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The problem of crack formation in surface layers where a
linear profile of elastic strain prevails through the thickness
of a layer is investigated. Such strain gradients can be gen-
erated, for example, in graded alloy semiconductor layers
or due to specific stress relaxation mechanisms in lattice
mismatched layers or previously unanticipated dislocation-
related strain gradients. The operation of the relaxation me-
chanisms related to threading dislocation inclination and
leading to the strain gradients in nominally compressed
Al,Ga; _,N layers grown on buffer layers with smaller lat-
tice constants is discussed. A fracture mechanics model is
developed for the calculation of the stress intensity factor
of mode I cracks initiated at the surface of the layer exhibit-
ing a linear strain dependence. The critical layer thickness
for crack formation in such a gradient elastic field has been
found in the framework of this fracture mechanics model.
Results of the modeling are compared with experimental
observations of crack onset in nominally compressed layers
of Al,Ga;_,N semiconductors. Good agreement between
the model predictions and the experimental data is found.

Keywords: Strain gradient; Crack; III-nitrides; Threading
dislocation

1. Introduction

High elastic strains and mechanical stresses in surface
layers of engineering and functional materials can be con-
sidered as a leading reason for degradation of their mechan-
ical and functional properties. These degradation phenom-
ena become extremely important in modern technologies
operating with micro- and nanoscale films grown on for-
eign substrates. Well-known examples of thin film technol-
ogies include fabrication of semiconductor and piezoelec-
tric heterostructures for electronic and optoelectronic
application, hard films and coatings on metals as environ-
mental and thermal barriers, and biological films and mem-
branes for catalysis and sensing applications. Professor
Wolfgang Pompe’s research in the field of mechanics of
thin film and composite materials forms a solid theoretical
foundation that underpins our ability to bring the above
technologies to fruition. It is difficult to overestimate the re-
sults of his work in this field, which has spanned over four
decades (see, for example, Refs. [1-7]).
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One physical source for mechanical stresses in thin films
or surface layers is the variation of crystal lattice parameter
in the film/layer under constraints caused by the underlying
layer or the substrate. These lattice parameter variations can
be caused by chemical composition changes, phase trans-
formation, or an enhanced number of crystal lattice defects
in the layer. The most practically relevant cases for stress
manifestation in film/substrate systems include those origi-
nating from crystal lattice mismatch and a difference of
thermal expansion coefficients between the film and the
substrate, as well as grain coalescence in growing polycrys-
talline films, e. g. Ref. [8]. In the case of an abrupt change of
the physical and chemical properties in the layer con-
strained by a very thick substrate, stresses develop only in
the layer where they are usually uniform, e.g. Ref. [9]. In
the general case, the magnitude of stresses may vary with
depth beneath the free surface of layer. Obvious examples
include functionally graded materials such as composition-
ally graded SiGe films [10] or graded materials for biomed-
ical applications [4]. In this paper we consider another
source of non-uniform stress profiles in surface layers,
namely one related to the specific dislocation structures in
growing a mismatching IIl-nitride layer. As has been estab-
lished by recent experimental observations [11—13], initi-
ally compressed Al,Ga;_,N layers can gradually diminish
the magnitude of the stress when layer growth proceeds.
We explain this phenomenon as a result of the intentional
inclination of threading dislocations (i.e. dislocations ex-
tending through the layer) of edge character, which were
originally oriented parallel to the c-axis of the wurtzite
crystal structure of the Al,Ga; _,N layer [12, 14].

The magnitude of the stress field, the stressed volume,
and the stored elastic energy usually increase as the layer
growth proceeds. In such cases the total energy of the
layer/substrate system can be diminished by the manifesta-
tion of relaxation processes accompanied by the change in
defect structure, i.e. degradation of the system. Typically,
misfit dislocations can form at the layer/substrate interface
[9, 15] or cracks can develop in stressed layers or along
the interface [9, 16].

For stressed mismatched IIl-nitride layers, both relaxa-
tion phenomena, i.e. misfit dislocation [17, 18] and crack
[19, 20] formation, have been observed but have not yet re-
ceived a complete theoretical description. Typically, III-ni-
tride layers have a high density of threading dislocations
[21], which in their turn can be involved in the onset of re-
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laxation processes. The cracking of nitride layers often oc-
curs in layers that are under nominal thermal mismatch
compression at room temperature [22]. However, specially
designed experiments [20, 22] confirm that cracks nucleate
at the free surface of the growing films in the modes typical
for fracture under tensile load. It was proposed that the
stress state changed in the nitride layers with increasing
thickness [20]. One possible mechanism could explain ten-
sile stresses in the growing layers as a result of island
coalescence providing that the layer grows in island mode
[9]. However, as we will show below, cracking can be ob-
served in nominally compressed at growth temperature
Al Ga; _,N films, which grew in a step-flow mode [11, 13]
and therefore do not allow the realization of the coalescence
mechanism. As was already mentioned, stress relaxation in
nominally compressed layers can be achieved via threading
dislocation inclination, which leads to a gradual reduction
of the compressive stress [12, 14]. Subsequent layer growth
can produce a gradient in tensile stress (i.e. increasing ten-
sile stresses near the free surface), which at a certain thick-
ness will initiate cracking through the layer.

The aim of the present article is to develop a fracture me-
chanics approach for the understanding of crack formation
in surface layers with strain gradients and to compare the
predictions of the continuum mechanics modeling with ex-
perimental observation of cracking in IIl-nitrides.

2. Motivation

Our modeling efforts are motivated by experiments on the
observation of microcracks in AlGa;_,N thin layers,
which grow under nominal compression due to lattice mis-
match with respect to an underlying buffer layer. We attri-
bute the change of the stress state from compression to ten-
sion in the process of layer growth as the reason for the
observed crack formation. The change in the stress state is
due to the development of strain gradients caused by in-
clined threading dislocations with a misfit component.

2.1. Summary of experimental observation of relaxation
and cracking in nominally compressed III-nitride
layers

For the analysis of the crack formation under the condition
of strain and stress gradients, Si-doped Alg49Gag 51N/
Al ¢>Gag3gN structures were grown on c-plane sapphire
substrates by low pressure metalorganic chemical vapor de-
position (MOCVD), as described previously in Refs. [11,
12]. The grown structures included a thin low temperature
AlGaN nucleation layer followed by a ~0.95 um thick
Alg¢>Gag3gN buffer layer grown at high temperature.
Then, either a 130 nm thick or 750 nm thick Si-doped
Alp 49Gag 5N film was grown on top of the buffer layer at
the same high temperature conditions. All structural studies
showed that these layers grew in a step-flow mode. The
structural properties of the Si-doped Alg49GagsiN films
were evaluated by atomic force microscopy (AFM), high-re-
solution X-ray diffraction (HRXRD), and transmission elec-
tron microscopy (TEM). The details on the growth and char-
acterization techniques can be found in Refs. [11, 12, 23].
The stress/strain state in the Aly 49Gag 5N layer was de-
termined from the change of the crystal lattice parameters
relative to those of the underlying Alj ¢,Gag 3gN layer by
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the analysis of HRXRD reciprocal space maps. The degree
of relaxation R (where R =1 corresponds to fully relaxed
and R=0 corresponds to fully coherent layer) was R =
1.01 for both the 130 and 750 nm thick layers. Note that a
relaxation degree R > 1 indicates a change in stress state
from compression to tension. We attribute R to the surface
region of the film and accept this result for relaxation de-
gree as an indication of no elastic strain at the layer surface.
In the following we compare this with the magnitude of
elastic strain calculated exactly at the surface. Combining
the above results with the data for the layers of different
thicknesses and with varying values of Si-doping [11, 12],
one can deduce the linear dependence of the in-plane com-
pressive stresses on the depth in the layer [12, 14] (the
mathematical formula for this dependence is given in the
next subsection). Similar results on the linear dependence
of compressive stresses in undoped AlGaN layers were also
reported in Ref. [13].

Optical microscopy studies of the 130 nm thick layer
(Fig. 1a) show a good quality surface with no cracking
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Fig. 1. Threading dislocations and microcracks in the strain gradient
layer in Aly49Gags1N/AlyGagagN structure. The thickness of
Aly49Gag 51N layer is (a) ~ 130 nm; and (b) ~750 nm. Optical micro-
graphs (top) and cross-section TEM images (bottom) of strain gradient
layers recorded with g =0002 two-beam imaging conditions are
shown. The 130 nm thick layer demonstrates no cracking whereas the
750 nm thick layer shows cracks, which extended from mid-film thick-
ness to the interface with the underlying Alj ,Gag 3gN buffer.
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whereas optical microscopy of the 750 nm thick layer
clearly indicates cracks with a ~20 um spacing (Fig. 1b).
We believe that the similar relaxation degree for the
130 nm and 750 nm films is related to the cracking of the
750 nm thick film. Cracks in the film can relieve normal
films stresses over lateral dimensions several times the film
thickness. Cross-section TEM studies of the sample with
the nominally 130 nm thick layer, Fig. la, show that the
threading dislocations are inclined in the Alj49Gag 51N
layer. The sample with the 750 nm thick layer, Fig. 1b,
also demonstrates inclined threading dislocations in the
Alp49Gag 51N layers but in addition shows cracks with
openings from mid-depth in the Aly49Gag 51N layer to the
bottom of the Al 490Gag 5N layer. The occluded crack indi-
cated that the layer cracked during growth, providing stress
relief, and then the crack was laterally overgrown.

2.2. Role of dislocation inclination in generation of
gradient elastic field in surface layers

An approach for understanding the origin of the transition
from compressive to tensile stresses in the surface layers
of I-nitrides (grown in (0001) orientation of the surface)
has been originally proposed in Ref. [11] and then devel-
oped in detail in Refs. [12, 14]. It has been clearly demon-
strated that the stress variation in such gradient layers is
caused by the inclined segments of threading dislocations
of edge character with Burgers vectors of the type
%<1120> Such inclined dislocation segments can be seen
in that part of the layer designated as the “strain gradient
layer” in Fig. 1. In the buffer layer, these TDs have a
[0001] line direction; however, in the compressed part of
the surface layer, they become systematically inclined with
respect to the [0001] growth direction by some angle . The
magnitude of the inclination angle a can be as large as 20°
[11,12,13].

Figure 2 presents a schematic of edge threading disloca-
tion inclination in Ill-nitride strain gradient layers. When
viewed down the growth direction, the inclined threading
dislocations have an average projected length L. The dislo-
cation Burgers vectors are projected on the layer/substrate
interface without any distortion. Therefore, in the far field,
the projected dislocation segments are equivalent to the sec-
tions of misfit dislocations. Due to three-fold symmetry of
the main crystallographic directions in the (0001) plane,
the misfit dislocation segments can be combined into three
families of straight line misfit dislocations along the pro-
jected directions of threading dislocation inclination. The
total biaxial plastic relaxation at the top layer surface result-
ing from the triangular MD grid sgip is given by [14]:

1
giﬁp = Eb/)TDL (1)

where pp is the threading dislocation density and L is the
projected length of the threading dislocation segments,
which is directly related to the layer thickness 4 and the in-
clination angle o by L = htan a.. For pr; =3.0 - 10" cm™=2,
h=200nm, o =17°, and b = 0.318 nm (corresponding to
the observations in Refs. [11, 12]), Eq. (1) gives the plastic
relaxation at the layer surface et(ip =0.0029 that is compar-
able with the initial misfit ¢, &~ 0.0032 and the relaxation

degree R =~ 1 of experimentally observed layers [11, 12].
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Fig. 2. Schematic for inclined edge dislocations in a strain gradient
layer. (a) three families of edge dislocations corresponding to three
possible orientations of the Burgers vector in the (0001) plane of III-ni-
tride layer; (b) plan-view presenting the average dislocation projected
length L.

As a result of the plastic relaxation, the elastic strain de-
pendence on position inside the strain gradient layer is giv-
en as:

en = &y = Ve (h—2) —ém (2)

where £ is the thickness of the layer with inclined threading
dislocations, Vspl is the strain gradient, which can be de-
duced from Eq. (1), &y, is the magnitude of the initial com-
pressive strain in the layer, which is also the magnitude of
lattice mismatch, z is the distance taken from the layer sur-
face (see the coordinate system in Fig. 3a). In practice, the
gradient in strain relaxation Ve can be easily estimated
from Ve ; = ¢, /hy where hy is the uncracked layer thick-
ness of t%e complete strain relaxation (zero elastic strain)
on its surface.

Non-zero stress components in the layer demonstrate si-
milar linear dependence shown in Fig. 3b:

O =0y =mh—2z)—09, 2<h (3a)
O = Oy = —00, 22> h (3b)

where m is stress gradient defined as m = ¢,/hy, and gy is
the initial magnitude of compressive stresses that is related
to the equibiaxial mismatch é&py,:

gy = MSm (4)
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Fig. 3. Linear stress dependence in strain gradient layers. (a) sche-
matic of the layer with a coordinate system xyz; (b) in-plane stress
component gy, in dependence on the depth in the layer.

where the biaxial elastic modulus M can be given either for

an isotropic material:
E

1—v

(5a)

Misotropic =
where E is Young’s modulus and v is Poisson’s ratio, or for

wurtzite type semiconductors:

(G +Ciy) G
C33

—2C3

Mwurtzite - (Sb)
where Cy; are the elastic stiffnesses. The value of g can be
estimated for example for Aly49Gag s N layer, which is
matched to a AlyeGagsgN buffer. In this case &, =~
0.0032 [12] and the elastic constants C;;, Ci», Cy3 and Cs3
for the layer with ternary composition can be estimated by
applying Vegard’s Law to the known constants for GaN
and AIN [24]. The result is o9 ~ 1.47 GPa. The stress
gradient can be estimated by taking the experimentally
determined value of hy~ 130 nm that gives m~
11.3 GPapum™' (or 10" Pam™"). If this stress gradient is
sustained during the layer growth, a high level of tensile
stress can be generated in the surface part of the layer
shown in Fig. 3.

3. Stress intensity factor for edge crack in strain
gradient layer

Suppose that the level of the tensile stress on the surface is
sufficient to induce cracking. We suppose an incipient
mode I edge crack nucleates on the layer surface and propa-
gates normally in the layer interior to depth a (see Fig. 4).
We limit our consideration to the case where the crack front
is relatively long along the y-axis and the crack plane re-
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Fig. 4. Mode I edge crack in the strain gradient layer. h, a, gy, m are
parameters of the model, see explanation in the text.

mains perpendicular to the x-axis. We investigate the so-
called “edging” crack propagation along the z-direction,
which should be distinguished from a “channeling” crack
propagation, where a pre-existing crack propagates along
the y-direction in the layer [16]. The fact that there exists a
tensile stress field acting perpendicular to the crack plane
implies that some mode I stress intensity factor Kj will be
induced at the crack tip that would be indicative of a driving
force for crack extension, in accordance with linear elastic
fracture mechanics theory. The stress intensity would de-
pend on several variables, such as layer thickness &, the
magnitude of the initial compressive stress oy, the stress
gradient m, and the crack length a. The stress intensity fac-
tor for a crack of prescribed length a can be determined
through a superposition procedure described in [25], and is
given by:

/a Fz/a) (6)
Vi@ \/“

where ¢(z) is the stress along the plane in the uncracked
solid where the crack is expected to occur. In our case
0(z) = ox(2), as given by Eq. (3).

Equation 6 originates from the weight function theory
developed in fracture mechanics [26, 27]. The “kernel”, or
weight function, in Eq. (6) that is, every term in the inte-
grand except ¢(z), is the stress intensity factor induced by
a pair of collinear line loads of unit magnitude applied to
the faces of an edge crack, at distance z from the free sur-
face, that tend to open it. The weight function under consid-
eration can be, for example, taken from [28]. It may be writ-
ten in the following approximate form:

5/4
Flz/a) = 13-03(%) (7)
After some algebraic manipulation (see, for example, [29]),

Eq. (6) can be expressed in terms of a nonsingular integrand
as:

Fz/a) —ol@]
()

For the stress gradient given by Eq. (3), the integration is
performed analytically for both cases, i.e. when the crack

K1 = o(a)y/na +

=/
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is stopped in the strain gradient layer:

K1 = {(mh— ay) [n 4+ 0.6fi(1)] — ma[2 + 0.6f2(1)]}\/%, a<h
(9a)

or when it is arrested in the compressed buffer:

K = {—ao[rt +0.6f1(1)] + 0-6’"4 ! (Z) - %fz (Zﬂ

/ 2
+2ma[hsinlh+ 1<h> 1]}\/a,a2h
a a a i

(9b)
The functions f;(¢) and f1(£) used in Egs. (9a, b) are
defined via Gauss hypergeometric function [30]
2Fi(a, b; ¢, x):
4 1917
fi(&) =sin' ¢ - 569/42F1 (Ea??,fz) (10a)
4 4 5113
Ao =1+ (-1 ) 1-8 - jemn (55 50
(10b)
and have the numerical values fi(1)~ 0.64 and

S (1) = 0.25.

We note that for a layer without a strain gradient m = 0 or
for very small crack length a << h, we recover the expected,
classical solution for an edge crack in a uniformly loaded
semi-infinite space. Moreover, Eq. (9a) is consistent with a
known solution for an edge crack in a half-space subject to
a linearly varying traction [31].

4. Numerical results and discussion

Sample results for the Kj(a) dependence via Egs. (9a and b)
are given in Fig. 5. For a given set of parameters, i.e. film
thickness 4, bulk value of compressive stress gy, and stress
gradient m, a general trend is that Kj initially increases with
crack size. This means that the driving force for crack ex-
tension increases as the crack grows. Assuming the resis-
tance to fracture remains constant, as is typical of brittle
materials, this implies that unstable crack growth would oc-
cur if any fracture process were initiated. After reaching a
maximum, the driving force decreases with increasing
crack size. For large crack length the stress intensity factor
becomes negative, that implies no driving force at all.
Therefore, crack arrest will occur after some increment of
instable crack growth.

We can define a critical thickness for crack formation in
strain gradient layers by identifying the maximum K; with
the critical stress intensity factor for fracture, K., and sol-
ving for 4. Doing so yields the expression:

o 3nRR2+ 061 (ch)”
ert [+ 0.6f1(1)] 2m

(11a)

which (due to the fact that the first term is just /) can be re-
written in the following form

herie = ho + Aheric (11b)

Int. J. Mat. Res. (formerly Z. Metallkd.) 98 (2007) 8

It is obvious that for strain gradient layer thickness less than
herip, the driving force for crack propagation remains insuf-
ficient to initiate fracture. Even if the condition /& > A, is
fulfilled, short surface cracks do not have enough driving
force for their unstable growth, because their stress inten-
sity factor is still lower than Kj.. This indicates a barrier
for crack nucleation and assumes that additional stress con-
centrators such as surface flaws or defects can be important
for the process of crack formation in strain gradient layers.

To estimate the typical value of A one should substitute
the experimentally determined value for stress gradient
m ~ 11.3 GPa pm ™' [11, 12] together with an experimen-
tally detrmined fracture toughness for GaN Kj =
0.8 MPam'? [32] into Eq.(11). This gives Ahesq ~
173 nm, i.e. hqir =~ 303 nm. The obtained result is in
agreement with experimental observations (see Section 2
and Fig. 1), which show that nominally compressed
Aly 49Gag 51N layers with strain gradients have no cracks
for thicknesses ~ 300 nm, but demonstrate cracks for thick-
nesses greater than ~ 400 nm.

The crack shown in the Fig. 1b resides deep within the
layer with the strain gradient. This result is consistent with
our predictions. The crack depth depends strongly on the
value of the Kj. and also on the layer thickness at which
the crack was nucleated. From the experiment we do not
know exactly at which thickness the crack appears and
how the crack healing proceeds during the subsequent layer
growth — this is a topic of ongoing investigation.
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Fig. 5. Stress intensity factor K for a crack in the strain gradient layer
as function of the crack length a. (a) for layer thickness 2 = 500 nm and
initial compressive stress gy = 1.5 GPa with varying stress gradient
m=2.0 (1), 4.0 (2), 6.0 (3), 8.0 (4) - 10" Pam~"; (b) for layer thick-
ness & =500 nm and stress gradient m =5.0 - 10" Pam™" with vary-
ing initial compressive stress level gy =0.8 (1), 1.1 (2), 1.4 (3),
1.7 GPa; (c) for initial stress gp = 1.4 GPa and stress gradient m =
7.0-10" Pam™" with varying layer thickness & =300 (1), 400 (2),
500 (3), 600 (4) nm. Exgerimental [32] value of fracture toughness for
GaN Ky, = 0.8 MPa m"? is given by a dashed line.
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The framework presented here for crack formation in
strain gradient layers with initial nominal compressive
stresses can give predictions for crack formation for a num-
ber of experimentally relevant cases including not only III-
nitride layers but also functionally graded layers of various
origins. However, in the layers with strain gradients caused
by dislocation inclination it can only operate when thread-
ing dislocations maintain their frozen-in inclined ori-
entation. The reason why threading dislocations do not
change their direction when the sign of the stress changes
from compression to tension is unresolved. One speculation
is that the growth with frozen-in threading dislocations is
governed by local processes in the vicinity of dislocation
intersection with a layer surface [12]. We also can comment
on the results reported in the literature [20] indicating the
presence of inclined dislocations, i. e. strain gradients, in in-
itially compressed GaN layers undergoing a transition to
tensile stress state with increasing the layer thickness.

5. Conclusions

The problem of crack fomation in surface layers with in-
duced elastic strain and mechanical stress gradients has
been addressed. We have demonstrated that the stress inten-
sity factor Kj for a mode I edge crack is expressed in analyt-
ical form given by Eq. (9) as a function of crack length for
the loading conditions typical for strain gradient layers.
The critical layer thickness for crack formation in a gradient
elastic field has been introduced and determined by com-
paring the driving force for crack extension in a gradient
elastic field with the material fracture toughness K. It has
been established that such stress/strain state profiles can be
generated in functionally graded materials or due to specific
stress relaxation mechanisms in lattice mismatched layers.
This last mechanism works in nominally compressed
AlGaN layers grown on lattice mismatched substrates with
smaller lattice constants. It has been demonstrated that the
magnitude of the stress gradient in the case of AlGaN layers
is directly proportional to the tangent of the inclination an-
gle of threading dislocations from the layer growth direc-
tion. The results of the modeling have been compared with
experimental observations of crack onset in nominally
compressed AlGaN layers undergoing transition to tensile
stresses during growth. Good agreement between the model
predictions and experimental data has been established both
for the magnitude of strain gradient and for the critical
thickness for crack formation.
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