layers have equal thick-
nesses. Thickness of tensile layer is 2 r aÄ200 mm.

Fig. 7 Comparison of calculated and theoretical stress inten-
sity factors. Thickness of compressive layer is one tenth the
diameter of the tensile zone. Diameter of tensile zone is
2r aÄ450 mm.
MAY 2005, Vol. 72 Õ 385
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Figure 8 shows the calculated stress intensity factors for
thickness ratio oft/2r a51. Again, the results are shown separat
for Kapplied due to the externally applied load, andK residualdue to
the material mismatch. The results are shown for three value
angleu, 30 deg, 60 deg, and 90 deg. As expected, and sugge
by Eq. ~9!, the stress intensity factor decreases as the angu
increases.

Figure 9 shows the calculated stress intensity factors for
thickness ratio oft/2r a51/10, also for the same three values
angleu, 30 deg, 60 deg, and 90 deg.

Now that the stress intensity factors have been calculated
next step in our analysis is the determination of threshold stren
which we take up in the following section.

4 Discussion of Threshold Strength
As discussed in Sec. 2.1, the stress intensity factor gene

decreases as the crack extends into the compressive layers.
the maximum stress needed to drive the crack through the c
pressive layers occurs when the crack is at the interface betw
the compressive and tensile zones, that is, whena5r a1t5r b . In
the context of the superposition concept introduced in Sec. 2.1
can setK5Kapplied1K residual5Kc ; hence,Kapplied5Kc2K residual,

Fig. 8 Comparison of calculated and theoretical stress inten-
sity factors. Tensile and compressive layers have equal thick-
nesses. Thickness of tensile layer is 2 r aÄ200 mm.

Fig. 9 Comparison of calculated and theoretical stress inten-
sity factors. Thickness of compressive layer is one tenth the
diameter of the tensile zone. Diameter of tensile layer is
2r aÄ450 mm.
386 Õ Vol. 72, MAY 2005
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and then solve for the applied stresssa , which appears as a linear
prefactor inKapplied. Thus, the largest stress needed to extend the
crack through the compressive zone is given in a normalized form
as:

s thr

DaDTE8
5

Kc

DaDTE8Ar a

2
K residual~r b!

DaDTE8Ar a

Kapplied~r b!

sappliedAr a

. (11)

If the initial crack size in the tensile layer is less thanr a and the
stress needed to extend it is less thans thr , the crack will be
arrested by the compressive layer. However, if the crack is very
small and extends at a stress greater thans thr , it will extend
through the compressive layer and lead to catastrophic failure
without being arrested. Thus, Eq.~11! is rigorously thought of as
a threshold stress. If the applied stress is less thans thr , the body
should not fail when tensile stress is applied along the fibers. As
previously noted, this enables load-bearing components to be de-
signed with the foreknowledge that failure is unlikely to occur
below that stress.

As expected, Eq.~11! shows that the threshold strength in-
creases with the fracture toughness of the compressive layers,Kc .
The normalized threshold strengths are plotted in Figs. 10 and 11,
against the normalized fracture toughnessKc of the compressive
layer. Values ofKc are chosen between 1 and 5 MPaAm, a range
which is typical of ceramic materials. Values of other material
parameters are taken asE5300 GPa, n50.3, Da52.795
31026 C21 and DT521200°C, for purposes of setting the
ranges of these plot axes. TakingKc53 MPaAm and t/2r a
51/10, typical of the cylindrical structure by Snyder@10#, the
threshold strength we arrive at is;800 MPa. This modestly ex-
ceeds what has been observed in that system, but other effects,
such as edge cracking and crack branching into other propagation
planes~as well as the fact that modulus mismatch is not accounted
for here! are being considered as mechanisms that are coming into
play in the experimental system.

In addition to the effect of intrinsic fracture toughness, the finite
element results reveal the effect of mismatch strainDTDa, albeit
in an indirect way due to the normalization we have chosen to use
in Figs. 10 and 11. Inspection of Eq.~11!, coupled with the fun-
damental result that we expectK residual to vary linearly with
DTDa ~and that theK residual in the numerator of the equation is
actually expected to be negative!, yields the intuitive result that
s thr increases with mismatch strain.

Fig. 10 Threshold strength versus fracture toughness for a
full-penny shaped crack
Transactions of the ASME
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The effect of tensile region size 2r a and compressive laye
thicknesst, and the ratiot/2r a , are even less transparent in t
finite element results, simply because we did not perform an
tensive parametric study in this space. Nevertheless, useful in
can be gained from the simple analytical model through Eq.~8!
which shows that the threshold strength decreases with the th
nesses of the various layers. The ratiot/2r a has a modest effect; in
addition the absolute size of the tensile zone,r a , impacts the
threshold stress as well. The latter effect is being exploited
Paranjpye et al.@11# through microelectromechanical system
~MEMS! processing technology to achieve threshold stresse
laminate systems in excess of 1 GPa.

As to be expected, the threshold strength depends on the e
moduli of the tensile and compressive layers. With everything
held fixed, if the tensile layer were more stiff than the compr
sive layer, the magnitude of the residual stress rises and henc
threshold strength increases as is apparent from Eq.~7!. While we
have not performed a systematic study of cases where the
pressive layer elastic properties differ from those in the ten
zones, the good agreement that has been observed in this
between the FEM results and the analytic results provide the
essary confidence necessary to build elastic mismatch into fu
implementations of this FEM model. In addition, more sophis
cated procedures, such as considering a periodic structure b
on a hexagonal compressive layer configuration~depicted in Fig.
1!, and using the J-integral to calculate stress intensity fact
should be explored.

5 Summary
The finite element method was used to predict thresh

strengths in a model system consisting of a cylindrical jacket
der residual compression, surrounded by regions of tensile m
rial, subject to tensile loading aligned with the cylindrical ma
axis. The model system has relevance to ceramic composites
have been fabricated by consolidating fibers of one phase in
other at high temperature, followed by cooling, resulting in
sidual compression in the phase surrounding the original fib
The architecture offers superior mechanical response, in
cracks which originate in the cylindrical zones may be arrested
the surrounding compressive layers, resulting in a truncation
the strength distribution with respect to flaw size and an ass
ated design threshold strength. A simple fracture mecha
model, valid for similar elastic properties is presented, and
finite element results are in good agreement with that analy
Moreover, the finite element model is extended to the case
half-penny crack emanating from a traction-free surface. As

Fig. 11 Threshold strength versus fracture toughness for a
half-penny shaped crack. Results are shown for angle uÄ60°.
Journal of Applied Mechanics
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pected from prior experience with laminate systems, the threshold
strength is shown to depend on the mismatch strain~through the
thermal expansion coefficient mismatch and temperature change!,
the intrinsic toughness of the constituent materials, and the thick-
ness ratio. The results are in modest agreement with experimental
results.
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Appendix A
In this Appendix, we overview the derivation of the background

stress field that drives crack propagation in the cylindrical, axi-
symmetric problem discussed in this paper. Consider the geometry
depicted in Fig. 2, albeit without a crack. The elastic moduli are
taken as identical in all three layers. The coefficient of thermal
expansion in the interior layer~of thicknesst! is taken asab , and
that in the remaining layers is taken asaa . The stress equilibrium
equations, written in cylindrical coordinates and assuming no
body forces, reduce to

]s rr

]r
1

1

r
~s rr 2suu!50

(A1)
]szz

]z
50.

Moreover, compatibility requirements dictate that

]

]r
~r«uu!5« rr . (A2)

Equation~A2! follows from the fact that displacements in theu
direction vanish, and the displacement component in ther direc-
tion may only depend onr. In addition, we insist that«zz remain
constant throughout the structure. Hooke’s Law is written as

« rr 5
1

E
@s rr 2n~suu1szz!#1a iDT

«uu5
1

E
@suu2n~s rr 1szz!#1a iDT, (A3)

«zz5
1

E
@szz2n~suu1s rr !#1a iDT

with the subscript ona taken to coincide with the appropriate
phase. The symmetry of the deformation dictates that all shear
quantities vanish.

Inserting« rr and «uu from Eq. ~A3! into Eq. ~A2!, and elimi-
natingsuu via Eq.~A1!, yields a linear ordinary differential equa-
tion for s rr that leads to a general solution of the form

s rr 5C11C2 /r 2; suu5C12C2 /r 2, (A4)

where the constantsC1 andC2 must be determined separately for
each phase, resulting in six~6! unknowns. We note that Eq.~A4! is
constant with a piecewise constant solution forszz, consistent
with the second part of Eq.~A1!. Additional boundary conditions
are imposed in order to determine the constants:~1! the stress
components must remain finite asr→0; hence,C2 vanishes for
the inner phase;~2! the outer surface of the structure is free of
traction; hence,s rr is taken as zero atr 5r c ; ~3! continuity of«uu
is enforced at bothr 5r a and r 5r b ; and ~4! continuity of s rr is
enforced at bothr 5r a and r 5r b .

There remains a seventh unknown, the constant value of«zz,
which is found through a macroscopic force balance. That is, St.
Venant’s principle is exploited to write
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d

Dow
pr a
2szz~0<r ,r a!1p~r b

22r a
2!szz~r a<r ,r b!

1p~r c
22r b

2!szz~r b<r<r c!50. (A5)

With the unknowns in hand, the third of Eq.~A3! may be used to
write the longitudinal stress in each phase:

szz55
EDT~ab2aa!~r b

22r a
2!

~12n!r c
2

for 0<r ,r a

EDT~ab2aa!~r b
22r a

22r c
2!

~12n!r c
2

for r a<r ,r b

EDT~ab2aa!~r b
22r a

2!

~12n!r c
2

for r b<r<r c

.

(A6)

The solution maps to Eqs.~5! and ~6! by substitutingDa5ab
2aa , r b5r a1t, and noting thatsc[2szz for the sandwiched
~compressive! layer.

Appendix B
When calculating the threshold strength, it is usually assu

that Eq.~4! decreases continuously throughout the regimer a,a
,r b . Taking the first derivative ofK(a) and insisting that it mus
remain negative yields the following restriction:

~sa1s t!aAa22r a
2

~sc1s t!~a21r a
2!

,1. (B1)

We note that the left-hand side of Eq.~B1! increases monoton
cally in a, so the first location for which the derivative ceas
to be negative, at some prescribed level ofsa , would occur at
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a5r a1t ~i.e., the farthest extent within the compressive zone!.
Solving Eq.~B1! as an identity gives the critical value:

scrit5
~sc1s t!~2r a

212r at1t2!

~r a1t !At212r at
2s t . (B2)

Thus, the stress intensity factor undergoes a minimum within the
compressive zone forsa.scrit , and Eq.~7! becomes invalid for
the threshold strength. By equating Eq.~B2! with Eq. ~7!, a re-
striction on material parameters that guarantees stable crac
growth across the entire compressive zone can be obtained. Mc
Meeking and Hbaieb@5# have derived similar results for the case
of a two-dimensional laminar composite.
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