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Abstract

Topics in Stochastic Stability, Optimal Control and Estimation Theory

by

Maurice G. Filo

This dissertation consists of four parts that revolve around structured stochastic un-

certainty and optimal control/estimation theory.

In the first part, we consider the continuous-time setting of linear time-invariant

(LTI) systems in feedback with multiplicative stochastic uncertainties. The objective

is to characterize the conditions of Mean-Square Stability (MSS) using a purely input-

output approach. This approach leads to uncovering new tools such as stochastic block

diagrams. Various stochastic interpretations are considered, such as Itō and Stratonovich,

and block diagram conversion schemes between different interpretations are devised. The

MSS conditions are given in terms of the spectral radius of a matrix operator that takes

different forms when different stochastic interpretations are considered.

The second part applies the developed theory to analyze the mean-square stability

and performance of stochastic cochlear models. The analysis is carried out for a gener-

alized class of biomechanical models of the cochlea, that is formulated as a stochastic

spatially distributed system, by allowing stochastic spatio-temporal perturbations within

the cochlear amplifier. The simulation-free analysis explains the underlying mechanisms

that give rise to cochlear instabilities such as spontaneous otoacoustic emissions and/or

tinnitus. Furthermore, nonlinear stochastic simulations are carried out to validate the

predictions of the theoretical analysis.

The third part revisits the development of numerical methods to solve optimal control

problems using a function-space approach. This approach has the advantage of unify-

viii



ing the framework upon which the various (existing) numerical methods are based on.

In fact, this approach motivates the definition of various system and projection oper-

ators that make the derivations conceptually transparent. Furthermore, the function-

space approach builds useful geometric intuitions that inspire the development of new

projection-based methods.

In the last part, we propose a methodology of optimal path design for sensors through

a distributed environment. We consider time-limited scenarios where the sensors can only

make a small number of measurements, but where some portion of a physics-based model

is available for the field of interest (such as temperature). We consider both point-wise

and tomographic sensors. The main idea is to recast the sensor path planning problem

as a deterministic optimal control problem to minimize metrics related to the optimal

estimation error covariance.
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Chapter 1

Introduction

The dissertation spans a broad spectrum of topics under stochastic dynamics and optimal

control/estimation theory. Although the first two parts are connected: the second is an

application for the theory developed in the first, they can yet be read separately. In

fact, each part has its own introduction and appendices and can be read with minimal

reference to one another.

In the first part, we consider the continuous-time setting of linear time-invariant

(LTI) systems in feedback with multiplicative stochastic uncertainties. The objective of

this part of the dissertation is to characterize the conditions of Mean-Square Stability

(MSS) using a purely input-output approach, i.e. without having to resort to state space

realizations. This has the advantage of encompassing a wider class of models (such as

infinite dimensional systems and systems with delays). The input-output approach leads

to uncovering new tools such as stochastic block diagrams that have an intimate connec-

tion with the more general Stochastic Integral Equations (SIE), rather than Stochastic

Differential Equations (SDE). Various stochastic interpretations are considered, such as

Itō and Stratonovich, and block diagram conversion schemes between different interpre-

tations are devised. The MSS conditions are given in terms of the spectral radius of a

1



Introduction Chapter 1

matrix operator that takes different forms when different stochastic interpretations are

considered.

Much effort has been made to make this exposition self-contained. This part is or-

ganized to first describe the problem statement and then immediately state the results.

Thus, the reader can get the flavor of this work without having to dig into the technicali-

ties. After stating the results, we provide the proofs and underlying analysis from which

the results are based on.

The second part applies the developed theory to track the mean-square stability

and performance of stochastic cochlear models. Instabilities that emerge due to random

perturbations at the level of the cochlear amplifier are investigated. These perturba-

tions are allowed to be time-and-location-varying to emulate the stochastic nature of the

possible sources of biological disturbances. Various scenarios are considered to exam-

ine the effects of different types of disturbances on the instabilities. Particularly, it is

shown that different types of disturbances (e.g. correlated, uncorrelated, localized) in-

duce spontaneous vibrations at different locations on the cochlear partition. This leads to

Spontaneous Otoacoustic Emissions (SOAEs) with different frequencies in the absence of

any stimulus. Furthermore, it is believed that if these spontaneous vibrations are intense

enough, they may be perceived as tinnitus.

The stability analysis is carried out on a generalized class of biomechanical models

of the cochlea that is formulated in continuous space-time by defining relevant spatial

operators. Furthermore, the analysis is simulation-free and is performed by borrowing

notions from stochastic and robust control theory that is developed in the first part of the

dissertation. Finally, nonlinear stochastic simulations are carried out to validate the pre-

dictions of the theoretical analysis. The simulations show that the nonlinearities saturate

the spontaneous stochastic vibrations of the basilar membrane, but do not significantly

deform its vibration modes (and thus the emitted frequencies).

2



Introduction Chapter 1

The third part revisits the development of numerical methods to solve optimal con-

trol problems using a function-space approach. This approach has the advantage of uni-

fying the framework upon which the various (existing) numerical methods are based on.

In fact, this approach motivates the definition of various system and projection operators

that make the derivations conceptually transparent. It also facilitates the classification

of the various methods and uncovers the connections between them. Furthermore, the

function-space approach builds useful geometric intuitions that inspire the development

of new projection-based methods.

Particularly, this part develops a preconditioned constrained-gradient descent (PCGD)

method which is based on projected gradient descent in infinite dimensional optimiza-

tion problems. The key is to exploit the special structure of optimal control problems

to precondition the state-control space, and thus achieve a higher convergence rate than

the well known gradient descent method.

Finally, in the last part, we propose a methodology of optimal path design for

sensors through a distributed environment represented by a field quantity. We consider

time-limited scenarios where the sensors can only make a small number of measurements,

but where some portion of a physics-based model is available for the field of interest such

as fluid flows, temperatures or concentrations. Thus the highly underdetermined inverse

problem can be augmented with dynamical models. We consider stochastic settings where

the fields are subject to partially unknown disturbances and boundary conditions. The

main idea is to recast the sensor path planning problem as a deterministic optimal control

problem to minimize metrics related to the optimal estimation error covariance, thus

converting the stochastic estimation problem to a deterministic operator-valued problem.

In the specific case of linear field dynamics, the signal to be designed is the sensors

paths which are inputs to the optimal error covariance Riccati equation, resulting in a

deterministic, nonlinear, optimal control problem where the trace of the error covariance

3
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operator is to be minimized. For sensing modalities, we consider point-wise sampling as

well as the more unusual case of line-integral measurements. The latter is motivated by

tomographic reconstruction scenarios with a small number of sensors.

4
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Structured Stochastic Uncertainty
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Chapter 2

An Input-Output Approach to

Structured Stochastic Uncertainty in

Continuous Time

Linear Time-Invariant (LTI) systems with stochastic disturbances is a powerful modeling

technique that is used to analyze and control a large class of physical systems. While ad-

ditive disturbances are most commonly used to model process and measurement noise in

a system, multiplicative disturbances are often necessary to model stochastic uncertain-

ties in the system parameters (such as coefficients in dynamical equations). LTI systems

driven by additive stochastic processes are more common in the literature; whereas simul-

taneous additive and multiplicative disturbances are relatively less addressed. This chap-

ter develops a methodology to study the mean-square stability of continuous-time systems

with both additive and multiplicative disturbances, while adopting different stochastic

interpretations (such as Itō and Stratonovich).

The general setting we consider in this chpater is the continuous-time analog of that

presented in [3] and is depicted in Figure 2.1(a). An LTI system is in feedback with

6
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y

z

r

w
M




γ1
. . .

γn




y

z

dr

dw

M


dγ1

. . .
dγn




(a) White Process Representation (b) Wiener Process Representation

Figure 2.1: The general continuous-time setting of linear systems with both additive and multiplicative

stochastic disturbances. Both block diagrams describe the same setting, given in (2.1) and (2.3), using

white processes (to the left) and Wiener processes (to the right), respectively. The LTI system M is

in feedback with multiplicative stochastic gains represented here as a diagonal matrix. In Figure (a),

w is an additive stationary white process, while γ1, · · · , γn are multiplicative stationary white processes.

In Figure (b), dw represents the differential of an additive Wiener process, while dγ1, · · · , dγn represent

the differentials of (possibly correlated) Wiener processes that enter the dynamics multiplicatively. The

signal z represents an output whose variance quantifies a performance measure.

stochastic gains γ1(t), ...γn(t), that are assumed to be “white” in time (i.e. temporally

independent) but possibly mutually correlated. Another set of stochastic disturbances

are represented by the vector-valued signal w which is also assumed to be white but

enters the dynamics additively. The signal z is an output whose variance quantifies a

performance measure. The feedback term is then a diagonal matrix with the individual

gains {γi} appearing on the diagonal. Such gains are commonly referred to as structured

uncertainties. Note that if the gains are deterministic (but uncertain), we obtain the

general setting considered in the robust control literature (e.g. [62]). The main objective

of the present chapter is to derive the necessary conditions of Mean-Square Stability

(MSS) for systems taking the form of Figure 2.1(a). The treatment is carried out using

a purely input-output approach (i.e. without giving M a state space realization). This

7
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has the advantage of encompassing a wider class of models M (e.g. infinite dimensional

systems).

In a discrete-time setting, there is no ambiguity of defining white (i.e. temporally

independent) signals. However, in a continuous-time setting, technical issues arise be-

cause white signals are not mathematically well defined when they enter the dynamics

multiplicatively. Hence, the block diagram in Figure 2.1(a) is only used to pose the

problem setup in an analogous fashion to the discrete-time setting in [3], but at the cost

of abandoning mathematical rigor. In fact, the equations describing Figure 2.1 can be

written using the white processes w and {γi} as


z

y


 =M



w
r


⇐⇒



z(t)

y(t)


 =

∫ t

0

M(t− τ)



w(τ)

r(τ)


 dτ

r(t) = D
(
γ(t)

)
y(t), (2.1)

where M is the impulse response ofM, and D
(
γ(t)

)
is a diagonal matrix whose elements

are equal to those of γ(t) :=

[
γ1(t) · · · γn(t)

]∗
. To resort back to mathematical rigor,

we think of the white processes w and {γi} as the formal derivatives of Wiener processes

(or Brownian motion) that are mathematically well defined [50]. More precisely, define

γi(t) :=
dγi(t)

dt
; w(t) :=

dw(t)

dt
; r(t) :=

dr(t)

dt
, (2.2)

such that γ(t) :=

[
γ1(t) · · · γn(t)

]∗
and w(t) represent nonstandard, vector-valued

Wiener processes (i.e. their covariances do not have to be the identity matrix). Further-

more, r(t) will be shown (Section 2.6.1.3) to have temporally independent increments

when M is causal and the Itō interpretation is adopted. Hence, the equations can be

rewritten using differential forms as


z

y


 =M



dw

dr


⇐⇒



z(t)

y(t)


 =

∫ t

0

M(t− τ)



dw(τ)

dr(τ)




8
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dr(t) = D
(
dγ(t)

)
y(t). (2.3)

These equations are now mathematically well defined when given some desired interpre-

tation such as in the sense of Itō or Stratonovich. It will be shown in Section 2.3.2 that

different interpretations produce different conditions of MSS.

We should note the other common and related models in the literature which are

usually done in a state space setting and can be represented as Stochastic Differential

Equations (SDEs). One such model is a linear system with a random “A matrix” such

as

ẋ(t) = A(t)x(t) +Bw(t), (2.4)

where A(t) is a matrix-valued stochastic process independent of {x(τ), τ ≤ t}. One can

always rewrite A(t) in terms of scalar-valued stochastic processes so that

ẋ(t) =
(
A0 + γ1(t)A1 + · · ·+ γn(t)An

)
x(t) +Bw(t).

If the matrices A1, . . . , An are all of rank 1 (e.g. Ai = bici, for column and row vectors bi,

ci respectively, i = 1, . . . , n), then it is well-known [62] that the model (2.4) can always

be reconfigured like the block diagram of Figure 2.1(a) by setting

M =




A0 B B0

C 0 0

C0 0 0



,

where B0 :=

[
b1 · · · bn

]
and C0 :=

[
c∗1 · · · c∗n

]∗
. In the example above, we have

chosen z = Cx. If the matrices {Ai}ni=1 are not rank one, it is still possible to recon-

figure (2.4) into a diagram like Figure 2.1(a), but with the perturbation blocks being

“repeated” [51].

9
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When the processes {γi} and w are “white” in time, we resort to the configuration

of Figure 2.1(b) to express the stochastic disturbances in terms of Wiener processes.

Exploiting (2.2) yields

M :





dx(t) = A0x(t)dt+B0dr(t) +Bdw(t)

y(t) = C0x(t)

z(t) = Cx(t)

(2.5)

dr(t) = D
(
dγ(t)

)
y(t). (2.6)

Equations (2.5) and (2.6) describe the block diagram of Figure 2.1(b) when M is given

as a state space realization. In fact, the impulse response can be easily calculated to be

M(t) :=



C

C0


 eA0t

[
B B0

]
,

thus showing that models like those given in (2.4) are a special case of the purely input-

output approach that we consider here. On a side note, observe that the underlying

stochastic dynamics of the state x in (2.5) and (2.6) can be rewritten in a single SDE,

that involves both additive and multiplicative disturbances, as

dx(t) = A0x(t)dt+B0D
(
Cx(t)

)
dγ(t) +Bdw(t). (2.7)

Particularly, [17] studied SDEs having the form of (2.7) interpreted in the sense of Itō,

where B = 0 (i.e. no additive noise) and γ is “spatially uncorrelated”, i.e. E[γiγj] =

0,∀i 6= j.

Our goal in this chapter is to extend the machinery developed in [3] to provide a

rather elementary, and purely input-output treatment and derivation of the necessary

and sufficient conditions of MSS for systems like that of Figure 2.1. Furthermore, our

treatment covers both Itō and Stratonovich interpretations. It is shown that the condi-

tions of MSS can be stated in terms of the spectral radius of a finite dimensional linear

10
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operator defined in Section 2.3.2. It is also shown that this operator takes different forms

when different stochastic interpretations are prescribed (such as Itō or Stratonovich).

The chapter is organized as follows. First we provide some useful definitions and no-

tation. Then, in Section 2.2, we give a precise formulation of the problem statement by

setting up a general “stochastic block diagram” and describing the underlying assump-

tions. In Section 2.3, we present the main results of the chapter that can be divided into

two parts. The first part shows a block diagram conversion scheme from Stratonovich to

Itō interpretations, and the second part states the conditions of mean-square stability.

The special cases of state space realizations are then treated in Section 2.4. Sections 2.5

and 2.6 provide the detailed derivations that explain the results. Finally, we conclude in

Section 2.7.

2.1 Preliminaries and Notation

All the signals considered in this chapter are defined on the semi-infinite, continuous-

time interval R+ := [0,+∞). The dynamical systems considered are maps between

various signal spaces over the time interval R+. Unless stated otherwise, all stochastic

processes considered here are random vector-valued functions of (continuous) time.

Notation Summary

2.1.1 Variance & Covariance Matrix of a Signal

If v is a stochastic signal, then its instantaneous variance and covariance matrix are

denoted by the lowercase and uppercase bold letters respectively

v(t) := E [v∗(t)v(t)] and V(t) := E [v(t)v∗(t)] ,

11
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where v∗ denotes the transpose of v. The entries of V(t) are the mutual correlations of the

vector v(t), and are sometimes referred to as spatial correlations. Note that tr (V(t)) =

v(t).

2.1.2 Variance & Covariance Matrix of a Differential Signal

If the differential du of a stochastic signal u appears in a stochastic block diagram

(see Figure 2.2 for example), its instantaneous variance and covariance are represented

as

E [du∗(t)du(t)] := u(t)dt and E [du(t)du∗(t)] := U(t)dt,

respectively. This is a compact (differential) notation for

E [u∗(t)u(t)] :=

∫ t

0

u(τ)dτ ; E [u(t)u∗(t)] :=

∫ t

0

U(τ)dτ.

2.1.3 Steady State Variance & Covariance Matrix

The asymptotic limits of the instantaneous variance and covariance matrix, when

they exist, are denoted by an overbar, i.e.

ū := lim
t→∞

u(t) and Ū := lim
t→∞

U(t).

2.1.4 Second Order Process

A process v is termed second order if the entries of its covariance matrix, V(t), are

finite for each t ∈ R+.

2.1.5 Probability Space

Let (Ω,F , p) be a complete probability space with Ω being the sample space, F the

associated σ−algebra and p the probability measure. Let L2(p) denote the space of

12
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vector-valued random variables with finite second order moments. Note that L2(p) is a

Hilbert space.

2.1.6 Equalities & Limits in the Mean-Square Sense

Two stochastic processes x and y are said to be equal in the mean-square sense if

E
[
||x− y||2

]
= 0, where throughout this chapter, ||.|| denotes the `2 − norm for vectors

and the spectral norm for matrices.

A sequence of second order stochastic processes, {xN}, is said to converge to x̄ ∈ L2(p)

in the mean-square sense iff limN→∞ ||xN − x̄||2 = 0.

2.1.7 White Process

A stochastic process γ is termed white if it is uncorrelated at any two distinct times,

i.e. E [γ(t)γ∗(τ)] = Γδ(t − τ), where δ is the Dirac delta function. Note that in the

present context, a white process γ may still have spatial correlations, i.e. its instantaneous

covariance matrix Γ need not be the identity.

2.1.8 Vector-Valued Wiener Process

In a continuous-time setting, calculus operations on a white process entering the

dynamics multiplicatively are not mathematically well defined. Hence, it is useful to

represent a white process as the formal derivative of a Wiener process, i.e. γ(t) := dγ(t)
dt

,

where γ is a zero-mean, vector-valued Wiener process with an instantaneous covari-

ance matrix E [γ(t)γ∗(t)] = Γt. This can be equivalently written in differential form as

E [dγ(t)dγ∗(t)] = Γdt. Note that γ is said to have temporally independent increments,

i.e. its differentials
(
dγ(t), dγ(τ)

)
are independent when t 6= τ .

13
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2.1.9 Partitions of Time Intervals

Let PN [0, t] denote an arbitrary partition of the time interval [0, t] into N subintervals

[tk, tk+1] for k = 0, 1, · · · , N − 1, such that 0 = t0 < t1 < · · · < tN = t. The partition

step-size is denoted by ∆k := tk+1 − tk and the norm of the partition PN [0, t] is denoted

by the bold letter ∆ defined as ∆ := ||PN [0, t]|| = supk ∆k. Note that limN→∞∆ = 0.

2.1.10 Notation for Signals and Increments on PN [0, t]

With slight abuse of notation, a continuous-time stochastic signal {u(τ), 0 ≤ τ ≤ t}

is represented at node tk of the partition PN [0, t] as uk := u(tk) for k = 0, 1, · · · , N .

The increments of {u(τ), 0 ≤ τ ≤ t} at tk are denoted by ũk := u(tk+1) − u(tk) for

k = 0, 1, · · · , N − 1, and they represent a finite approximation of the differential form

{du(τ), 0 ≤ τ ≤ t}.

A continuous-time stochastic process u is said to have temporally independent in-

crements if
(
du(t), du(τ)

)
are independent whenever t 6= τ . This implies that, on the

partition PN [0, t], (ũk, ũl) are independent whenever k 6= l.

2.1.11 Stochastic Integrals

Calculus operations on a Wiener process are mathematically well defined when some

stochastic interpretation is prescribed (such as Itō or Stratonovich). Particularly, we

distinguish Itō and Stratonovich integrals using the symbols ”�I” and ”�S”, respectively.

More precisely, let v be a vector-valued second order stochastic process and γ be a vector-

valued Wiener process. If Γ(t) := D
(
γ(t)

)
is a diagonal matrix whose entries are equal

to those of γ(t), then the integral “
∫ t

0
dΓ(τ)v(τ)” may be interpreted differently using

14
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partial sums as

∫ t

0

dΓ(τ) �I v(τ) := lim
N→∞

N−1∑

k=0

Γ̃kvk (2.8)

∫ t

0

dΓ(τ) �S v(τ) := lim
N→∞

N−1∑

k=0

Γ̃k
vk + vk+1

2
. (2.9)

The partial sums are constructed using a partition PN [0, t] as described in Section 2.1.9

and by following the notation developed in Section 2.1.10 for signals and increments.

2.1.12 Quadratic Variation

The quadratic variation, at time t, of a stochastic process v is denoted by 〈v〉(t) and

is defined using a partition PN [0, t] as

〈v〉(t) := lim
N→∞

N−1∑

k=0

||ṽk||2 .

2.1.13 Hadamard Product and the Diagonal Operator

For any two matrices A and B of the same dimensions, their Hadamard (or element-

by-element) product is denoted by A ◦B. For any vector v (resp. square matrix V ),

D(v) (resp. D(V )) denotes a diagonal matrix whose diagonal elements are equal to v

(resp. diagonal entries of V ).

2.2 Problem Formulation

In this section, we first provide a precise definition for Mean-Square Stability (MSS)

from a purely input/output approach. Then we present a “stochastic block diagram”

formalism that can be given a desirable interpretation by prescribing a suitable stochastic

calculus (Itō or Stratonovich).
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2.2.1 Input-Output Formulation of MSS

LetM be a causal LTI (MIMO) system. It is defined as a linear operator that acts on

the differential of a second order stochastic signal u, denoted by du. Its action is defined

by the stochastic convolution integral

y(t) =
(
Mdu

)
(t)⇐⇒ y(t) =

∫ t

0

M(t− τ) du(τ), (2.10)

where M is a deterministic matrix-valued function denoting the impulse response ofM.

Without loss of generality, zero initial conditions are assumed throughout this chapter.

When u is zero-mean and has independent increments such that E [du(t)du∗(τ)] = 0 ∀t 6=

τ and E [du(t)du∗(t)] = U(t)dt, a standard calculation relates the input and output

instantaneous covariances as

Y(t) =

∫ t

0

M(t− τ) U(τ) M∗(t− τ)dτ. (2.11)

Note that (2.11) holds for any stochastic interpretation (eg. Itō or Stratonovich) of the

stochastic integral in (2.10) as shown in Appendix 2.A. Therefore, the action of M as

described in (2.10) is not given a particular stochastic interpretation here. Unlike (2.10),

this matrix convolution relationship is deterministic, and it is only valid when the input

du is temporally independent (i.e. u has independent increments). Taking the trace of

both sides of (2.11) yields

y(t) = tr (Y(t)) =

∫ t

0

tr
(
M(t− τ)U(τ)M∗(t− τ)

)
dτ

=

∫ t

0

tr
(
M∗(t− τ)M(t− τ)U(τ)

)
dτ

≤
∫ t

0

tr
(
M∗(t− τ)M(t− τ)

)
tr
(
U(τ)

)
dτ

≤
∫ ∞

0

tr
(
M∗(t− τ)M(t− τ)

)
dτ sup

0≤τ≤∞
u(τ),
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where the first inequality holds because for any two positive semidefinite matrices A and

B, we have tr (AB) ≤ tr (A) tr (B) [13, Thm 1]. The calculation above motivates the

following definition for input/output MSS when the input is temporally independent.

Definition 1 A causal LTI systemM is Mean-Square Stable (MSS) if for each input du,

representing the differential of a stochastic process with independent increments and uni-

formly bounded variance, the output process y =Mdu has a uniformly bounded variance,

i.e. there exists a constant c such that y(t) ≤ c supτ u(τ).

It is easy to check that M is MSS in the sense of Definition 1 if and only if ‖M‖2 is

finite, where ||.||2 denotes the H2−norm. When MSS holds, the output covariance has a

finite steady-state limit Ȳ whenever the input covariance has a finite steady-state limit

Ū. From (2.11), it is straight forward to see that the steady-state covariances (if they

exist) are related as

Ȳ =

∫ ∞

0

M(τ)ŪM∗(τ)dτ. (2.12)

2.2.2 Stochastic Feedback Interconnection

Consider the “stochastic block diagram” depicted in Figure 2.2 where the forward

block represents a causal LTI system which is in feedback with multiplicative stochastic

gains represented here as the differential of a diagonal matrix denoted by dΓ(t) where

dΓ(t) := D
(
dγ(t)

)
and dγ(t) :=

[
dγ1(t) · · · dγn(t)

]∗
. (2.13)

Furthermore, a different type of stochastic disturbance enters the dynamics additively

and is represented in Figure 2.2 as the differential of w.

The main objective of this chapter is to investigate the MSS of Figure 2.2 under the

following assumptions
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dw du y

dr

M


dγ1

. . .

dγn




Figure 2.2: A continuous-time setting for a causal LTI system M in feedback with stochastic mul-

tiplicative gains {dγi} that represent the differential forms of, possibly mutually correlated, Wiener

processes. The equations describing the block diagram are given in (2.14).

• Assumption 1 M is a causal LTI (MIMO) system whose impulse response M

belongs to the class C of deterministic, matrix-valued functions defined in Ap-

pendix 2.E. Note that for such M , ∃ a continuous scalar function cM such that

sup
0≤τ≤t

||M(τ)|| = cM(t).

• Assumption 2 γ(t) :=

[
γ1(t) · · · γn(t)

]∗
is a zero-mean, vector-valued Wiener

process with an instantaneous covariance E [γ(t)γ∗(t)] := Γt which can be equiva-

lently written as E [dγ(t)dγ∗(t)] = Γdt (refer to Section 2.1.8). Note that Γ is a

constant positive semidefinite matrix.

• Assumption 3 w is a zero-mean, vector-valued Wiener process with a (possi-

bly) time-varying instantaneous covariance matrix, i.e. E [dw(t)dw∗(t)] = W(t)dt,

where W is a positive semidefinite matrix whose entries remain bounded for all

time. Furthermore, W is assumed to be monotone, i.e. if t1 ≤ t2 then W(t1) ≤

W(t2).

• Assumption 4 γ and w are uncorrelated for all time.

Throughout this chapter, whenever the Stratonovich interpretation is adopted, a more
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restrictive assumption on M is required for reasons that will become apparent in Sec-

tion 2.5. Thus Assumption 1 is replaced by

• Assumption 1′ M is Lipschitz continuous.

Note that the class of Lipschitz continuous functions is more restrictive than class C

defined in Appendix 2.E. In fact, it is fairly straightforward to see that if M is Lipschitz

continuous, then M ∈ C.

The equations describing the block diagram in Figure 2.2 can be written as



y(t) = (Mdu) (t)

du(t) = dw(t) + dr(t)

dr(t) = dΓ(t)y(t).

(2.14)

Note that, without prescribing a stochastic interpretation for the calculus operations on

the Wiener processes w and Γ, the set of equations in (2.14) are not sufficient to fully

describe the underlying stochastic dynamics. We consider here the two most common

interpretations named after Itō and Stratonovich; however, the analysis can be general-

ized to other interpretations as well. We encode the stochastic interpretations in (2.14)

by rewriting them as



y(t) = (Mdu) (t)

du(t) = dw(t) + dr(t)

dr(t) = dΓ(t) � y(t); for � = {�I, �S},

(2.15)

where the last equation is the differential form of an integral equation that can be written

as

r(t) =

∫ t

0

dΓ(τ) � y(τ), where � = {�I, �S}.

Refer to Section 2.1.11 for an explanation of the different interpretations. Note that We

close this section by giving a definition for MSS of the stochastic feedback system in

Figure 2.2 by following the convention given in [16].
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Definition 2 Consider the stochastic feedback interconnection in Figure 2.2 satisfying

assumptions 1-4. The overall feedback system is said to be MSS if all the signals in the

loop, i.e. du, dr and y have uniformly bounded variances. More precisely, there exists a

constant c such that

max{||u||∞ , ||r||∞ , ||y||∞} ≤ c ||w||∞ .

The next section characterizes the conditions of MSS for Figure 2.2 for different stochastic

interpretations.

2.3 Main Results

Observe that the set of equations (2.15) can be rewritten as a single equation

y(t) =

∫ t

0

M(t− τ)dw(τ) +

∫ t

0

M(t− τ) � dΓ(τ)y(τ);

for � = {�I, �S}.
(2.16)

Equation (2.16) is a linear Stochastic Integral Equation (SIE) of Volterra type. The Itō

version of (2.16) has been addressed in the literature ( [34], [5], [6], [4]). For example, it

is easy to check that (2.16), interpreted in the sense of Itō, has a unique solution [4, Thm

5A] under the assumption that M is finite over bounded intervals (Assumption 1). How-

ever, SIEs interpreted in the sense of Stratonovich are less common in the literature. In

contrast, SDEs interpreted in the sense of Stratonovich [60] are analyzed by converting

them to their equivalent Itō representation using the conversion formulas that were de-

rived several decades ago (see e.g. [58]). In the present paper, the analysis is carried

out from a purely input-output approach, and thus a more general conversion formula is

required to convert an SIE interpreted in the sense of Stratonovich to its equivalent Itō

counterpart. In this section, we first describe the conversion scheme, then state the MSS

conditions of Figure 2.2 when different stochastic interpretations are adopted.
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2.3.1 Block Diagram Conversion from Stratonovich to Itō In-

terpretations

Consider the block diagram in Figure 2.3(a) such that Assumptions 1′, 2, 3, and 4 are

satisfied. As opposed to Figure 2.2, the multiplicative gains are now given a Stratonovich

interpretation indicated by the symbol “�S” in the feedback block. Now we present a

theorem that describes a conversion scheme of block diagrams from Stratonovich to Itō

interpretations.

Theorem 1 Under Assumptions 1′, 2, 3, and 4, the two block diagrams in Figures 2.3(a)

and (b) are equivalent in the mean-square sense. That is, all the signals du, y, dw and

dr in both block diagrams are equal in the mean-square sense.

dw du y

dr

M


dγ1

. . .

dγn




�S
(a) Stratonovich Interpretation

dw du y

dr

M


dγ1(t)

. . .

dγn(t)




�I
1
2M(0) ◦ Γ

(b) Equivalent Itō Interpretation

Figure 2.3: (a) A continuous-time causal LTI system M in feedback with stochastic multiplicative

gains {dγi} that represent the differential forms of, possibly mutually correlated, Wiener processes. The

diamond ”�S” in the feedback block indicates a Stratonovich interpretation. (b) The equivalent Itō

interpretation, in the mean-square sense, of the block diagram given in (a). The symbol “◦” denotes the

Hadamard (element-by-element) product and “�I” indicates an Itō interpretation of the multiplicative

gains.

The proof of Theorem 1 is given in Section 2.5. A remark is worth noting here.
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Remark 2.3.1 If M(0) = 0, the block diagrams in Figures 2.3 (a) and (b) become iden-

tical. This means that there is no difference between Itō and Stratonovich interpretations

if the impulse response is zero at initial time. This sort of reintroduces a notion of ”strict

causality” that forces the Stratonovich interpretation to behave in the same way as that of

Itō. Therefore, LTI systemsM with relative degrees 1 ≥ 2 have the same MSS conditions

for both Itō and Stratonovich interpretations.

2.3.2 MSS Conditions

The MSS setting considered here is given in Figure 2.2 and is repeated here in Fig-

ure 2.4 to explicitly show the adopted stochastic interpretation of the feedback block. In

this section, MSS conditions are given in terms of a linear operator, denoted by L, that

acts on a positive semidefinite matrix to produce another positive semidefinite matrix.

Its role is to propagate the steady-state covariance (if it exists) of du, denoted by Ū,

dw du y

dr

M


dγ1(t)

. . .

dγn(t)




�
Figure 2.4: Mean-square stability setting. This figure is similar to the general setting given Figure 2.2.

The only difference is that the stochastic interpretation of the feedback block is encoded by the symbol

“�” such that � = �I denotes an Itō interpretation, whereas � = �S denotes a Stratonovich interpretation.

through the loop to yield that of dr, denoted by R̄. This “Loop Gain Operator” (LGO)

1The relative degree of an LTI system with impulse response M is defined as the largest positive
integer p such that lims→∞ spM(s) <∞.
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is the continuous-time counterpart of that defined in [3] for the discrete-time setting. For

the Itō setting (i.e. � = �I in Figure 2.4), the LGO is denoted by LI and is given by

R̄ = LI
(
Ū
)

:= Γ ◦
(∫ ∞

0

M(τ)ŪM∗(τ)dτ

)
. (2.17)

Refer to Section 2.6 for a detailed derivation of the LGO. A key step in the derivation

of LI is showing that du is temporally independent which is required to propagate Ū

in the forward block M using (2.12). As will be shown in Section 2.6.1, this temporal

independence is a consequence of (1) the causality ofM, (2) the temporal independence

of the stochastic multiplicative gains, and (3) the Itō interpretation. However, for the

Stratonovich setting (i.e. � = �S in Figure 2.4), du is not temporally independent. This

is a consequence of the nature of the Stratonovich integral in (2.9) that “looks into the

future”. In this case, (2.12) cannot be used to propagate the covariance in the forward

block of Figure 2.3(a). Nonetheless, one can exploit the block diagram conversion scheme

in Section 2.3.1 and rearrange the block diagram in Figure 2.3(b) so that it looks like the

Itō setting as depicted in Figure 2.5. The equivalent forward block, now denoted by H,

is still a causal LTI system whose transfer function is

H(s) = (I −M(s)G)−1M(s), (2.18)

where G := 1
2
M(0) ◦ Γ and M(s) is the transfer function of M. The input differential

signal duS in Figure 2.5 is now temporally independent and thus (2.12) can be exploited

to propagate the steady state covariance through the equivalent forward block H. Thus,

the LGO for the Stratonovich setting propagates the steady-state covariance (if it exists)

of duS, denoted by ŪS, through the loop of Figure 2.5 to yield that of drS, denoted by

R̄S. It is now denoted by LS and is given by

R̄S = LS
(
ŪS

)
:= Γ ◦

(∫ ∞

0

H(τ)ŪSH
∗(τ)dτ

)
, (2.19)
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dw duS y

drS

M

H 1
2
M(0) ◦ Γ

du



dγ1(t)

. . .

dγn(t)




�I
Figure 2.5: Rearrangement of the block diagram in Figure 2.3(b)

where H is given in (2.18). The spectral radius of L completely characterizes the MSS

condition as will be seen next.

Theorem 2 Consider the system in Figure 2.4 such that Assumptions 1-4 are satisfied.

The feedback system is MSS if and only if the two conditions are satisfied

1. The equivalent forward block in Figure 2.4 has a finite H2 − norm.

2. The spectral radius of the loop gain operator is strictly less than 1, i.e. ρ(L) < 1.

where

• For the Itō interpretation, the equivalent forward block is M, and L is given in

(2.17).

• For the Stratonovich interpretation, the equivalent forward block is H, whose trans-

fer function is given in (2.18), L is given in (2.19), and Assumption 1 is replaced

by Assumption 1′.

The proof of Theorem 2 is given in Section 2.6. Observe that, under the Itō interpreta-

tions, the covariance matrix Γ only plays a role in the second condition. However, under
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the Stratonovich interpretation, Γ plays a role in both conditions since the equivalent

forward block H now depends on Γ (Figure 2.5). Therefore, the conditions of MSS can

be very different when different stochastic interpretations are adopted.

2.4 Application to State Space Realizations & SDEs

In this section, we consider the mean-square stability problems for both the Itō and

Stratonovich settings given in Figure 2.4, but for the special case when M is given a

state space realization. Thus, the underlying equations can be written as SDEs, i.e.

dx(t) = Ax(t)dt+Bdu(t); y(t) = Cx(t)

du(t) = dw(t) + dr(t)

dr(t) = dΓ(t) � y(t) for � = {�I, �S}, (2.20)

where the last equation refers to either an Itō or Stratonovich interpretation. The impulse

response of M can thus be written as M(t) = CeAtB. Then, the realization of the loop

gain operator, for each interpretation, can be calculated using (2.17) and (2.19). Starting

with the Itō interpretation, we have

R̄ = LI(Ū) := Γ ◦
(∫ ∞

0

M(τ)ŪM∗(τ)dτ

)

= Γ ◦
(
C

∫ ∞

0

eAτBŪB∗eA
∗τdτ

)
C

= Γ ◦
(
CX̄C

)
,

where X̄ :=
∫∞

0
eAτBŪB∗eA

∗τdτ which satisfies the algebraic Lyapunov equation given

by

AX̄ + X̄A∗ +BŪB∗ = 0.

For the Stratonovich interpretation, we use Figure 2.5 to give the equivalent Itō repre-

sentation. The impulse response of H in Figure 2.3(b) can be shown to be H(t) = CeASt
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with AS = A+ 1/2B
(
(CB) ◦ Γ

)
C and the LGO can be similarly given a realization. To

summarize, let LI and LS denote the loop gain operators for the Itō and Stratonovich

interpretations as given in (2.17) and (2.19), respectively. Then their state space realiza-

tions are given by

R̄ = Lk(Ū)

(k = I, S)

⇐⇒





R̄ = Γ ◦
(
CX̄C∗

)

0 = AkX̄ + X̄A∗k +BŪB∗;

(2.21)

where AI := A and AS := A + 1
2
B
(
(CB) ◦ Γ

)
C. Therefore, as a direct application of

Theorem 2, the necessary and sufficient conditions of MSS are (1) Ak is Hurwitz and (2)

ρ(Lk) < 1 for k = I, S for Itō and Stratonovich interpretations, respectively.

2.5 Stochastic Block Diagram Conversion Technique

In this section, we provide a proof for Theorem 1. Consider the Stratonovich setting

in Figure 2.3(a) such that Assumptions 1′, 2, 3, and 4 are satisfied. The block diagram

can be described by a single SIE given in (2.16) with � = �S, and the goal of this section

is to show that it is equivalent (in the mean-square sense) to

y(t) =

∫ t

0

M(t− τ)dw(τ) +

∫ t

0

M(t− τ) �I dΓ(τ)y(τ) +
1

2

∫ t

0

M(t− τ)
(
M0 ◦ Γ

)
y(τ)dτ,

(2.22)

whereM(0) is denoted byM0 for notational convenience. This can be shown by exploiting

the following two propositions.

Proposition 1 Consider the SIE given in (2.22) (or equivalently (2.16) with � = �S)

such that Assumptions 1′, 2, 3, and 4 are satisfied. Then the second moments of y and

its quadratic variation (Section 2.1.12) are both finite over finite intervals. That is, there

exist two scalar continuous functions cy and cq such that

sup
0≤τ≤t

E
[
||y(τ)||2

]
= cy(t); sup

0≤τ≤t
E
[
〈y〉2(τ)

]
= cq(t). (2.23)
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The proof of the boundedness of E
[
||y(τ)||2

]
is given in [4, Thm 5A] while that of

the quadratic variation is given in Section 2.F. These bounds will be useful to prove

Proposition 2.

Proposition 2 Consider the Stratonovich integral

S(t) :=

∫ t

0

M(t− τ)dΓ(τ) �S y(τ),

where M satisfies Assumption 1, dΓ(t) is defined in (2.13) such that γ satisfies As-

sumption 2, and y is a stochastic process that satisfies (2.16) with � = �S. Then

S(t) = I(t) + 1
2
R(t) in the mean-square sense, where

I(t) :=

∫ t

0

M(t− τ) �I dΓ(τ)y(τ) and R(t) :=

∫ t

0

M(t− τ)
(
M0 ◦ Γ

)
y(τ)dτ

are Itō and Riemann integrals, respectively.

Proof: Start by using the definitions of the various integrals in Section 2.1.11 to

construct the partial sums over a partition PN [0, t] (2.1.9) as

SN(t) :=
1

2

N−1∑

k=0

(
M(t− tk+1)Γ̃kyk+1 +M(t− tk)Γ̃kyk

)

IN(t) :=
N−1∑

k=0

M(t− tk)Γ̃kyk

RN(t) :=
N−1∑

k=0

M(t− tk)
(
M0 ◦ Γ

)
yk∆k.

(2.24)

The proof is carried out on the partition PN [0, t] but can be passed to the limit in L2(p)

(since it is a Hilbert space and all Cauchy sequences are convergent). More precisely, we

are required to prove that limN→∞ E [D2
N(t)] = 0 ∀t ≥ 0,

where DN(t) = SN(t)−
(
IN(t) +

1

2
RN(t)

)
. (2.25)
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After carrying out a sequence of algebraic manipulations (Appendix 2.B), the expression

of DN(t) can be rewritten as

DN(t) =
1

2

(
λN(t) + JN(t) + νN(t) + ξN(t) + T ζN(t)

)

+
1

4

(
θN(t) + ηN(t) + TαN(t) + T βN(t)

)
,

(2.26)

where

λN(t) :=
N−1∑

k=0

M(t− tk)
((
γ̃kγ̃

∗
k − Γ∆k

)
◦M0

)
yk

JN(t) :=
N−1∑

k=0

(
M(t− tk+1)−M(t− tk)

)
Γ̃kyk

νN(t) :=
N−1∑

k=0

(
M(t− tk+1)−M(t− tk)

)
Γ̃kM0Γ̃kyk

θN(t) :=
N−1∑

k=0

M(t− tk+1)Γ̃kM0Γ̃kỹk

ηN(t) :=
N−1∑

k=0

M(t− tk+1)Γ̃k

(
M(∆k)−M0

)
Γ̃kyk

χN(t) :=
N−1∑

k=0

M(t− tk+1)Γ̃kM(∆k)w̃k

T xN(t) :=
N−1∑

k=0

M(t− tk+1)Γ̃kxk for x ∈ {α, β, ζ}

αk :=
k−1∑

l=0

(
M(tk+1 − tl+1)−M(tk − tl+1)

)
Γ̃lỹl

βk :=
k−1∑

l=0

(
M(tk+1 − tl+1)−M(tk − tl+1)

+M(tk+1 − tl)−M(tk − tl)
)

Γ̃lyl

ζk :=
k−1∑

l=0

(
M(tk+1 − tl)−M(tk − tl)

)
w̃l.

(2.27)

The rest of the proof shows that the second moment of each term in (2.26) goes to zero

in the limit as N goes to infinity. Note that there is no need to check the expectation of

cross terms (Appendix 2.C).
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2.5.0.1 Mean-Square Convergence of λN(t)

Recall that γk has independent increments that are also independent from present

and past values of yk. Furthermore, E [Zk] = 0 with Zk := γ̃kγ̃
∗
k −Γ∆k. Then we invoke

Lemma 2.D.6 to yield the following inequality

E
[
||λN(t)||2

]
≤

N−1∑

k=0

||M(t− tk)||2 E
[∣∣∣∣(Zk ◦M0

)∣∣∣∣2
]
E
[
||yk||2

]

≤ ||M0||2
N−1∑

k=0

||M(t− tk)||2 E
[
||Zk||2

]
E
[
||yk||2

]
,

where the second inequality follows from the sub-multiplicative property of the matrix

spectral norm with respect to matrix and Hadamard products (see [33]). Knowing that

γ̃k ∼ N (0,Γ∆k), we can write γ̃k = Γ1/2ξk
√

∆k, where Γ1/2 denotes the Cholesky factor-

ization of Γ. The random vector ξk follows a standard multivariate normal distribution

for all k = 0, 1, ...N − 1 such that ξk and ξl are independent for k 6= l. To bound

E
[
||Zk||2

]
, we proceed as follows

E
[
||Zk||2

]
= E

[∣∣∣∣Γ1/2(ξkξ
∗
k − I)Γ1/2

∣∣∣∣2 ∆2
k

]

≤ E
[
||Γ|| ||ξkξ∗k − I||2 ∆2

k

]

≤ E
[
||Γ|| ||ξkξ∗k − I||2F ∆2

k

]

= E
[
||Γ|| tr

(
(ξkξ

∗
k − I)∗(ξkξ

∗
k − I)

)
∆2
k

]

= ||Γ||∆2
k

(
E
[
||ξk||4

]
− 2E

[
||ξk||2

]
+ n
)

= ||Γ||∆2
k(n

2 + n).

where the second inequality follows from the fact that the Frobenius norm of a matrix is

larger than its spectral norm. The last equality follows by using Lemma 2.D.2, where n

is the number of gains γi. Finally, we obtain

E
[
||λN(t)||2

]
≤ ||M0||2 c2

M(t) ||Γ|| (n2 + n)cy(t)
N−1∑

k=0

∆2
k −→
N→∞

0,
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where Assumption 1 and (2.23) are exploited.

2.5.0.2 Mean-Square Convergence of JN(t)

This partial sum is similar to that of λN(t), and thus we define Fk(t) := M(t−tk+1)−

M(t− tk) and invoke Lemma 2.D.6 again to yield

E
[
||JN(t)||2

]
≤

N−1∑

k=0

||Fk(t)||2 E
[∣∣∣
∣∣∣Γ̃k
∣∣∣
∣∣∣
2
]
E
[
||yk||2

]

≤ cy(t)tr (Γ)
N−1∑

k=0

||M(t− tk+1)−M(t− tk)||2 ∆k

≤ cy(t)tr (Γ) ∆QV t0 (M) −→
N→∞

0,

where the second inequality follows from (2.23), Lemma 2.D.2 and the fact that
∣∣∣
∣∣∣Γ̃k
∣∣∣
∣∣∣ ≤

||γ̃k|| since Γ̃k = D(γ̃k) so that

E
[∣∣∣
∣∣∣Γ̃k
∣∣∣
∣∣∣
2
]
≤ tr (Γ) ∆k. (2.28)

The last inequality follows from the fact that the quadratic variation of M is finite

(Lemma 2.E.1).

2.5.0.3 Mean-Square Convergence of νN(t)

By using the same previous definition of Fk(t), invoke Lemma 2.D.5 (with Xk :=

Γ̃kM0Γ̃k) to yield

E
[
||νN(t)||2

]
≤
(
N−1∑

k=0

||Fk(t)||
(
E
[∣∣∣
∣∣∣Γ̃kM0Γ̃k

∣∣∣
∣∣∣
2
]
E
[
||yk||2

]) 1
2

)2

≤ cy(t) ||M0||2
(
N−1∑

k=0

||Fk(t)||
(
E
[∣∣∣
∣∣∣Γ̃k
∣∣∣
∣∣∣
4
]) 1

2

)2

≤ cy(t) ||M0||2 c(2, n) ||Γ||2
(
N−1∑

k=0

||M(t− tk+1)−M(t− tk)||∆k

)2

30



An Input-Output Approach to Structured Stochastic Uncertainty in Continuous Time Chapter 2

≤ cy(t) ||M0||2 c(2, n)∆
(
T V t0 (M)

)2

−→
N→∞

0,

where the second inequality follows from (2.23) and the sub-multiplicative property of

the spectral norm. The third inequality follows from Lemma 2.D.2 where

E
[∣∣∣
∣∣∣Γ̃k
∣∣∣
∣∣∣
4
]
≤ c(2, n) ||Γ||2 ∆2

k, (2.29)

and the last inequality follows from the fact that the total variation of M is finite

(Lemma 2.E.1).

2.5.0.4 Mean-Square Convergence of ηN(t)

In a similar fashion to the previous calculation, define Gk := M(∆k)−M0 and invoke

Lemma 2.D.5 (with Xk := Γ̃kGkΓ̃k) to yield

E
[
||ηN(t)||2

]
≤
(
N−1∑

k=0

||M(t− tk)||
(
E
[∣∣∣
∣∣∣Γ̃kGkΓ̃k

∣∣∣
∣∣∣
2
]
E
[
||yk||2

]) 1
2

)2

≤ cy(t)c
2
M(t)

(
N−1∑

k=0

||M(∆k)−M0||
(
E
[∣∣∣
∣∣∣Γ̃k
∣∣∣
∣∣∣
4
]) 1

2

)2

≤ cy(t)c
2
M(t)c(4, n) ||Γ||2

(
N−1∑

k=0

||M(∆k)−M0||∆k

)2

−→
N→∞

0,

where the second inequality follows from (2.23), Assumption 1, and the sub-multiplicative

property of the spectral norm. Again, the last inequality follows from (2.29). The limit

is zero because Assumption 1 guarantees that M is right-continuous at t = 0.

2.5.0.5 Mean-Square Convergence of χN(t)

Since w and {γi} are uncorrelated (Assumption 4), invoking Lemma 2.D.6 yields

E
[
||χN(t)||2

]
≤

N−1∑

k=0

||M(t− tk+1)||2 E
[∣∣∣
∣∣∣Γ̃k
∣∣∣
∣∣∣
2
]
E
[
||M(∆k)w̃k||2

]
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≤ c4
M(t)tr (Γ)

N−1∑

k=0

∆ktr (Wk) ∆k

≤ c4
M(t)tr (Γ) cw(t)

N−1∑

k=0

∆2
k −→
N→∞

0,

where the second inequality follows from assumptions 1 and 3 and (2.28). The last

inequality follows because under Assumption 3, ∃ a continuous scalar function cw such

that

sup
0≤τ≤t

tr (W(τ)) = cw(t). (2.30)

2.5.0.6 Mean-Square Convergence of θN(t)

By invoking Lemma 2.D.4, we obtain the following inequality

E
[
||θN(t)||2

]
≤

N−1∑

k=0

||M(t− tk+1)||2
(
E
[∣∣∣
∣∣∣Γ̃kM0Γ̃k

∣∣∣
∣∣∣
4
]) 1

2


E



(
N−1∑

k=0

||ỹk||2
)2





1
2

,

where the second term converges to (E [〈y〉2(t)])
1
2 ≤

√
cq(t) defined in (2.23). Now apply

the submultiplicative property of the spectral norm to yield

E
[
||θN(t)||2

]
≤
√
cq(t) ||M0||2

N−1∑

k=0

||M(t− tk+1)||2
(
E
[∣∣∣
∣∣∣Γ̃k
∣∣∣
∣∣∣
8
]) 1

2

≤
√
cq(t)

√
c(4, n) ||Γ||2 c2

M(t) ||M0||2
N−1∑

k=0

∆2
k −→
N→∞

0,

where the last inequality follows from Assumption 1 and Lemma 2.D.2 where c(4, n) ||Γ||4 ∆4
k

serves as an upper bound for the eighth moment E
[∣∣∣
∣∣∣Γ̃k
∣∣∣
∣∣∣
8
]
.

2.5.0.7 Mean-Square Convergence of TαN(t), T βN(t) and T ζN(t)

Observe using (2.27) that the pairs (Γ̃k, αk), (Γ̃k, βk) and (Γ̃k, ζk) are independent for

all k = 0, 1, · · · , N − 1. Then, for x ∈ {α, β, ζ}, invoking Lemma 2.D.6 yields

E
[
||T xN(t)||2

]
≤

N−1∑

k=0

||M(t− tk+1)||2 E
[∣∣∣
∣∣∣Γ̃k
∣∣∣
∣∣∣
2
]
E
[
||xk||2

]
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≤ c2
M(t)tr (Γ)

N−1∑

k=0

E
[
||xk||2

]
∆k,

where the last inequality follows from Assumption 1 and (2.28). Now, we examine

E
[
||αk||2

]
. Define Fk,l := M(tk+1 − tl+1) − M(tk − tl+1) and invoke Lemma 2.D.4 to

yield

E
[
||αk||2

]
≤

k−1∑

l=0

||Fk,l||2
(
E
[∣∣∣
∣∣∣Γ̃l
∣∣∣
∣∣∣
4
]) 1

2

(
E

[
k−1∑

l=0

||ỹl||2
]) 1

2

≤
√
c(2, n) ||Γ||

√
cq(t)

k−1∑

l=0

||Fk,l||2 ∆l

≤
√
c(2, n) ||Γ||

√
cq(t)∆QV t0 (M) ,

where ∆ = supl ∆l. Note that the second inequality follows from (2.23) and (2.29),

and the third inequality follows by observing that the sum converges to the quadratic

variation of M on the interval [0, tk] (Appendix 2.E). The last equality exploits the fact

that QV t0 (M) is an increasing function in t. Substituting in E
[
||TαN(t)||2

]
yields

E
[
||TαN(t)||2

]
≤ c2

M(t)tr (Γ)
√
c(2, n) ||Γ||

√
cq(t)∆QV t0 (M)

N−1∑

k=0

∆k

≤ c2
M(t)tr (Γ)

√
c(2, n) ||Γ||

√
cq(t)∆QV t0 (M) t −→

N→∞
0.

Recalling from Appendix 2.C that there is no need to check the convergence of the cross

terms, the same arguments used for E
[
||TαN(t)||2

]
can be used here to show that

E
[∣∣∣
∣∣∣T βN(t)

∣∣∣
∣∣∣
2
]
−→
N→∞

0 and E
[∣∣∣
∣∣∣T ζN(t)

∣∣∣
∣∣∣
2
]
−→
N→∞

0.

This completes the proof of Proposition 2.

A direct application of Proposition 2 to (2.16) with � = �S yields (2.22). This is exactly

the result shown in Figure 2.3(b) and given in Theorem 1.
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2.6 Loop Gain Operator & MSS Conditions

In this section, we give the mathematical derivations of the LGO (2.17) for the Itō

setting. The same analysis can be carried out for the Stratonovich case by using the

conversion scheme developed in Section 2.3.1. We first lay down the necessary framework

to construct a deterministic block diagram that describes the continuous-time evolution

of the covariance matrices of the various signals in the loop (see Figure 2.7). Once this

deterministic setting is constructed, the MSS analysis from there onwards resembles that

of the discrete-time counterpart in [3].

2.6.1 Stochastic Block Diagram Interpretation

Consider the stochastic continuous-time setting depicted in Figure 2.6(a) satisfying

assumptions 1-4. It is the same as the general setting in Figure 2.2, but it also indicates

an Itō interpretation of the stochastic multiplicative gains. By using the definition of

Itō integrals in Section 2.1.11, we construct a discrete-time block diagram, depicted in

Figure 2.6(b), which explicitly describes the Itō interpretation of Figure 2.6(a). In fact,

it is constructed by using a partition PN [0, t] of N subintervals on [t0, tN ] := [0, t] as

described in Section 2.1.11. Therefore, Figure 2.6(a) can be interpreted as the limit of

Figure 2.6(b) as N →∞. Note that MN denotes a finite dimensional approximation of

M on the partition PN [0, t], i.e.

y =MN ũ⇐⇒ yN =
N−1∑

k=0

M(tN − tk)ũk,

where the “tilde” is used to denote the increments of a signal (refer to Section 2.1.11).

The equations describing the block diagrams in Figures 2.6(a) and (b) can be respec-

tively written as
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dw du y

dr

M


dγ1

. . .

dγn




�I

w̃ ũ y

r̃

MN



γ̃1

. . .

γ̃n




(a) Continuous-Time Setting (b) Discrete-Time Setting

Figure 2.6: A causal LTI system M in feedback with stochastic multiplicative gains {dγi} that rep-

resent the differential forms of, possibly mutually correlated, Wiener processes. Figure (a) shows the

continuous-time MSS setting when the Itō interpretation is adopted. Figure (b) explicitly describes the

Itō interpretation of Figure (a) by using a partition PN [0, t] of N subintervals as explained in 2.1.11. In

fact, Figure (a) is interpreted as the limit of Figure (b) as N →∞.





y(t) = (Mdu) (t)

du(t) = dw(t) + dr(t)

dr(t) = dΓ(t) �I y(t)

(2.31a)





yN = (MN ũ)N

ũN = w̃N + r̃N

r̃N = Γ̃NyN

(2.31b)

The rest of this subsection shows that by adopting the Itō interpretation (2.31b), the

stochastic signal r will have independent increments. Furthermore, we will derive the

expression that describes the propagation of the instantaneous covariance through the

feedback block. The analysis is carried out using Figure 2.6(b) and then is passed to the

limit as N →∞.
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2.6.1.1 Disturbance-to-signals mapping

It is fairly straightforward to show that the disturbance w̃ is mapped to the various

signals in the loop as 


ũ

y

r̃




=




(I − Γ̃MN)−1

(I −MN Γ̃)−1MN

(I − Γ̃MN)−1Γ̃MN



w̃. (2.32)

2.6.1.2 Independence of
(
dΓ(t), y(τ)

)
for τ ≤ t

This can be shown by analyzing the second equation in (2.32). Examining the oper-

ator (I −MN Γ̃)−1 allows us to write it, over the time horizon of the partition PN [0, t],

as




I

−M(t1 − t0)Γ̃0 I

. . . . . .

−M(tN − t0)Γ̃0 · · · −M(tN − tN−1)Γ̃N−1 I




−1

=




I

. . .

∗ I



,

where ∗ denotes the blocks of matrices that are functions of Γ̃k for k = 0, 1, ..., N − 1.

Hence the second equation in (2.32) can be written as




y0

...

yN




=




I

. . .

∗ I







I

M(t1 − t0) I

. . . . . .

M(tN − t0) · · · M(tN − tN−1) I







w̃0

...

w̃N



.

Clearly, yN does not depend on Γ̃N for any positive integer N . Furthermore, by carrying

out a similar reasoning, it is straightforward to see that Γ̃N is independent of the past

values of all the signals in the loop (particularly y). This analysis shows that (Γ̃N , yk) are

independent for k ≤ N . Finally, taking the limit as N →∞ completes the argument.
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2.6.1.3 Temporal independence of the increments of r

The following calculation shows that r has independent increments. For k < l, we

have

E [r̃kr̃
∗
l ] = E

[
Γ̃kyky

∗
l Γ̃
∗
l

]
= E

[
Γ̃kyky

∗
l

]
E
[
Γ̃∗l

]
= 0,

where the third equality holds because Γ̃ has a zero-mean, and the second equality follows

because Γ has independent increments (Wiener process) and also Γ̃ is independent of

present and past values of y (Section 2.6.1.2).

The combination between the causality ofM and the Itō interpretation introduces a

sort of “strict causality” in continuous-time systems. Thus the multiplicative, temporally

independent gains {dγi(t)} has a “whitening” effect. In fact, although y has nonzero

temporal correlations, the signal r is guaranteed to have independent increments dr, i.e.

E [dr(t)dr∗(τ)] = 0, ∀t 6= τ .

Finally, the instantaneous covariance of dr is calculated as

E [dr(t)dr(t)∗] = E [dΓ(t)y(t)y∗(t)dΓ∗(t)]

= E
[
dΓ(t)E [y(t)y∗(t)] dΓ∗(t)

]

= Γ ◦Y(t)dt =: R(t)dt,

where the second equality is a consequence of Lemma 2.D.1 since dΓ(t) and y(t) are

independent (Section 2.6.1.2). The third equality is an immediate consequence of the

fact that dΓ(t) = D
(
dγ(t)

)
. Finally, we have

R(t) = Γ ◦Y(t). (2.33)
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2.6.2 Covariance Feedback System

The goal of this section is to construct a deterministic feedback system that describes

the evolution of the instantaneous covariance matrices of the various signals in Figure 2.6

and finally derive the expression of the LGO given in (2.17).

In the previous section, we showed that r has temporally independent increments. As

a result, it is straightforward to see that u also has temporally independent increments,

because for k < l we have

E [ũkũ
∗
l ] = E [(w̃k + r̃k)(w̃l + r̃l)

∗]

= E [w̃kw̃
∗
l ] + E [r̃kr̃

∗
l ] + E [r̃kw̃l] + E [w̃kr̃

∗
l ]

= 0 + 0 + 0 + E
[
w̃ky

∗
l Γ̃
∗
l

]

= E [w̃ky
∗
l ]E

[
Γ̃∗l

]
= 0,

where the third equality follows from the fact that w (Wiener process) and r (Sec-

tion 2.6.1.3) both have independent increments and the fact that w is independent of

past values of all the signals in the loop. The fourth equality follows from Section 2.6.1.2

and the assumption that w and Γ are independent. Finally, passing to the limit as

N →∞ yields that du is temporally independent.

As for the instantaneous covariance of ũ, we have

E [ũkũ
∗
k] = E [w̃kw̃

∗
k] + E [r̃kr̃

∗
k] + E [r̃kw̃

∗
k] + E [w̃kr̃

∗
k]

= Wk∆k + Rk∆k + E
[
Γ̃kykw̃

∗
k

]
+ E

[
w̃ky

∗
kΓ̃
∗
k

]

= (Wk + Rk)∆k + 0 + 0 =: Uk∆k.

Therefore, the addition junction in Figure 2.6 remains as an addition operation on the

associated covariance matrices, i.e.

U(t) = W(t) + R(t). (2.34)
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Furthermore, the propagation of the covariance through the forward block of Figure 2.6 is

given by (2.11) which requires the input du to be temporally independent for its validity.

Finally, the propagation of the covariance through the feedback block is given by (2.33).

Therefore, (2.11), (2.33) and (2.34) can be used to construct the deterministic feedback

block diagram depicted in Figure 2.7, where each signal is matrix-valued. The advantage

t∫

0

M(t− τ)U(τ)M ∗(t− τ)dτ

Γ ◦Y(t)

W U

R

Y

Figure 2.7: A deterministic block diagram describing the evolution of the covariance matrices of the

various signals in the feedback loop of Figure 2.6(a). The forward block represents a convolution integral

of matrices and the feedback block represents a Hadamard (element-by-element) product. Note that all

the covariance matrices in the loop are positive semi-definite and non-decreasing in time when W is

non-decreasing, i.e. for t2 ≥ t1, W(t2)−W(t1) ≥ 0 (refer to [3]).

of the covariance feedback system in Figure 2.7 is that it describes a deterministic dy-

namical system unlike its corresponding stochastic feedback system in Figure 2.6. Before

we construct the loop gain operator, we give a remark.

Remark 2.6.1 All the covariance signals in Figure 2.7 are monotone. Particularly, if

t1 ≤ t2 then U(t1) ≤ U(t2), where the matrix ordering is taken in the usual positive

semidefinite sense. Refer to [3, Section II-E].
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2.6.3 Loop Gain Operator

We are now equipped with all the necessary tools to define the continuous-time coun-

terpart of the LGO introduced in [3]. Over a finite time horizon [0, t], the instantaneous

covariance R(t) can be expressed in terms of {U(τ), 0 ≤ τ ≤ t} using (2.11) and (2.33)

as

R(t) = Γ ◦Y(t)

= Γ ◦
(∫ t

0

M(t− s)U(s)M(t− s)ds
)

R(t) = Γ ◦
(∫ t

0

M(τ)U(t− τ)M∗(τ)dτ

)
. (2.35)

The previous calculation motivates the definition of a finite dimensional linear operator

over the infinite time horizon, i.e. as t→∞

R̄ = L
(
Ū
)

:= Γ ◦
(∫ ∞

0

M(τ)ŪM∗(τ)dτ

)
(2.36)

where Ū and R̄ are the steady-state limits (if they exist) of the covariances. This linear

operator acts on a matrix to produce another matrix, and it propagates the steady state

covariance Ū “once around the loop” to produce the steady state covariance R̄ (and thus

the name loop gain operator, refer to Figure 2.7). Before moving to the next section, we

define here a truncated version of the LGO as

LT (X) := Γ ◦
(∫ T

0

M(τ)XM∗(τ)dτ

)
, (2.37)

which will be useful when proving Theorem 2. Before stating the proof, we summarize

some useful properties of the LGO in three remarks.

Remark 2.6.2 The operator LT defined in (2.37) is a monotone operator, i.e. if 0 ≤

X ≤ Y , then 0 ≤ LT (X) ≤ LT (Y ). The same property holds for L defined in (2.36) since

L = limT→∞ LT . Refer to [3, Section II-E] for details, noting that the same arguments

also hold for integrals as well as summations.
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Remark 2.6.3 The operator LT is also monotone in time, i.e. if T1 ≤ T2, then 0 ≤

LT1(X) ≤ LT2(X) for any X ≥ 0. This is easy to validate by checking that LT2(X) −

LT1(X) is positive semidefinite. Consequently, for any T > 0 and X ≥ 0, we have

0 ≤ LT (X) ≤ L(X).

Remark 2.6.4 The spectral radius of L is its largest eigenvalue which is guaranteed to

be a real number. Furthermore, the “eigen-matrix” associated with the largest eigenvalue

is guaranteed to be positive semidefinite. That is, if ρ(L) denotes the spectral radius of

L, then ∃Û ≥ 0 s.t. L(Û) = ρ(L)Û. Note that Û is the matrix counterpart of the

Perron-Frobenius vector for matrices with nonnegative entries. This is the covariance

mode that has the fastest growth rate if MSS is violated, and therefore we refer to Û as

the worst-case covariance. (Refer to [3, Thm 2.3] for more details.)

2.6.4 MSS Conditions

Equipped with the LGO, we can now present the proof of Theorem 2. The proof is

very similar to [3] and thus some of the details are omitted.

Proof:

“if”: Using (2.34) and (2.35), U(t) can be written as

U(t) = Γ ◦
(∫ t

0

M(τ)U(t− τ)M∗(τ)dτ

)
+ W(t)

≤ Γ ◦
(∫ t

0

M(τ)U(t)M∗(τ)dτ

)
+ W(t)

≤ L
(
U(t)

)
+ W(t),

where the first inequality follows from Schur’s theorem and the fact that U(t−τ) ≤ U(t)

for all τ ∈ [0, t] (Remark 2.6.1). The second inequality follows from Remark 2.6.3. To

obtain an upper bound on U(t), we let I denote the identity operator and rearrange to
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obtain

(I− L)U(t) ≤W(t) ≤ W̄

U(t) ≤ (I− L)−1W̄,

where the second equality is obtained by replacing W(t) with its steady state value W̄

since it is assumed to be monotone (Assumption 3). The third inequality is obtained by

applying [3, Thm 2.3] which guarantees that the operator (I−L)−1 exists and is monotone

whenever L is monotone and ρ(L) < 1. Finally the stability of M (finite H2 − norm)

guarantees that all other covariance signals in the loop of Figure 2.7 are also uniformly

bounded thus guaranteeing MSS.

“only if”: First it is straightforward to show that MSS is lost if the H2-norm of M is

infinite (regardless of the value of ρ(L)). Using Figure 2.7, we can write the covariance

Y(t) as

Y(t) =

∫ t

0

M(t− τ)U(τ)M∗(t− τ)dτ

=

∫ t

0

M(t− τ)
(
W(τ) + Γ ◦Y(τ)

)
M∗(t− τ)dτ

≥
∫ t

0

M(t− τ)W(τ)M∗(t− τ)dτ,

where the inequality follows from the fact that Γ ◦Y(τ) is positive semidefinite. Thus,

clearly Y(t) grows unboundedly when M has an infinite H2-norm (take W(t) = I for

example).

Next, assume that M has a finite H2-norm. We will show that if ρ(L) ≥ 1, then U(t)

grows unboundedly in time. We do so by examining U(t) at the time samples tk := kT ,

where k is a positive integer and T > 0. Using Figure 2.7, we obtain

U(tk) = Γ ◦
∫ tk

0

M(tk − τ)U(τ)M∗(tk − τ)dτ + W(tk)

≥ Γ ◦
∫ tk

tk−1

M(tk − τ)U(τ)M∗(tk − τ)dτ + W(tk)
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≥ Γ ◦
∫ tk

tk−1

M(tk − τ)U(tk−1)M∗(tk − τ)dτ + W(tk)

≥ Γ ◦
∫ T

0

M(s)U(tk−1)M∗(s)ds+ W(tk)

= LT
(
U(tk−1)

)
+ W(tk)

U(tk) ≥ LkT
(
U(0)

)
+

k−1∑

r=0

LrT
(
W(tk−r)

)
, (2.38)

where the first inequality follows from the fact that the integrand is positive semidefinite,

the second inequality follows because U(τ) ≥ U(tk−1) for τ ∈ [tk−1, tk], and the third

inequality is a consequence of applying the change of variable s := tk − τ . The last

inequality is a consequence of a simple induction argument that exploits the monotonicity

of LT (Remark 2.6.2). Establishing the inequality (2.38) allows us to use the same

arguments in [3] (repeated here for completeness) to show that U(tk) grows unboundedly.

Set the exogenous covariance W(tk) = Û, where Û is the worst-case covariance

described in Remark 2.6.4. Note that the initial covariance is U0 = Û. Substituting in

(2.38) yields

U(tk) ≥
k∑

r=0

LrT
(
Û
)
. (2.39)

Since limT→∞ LT (Û) = L(Û) = ρ(L)Û, then for any ε > 0, ∃ T > 0 such that ||ρ(L)Û−

LT (Û)|| ≤ ε||Û||. This inequality coupled with the fact that 0 ≤ LT (Û) ≤ ρ(L)Û allows

us to invoke [3, Lemma A.3] to obtain

LT (Û) ≥ (ρ(L)− εc) Û =: α Û, (2.40)

where c is a positive constant that only depends on Û. Then, by (2.38), the one-step

lower bound (2.40) becomes

U(tk) ≥
(

k∑

r=0

αr

)
Û =

αk+1 − 1

α− 1
Û. (2.41)

43



An Input-Output Approach to Structured Stochastic Uncertainty in Continuous Time Chapter 2

First consider the case when ρ(L) > 1, then ε can be chosen small enough so that

α > 1 and therefore {Û(tk)} is a geometrically growing sequence. As for the case where

ρ(L) = 1, we have α = 1− ε. Then for 0 < ε < 1, we have

Ū = lim
k→∞

U(tk) ≥
1

ε
Û.

This proves that U(t) can grow arbitrarily large (although not necessarily geometrically)

since ε can be chosen to be arbitrarily small.

2.7 Conclusion

This chapter examines the conditions of MSS for LTI systems in feedback with mul-

tiplicative stochastic gains. The analysis is carried out from a purely-input output ap-

proach as compared to (the more common) state space approach in the literature. The

advantage of this approach is encompassing a wider range of models. It is shown that in

the continuous-time setting, technical subtleties arise that require to exploit several tools

from stochastic calculus. Different stochastic interpretations are considered for which dif-

ferent stochastic block diagram representations are constructed. Finally, it is shown that

MSS analysis for state space realizations can be transparently carried out as a special

case of our approach.
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Appendix

2.A Interpretations of Stochastic Convolution

Consider the stochastic convolution in (2.10) satisfying Assumption 1. Exploiting the

partition PN [0, t] described in Section 2.1.9 and the notation developed in Section 2.1.10

yield

y(t) = lim
N→∞

N−1∑

k=0

M(t− t̄k)ũk,

where t̄k ∈ [tk, tk+1]. The choice of t̄k prescribes a particular stochastic interpretation

of the integral, for example t̄k = tk corresponds to an Itō interpretation. The following

calculation shows that the covariance of y does not depend on the choice of t̄k when

M ∈ C defined in Appendix 2.E.

Y(t) := E [y(t)y∗(t)]

= lim
N→∞

N−1∑

k,l=0

M(t− t̄k)E [ũkũ
∗
l ]M

∗(t− t̄l)

= lim
N→∞

N−1∑

k=0

M(t− t̄k)E [ũkũ
∗
k]M

∗(t− t̄k)

= lim
N→∞

N−1∑

k=0

M(t− t̄k)U(tk)∆kM
∗(t− t̄k)

=

∫ t

0

M(t− τ)U(τ)M∗(t− τ)dτ,
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where the third equality follows from the temporal independence of u and the fourth

equality follows from the definition of the covariance of du. The last equality is a con-

sequence of Riemann integrability which guarantees convergence to a unique value when

M ∈ C. As a result, there is no need to prescribe a stochastic interpretation of (2.10)

since different stochastic interpretations play the same role in the mean-square sense.

2.B Calculation of DN(t) in (2.25)

This appendix shows the required algebraic manipulations to arrive at the expression

of DN(t) in (2.26). Start by adding and subtracting M(t− tk)Γ̃kyk in the partial sum of

SN(t) in (2.24) to obtain

SN(t) = IN(t) +
1

2

N−1∑

k=0

(
M(t− tk+1)Γ̃kyk+1 −M(t− tk)Γ̃kyk

)
,

where IN(t) is defined in (2.24). Adding and subtracting M(t− tk+1)Γ̃kyk in the sum of

the second term yields

SN(t) = IN(t) +
1

2

(
QN(t) + JN(t)

)
, (2.B.1)

where JN(t) is given in (2.27) and

QN(t) :=
N−1∑

k=0

M(t− tk+1)Γ̃kỹk (2.B.2)

Observe that QN(t) (2.B.2) is a cross quadratic-variation-like term whose limit is not

obvious, so we examine the increments ỹk using (2.16) with � = �S. We have

ỹk = Ek+1(tk+1)− Ek(tk) + Sk+1(tk+1)− Sk(tk)

ỹk =: Ẽk + Ĩk +
1

2

(
Q̃k + J̃k

)
. (2.B.3)
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where EN(t) :=
N−1∑
k=0

M(t− tk)w̃k. Start by calculating Ẽk

Ẽk =
k∑

l=0

M(tk+1 − tl)w̃l −
k−1∑

l=0

M(tk − tl)w̃l

= M(∆k)w̃k +
k−1∑

l=0

(
M(tk+1 − tl)−M(tk − tl)

)
w̃l.

Carrying out similar calculations for Ĩk, Q̃k and J̃k yields

Ĩk = M(∆k)Γ̃kyk +
k−1∑

l=0

(
M(tk+1 − tl)−M(tk − tl)

)
Γ̃lyl

Q̃k = M0Γ̃kỹk +
k−1∑

l=0

(
M(tk+1 − tl+1)−M(tk − tl+1)

)
Γ̃lỹl

J̃k =

(
M0 −M(∆k)

)
Γ̃kyk +

k−1∑

l=0

(
M(tk+1 − tl+1)

−M(tk − tl+1) +M(tk − tl)−M(tk+1 − tl)
)

Γ̃lyl,

where M0 denotes M(0) for notational brevity. Substituting for the expression of ỹk

(2.B.3) in QN(t) (2.B.2) and collecting terms yield

QN(t) =
1

2

(
θN(t) + ηN(t) + TαN(t) + T βN(t)

)

+ χN(t) + T ζN(t) +
N−1∑

k=0

M(t− tk+1)Γ̃kM0Γ̃kyk,

where θN(t), ηN(t), χN(t), TαN(t), T βN(t) and T ζN(t) are all defined in (2.27). Adding and

subtracting M(t− tk)Γ̃kM0Γ̃kyk in the partial sum of the last term yields

QN(t) =
1

2

(
θN(t) + ηN(t) + TαN(t) + T βN(t)

)
+ νN(t)

+ χN(t) + T ζN(t) +
N−1∑

k=0

M(t− tk)Γ̃kM0Γ̃kyk, (2.B.4)

where νN(t) is defined in (2.27). Finally, DN(t) is calculated as

DN(t) := SN(t)−
(
IN(t) +

1

2
RN(t)

)
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=
1

2

(
QN(t)−RN(t) + JN(t)

)
. (2.B.5)

Substituting for QN(t) from (2.B.4), RN(t) from (2.24), and JN(t) from (2.27), yields the

expression of DN(t) given in (2.26) after exploiting the following equation

Γ̃kM0Γ̃k − (M0 ◦ Γ)∆k =
(
γ̃kγ̃

∗
k − Γ∆k

)
◦M0,

where γ̃k = D(Γk) is the vector formed of the diagonal entries of Γk.

2.C Second Moments of Cross Terms

Let x and y be two vector-valued random variables. The subsequent calculation shows

that to check if E
[
||x+ y||2

]
is zero, it suffices to check that E

[
||x||2

]
= E

[
||y||2

]
= 0.

E
[
||x+ y||2

]
≤ E

[
(||x||+ ||y||)2]

= E
[
||x||2 + ||y||2 + 2 ||x|| ||y||

]

≤ E
[
||x||2

]
+ E

[
||y||2

]
+ 2
√

E
[
||x||2

]
E
[
||y||2

]
,

where the first inequality is a consequence of applying the triangle inequality, and the

last one follows from Cauchy-Schwarz inequality with respect to expectations. Observe

that if E
[
||x||2

]
or E

[
||y||2

]
is zero, then the cross term is zero. Therefore, to prove that

the variance of the sum of random variables is equal to zero, there is no need to calculate

the expectation of cross terms.

2.D Useful Equalities & Inequalities

This appendix provides a sequence of lemmas that give some useful equalities and

inequalities (upper bounds) that are used in the proofs throughout this chapter.
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Lemma 2.D.1 Let X and v be a matrix-valued and vector-valued random variables,

respectively. If X and v are independent and Dv := D(v), then

E [DvXDv] = E [vv∗] ◦ E [X] .

Proof: Let Xij denote the ijth entry of the matrix X. Then

E [DvXDv]ij = E [viXijvj] = E [vivj]E [Xij]

= E [vv∗]ij E [X]ij ,

where the first equality holds because Dv := D(v) is diagonal, and the second equality

hold because X and v are independent. The proof is complete since the Hadamard

product “◦” is the element-by-element multiplication.

Lemma 2.D.2 Let x =

[
x1 x2 · · · xn

]∗
be a zero-mean random vector that follows

a multivariate normal distribution with a covariance matrix Σ := E [xx∗]. Then

E
[
||x||2

]
= tr(Σ) and E

[
||x||2p

]
≤ c(p, n) ||Σ||p ,

where p is any positive integer and c is a constant that depends on p and n. For example,

one can check that c(1, n) = n and c(2, n) = n2 + 2n.

Proof: For the second moment, we have

E
[
||x||2

]
=

n∑

i=1

E
[
x2
i

]
=

n∑

i=1

Σii = tr(Σ).

To calculate the fourth moment, let Σ1/2 denote the Cholesky factorization of Σ so that

x = Σ1/2ξ where ξ follows the standard multivariate normal distribution. Then

E
[
||x||2p

]
= E

[∣∣∣
∣∣∣Σ 1

2 ξ
∣∣∣
∣∣∣
2p
]
≤ ||Σ||p E

[
||ξ||2p

]

= ||Σ||p E
[(

n∑

i=1

ξ2
i

)p]
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= ||Σ||p E
[ ∑

k1+k2+···+kn=p

p!
n∏

i=1

ξ2ki
i

ki!

]

= ||Σ||p
∑

k1+k2+···+kn=p

p!
n∏

i=1

E
[
ξ2ki
i

]

ki!

= ||Σ||p p!
∑

k1+k2+···+kn=p

n∏

i=1

(2ki − 1)!!

ki!

=: c(p, n) ||Σ||p ,

where “!!” is the double factorial operation. The inequality follows from the submulti-

plicative property of the norms, the third equality is a direct application of the multi-

nomial theorem, and the fourth equality holds because {ξi} are mutually independent.

Finally, the fifth equality follows because the mth moment of a standard normal random

variable is (m− 1)!! when m is even.

Throughout Lemmas 2.D.3-2.D.6, let {Xk} and {yk} be two sequences of square

random matrices and random vectors, respectively, with bounded second moments. Fur-

thermore, let {Fk} be a sequence of deterministic matrices.

Lemma 2.D.3 Exploiting the triangle inequality and the sub-multiplicative property of

the norm yields

E



∣∣∣∣∣

∣∣∣∣∣
N−1∑

k=0

FkXkyk

∣∣∣∣∣

∣∣∣∣∣

2

 ≤ E



(
N−1∑

k=0

||Fk|| ||Xk|| ||yk||
)2

 .

Lemma 2.D.4 Suppose that (Xk, yk) are in general dependent, but {Xk} has indepen-

dent increments, i.e. (Xk, Xl) are independent for k 6= l. Then

E



∣∣∣∣∣

∣∣∣∣∣
N−1∑

k=0

FkXkyk

∣∣∣∣∣

∣∣∣∣∣

2

 ≤

N−1∑

k=0

||Fk||2
(
E
[
||Xk||4

]) 1
2


E



(
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k=0

||yk||2
)2





1
2

.
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Proof:

E



∣∣∣∣∣

∣∣∣∣∣
N−1∑

k=0

FkXkyk

∣∣∣∣∣
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
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

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[
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||Fk||2 ||Xk||2
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k=0

||yk||2
]

≤


E



(
N−1∑

k=0

||Fk||2 ||Xk||2
)2

E



(
N−1∑

k=0

||yk||2
)2





1
2

where the first inequality follows from Lemma 2.D.3, the second follows by applying

the Cauchy-Schwarz inequality, and the last one follows by applying again the Cauchy-

Schwarz inequality but with respect to the expectation. To complete the proof, we find

a bound on the first term of the last inequality. We have

E



(
N−1∑

k=0

||Fk||2 ||Xk||2
)2



=
N−1∑

k,l=0

||Fk||2 ||Fl||2 E
[
||Xk||2 ||Xl||2

]

≤
N−1∑

k,l=0

||Fk||2 ||Fl||2
(
E
[
||Xk||4

]
E
[
||Xl||4

]) 1
2

≤
(
N−1∑

k=0

||Fk||2
(
E
[
||Xk||4

]) 1
2

)2

,

where the first inequality is obtained by using the Cauchy-Schwarz inequality with respect

to expectations. Finally, putting the results all together completes the proof.

Lemma 2.D.5 Suppose that (Xk, yk) are independent for k = 0, 1, · · ·N − 1. Then

E



∣∣∣∣∣

∣∣∣∣∣
N−1∑

k=0

FkXkyk
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2

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(
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(
E
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]
E
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]) 1
2
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.

Proof:
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

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=
N−1∑

k,l=0

E
[(
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]) 1
2

)2
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where the first inequality follows from Lemma 2.D.3, the second inequality follows from

applying the Cauchy Schwarz inequality with respect to expectations, and the last one

is a result of the mutual independence of (Xk, yk).

Lemma 2.D.6 Suppose that E [Xk] = 0, {Xk} has independent increments, i.e. (Xk, Xl)

are independent for k 6= l, and (Xk, yl) are independent for k ≥ l with k, l = 0, 1, · · ·N−1.

Then
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where the first inequality follows by applying Lemma 2.D.3, and the first equality follows

from the independence of (Xk, yl) when k > l and the fact that Xk has independent

increments. The second equality follows because Xk is zero-mean, and the last equality

holds because the pair (Xk, yk) are mutually independent.

2.E Total & Quadratic Variations of Deterministic

Functions

Let C denote the class of deterministic, matrix-valued functions M that can be decom-

posed into two parts M(t) = C(t) +D(t), where C(t) is differentiable and D(t) includes

all the jumps (or discontinuities) of M , i.e.

M(t) = C(t) +D(t); s.t. D(t) =
∑

j

Aj1(t− τj), (2.E.1)

where {Aj} are constant matrices that correspond to the jumps at {τj}, and 1(t) is the

Heaviside step function centered at zero. Note that if M is a scalar function, C boils

down to the class of functions with bounded absolute variations.

Define the total and quadratic variations of M ∈ C over the interval [0, t] as

T V t0 (M) := lim
N→∞

N−1∑

k=0

||M(tk+1)−M(tk)||

QV t0 (M) := lim
N→∞

N−1∑

k=0

||M(tk+1)−M(tk)||2 ,

respectively, where PN [0, t] (Section 2.1.9) is used to partition the interval [0, t].

Lemma 2.E.1 If M ∈ C, then T V t0 (M) and QV t0 (M) are finite for any finite time t.

Proof: Since M ∈ C, we exploit the decomposition in (2.E.1) to write the total

variation of M as

T V t0 (M) = lim
N→∞

N−1∑

k=0

∣∣∣
∣∣∣C̃k + D̃k

∣∣∣
∣∣∣
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≤ lim
N→∞

N−1∑

k=0

∣∣∣
∣∣∣C̃k
∣∣∣
∣∣∣+ lim

N→∞

N−1∑

k=0

∣∣∣
∣∣∣D̃k

∣∣∣
∣∣∣

= T V t0 (C) + T V t0 (D) ,

where the notation in Section 2.1.10 for the increments is used, i.e. C̃k := C(tk+1)−C(tk).

T V t0 (C) is shown to be finite by exploiting the fact that C is differentiable, i.e.

T V t0 (C) = lim
N→∞

N−1∑

k=0

∣∣∣∣∣

∣∣∣∣∣
C̃k
∆k

∣∣∣∣∣

∣∣∣∣∣∆k =

∫ t

0

∣∣∣
∣∣∣Ċ(τ)

∣∣∣
∣∣∣ dτ.

The integral is finite, because C is differentiable and thus
∣∣∣
∣∣∣Ċ(t)

∣∣∣
∣∣∣ is finite for finite time.

Furthermore, T V t0 (D) is finite because

T V t0 (D) = lim
N→∞

N−1∑

k=0

∣∣∣∣∣

∣∣∣∣∣
∑

j

Aj

(
1(tk+1 − τj)− 1(tk − τj)

)∣∣∣∣∣

∣∣∣∣∣

=
∑

j

||Aj|| ,

where the second equality follows from the fact that the increments of the Heaviside step

function are zeros everywhere except at the jumps {τj}. Therefore, T V t0 (M) is finite

over any bounded interval [0, t] with an upper bound given by

T V t0 (M) ≤
∫ t

0

∣∣∣
∣∣∣Ċ(τ)

∣∣∣
∣∣∣ dτ +

∑

j

||Aj|| .

Similar reasoning can be carried out to show that QV t0 (M) is also finite. In fact, using

similar arguments we obtain

QV t0 (M) ≤ QV t0 (C) +QV t0 (D) + 2 lim
N→∞

N−1∑

k=0

∣∣∣
∣∣∣C̃k
∣∣∣
∣∣∣
∣∣∣
∣∣∣D̃k

∣∣∣
∣∣∣

≤ 0 +
∑

j

||Aj||2 + 0.
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2.F Second Moment of Quadratic Variations

The goal of this appendix is to show that the second moment of the quadratic variation

of the solutions of (2.22) is finite over finite time. For simplicity, we consider the scalar

case with w = 0, M0 = 0 and Γ = 1; however the same analysis can be carried out for the

general case. Over the partition PN [0, t], (2.22) can be expressed as yk =
∑k−1

l=0 M(tk −

tl)ylγ̃l and thus the increments can be written as

ỹk = M(∆k)ykγ̃k +
k−1∑

l=0

(
M(tk+1 − tl)−M(tk − tl)

)
ylγ̃l.

Using the inequality (a+ b)4 ≤ 8(a4 + b4) and the Cauchy Schwarz inequality, we obtain

E
[
ỹ4
k

]
≤ 8M4(∆k)E

[
y4
kγ̃

4
k

]
+ 8L4

M∆2t2kE



(
k−1∑

l=0

y2
l γ̃

2
l

)2

 ,

where LM is the Lipschitz constant of M and ∆ is defined in Section 2.1.9. Using

Lemma 2.D.5, E [γ̃4
k] = 3∆2

k, and Assumption 1 yield the upper bound E [ỹ4
k] ≤ c(t)∆2,

where c(t) = 24 (c4
M(t) + L4

M t
4) supτ≤t E [y4(τ)]. Note that supτ≤t E [y4(τ)] is shown to be

finite in the corollary of [34, Thm 3.1]. Therefore, using the Cauchy-Schwarz inequality

with respect to expectations, the second moment of the quadratic variation over PN [0, t]

can be bounded as follows

E



(
N−1∑

k=0

ỹ2
k

)2

 ≤

(
N−1∑

k=0

√
E [ỹ4

k]

)2

≤ c(t)

(
N−1∑

k=0

∆

)2

.

Finally, taking the limit as N →∞ shows that E [〈y〉2(t)] is bounded for finite time t.
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Chapter 3

Introduction & Brief Physiology

The cochlea is a highly sensitive device that is capable of sensing sound waves across

a broad spectrum of frequencies (20 − 20000 Hz) and across a wide range of sound

intensities ranging from 0 dB (threshold of hearing) up to 120 dB (sound of a jet engine).

The cochlea was believed to be a passive device that acts like a Fourier analyzer: each

frequency causes a vibration at a particular location on the basilar membrane (BM). This

mechanism was discovered by the Nobel Prize winner George von Békésy who carried

out his experiments on cochleae of human cadavers. However, in 1948, Thomas Gold

hypothesized that the ear is rather an active device that has a component termed the

cochlear amplifier. Although Gold’s hypothesis was rejected by von Békésy, David Kemp

validated it thirty years later by measuring emissions from the ear. These emissions,

termed otoacoustic emissions (OAEs) are sound waves that are produced by the cochlea

and can be measured in the ear canal.

It is widely accepted that the outer hair cells, anchored on the cochlear partition, are

responsible for the active gain in the cochlea that produces these emissions. However, the

underlying mechanism is still not well understood. For example, spontaneous otoacoustic

emissions (SOAEs) – emissions generated in the absence of any stimulus – are studied
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in [24] and [39]. The remarkable high sensitivity of the cochlea makes it vulnerable to

stochastic perturbations that are believed to be the cause of these emissions. Particu-

larly, in [39], the authors studied the instabilities that arise in a linear biomechanical

cochlear model with spatially random active gain profiles that are static in time. In [24],

similar analysis was carried out on simplified cochlear models comprised of coupled active

nonlinear oscillators. The randomness, or disorder, was introduced via static variations

of a bifurcation parameter. In these previous works, the analysis was carried out through

Monte Carlo simulations by studying the stability of different randomly generated active

gain (or bifurcation) profiles.

In this part of the dissertation, we carry out a simulation-free stability analysis of

the linearized dynamics of a nonlinear model of the cochlea. Our analysis employs the

structured stochastic uncertainty theory developed in the previous chapters rather than

Monte Carlo simulations, where the active gain is stochastic in space and time and may

have a spatially-varying expectation and/or covariance. It turns out that letting the

active gain be a stochastic process puts the model in the standard setting of linear time-

invariant (LTI) systems in feedback with a diagonal stochastic process that enters the

dynamics multiplicatively (see Figure 4.2). This analysis allows us to predict the locations

on the BM where the dynamics are more likely to destabilize due to the underlying

uncertainties. It also provides a bound on the variance of the perturbations allowed such

that stability is maintained.

The rest of this chapter gives a brief exposé of the physiology of the ear as an adaptive

transduction device. For a more thorough reading on the physiology of the ear, we refer

the reader to [54].

The primate ear is built to adapt for different sound intensity levels and across the

entire audible frequency range (20Hz to 20 kHz). It is composed anatomically, of three

principal parts: outer, middle and inner ear (refer to Figure 3.1). The outer ear is
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Figure 3.1: Ear Anatomy

mainly composed of the pinna and the external auditory canal. The pinna collects and

transforms the sound waves and plays a role in sound source localization. The external

auditory canal serves as a filter, which resonates and amplifies tones ranging between 3

and 4 kHz. The middle ear is mainly composed of the ear drum (tympanic membrane),

the ossicles and the neighboring cavity. Sound pressure waves pass through the external

ear canal and reach the eardrum causing it to vibrate. The neighboring cavity balances

the pressure between the middle and outer ear thus preventing eardrum vibrations in the

absence of sound waves. Induced eardrum vibrations are then transmitted to the inner

ear via three bone structures (ossicles) that collectively act both as an amplifier of the

vibration force and as an impedance matching device between the air medium (middle

ear) and fluid medium (inner ear) thus preventing excessive energy loss as waves travel

59



Introduction & Brief Physiology Chapter 3

Figure 3.2: (a) Stretched Cochlea (b) Cochlear Partition

between the two different media. In the inner ear, the cochlea is the organ where the

main nonlinear biomechanical processing takes place. It is a sensory organ where sound

signals are transformed into electrical signals. The cochlea is divided into two chambers:

Scala Vestibuli (SV) and Scala Tympani (ST) filled with incompressible fluid and are

partly separated by the cochlear partition (refer to Figure ). At one end of the SV,

the oval window acts as an entry port where pressure waves arriving from the stapes

of the middle ear enter the inner ear. These waves travel along the SV and enter the

second chamber ST through a connection point (Helicotrema). Finally, a round window

at the other end of the ST serves to release pressure traveling in the incompressible

fluid. As the pressure waves travel along the two chambers, fluid pressure fluctuations

permeate the first wall of the cochlear partition to cause vibrations in two connected wall

structures termed the tectorial membrane (TM) and basilar membrane (BM). Anchored

in the BM are rows of thin cells termed inner and outer hair cells which are moved as
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the two membranes vibrate in different directions. The inner hair cells are the main

nerve cells that transduce the mechanical vibrations to electrical impulses. Finally, the

outer hair cells act to amplify vibrations specifically under low pressure fluctuations. The

mechanical characteristics of the BM varies along its length from being narrow and stiff at

the oval window (entry point) to being wide and compliant at the apex. This endows the

cochlea with spatially-tuned resonances: lower frequencies cause slow vibrations closer

to the apex while higher frequencies are closer to the oval window. Other factors that

contribute to cochlear response include dynamics of the fluid and active feedback of the

outer hair cells.
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Chapter 4

Mean-Square Stability Analysis of

the Cochlea

In this chapter, we show how the structured stochastic uncertainty theory developed in

the previous chapters can be exploited to analyze the mean-square stability of the cochlea.

This chapter is organized as follows: we start by providing a brief description of a class

of biomechanical models of the cochlea in section 4.1.1. Then, in section 4.1.2, we recast

this class of models in a descriptor state space (DSS) form using operator language (i.e.

in continuous space-time). In section 4.2, we reformulate the DSS form in a standard

setting that is particularly useful to carry out our stochastic uncertainty analysis. We

also provide the conditions for mean-square stability (MSS). We conclude this chapter

in section 4.3, where we present the numerical results of the possible instabilities caused

by stochastic gain profiles with different statistic properties.
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4.1 Biomechanical Model of the Cochlea

Throughout the literature, cochlear modeling attempts varied depending on two main

factors. The first is concerned with the degree of biological realism of the mathemati-

cal model. This is realized by the incorporation of various biological structures ( [25],

[41], [47]) and the dimensionality of the fluid filling the cochlear chambers ( [57], [26]).

The second factor is concerned with the computational aspect of the models. Different

numerical methods were devised to approach the spatio-temporal nature of the cochlea

( [46], [20]). Particularly, [19] used a finite difference method developed in [46] to dis-

cretize space and formulate the model in state space form. Moreover, computationally

efficient methods and model reduction techniques were developed for fast simulations of

cochlear response ( [7], [22]). This section starts by describing the mathematical model

adopted in this dissertation. Then, we reformulate the latter in a continuous space-time

descriptor state space form, using operator language. This form has two advantages: (a)

it encompasses a wider class of cochlear models and (b) it makes the dynamics more

transparent by treating the exact model and its finite dimensional approximation (i.e.

discretizing space by some numerical method) separately [23].

4.1.1 Mathematical Model Description

The mathematical model can be divided into two main blocks as illustrated in Fig-

ure 4.1(a). For a detailed derivation of the governing mechanics, refer to [19] and [22]

for a one and two dimensional modeling of the fluid stage, respectively. The fluid block,

commonly referred to as the macro-mechanical stage, is linear and memoryless under the

appropriate assumptions and approximations (refer to Appendix-5.A). This block intro-

duces spatial coupling along the different locations on the BM. Its output is the pressure

p(x, t) acting on each location of the BM. The governing equation can be written as a
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s̈(t)
Fluids

p(x, t)
Membranes

u(x, t)

∂2

∂t2

Cochlea

(a) Block Diagram of the Cochlea

m1BM

k1(x) c1(x)

m2TM

k3(x) c3(x)

k2(x) c2(x)

p(x, t)

u(x, t)

v(x, t)

OHC

G(u)
−k4(x)

−c4(x)

(b) Detailed Schematic Representing the Membranes Block

Figure 4.1: (a) The cochlea processes the acceleration of the stapes s̈(t), in two stages, to produce the

vibrations at every location of the BM, u(x, t). The first stage is governed by the fluid that is stimulated

by both the stapes and BM accelerations to yield a pressure p(x, t) acting on every location of the BM.

The second stage is governed by the dynamics of the membranes. The two stages are in feedback through

the BM acceleration. (b) This figure is a schematic of a cross section (at a location x) of the cochlear

partition showing the membranes governing the dynamics of the micro-mechanical stage. The spatially

varying parameters mi, ci(x) and ki(x) are the mass, damping coefficient and stiffness of the BM and

TM for i = 1 and 2, respectively. Furthermore, c3(x) and k3(x) are the mutual damping coefficient and

stiffness, respectively; while c4(x) and k4(x) are the damping coefficient and stiffness associated with

the active feedback gain from the outer hair cells (OHC) to the BM. The spring and damper between

the BM and the OHC have variable negative values to capture the effect of the active force acting only

on the BM without any direct effect on the TM. Their values depend on the the BM displacement u via

the nonlinear gain G(u). Equation(4.2) describes the underlying dynamics.

general expression, regardless of the dimensionality of the fluid and the numerical method

used, as

p(x, t) = −[Mf ü](x, t)− [Mss̈](t), (4.1)
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where¨represents the second time derivative operation, andMf andMs are linear spatial

operators associated with the fluid and stapes mass, respectively. Refer to Appendix-

5.A for a more detailed discussion of these mass operators and their finite dimensional

approximations as matrices Mf and Ms, respectively. The second block, commonly

referred to as the micro-mechanical stage, takes the distributed pressure p(x, t) as an

input to produce the BM vibrations u(x, t) at every location according to the following

differential equations



g
b
m1 0

0 m2






ü

v̈


+



g
b
(c1 + c3 − G(u)c4) G(u)c4 − c3

−g
b
c3 c2 + c3






u̇

v̇




+



g
b
(k1 + k3 − G(u)k4) G(u)k4 − k3

−g
b
k3 k2 + k3






u

v


 =



p

0


 ,

(4.2)

where v(x, t) is the tectorial membrane (TM) vibration (refer to Figure 4.1(b)). Note

that the space and time variables (x, t) are dropped where necessary for notational com-

pactness. The constant b is the ratio of the average to maximum vibration along the

width of the BM, and g is the BM to outer hair cells lever gain. Refer to [47] for a de-

tailed explanation of the parameters. Finally, G is the nonlinear active gain operator that

captures the active nature of the outer hair cells, commonly referred to as the cochlear

amplifier. In the spirit of [41], the action of G on a distributed BM displacement profile

u is given by

[G(u)] (x, t) =
γ(x)

1 + θ
[
Φη

(
u2

R2

)]
(x, t)

, (4.3)

where the gain coefficient γ(x) represents the gain at a location x, in the absence of any

stimulus (u(x, t) = 0). The constants θ and R are the nonlinear coupling coefficient and

BM displacement normalization factor, respectively. The operator Φη is a normalized
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Gaussian operator such that its action on u is defined as

[Φη(u)](x, t) :=

∫ L
0
φη(x− ξ)u(ξ, t)dξ
∫ L

0
φη(x− ξ)dξ

; (4.4)

φη(x) :=
1

η
√

2π
e
−x2

2η2 , (4.5)

where L is the length of the BM and φη is the Gaussian kernel with a width η. Note that

η = 0.5345 mm corresponds to the equivalent rectangular bandwidth on the BM (refer

to Appendix-5.D for a detailed explanation). Observe that the spatial coupling in the

micro-mechanical stage appears only in the nonlinear active gain (4.3).

4.1.2 Deterministic Descriptor State Space Formulation of the

Linearized Dynamics in Continuous Space-Time

This section gives a Descriptor State Space (DSS) formulation of the cochlear model

described in (4.1) and (4.2). The DSS form is given for the linearized dynamics around

the only fixed point which is the origin.

It can be shown (Appendix-5.C) that the linearized dynamics can be achieved by

simply replacing the nonlinear active gain [G(u)](x, t) in (4.2) by its gain coefficient γ(x).

First, define the state space variable ψ(x, t) in continuous space-time as

ψ(x, t) :=

[
u(x, t) v(x, t) u̇(x, t) v̇(x, t)

]T
. (4.6)

Then the DSS form of the linearized dynamics is

E ∂
∂t
ψ(x, t) = Aγψ(x, t) + Bs̈(t)

u(x, t) = Cψ(x, t),

(4.7)
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where E , Aγ and B are matrices of linear spatial operators defined as follows

E :=




I 0 0 0

0 I 0 0

0 0 g
b
m1I +Mf 0

0 0 0 m2I




; B :=




0

0

−Ms

0




;

Aγ := A0 + B0γC0; C :=

[
I 0 0 0

]
;

A0 :=




0 0 I 0

0 0 0 I

−g
b
(k1 + k3) k3 −g

b
(c1 + c3) c3

g
b
k3 −(k2 + k3) g

b
c3 −(c2 + c3)




;

B0 :=

[
0 0 I 0

]T
; C0 :=

[
g
b
k4 −k4

g
b
c4 −c4

]
;

and I is the identity operator. The equations in (4.7) represent a deterministic evolution

differential equation and an output equation that provides the distributed displacement

of the BM u(x, t). Other outputs can be selected, such as the TM displacement, by

appropriately constructing the C operator. In the subsequent section, we slightly modify

the dynamical equations to account for stochastic perturbations in the gain coefficient

γ(x).

4.2 Stochastic Uncertainties in the Active Gain

This section investigates the Mean Square Stability (MSS, which we will formally

define in section 4.2.1) of the linearized cochlear dynamics when the gain coefficient is a

spatio-temporal stochastic process. The stochastic gain coefficient, now denoted by γ(x, t)

to account for spatio-temporal perturbations, enters the dynamics (4.7) multiplicatively.

We first reformulate the dynamics as an LTI system in feedback with a diagonal stochastic
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gain which is a standard setting in robust control theory [62, Section 10.3]. Then we carry

out our MSS analysis based on Chapter 2. By tracking the evolution of the instantaneous

spatial covariances, MSS analysis allows us to predict the locations on the BM that are

more likely to become unstable due to the underlying stochastic uncertainty. We conclude

this section by defining and analyzing a linear operator, whose spectral radius provides

a condition for MSS.

4.2.1 Stochastic Feedback Interconnection

The purpose of this section is to separate the stochastic portion of the gain coefficient

in a feedback interconnection. We assume that γ(x, t) is a spatio-temporal stochastic

process that is white in time (but may be colored in space), and whose expectation and

covariance are independent of time. More precisely, let γ̄(x) be the expectation of γ(x, t)

and γ̃(x, t) be a temporally independent, zero mean stochastic perturbation, such that

γ(x, t) = γ̄(x) + εγ̃(x, t),

with




E[γ(x, t)] = γ̄(x)

E[γ̃(x, t)γ̃(ξ, τ)] = Γ(x, ξ)δ(t− τ)

∀t ≥ 0,
(4.8)

where E[.] denotes the expectation, ε is a perturbation parameter, δ(t) is the Dirac Delta

function, and Γ(x, ξ) is a positive semi-definite covariance kernel. Substituting (4.8) in

(4.7) yields

E ∂
∂t
ψ(x, t) = (Aγ̄ + εB0γ̃C0)ψ(x, t) + Bs̈(t)

u(x, t) = Cψ(x, t).

(4.9)

The evolution equation in (4.9) is a Stochastic Partial Differential Equation (SPDE) that

is given an Itō interpretation in the time variable. For more details on Itō calculus, refer

to [50].

68



Mean-Square Stability Analysis of the Cochlea Chapter 4

Define a secondary output related to the difference in BM and TM displacements and

velocities as

y(x, t) := εC0ψ(x, t). (4.10)

Furthermore, define the active feedback pressure resulting from the stochastic perturba-

tions to be

pa(x, t) := γ̃(x, t)y(x, t). (4.11)

Therefore, using (4.9), (4.10) and (4.11), construct the feedback block diagram depicted

in Figure 4.2. This is a standard setting(Chapter 2, [42], [18]) for structured stochas-

s̈(t) u(x, t)

y(x, t)

pa(x, t)

M :





E ∂∂tψ = Aγ̄ψ + B0pa + Bs̈
u = Cψ
y = εC0ψ




. . .

γ̃(x, t)
. . .




Figure 4.2: The linearized cochlear model in feedback with multiplicative stochastic gain. The block

to the top represents the deterministic portion of the linearized cochlear dynamics casted in a descriptor

state space form. The feedback block is a diagonal spatial operator that represents the multiplicative

stochastic gain. y(x, t) is the differential vibration and velocity between the BM and TM as given by

(4.10). pa(x, t) is the active pressure that results from the stochastic component of the active gain.

tic uncertainty analysis, where the feedback gain is a diagonal spatial operator. This

configuration is used to investigate the MSS of the cochlea which is formally defined

next.

Definition: The feedback system in Figure 4.2 is MSS if, in the absence of an input

(i.e. s̈(t) = 0), the state ψ(x, t) and the active feedback pressure pa(x, t) have bounded

variances for all time.
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Therefore, to study MSS, we need to track the temporal evolution of the variances

and look at their steady state limits as t goes to +∞. This is the topic of the next

subsection.

4.2.2 Temporal Evolution of the Covariance Operators

This section tracks the time evolution of the covariance operators in the absence of

any input (i.e. we set s̈(t) = 0 for the rest of the dissertation). We use the term covari-

ance “operators” rather than covariance matrices because the spatial variables x and ξ

are continuous. After using some numerical method to discretize space, the covariance

operators can be approximated by covariance matrices. With slight abuse of notation, we

use the same symbol to denote the covariance operator and its associated kernel. Define

the following instantaneous spatial covariance kernels

X (x, ξ; t) := E[ψ(x, t)ψ(ξ, t)]

Y(x, ξ; t) := E[y(x, t)y(ξ, t)]

P(x, ξ; t) := E[pa(x, t)pa(ξ, t)]

U(x, ξ; t) := E[u(x, t)u(ξ, t)]

Γ(x, ξ) := E[γ̃(x, t)γ̃(ξ, t)] ∀t ≥ 0.

(4.12)

Given that the stochastic perturbations γ̃ are temporally independent, it can be shown

that the time evolution of the covariance operators are governed by the following operator-

valued, differential algebraic equations

EẊ E∗ = Aγ̄XE∗ + EXA∗γ̄ + B0PB∗0

Y = ε2C0XC∗0

P = Γ ◦ Y ,

(4.13)

where ∗ is the adjoint operation and ◦ is the Hadamard product; i.e. the element-by-

element multiplication of the kernels P(x, ξ; t) = Γ(x, ξ)Y(x, ξ; t).
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In order to study the MSS, we need to look at the steady state limit of the covariances.

We denote by the asymptotic limit of a covariance operator, when it exists, by an overbar.

That is

X̄ := lim
t→∞
X (t); Ȳ := lim

t→∞
Y(t); P̄ := lim

t→∞
P(t). (4.14)

At the steady state, the covariances become constant in time and thus their time deriva-

tives go to zero. Hence, the steady state covariances, if they exist, are governed by the

following operator-valued algebraic equations:

Aγ̄X̄ E∗ + EX̄A∗γ̄ + B0P̄B∗0 = 0

Ȳ = ε2C0X̄ C∗0

P̄ = Γ ◦ Ȳ .

(4.15)

In the next section, we will use (4.15) to define a new operator as a tool to check the

boundedness of the steady state covariances.

4.2.3 Loop Gain Operator & MSS

Using (4.15), define the loop gain operator LΓ, parametrized by the perturbation

covariance Γ, as

LΓ(P̄in) = P̄out ⇐⇒




P̄out = Γ ◦ (C0X̄ C∗0)

Aγ̄X̄ E∗ + EX̄A∗γ̄ + B0P̄inB∗0 = 0.

(4.16)

The MSS condition is given in terms of the spectral radius of the loop gain operator as

explained next.

Theorem : Consider the system in Figure 4.2 where γ̃ is a temporally independent

multiplicative noise, interpreted in the sense of Itō, with instantaneous spatial covariance

Γ, and M is a stable causal LTI system. The feedback system is MSS if and only if the

spectral radius of the loop gain operator is strictly less than one, i.e.

ε2ρ(LΓ) < 1, (4.17)
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where LΓ is defined in (4.16) and ρ(LΓ) is its spectral radius.

The proof of this theorem is given in Chapter 2. This theorem will be used to find

an upper bound on the perturbation constant ε above which MSS is violated.

4.2.4 Worst-Case Covariances

The loop gain operator maps a covariance operator P̄in into another covariance op-

erator P̄out. Hence, the eigenvectors of LΓ are themselves operators. When a finite

dimensional approximation of LΓ is carried out using some numerical method, these

eigenvectors can be approximated as matrices. We are particularly interested in the

eigenvector (or eigen-operator) of LΓ associated with the largest eigenvalue because it

has a significant meaning explained in this subsection.

First, since the loop gain operator is a monotone operator [3], it is guaranteed to have

a real largest eigenvalue equal to ρ(LΓ). It is also guaranteed that the eigen-operator

associated with the largest eigenvalue is positive semidefinite, i.e. there exists a positive

semidefinite covariance operator P such that

LΓ(P) = ρ(LΓ)P. (4.18)

Note that P is the operator counterpart of the Perron-Frobenius eigenvector for matri-

ces with non-negative entries. Refer to [3, Thm 2.3] for a proof of the aforementioned

guarantees. If the stability condition (4.17) is violated, P will be the covariance mode

that has the highest growth rate, hence the name “worst-case” covariance. This provides

information about the locations on the BM that are more likely to destabilize due to the

stochastic perturbations of the gain. Particularly, since we are interested in the insta-

bilities at the BM, the worst-case covariance of the BM vibrations, denoted by U, can

be computed by propagating the worst-case pressure covariance P through the cochlear
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dynamics (at steady state) as follows

Aγ̄XE∗ + EXA∗γ̄ + B0PB∗0 = 0

U = CXC∗,
(4.19)

where X denotes the worst-case covariance operator corresponding to the state space

variable ψ.

4.3 Instabilities in Linearized Cochlear Dynamics

This section contains the main results on the effects of stochastic uncertainties on

cochlear instabilities. The analysis is carried out for three different scenarios of the

perturbation covariance Γ(x, ξ):

• S1: spatially uncorrelated uncertainties, i.e. Γ(x, ξ) = δ(x− ξ)

• S2: spatially correlated uncertainties with a correlation length λ, i.e. Γ(x, ξ) =

φλ(x− ξ)

• S3: spatially localized and uncorrelated uncertainties, i.e. Γ(x, ξ) = φσ(x−µ)δ(x−

ξ),

where φλ and φσ are the Gaussian kernels defined in (4.5) such that λ is the spatial

correlation length and σ is the spatial localization length. In the subsequent analysis,

scenarios S1 and S2 are treated simultaneously because, in both cases, the perturbation

covariance is a Toeplitz operator since Γ(x, ξ) depends solely on the difference x−ξ rather

than the absolute locations x and ξ. However, in scenario S3, the perturbation covariance

is spatially localized and Γ(x, ξ) depends on the absolute locations, and thus it is treated

separately in subsection 4.3.4. Recall that the linearized cochlear dynamics excludes

micro-mechanical spatial coupling along different locations of the BM; whereas, scenario
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S2 sort of reintroduces spatial coupling via the spatial correlations of the stochastic active

gain.

The condition of MSS (4.17) can be rewritten as

ε <
1√
ρ(LΓ)

, (4.20)

for scenarios S1,S2 and S3. This bound is the maximum allowed perturbation in (4.9)

such that MSS is maintained. In this section, we compute the upper bound on ε and the

“worst-case” covariance U for the linearized cochlear dynamics.

4.3.1 Numerical Considerations

This section describes the numerical considerations of the model and the numerical

method used to compute the spectral radius and worst-case covariance of LΓ.

The numerical values of the parameters in this paper are taken from Table I in [39]

for the linear cochlea. However, the expectation of the gain coefficient, γ̄(x), (which was

considered to be spatially constant in [39]) is left as a spatially distributed parameter

to be tuned. The fluids block in Figure 4.1(a) considered here is the one dimensional

traveling wave as described in Appendix-5.A. A spatial discretization grid of step size

∆x := L/Nx, where Nx = 400, is used to give a finite dimensional approximation of the

operators (as matrices) describing the dynamics in Figure 4.2 (refer to Appendix-5.B).

Special care has to be taken when dealing with spatially white continuous processes

(Scenario S1). Let Γ denote a matrix approximation of the uncertainty covariance oper-

ator Γ and approximate the Dirac delta function as

δ(x) ≈ 1

∆x

rect∆x(x)

such that, rect∆x :=





1, if − ∆x

2
≤ x ≤ ∆x

2

0, otherwise

.

(4.21)
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Hence, the finite dimensional approximation of the perturbation covariance needs to be

scaled with the discretization step ∆x as follows

Γ =
1

∆x

I, (4.22)

where I is the identity matrix.

Furthermore, our analysis requires the computation of the largest eigenvalue of the

loop gain operator and its associated eigenvector (or eigen-operator). The matrices that

approximate the spatial operators have a size of (4(Nx + 1) = 1604), and keeping track

of the underlying sparsity of all the approximated operators is essential for carrying out

the computations efficiently. Note that to maintain the sparsity of (4.16) for scenario S2,

we use a truncated Gaussian kernel to approximate φλ given in (4.5), i.e. φλ(x − ξ) ≈

0, for |x − ξ| > d, where d is a pre-specified constant that represents a compromise

between computational accuracy and sparsity. Finally, the power iteration method is

employed for eigenvalue and eigenmatrix computations as recommended by [53]. This

requires solving the Lyapunov-like equation in (4.16) at each iteration.

4.3.2 Stochastic Gain Coefficient with a Spatially Constant Ex-

pectation

In this section, we set the expectation of the gain coefficient to one everywhere along

the BM, i.e. γ̄(x) = 1. To study the effects of the spatial correlations in the gain

coefficient, we compare scenarios S1 and S2 by keeping in mind that S1 can be seen as a

special case of S2 at the limit when λ goes to zero. First, we compute the upper bounds

on ε in (4.20) such that MSS is maintained. Then we compute the worst-case covariance

U in (4.19).

By applying the power iteration method on (4.18), we compute the spectral radii

ρ(LΓ) and their associated eigen-operators P for scenarios S1 and S2 with different cor-
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relation lengths λ. Then, (4.20) yields the upper bounds on ε. The results are illustrated

in Figure 4.3 showing the small upper bounds on ε. This reflects the high sensitivity of

the model to such stochastic perturbations. As one would expect, a larger correlation

length λ requires a larger perturbation to destabilize the linearized cochlea.

0 5 10 15 20 25 30 35
0

0.3

0.6

0.9

1.2

10-5

Correlated Perturbations
Uncorrelated Perturbations

Figure 4.3: Mean Square Stability Curve: Upper bound on the perturbation parameter, ε, of the

stochastic gain (4.8) whose expectation is γ̄(x) = 1. The black dot corresponds to scenario S1 (uncorre-

lated gain perturbations) and the solid black line corresponds to scenario S2 (correlated gain perturba-

tions) for different spatial correlation lengths λ. The figure shows that larger correlation lengths make

the model more immune to stochastic perturbations.

The eigen-operator P computed by the power iteration method is the worst-case

pressure covariance. The corresponding worst-case covariance of the BM displacement

U is then computed using (4.19). Figure 4.4(a) shows U for scenario S1, zoomed in for

0 ≤ x, ξ ≤ L/10. The intensity plot shows two sets of axes. The first axis represents the

location on the BM and the second represents the corresponding characteristic frequency

at each location, calculated using the Greenwood location-to-frequency mapping [27].

Observe that the covariance is band limited and the diagonal entries are dominant near

the stapes (x = 0). This shows that instabilities essentially occur at high frequencies.

Figure 4.4(b) plots the diagonal entries of U for scenarios S1 and S2 for different correla-
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tion lengths λ. A smaller correlation length gives a slightly broader spectrum of unstable

frequencies. However, for small ε, the effect of the correlation length on the shape of the

unstable BM modes is negligible. This is illustrated in Figure 4.4(c), where the dominant

eigenfunction of U is plotted for different cases.

4.3.3 Stochastic Gain Coefficient with a Spatially Varying Ex-

pectation

This section shows that the frequencies of instabilities (or, equivalently, the locations

on the BM) can shift depending on the shape of the expectation of the gain coefficient

γ̄(x). For illustration purposes, four different profiles of γ̄0(x) are generated as

γ̄0(x) =
tanh(x/10) + β

tanh(L/10) + β
, (4.23)

where x and L are expressed in mm and β = 0, 2, 4 and 6. First, we show the MSS curves,

similar to Figure 4.3 for the four different profiles generated using (4.23). Figure 4.5(b)

clearly shows that the shape of γ̄(x) affects the margin of MSS. Particularly, the larger the

dip in the gain coefficient, the higher ε needs to be to destabilize the linearized dynamics

in the MSS sense.

Since the correlation length for small values of ε has a negligible effect on the shape of

the unstable modes as shown in Figure 4.4(c), we only present the worst-case covariances

for scenario S1. In fact, the correlation length only affects the margin of stability as

illustrated in Figure 4.5(b). Figure 4.5(c) depicts the dominant eigenfunctions of U for

the four different profiles of γ̄(x). Clearly, the peaks of the unstable modes of the BM

shift depending on the shape of γ̄(x). In fact, as the dip in γ̄(x) is increased, the peaks

shift farther from the stapes resulting in instabilities of lower frequencies.
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4.3.4 Stochastic Gain Coefficient with a Spatially Localized Co-

variance

We now treat the case where the gain coefficient γ(x, t) in (4.9) has a spatially constant

expectation, but spatially localized covariance given in scenario S3, i.e.

γ̄(x) = 1 and Γ(x, ξ) = φσ(x− µ)δ(x− ξ),

for different values of σ and µ. Observe that for this form of Γ(x, ξ), the covariance is

localized around µ. Hence, this section investigates the cochlear instabilities that emerge

as a result of stochastic perturbations localized around a particular location on the BM.

In particular, we are interested in tracking the unstable BM modes for different values

of µ and σ, where µ is the location of the perturbation and σ represents the local spread

of the perturbation in the neighborhood of µ. Following the same calculations of the

previous sections, we compute the dominant eigenfunction of the worst-case covariance

of the BM displacement U for different values of µ and σ. The results are depicted

in Figure 4.6. Observe that localized perturbations of the active gain coefficient at

some location µ of the BM causes instabilities in that neighborhood. Particularly, for

relatively small spread σ = L/100, the instabilities emerge at the same locations of the

perturbations as shown in Figure 4.6(a). However, as the spread of the uncertainty is

increased up to σ = L/30 and L/10, the location of the instability shifts towards the

stapes. In fact, the wider the spread the larger the shift is as illustrated in Figures 4.6(b)

and (c).

This “basal shifting” resembles the phenomenon of detuning observed in the cochlea.

Acting as a frequency analyzer (or “inverse-piano”), each location on the BM vibrates in

response to a sound stimulus at a particular frequency. Thus, the BM has a frequency-

to-location map such that every stimulus frequency has a preferred place on the BM

called Characteristic Place (CP). The detuning phenomenon is observed as the shifting
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of the CP towards the stapes as the intensity of the stimulus (in dB) is increased. In

this section, we showed that increasing the spread of the stochastic perturbations also

shifts the BM vibrations towards the stapes. Nonlinear dynamics are necessary to model

the detuning phenomenon. However, modeling this “detuning-like” phenomenon doesn’t

require nonlinearities, instead a locally perturbed active gain is sufficient to explain it.

It is believed that these instabilities in the BM reflect back to the middle ear causing

SOAEs [49]. It is also believed that if these BM vibrations are intense enough, they can

be perceived as tinnitus. Our results suggest a mechanism that explains the frequencies

that can be detected in the ear canal due to SOAEs and/or perceived as tinnitus. As

a matter of fact, the shape of the statistics (expectation and covariance) of the gain

coefficient is a factor that controls the bands of the frequencies that are emitted as

SOAEs. These emissions arise due to (a) spatially variant inhomogeneities along the

cochlear partition and (b) temporal stochastic perturbations that give rise to structured

stochastic uncertainties.
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(a) Worst-Case Covariance of BM Displacement U(x, ξ)

0 5 10 15 20 25 30 35

10-6

10-4
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20  10.3 5.1 2.5 1.2 0.5 0.2 0.02

(b) Diagonal Entries of U
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(c) Dominant Eigenfunction of U

Figure 4.4: Figure (a) shows an intensity plot of the worst-case covariance U for scenario S1 (uncorre-

lated gain perturbation) zoomed in for 0 ≤ x, ξ ≤ 3.5 mm. The axes correspond to the physical location

x in mm on the BM and the corresponding characteristic frequency f in kHz. Figure (b) shows the

diagonal entries of U for scenarios S1 and S2 for different correlation lengths λ. Figure (c) depicts the

dominant eigenfunction of U for the different cases indicating the insignificant effect of λ on the shape

of the dominant eigenfunctions.
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(a) Gain Coefficient Expectation Profiles
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(b) Corresponding MSS Curves
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(c) Eigenfunctions for scenario S1

Figure 4.5: Mean Square Stability Curves for different gain coefficient expectation profiles: Figure(a)

shows four different profiles of γ̄(x) generated as examples of spatially varying gain coefficients using

(4.23). The same values of β are used in figures (b) and (c). Particularly, Figure(b) shows the upper

bound on the perturbation parameter ε for the corresponding profiles of γ̄(x) in Figure(a). The circles

correspond to scenario S1 (uncorrelated gain perturbations) and the solid lines correspond to scenario

S2 (correlated gain perturbations) for different spatial correlation lengths λ. Figure (c) shows the

eigenfunctions of the worst-case covariance operator U corresponding to the different profiles of γ̄(x).

The peaks of the eigenfunctions shift consistently with the shape of the gain profiles.
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(a)
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(b)
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(c)

Figure 4.6: Eigenfunctions of the worst-case covariance operator U for different localized gain co-

efficient perturbations. These figures show the dominant eigenfunctions of the worst-case covariance

operators for three different values of µ and σ. Particularly, in each figure, we fix σ and vary µ. Each

thin curve represents a particular uncertainty spread function φσ(x − µ) (not drawn to scale in the

vertical axis) and each thick curve (with the same color) represents the corresponding dominant eigen-

function of the worst-case covariance operator. This figure illustrates the “basal shifting” observation

that resembles the phenomenon of detuning.
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Chapter 5

Nonlinear Stochastic Simulation of

the Cochlea

In the previous chapter, the MSS analysis is carried out on the linearized dynamics. In

this chapter, we carry out stochastic simulations of the nonlinear model to validate the

predictions of our analysis of the linearized dynamics.

5.1 Nonlinear Descriptor State Space Formulation in

Continuous Space-Time

We first start by formulating the nonlinear dynamics in a DSS form similar to that

given in section 4.1.2. Recall that, the nonlinear deterministic active gain is given by

(4.3) with γ(x) representing the gain coefficient. To include stochastic perturbations, we

substitute (4.8) in (4.3) so that the nonlinear stochastic active gain can be written as

[G(u)] (x, t) =
γ̄(x) + εγ̃(x, t)

1 + θ
[
Φη

(
u2

R2

)]
(x, t)

=:

(
γ̄(x) + εγ̃(x, t)

)[
G̃(u)

]
(x, t).

(5.1)
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Recall that Φη is the Gaussian spatial operator given by (4.4), θ = 0.5, R = 1 nm and

η = 0.5345 mm. By substituting (5.1) in (4.2), we can rewrite the nonlinear model in a

nonlinear DSS form as

E ∂
∂t
ψ(x, t) =

(
Aγ̄(u) + εB̃0(u)γ̃C0

)
ψ(x, t), (5.2)

whereAγ̄(u) := A0+B̃′(u)γ̄C0 and B̃0(u)γ̃C0 are nonlinear spatial operators that represent

the deterministic and stochastic portions of the dynamics, respectively. Note that E ,A0,

and C0 are all defined in (4.7), and B̃0(u) =

[
0 0 G̃(u) 0

]T
. Therefore, (5.2) repre-

sents the nonlinear stochastic dynamics given in a DSS operator form, where the spatial

variable is continuous. This is really a Stochastic Partial Differential Equation (SPDE)

that needs to be discretized in space and time in order to carry out our simulations.

5.2 Description of the Numerical Method for Simu-

lations

In this section, we discretize (5.2) in space and time so that numerical simulations

become fairly straightforward to implement. On a side note, if the stochastic perturbation

γ̃ = 0, (5.2) becomes a deterministic Partial Differential Equation (PDE). This can

be easily integrated by discretizing space using a spatial grid, and then employ a time

marching solver such as ODE45 in MATLAB. However, for an SPDE, one has to carefully

treat the scaling of the covariances with the discretization steps.

Space and time are discretized as xi = i∆x and tn = n∆t with discretization steps

∆x = L/Nx and ∆t = tf/Nt for i = 0, 1, ..., Nx and n = 0, 1, ..., Nt, where tf is the final

time. Let the BM and TM displacements on the discretized space-time grid be denoted
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by the vectors un and vn ∈ RNx+1, respectively such that

un :=

[
u(x0, tn) · · · u(xNx , tn)

]T

vn :=

[
v(x0, tn) · · · v(xNx , tn)

]T
.

Then the discretized state space variable can be expressed by ψn ∈ R4(Nx+1) as

ψn :=

[
uTn vTn u̇Tn v̇Tn

]T
.

For scenarios S1 and S3, γ̃(x, t) is a zero-mean white process in space and time. It can

be approximated at the spatial grid points {xi}i=0,1,...,Nx and at time tn as follows

[
γ̃(x0, tn) γ̃(x1, tn) · · · γ̃(xNx , tn)

]T
≈ 1√

∆x∆t

wn,

where wn ∈ RNx+1 is a zero-mean Gaussian random vector with a covariance matrix

E
[
wnw

T
n

]
= I for S1 and E

[
wnw

T
n

]
= D

([
φσ(x0 − µ) · · · φσ(xNx − µ)

])
for S3,

where D is the diagonal operator such that D(wn) is a diagonal matrix with wn arranged

on its diagonal entries.

For scenario S2, γ̃(x, t) is a stochastic process that is white in time but “colored”

in space with a spatial covariance Γ(x, ξ) = ε2φλ(x − ξ). In this scenario, the noise is

smooth in space and there is no need to scale the covariance by the spatial discretization

step. More precisely, γ̃(x, t) can be approximated as

[
γ̃(x0, tn) γ̃(x1, tn) · · · γ̃(xNx , tn)

]T
≈ 1√

∆t

wn,

where E
[
wnw

T
n

]
is now a symmetric matrix whose (i, j)th entry is given by φλ(xi − xj).

Therefore, a first order approximation of (5.2) can be carried out in the spirit of the

Euler-Maruyama method [43] to obtain

Eψn+1 = Eψn + ∆tAγ̄(un)ψn + αB̃0(un)D(wn)C0ψn (5.3)
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where α = ε
√

∆t/∆x for S1 and S3; and α = ε
√

∆t for S2. The matrices E,Aγ̄(un), B̃0(un)

and C0 are all finite dimensional approximations of the operators E ,Aγ̄(u), B̃0(u) and C0,

respectively (Appendix-5.B). Equation (5.3) represents the recursive numerical methods

to solve (5.2) for all three scenarios with the right choice of α and E[wnw
T
n ].

5.3 Simulation of the Nonlinear Stochastic Model

To validate our MSS analysis of the linearized dynamics and evaluate how well it

copes with the nonlinear dynamics, we carry out a simulation of (5.2). This section

considers scenario S1. Hence, the numerical method used here is that given in (5.3) for

α = ε2
√

∆t/∆x and E[wnw
T
n ] = I.

The nonlinear stochastic simulation shown here is for γ̄(x) given in (4.23) with β = 2.

All other scenarios are in agreement with our MSS analysis; however, this particular case

study (β = 2) is chosen here to illustrate the effectiveness of our analysis. Observe using

Figure 4.5(b) that for β = 2, the MSS condition is violated if ε ≥ 9.1× 10−6. We choose

ε = 1.1 × 10−5 which slightly violates the MSS condition for the linearized dynamics

and allows the nonlinearity to kick in and saturate the response. The spatio-temporal

response of the BM is depicted in Figure 5.1(a) for t ∈ [0, tf ] with tf = 200 ms. The

response is maximal in a band limited region 10 mm < x < 20 mm which corresponds to

a frequency range of roughly between 1 kHz and 5 kHz. To be more precise, we compute

the empirical covariance UEmp(x, ξ) as follows

UEmp(x, ξ) =
1

tf

∫ tf

0

u(x, τ)u(ξ, τ)dτ. (5.4)

The time averaging replaces the expectation assuming ergodicity. Figures 5.1(b) and (c)

compare the empirical covariance to the predicted worst-case covariance. By visual in-

spection, we observe that the empirical results are in good agreement with our theoretical

86



Nonlinear Stochastic Simulation of the Cochlea Chapter 5

predictions. For a more precise comparison, we plot the first twenty dominant eigenvalues

and first three dominant eigenfunctions of both the predicted and empirical covariances

in Figure 5.1(d). This eigen-decomposition is referred to as the Karhunen-Loève de-

composition. The eigenfunctions are the modes of BM vibrations that have the highest

growth rate and are more likely to destabilize for small perturbations of the active gain.

The plots doesn’t show any significant difference between the empirical and theoretical

results. In fact, although the nonlinear active gain slightly deforms the response, but its

fundamental role (in the absence of a stimulus) is to saturate the linearized instabilities

to form oscillations that remain bounded in time.

5.4 Discussion

The mechanisms underlying cochlear instabilities such as SOAEs and tinnitus are

still controversial and not well understood. This work suggests a new possible source of

cochlear instabilities: spatio-temporal stochastic perturbations of the active gain.

It is widely accepted that Outer Hair Cells (OHC) are responsible for the active gain

in the cochlea. This work proposes a simulation-free control theory framework to analyze

the effects of small stochastic perturbations that may occur on the level of the OHCs.

These perturbations can have several physical origins such as noisy nearby neuronal

activities, cellular activities, blood flow, etc...

Studying the effects of randomness in the active gain is not new [24], [39]. However,

the previous studies on this matter considered random spatial perturbations that are

time-invariant. This type of randomness is referred to as “frozen” or quenched disorder

in the statistical physics community. In fact, [39] investigated the effects of the frozen

spatial randomness by carrying out Monte Carlo simulations to study the statistics of the

instabilities. However, to achieve a broad spectrum of unstable frequencies, the authors
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allowed severe perturbations of the active gain which is not realistic. Without these severe

perturbations, the unstable frequencies would be limited to a band of high frequencies

only (Section 4.3.2). This doesn’t agree with the experimental observations where, for

example, SOAEs are mainly found between 0.5 and 4.5 kHz.

A more realistic case is to treat the active gain as a stochastic process, where the

randomness may occur in space and time, simultaneously. In addition to that, only small

perturbations of the active gain are considered (three to four orders of magnitude less

than [39]). A major advantage of our analysis is that it is simulation-free and no Monte

Carlo simulations are required to study the statistics of the emerging instabilities. In

our analysis, we also show that the band of unstable frequencies can be controlled by

the tuning of the structural parameters of the cochlea such as the active gain coefficient.

Hence, we show that even for very small perturbations, the unstable frequencies can

be shifted dramatically. Furthermore, examining localized stochastic perturbations in

the active gain allowed us to observe local instabilities that shift toward the stapes as

the localization length or spread is larger. This observation resembles the detuning

phenomenon present in the cochlea.

5.5 Conclusion and Future Work

This paper examines the instabilities that occur in the linearized dynamics due to

spatio-temporal stochastic perturbations in the distributed structure of the cochlear par-

tition. The simulation-free analysis is carried out through a structured stochastic uncer-

tainty framework. It is shown that the spatial shape of the expectation and covariance

of the gain coefficient affect the locations of the instabilities on the basilar membrane.

These instabilities eventually saturate to form bounded oscillations due to the saturation

nonlinearity of the active gain (4.3) producing spontaneous basilar membrane vibrations.
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It is believed that these instabilities are reflected to the middle ear as spontaneous otoa-

coustic emissions (SOAEs) [49] with frequencies corresponding to the location of the

instability on the basilar membrane. This analysis also suggests an explanation of one

possible source of tinnitus, which is less addressed in the literature. Particularly, if the

spontaneous BM vibrations were intense enough, they may be perceived as tinnitus.

Future work will address instabilities that may occur due to stochastic uncertainties in

structural parameters other than the active gain coefficient, such as the cochlear fluid

density.
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(a) Spatio-Temporal Stochastic Evolution of the BM

(b) Empirical Covariance UEmp(x, ξ) (c) Predicted Worst-Case Covariance U(x, ξ)
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(d) Empirical and Theoretical Dominant Eigenvalues/functions

Figure 5.1: Nonlinear Stochastic Simulation. Figure (a) shows the BM response to spatially uncor-

related stochastic active gain (scenario S1) with an expectation given by (4.23) where β = 2 and a

perturbation of ε = 1.1 × 10−5. Figures (b) and (c) show a comparison between the empirical and

predicted covariances. The predicted covariance is computed for the linearized dynamics via the power

iteration method applied on the loop gain operator (4.16). The empirical covariance is computed using

the data obtained from one nonlinear stochastic simulation using (5.3) and integrated in time using (5.4)

assuming ergodicity. Figure (d) shows a comparison between the dominant eigenvalues/functions of the

empirical and predicted covariances shown in Figures (b) and (c), respectively. This eigen-decomposition

is referred to as the KarhunenLov̀e decomposition. Clearly the theoretical predictions match the em-

pirical data, thus suggesting that the nonlinearities only saturate the response without significantly

deforming the waveforms.
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5.A Mass Operators

The fluids block in Figure 4.1(a) can be modeled in 1D, 2D, or 3D. In two dimen-

sions, Navier-Stokes equations boil down to the Laplace equation with the appropriate

boundary conditions as shown in [41]. This simplification is valid under the assumptions

of incompressible, inviscid fluid where the magnitude of the vibrations of the membranes

are negligible relative to the dimensions of the cochlea. These assumptions make the

fluid block in Figure 4.1 memoryless and amenable to be represented by the two linear

spatial operatorsMf andMs in (4.1). In this paper, we give these operators for the 1D

case only. Higher dimensions can be treated similarly. As in [19], the fluid block in 1D

can be represented by the traveling wave equation as follows

∂2

∂x2
p(x, t) =

2ρ

H
ü(x, t);





∂
∂x
p(0, t) = 2ρs̈(t)

p(L, t) = 0,

(5.A.1)

where ρ is the density of the fluid, H is the height of the fluid chamber and L is the

length of the BM. This is a linear system with two inputs: ü and s̈. It can be shown that

91



Nonlinear Stochastic Simulation of the Cochlea Chapter 5

the solution of (5.A.1) is

p(x, t) = −[Mf ü](x, t)− [Ms]s̈(t)

[Mf ü](x, t) := −2ρ

H

∞∑

n=0

1

λn
φn(x)〈φn, ü(., t)〉

[Mss̈](t) := 2ρ(L− x)s̈(t),

(5.A.2)

where 〈., .〉 denotes the inner product in the space of square integrable functions over

[0, L], and

λn = −(n+
1

2
)2 π

2

L2
←→ φn(x) =

√
2

L
cos

[(
n+

1

2

)
π

L
x

]
,

for n = 0, 1, 2, ... It is fairly straightforward to verify that (5.A.2) is indeed a solution by

substituting in (5.A.1).

Finite dimensional approximations can be obtained by representing Mf and Ms by

the matrix Mf ∈ R(Nx+1)×(Nx+1) and the vector Ms ∈ RNx+1, respectively, where Nx+1 is

the spatial grid size that discretizes the spatial variable x. This is done by truncating the

sum and by using a quadrature rule to compute the inner product (or simply a trapezoidal

rule). Note that finite difference methods, in the spirit of [19] and [46], can also be used

to approximate the mass operators. However, the spectral method we presented here

provides a better and more efficient approximation.

5.B Matrix Approximation of Spatial Operators

Let the matrices

Fη ∈ R(Nx+1)×(Nx+1); A0 ∈ R4(Nx+1)×4(Nx+1);

B0 ∈ R4(Nx+1)×(Nx+1); B̃0(un) ∈ R4(Nx+1)×(Nx+1);

C0 ∈ R(Nx+1)×4(Nx+1); E ∈ R4(Nx+1)×4(Nx+1);

Aγ̄(un) ∈ R4(Nx+1)×4(Nx+1),
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be the finite dimensional approximations of the spatial operators Φη,A0,B0, B̃0(u), C0, E

andAγ̄(un), respectively. Using the trapezoidal integration rule on (4.4), we can construct

the matrix Fη as

Fη = D
(
F̃ηT1

)−1

F̃ηT,

where D is the diagonal operator, F̃η ∈ R(Nx+1)×(Nx+1) and its (i, j)th entry is defined

as
(
F̃η

)
ij

:= e
−(i−j)2 ∆2

x
η2 , 1 ∈ RNx+1 is a vector whose entries are all ones and T ∈

R(Nx+1)×(Nx+1) is a diagonal matrix defined as

T := D
([

1
2

1 · · · 1 1
2

])
.

Furthermore, define the following diagonal matrices ∈ R(Nx+1)×(Nx+1)

Kl := D
([
kl(x0) · · · kl(xNx)

])
, l = 1, 2, 3, 4;

Cl := D
([
cl(x0) · · · cl(xNx)

])
, l = 1, 2, 3, 4;

Dγ̄ := D
([
γ̄(x0) · · · γ̄(xNx)

])
;

G̃(un) := D
(

1 +
θ

R2
Fη(un ◦ un)

)−1

,

where ◦ is the Hadamard (element-by-element) product. Therefore

E :=




I 0 0 0

0 I 0 0

0 0 g
b
m1I +Mf 0

0 0 0 m2I




; B :=




0

0

−Ms

0




;

A0 :=




0 0 I 0

0 0 0 I

−g
b
(K1 +K3) K3 −g

b
(C1 + C3) C3

g
b
K3 −(K2 +K3) g

b
C3 −(C2 + C3)




;
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B0 :=

[
0 0 I 0

]T
; C0 :=

[
g
b
K4 −K4

g
b
C4 −C4

]
;

B̃0(un) :=

[
0 0 G̃(un) 0

]T
;

Aγ̄(un) := A0 + B̃0(un)Dγ̄C0.

5.C System Linearization

The only nonlinear portion of the dynamics appears in the active gain given by (4.3).

Thus, to linearize the dynamics around the origin, it suffices to linearize the active gain.

Up to first order, the active gain can be expanded around some ū, by letting u := ū+ εũ.

The expansion is given by

G(u) = G(ū) + ε

[
∂

∂u
G(ū)

]
(ũ) +O(ε2),

where
[
∂
∂u
G(ū)

]
(ũ) is the Fréchet derivative in the direction of ũ. It can be calculated as

follows

[
∂

∂u
G(ū)

]
(ũ) := lim

ε→0

G(ū+ εũ)− G(ū)

ε

= − 2θ

R2

γΦη(ūũ)
(
1 + θΦη

(
u2

R2

))2 .

To linearize around the origin, we set ū = 0. This yields

G(0) = γ and

[
∂

∂u
G(0)

]
(ũ) = 0.

Therefore, up to first order, the linearization around the fixed point of the active gain is

G(u) = γ +O(ε2).
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5.D Equivalent Rectangular Bandwidth

The width, η, of the Gaussian kernel in (4.5) controls the spatial coupling length along

the BM. The numerical value of η in this paper is chosen based on the critical bands in

the cochlea. In psychoacoustics, the concept of critical bands was introduced by Harvey

Fletcher in 1933. He described the bands of audio frequencies within which two tones

interfere in the perception of each other, thus indicating the length of spatial coupling

along the cochlea. This band, which is termed Equivalent Rectangular Bandwidth (ERB),

is believed to be equivalent to 0.89 mm on the BM [45].

We model the spatial coupling along the BM using a Gaussian kernel as shown in

(4.3-4.5). Hence, we require to calculate the width η of the Gaussian kernel that fits an

ERB of 0.89 mm as shown in Figure 5.2. It is fairly straight forward to calculate η, by

Figure 5.2: Equivalent Rectangular Bandwidth (ERB). The spatial coupling in the micro-mechanical

stage is modeled using a Gaussian kernel whose width is chosen to respect the ERB in the cochlea.

setting φη (0.89/2) =
√

2
2
φη(0), we get η = 0.5345 mm.
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Part III

Function Space Approach to

Numerical Methods in Optimal

Control

96



Chapter 6

Introduction, Notation &

Preliminaries

The goal of optimal control is to design a control input for a given dynamical system,

so that a cost functional is optimized. In most applications, optimal control problems

(OCPs) cannot be solved analytically due to their mathematical complexity; instead,

numerically methods are designed to obtain approximate solutions. The objective of this

paper is to derive various numerical methods (first and second order) to solve OCPs using

a function-space approach. Some of the numerical methods derived in this paper already

exist in the literature [55]. However, our goal is to unify the framework upon which the

various numerical methods are based on. In fact, the results are re-derived by (1) treating

the OCP as an optimization problem in function space, and (2) exploiting the special

structure (control-state dynamics) of the optimization problem. This approach gives rise

to the definition of various system and projection operators that make the derivations

conceptually transparent. It also facilitates the classification of the various methods and

uncovers the connections between them. Furthermore, the function-space approach builds

useful geometric intuitions that inspire the development of new projection-based methods.
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Particularly, this paper develops a preconditioned constrained-gradient descent (PCGD)

method which is based on projected gradient descent in infinite dimensional optimization

problems [61]. The key is to exploit the special structure of OCPs to precondition the

state-control space, and thus achieving a higher convergence rate than the well known

gradient descent method [37].

A projection-based approach was proposed by Hauser [29], where the dynamically

constrained optimization is transformed into an unconstrained one by using a particular

trajectory-tracking, nonlinear, projection operator. A Newton method is then applied to

solve the resulting unconstrained optimization problem. Although the projection opera-

tor adds more computational cost, the convergence is guaranteed to be quadratic in the

vicinity of the solution [29]. Hauser’s method approaches the optimal control problem by

treating the dynamical system as a manifold in a Banach space as developed in [30]. In

this paper, we extend Hauser’s method to encompass a more general class of projection

operators. Furthermore, we show that the PCGD method yields a particular algorithm

that lies in the family of Quasi-Newton methods explained by Hauser. In fact, we carry

the dynamical constraints throughout without the calculation of second derivatives of

the dynamics (as Newton methods require). This allows us to give a geometric interpre-

tation for the method as a constrained-gradient descent, after preconditioning of the cost

functional.

6.1 Problem Statement, Notation & Preliminaries

This section is devoted to define some useful notation that is adopted throughout

the paper. The notation is essentially introduced to pose the standard optimal control

problem, using operator language, in function space. Let x(t) ∈ Rn and u(t) ∈ Rm denote
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the state and control variables for 0 ≤ t ≤ T , respectively. Consider the general OCP

minimize
x,u

J(x, u) =

∫ T

0

L
(
x(t), u(t)

)
dt+ φ

(
x(T )

)

subject to ẋ(t) = f
(
x(t), u(t)

)
; x(0) = x0,

(6.1)

where f : Rn × Rm → Rn, L : Rn × Rm → Rn, and the terminal cost φ : Rn → R are all

twice differentiable functions, and x0 ∈ Rn is a given initial condition. Furthermore, ẋ(t)

denotes the time derivative of x(t). Note that the results in this paper are also applicable

to the case where f and L explicitly depend on time.

To rewrite (6.1) using operator language in function space, we let L2
n[0, T ] denote the

set of n-vector-valued, square-integrable functions over the time interval [0, T ]. We use

the letters x ∈ L2
n[0, T ] and u ∈ L2

m[0, T ], without the time argument, to represent the

state and control variables as functions of time. Furthermore, let z := (x, u) ≡
[
x∗ u∗

]∗

denote the state-control pair, where x∗ denotes the transpose of x. Note that the paren-

theses and vector notation for pairing x and u (to form z) is interchangeably used through-

out the paper for convenience. Define the time derivative operator D : X→ L2
n[0, T ] as

[Dx](t) := ẋ(t), where X ⊂ L2
n[0, T ] is the domain of D defined as

X := {x ∈ L2
n[0, T ] : Dx ∈ L2

n[0, T ], x(0) = x0}.

Note thatD is a differential operator that is bounded on its domain (by construction), and

it imposes a Dirichlet boundary condition on the dynamics. Let C denote the nonlinear

dynamical constraints operator, that acts on z as

C : X× L2
m[0, T ]→ L2

n[0, T ]

C(z) := f(z)−Dx.
(6.2)

Therefore, the optimal control problem (6.1) can be rewritten as

minimize
z

J(z)

subject to C(z) = 0,

(6.3)
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where the nonlinear cost functional J : L2
n+m[0, T ]→ R is twice differentiable. The rest of

this section introduces more definitions and notation that are useful to derive the various

numerical methods using a function-space approach.

6.1.1 Inner Product

Let 〈., .〉 and 〈., .〉Rn denote the usual inner products in L2
n[0, T ] and Rn, respectively.

That is, for any x, y ∈ L2
n[0, T ] and v, w ∈ Rn, we have

〈x, y〉 :=

∫ T

0

x∗(t)y(t)dt, 〈v, w〉Rn := v∗w.

In this paper, we consider real function spaces and thus the order in the inner products

is not significant.

6.1.2 Differential Operators

In addition to D, define the following time derivative operators D0 : X0 → L2
n[0, T ]

and DT : XT → L2
n[0, T ], where

X0 := {x ∈ L2
n[0, T ] : D0x ∈ L2

n[0, T ], x(0) = 0}

XT := {x ∈ L2
n[0, T ] : DTx ∈ L2

n[0, T ], x(T ) = 0},

such that they have the same action as D, that is [D0x](t) = ẋ(t) and [DTx](t) = ẋ(t),

but their domains of definition are different. Observe that the domain of D is an affine

subspace; whereas, the domains of D0 and DT are linear subspaces. In fact, it is fairly

straight forward to see that the three operators are related as

∂xD = D0 and D∗0 = −DT , (6.4)

where ∂xD and D∗0 denote the directional derivative of D and adjoint of D0, respectively.

See Appendix 10.A for more details.
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6.1.3 Evaluation Operator & the Delta (Generalized) Function

Let ST denote the evaluation operator that evaluates a bounded continuous function

in X0 at time t = T . That is, for any x ∈ X0, we have STx := x(T ). Formally, we have

STx = x(T ) =

∫ T

0

δ(t− T )x(t)dt,

where δ is the Dirac delta function. Thus, the adjoint S∗T of ST is given by

S∗T (t) = δ(t− T ), (6.5)

and with slight abuse of notation, we write 〈STx, v〉Rn = 〈x,S∗Tv〉 for any v ∈ Rn. Refer

to 10.B for a rigorous treatment that justifies this abuse of notation.

6.1.4 Subscripts & Superscripts

Throughout the paper, the subscript k is used to denote the iteration number of

the numerical methods. For example, zk(t) denotes a vector-valued function at the kth

iteration. However, when there is a need to index the entries of the vector, we switch

notation to z
(k)
i where now the subscript i denotes the ith entry, and the superscript

denotes the kth iteration.

6.1.5 Partial Derivatives

Define the following partial derivatives, evaluated at a given zk(t) :=

[
x∗k(t) u∗k(t)

]∗
,

as

Lxk(t) := ∂xL
∗
zk(t) ∈ Rn, Luk(t) := ∂uL

∗
zk(t) ∈ Rm,

Qk(t) := ∂2
xLzk(t) ∈ Rn×n, Rk(t) := ∂2

uLzk(t) ∈ Rm×m, Nk(t) := ∂xuLzk(t) ∈ Rn×m,

φxk :=
[
∂xφxk(T )

]∗ ∈ Rn, φxxk := ∂2
xφxk(T ) ∈ Rn×n,
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where for example, ∂xLzk(t) means the partial derivative (with respect to x) of L, evalu-

ated at zk(t) :=
(
xk(t), uk(t)

)
, and the star denotes the transpose. Furthermore, define

Lk(t) := ∂L∗zk(t) =

[
∂xLzk(t) ∂uLzk(t)

]∗
=



Lxk(t)

Luk(t)


 ,

Hk(t) := ∂2L∗zk(t) =



∂2
xLzk(t) ∂xuLzk(t)

∂uxLzk(t) ∂2
uLzk(t)


 =



Qk(t) Nk(t)

N∗k (t) Rk(t)


 ,

where the subscript of the partial derivative symbol “∂” is suppressed to indicate the

total derivative (that is, the derivative with respect to all its arguments). Note that the

Hessians Hk(t), Qk(t) and Rk(t) are all symmetric matrices.

Now define the Jacobian of f evaluated at a given zk(t) as

∂fzk(t) =

[
∂xfzk(t) ∂ufzk(t)

]
=:

[
Ak(t) Bk(t)

]
,

where Ak(t) ∈ Rn×n and Bk(t) ∈ Rn×m. Furthermore, define the second derivative of f

evaluated at zk and acting on z̃ as

∂2fzk(t)

(
z̃(t)

)
=




z̃∗(t)F
(k)
1 (t)z̃(t)

z̃∗(t)F
(k)
2 (t)z̃(t)

...

z̃∗(t)F
(k)
n (t)z̃(t)



, F

(k)
i (t) :=



∂2
xfi(zk(t)) ∂xufi(zk(t))

∂uxfi(zk(t)) ∂2
ufi(zk(t))


 , (6.6)

where fi denotes the ith component of the vector-valued function f . Note that F
(k)
i ∈

R(n+m)×(n+m) is the Hessian of the ith component of f evaluated at zk and is symmetric.

To obtain a more compact notation, define the second derivative operator of f at zk,

denote by Fk(t) := {F (k)
1 (t), F

(k)
2 (t), · · ·F (k)

n (t)}, so that the second derivative of f can

be written as

∂2fzk(t)

(
z̃(t)

)
:= z̃∗(t)Fk(t)z̃(t) ∈ Rn, (6.7)
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which is nothing but a short notation for (6.6). This compact notation is particularly

useful to perform the following operation. For some λk(t) ∈ Rn, we have

〈
λk, ∂

2fzk
(
z̃
)〉

= 〈λk, z̃∗Fkz̃〉 =

〈
λk,




z̃∗F
(k)
1

...

z̃∗F
(k)
n



z̃

〉
=

〈[
F

(k)
1 z̃ · · · F

(k)
2 z̃

]
λk, z̃

〉

=

〈(
n∑

i=1

F
(k)
i λ

(k)
i

)
z̃, z̃

〉
=: 〈Fkλkz̃, z̃〉 ,

where the operation Fkλk is defined as

Fk(t)λk(t) :=
n∑

i=1

F
(k)
i (t)λ

(k)
i (t). (6.8)

Finally, we obtain the compact equality

〈λk, z̃∗Fkz̃〉 = 〈Fkλkz̃, z̃〉 . (6.9)

6.1.6 Geometric Notation

In this section, we introduce some geometric notation that is useful to provide geo-

metric interpretations of the relevant numerical methods developed in this paper.

• Dynamical Constraint Set:

Let T denote the set of trajectories satisfying the dynamics, that is

T =
{
z = (x, u) ∈ X× L2

m[0, T ] : C(z) = 0
}
.

• Trajectory Projection Operator:

Let ΠT denote a nonlinear projection operator that acts on an arbitrary state-

control pair ẑ = (x̂, û) to yield another pair z = (x, u) ∈ T that are trajectories of

the dynamics as

ΠT (ẑ) = z ⇐⇒





u = û

Dx = f(z).
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• Dynamical Tangent Space:

Let TzkT denote the tangent space of T at zk.

TzkT := {z̃ ∈ X0 × L2
m[0, T ] : ∂Czk(z̃) = 0}.

Note that TzkT represents the linearized dynamics around zk.

• Oblique Projection Operator:

Let ΠH
TzkT

denote a linear oblique-projection operator parameterized by H = H∗ ≥

0 that projects onto the tangent space TzkT .

ΠH
TzkT

(z) := argmin
z̃

1

2
〈H(z − z̃), z − z̃〉

s.t. z̃ ∈ TzkT .

Note that the projection becomes orthogonal if H is equal to the identity matrix.

In this case, the superscript H = I is dropped.

6.2 Brief Tutorial on Optimization in Function-Space

We give a brief review of how an unconstrained optimization in function space can be

(abstractly) solved using first and second order iterative methods. Consider a nonlinear

functional J : Ψ ⊂ L2
n[0, T ] → R on some dense subspace of L2

n[0, T ], that is if η ∈ Ψ,

then J (η) ∈ R. The goal is to find a particular function η that minimizes the cost

functional, that is

η = argmin
η

J (η). (6.10)

An iterative method to solve (6.10) can be written, in general, as

ηk+1 = ηk + αkη̃k, (6.11)

104



Introduction, Notation & Preliminaries Chapter 6

that is, given the current estimate of the minimum ηk, calculate an update direction η̃k

(at the current iteration k) and “move” along that direction in a step size of αk to obtain

a new estimate ηk+1. This iteration is repeated until a desirable convergence measure is

achieved. Therefore, the various numerical methods to solve (6.10) differ by the choice

of the update direction η̃k at each iteration. We give two methods here: (a) a first order

method and (b) a second order method. Note that the step size αk can be chosen to be

a constant throughout all iterations, or can be designed using various schemes that exist

in the literature (e.g. [2]). Before we give a description of the two different methods, we

provide a brief review on gradients and Hessians of functionals.

6.2.1 Gradients & Hessians of Nonlinear Functionals

The directional (Gâteaux) derivative of J , evaluated at ηk ∈ Ψ, acting on the direc-

tion of some η̃ is defined as

∂Jηk(η̃) := lim
ε→0

J (ηk + εη̃)− J (ηk)

ε
.

Note that ∂Jηk is the gradient of J at ηk. In fact, it is a linear functional whose action

can be expressed using an inner product (more precisely a bilinear form, see 10.B) as

∂Jηk(η̃) = 〈∂Jηk , η̃〉 .

Furthermore, the second directional derivative of J , evaluated at ηk, acting on the di-

rection of some η̃ is defined as

∂2Jηk(η̃) := lim
ε→0

∂Jηk+εη̃(η̃)− ∂Jηk(η̃)

ε
.

This can be seen as the directional derivative of the directional derivative of J . Note

that ∂2Jηk is the Hessian of J evaluated at ηk. It defines a quadratic functional whose

action can be expressed as

∂2Jηk(η̃) =
〈
∂2Jηk η̃, η̃

〉
.
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Equipped with the gradient and Hessian of J , the (abstract) numerical methods to

solve (6.10) can be developed as explained next. A first order method can be constructed

by picking the steepest descent direction (negative of the gradient) at each iteration, that

is

η̃k := −∂Jηk , (6.12)

where Jηk is the gradient of J evaluated at the current iteration ηk. In fact, a necessary

condition of optimality is obtained by setting the gradient to zero, that is ∂Jη = 0.

A second order method can be constructed by choosing the update direction as

η̃k := argmin
η̃

J (ηk) + 〈∂Jηk , η̃〉+
1

2

〈
∂2Jηk η̃, η̃

〉
, (6.13)

where ∂Jηk and ∂2Jηk are the gradient and Hessian of J evaluated at the current it-

eration ηk, respectively. In words, instead of solving the nonlinear optimization (6.10),

we approximate the nonlinear cost functional up to second order (linear-quadratic) and

thus solve a simpler linear-quadratic optimization at each iteration. This is referred to

as Sequential Quadratic Programming (SQP). In fact, the (abstract) solution of (6.13)

can be easily obtained by setting the gradient (with respect to η̃) of the linear-quadratic

cost functional in (6.13) to zero. This yields a linear equation to be solved for the update

direction η̃k

∂2Jηk(η̃k) = −∂Jηk . (6.14)

Note that this SQP is equivalent to solving the nonlinear equation giving the necessary

condition of optimality, ∂Jη = 0, using a Newton iteration method (when αk = 1).

This section gives two numerical methods to solve unconstrained optimization prob-

lems. However, the optimal control problem (6.3) has dynamical constraints. In this

paper, we show that the difference between various numerical methods in optimal con-

trol boils down to the technique of converting the constrained optimization given in (6.3)
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to an unconstrained one. That is, they differ by the way J is constructed. Once we have

an unconstrained optimization, the methods presented in this section can be directly

applied.

6.3 Gradient and Hessian of J

The gradient and Hessian of the cost functional J in (6.1) (or equivalently in (6.3)) are

given in this section, and will be used throughout the paper. The directional derivative

of J , evaluated at zk = (xk, uk), acting on the direction of z̃ is calculated as

∂Jzk(z̃) =

∫ T

0

∂Lzk(t)z̃(t)dt+ ∂xφxk(T )x̃(T ) = 〈Lk, z̃〉+ 〈φxk,ST x̃〉Rn = 〈Lk, z̃〉+ 〈S∗Tφxk, x̃〉

∂Jzk(z̃) =

〈

Lxk + S∗Tφxk

Luk


 ,



x̃

ũ



〉

=: 〈∂Jzk , z̃〉 . (6.15)

See Section 6.1.3 for details on ST and its adjoint S∗T . Equation (6.15) characterizes the

action of the gradient on z̃.

The second directional derivative of J , evaluated at zk, acting on the direction of z̃

is calculated as

∂2Jzk(z̃) =

∫ T

0

z̃∗(t)∂2Lzk(t)z̃(t)dt+ x̃∗(T )∂2
xφxk(T )x̃(T ) = 〈Hkz̃, z̃〉+ 〈φxxk ST x̃,ST x̃〉Rn

= 〈Hkz̃, z̃〉+ 〈S∗Tφxxk ST z̃, z̃〉

∂2Jzk(z̃) =

〈

Qk + S∗Tφxxk ST Nk

N∗k Rk






x̃

ũ


 ,



x̃

ũ



〉

=:
〈
∂2Jzk z̃, z̃

〉
. (6.16)

Equation (6.16) characterizes the action of the Hessian on z̃.
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Lagrangian Approach

The goal of this approach is to transform the constrained optimization problem (6.3) into

an unconstrained one using the Lagrangian, that is we let J be the Lagrangian. Then

we apply the machinery explained in Section 6.2 to solve the resulting unconstrained

optimization.

Define the Lagrangian as

J (z, λ) := J(z) + 〈C(z), λ〉, (7.1)

where λ(t) ∈ Rn is a Lagrange multiplier. To develop numerical methods using this

approach, we calculate the gradient and Hessian of the Lagrangian J .

7.1 Gradient of the Lagrangian

The gradient of the Lagrangian J , evaluated at (zk, λk), is a linear functional. Its

action on a given (z̃, λ̃), where z̃ := (x̃, ũ), is calculated next. Starting from (7.1), we

have

∂J(zk,λk)(z̃, λ̃) = ∂zJ(zk,λk)(z̃) + ∂λJ(zk,λk)(λ̃)
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= ∂Jzk(z̃) + 〈∂Czk(z̃), λk〉+
〈
C(zk), λ̃

〉
(7.2)

= ∂Jzk(z̃) + 〈∂zfzk z̃ −D0x̃, λk〉+
〈
C(zk), λ̃

〉

= ∂Jzk(z̃) +

〈[
Ak Bk

]
z̃, λk

〉
+ 〈x̃,DTλk〉+

〈
C(zk), λ̃

〉

=

〈
Lk +

[
Ak Bk

]∗
λk, z̃

〉
+ 〈DTλk + S∗Tφxk, x̃〉+

〈
C(zk), λ̃

〉

∂J(xk,ukλk)(x̃, ũ, λ̃) =

〈



Lxk + (DT + A∗k)λk + S∗Tφxk
Luk +B∗kλk

f(xk, uk)−Dxk



,




x̃

ũ

λ̃




〉
, (7.3)

where the third and fourth equalities follow from (6.4), and the fifth equality follows from

(6.15). Note that a necessary condition of optimality is obtained by setting the gradient

to zero. That is, by invoking Appendix 10.E, the optimal variables (x,u,λ) satisfy




ẋ(t) = f(x(t),u(t)); x(0) = x0

λ̇(t) = −A∗(t)λ(t)−Lx(t); λ(T ) = φx

Lu(t) = −B∗(t)λ(t),

(7.4)

where A,B,Lx,Lu and φx are all evaluated at (x,u).

7.2 Hessian of the Lagrangian

The Hessian of the Lagrangian J , evaluated at (zk, λk) is a quadratic functional. Its

action on a given (z̃, λ̃) is calculated next. Starting from (7.2), we have

∂2J(zk,λk)(z̃, λ̃) = ∂2Jzk(z̃) +
〈
∂2Czk(z̃), λk

〉
+
〈
∂Czk(z̃), λ̃

〉
+
〈
∂Czk(z̃), λ̃

〉

= ∂2Jzk(z̃) +
〈
∂2fzk(z̃), λk

〉
+ 2

〈[
Ak Bk

]
z̃ −D0x̃, λ̃

〉

= ∂2Jzk(z̃) + 〈z̃∗Fkz̃, λk〉+ 2

〈[
Ak Bk

]
z̃, λ̃

〉
− 2

〈
D0x̃, λ̃

〉

= ∂2Jzk(z̃) + 〈z̃,Fkλkz̃〉+ 2

〈[
Ak Bk

]
z̃, λ̃

〉
− 2

〈
D0x̃, λ̃

〉
,
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where Fk is defined in (6.6), and the last equality follows from (6.9). Note that Fkλk is

a time-varying matrix that is defined in (6.8) and can be written as

Fk(t)λk(t) =
n∑

i=1

T
(k)
i (t)λ

(k)
i (t) =

n∑

i=1



∂2
xfi(zk(t))λ

(k)
i (t) ∂xufi(zk(t))λ

(k)
i (t)

∂uxfi(zk(t))λ
(k)
i (t) ∂2

ufi(zk(t))λ
(k)
i (t)




Fk(t)λk(t) =: Wk(t) =:



W xx
k (t) W xu

k (t)

W ux
k (t) W uu

k (t)


 . (7.5)

Then, by using (6.16), the Hessian of the Lagrangian can be written as

∂2J(zk,λk)(z̃, λ̃) = 〈(Hk +Wk) z̃, z̃〉+ 〈S∗Tφxxk ST x̃, x̃〉+

〈[
Ak Bk

]
z̃, λ̃

〉

+

〈[
Ak Bk

]∗
λ̃, z̃

〉
+
〈
DT λ̃, x̃

〉
−
〈
D0x̃, λ̃

〉

∂2J(xk,ukλk)(x̃, ũ, λ̃) =

〈



Qk +W xx
k + S∗Tφxxk ST Nk +W xu

k DT + A∗k

N∗k +W ux
k Rk +W uu

k B∗k

−D0 + Ak Bk 0







x̃

ũ

λ̃



,




x̃

ũ

λ̃




〉
.

(7.6)

It is worth to note that if the reader is familiar with gradients and Hessians in function

space, the expression (7.6) can be immediately obtained by inspection of the gradient

given in (7.3).

With the gradient and Hessian at hand, we construct a second order method to solve

the OCP as follows: given the current iterate (xk, uk, λk), we calculate an update direction

denoted by (x̃k, ũk, λ̃k). Then we obtain the next iterate using some step size αk as



xk+1

uk+1

λk+1




=




xk

uk

λk




+ αk




x̃k

ũk

λ̃k



. (7.7)

In this approach, we give a second order method only, because using a gradient descent

(first order) method on the Lagrangian does not converge in general.
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7.3 Second Order Method for the Lagrangian Ap-

proach

A second order method is obtained by choosing the update direction η̃k := (x̃k, ũk, λ̃k)

according to (6.14). That is, by substituting the expressions of the gradient (7.3) and

the Hessian (7.6), we obtain

∂2J(xk,uk,zk)




x̃k

ũk

λ̃k




= −∂J(xk,uk,λk)




Qk +W xx
k + S∗Tφxxk ST Nk +W xu

k DT + A∗k

N∗k +W ux
k Rk +W uu

k B∗k

−D0 + Ak Bk 0







x̃k

ũk

λ̃k




= −




Lxk + (DT + A∗k)λk + S∗Tφxk
Luk +B∗kλk

f(xk, uk)−Dxk



.

This can be rearranged and rewritten as

D0x̃k = Akx̃k +Bkũk + f(xk, uk)−Dxk

DT (λk + λ̃k) + S∗T (φxxk x̃k(T ) + φxk) = − (Qk +W xx
k ) x̃k − A∗k

(
λ̃k + λk

)
− (Nk +W xu

k )ũk − Lxk

(Rk +W uu
k ) ũk = −(N∗k +W ux

k )x̃k −B∗k
(
λ̃k + λk

)
− Luk .

This is the operator form of the differential equations that govern the update direction

(x̃, ũ, λ̃). By invoking Appendix 10.E, we can get rid of S∗T and rewrite the result as

a linear differential algebraic equation (DAE) where the differential equations take the
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form a two point boundary value problem. We have

d
dt



x̃k

λ̃k


=




Ak 0

− (Qk +W xx
k ) −A∗k






x̃k

λ̃k


+




Bk

− (Nk +W xu
k )


 ũk +



f(xk, uk)−Dxk
−Lxk − λ̇k − A∗kλk




(Rk +W uu
k )ũk = −

[
N∗k +W ux

k B∗k

]


x̃k

λ̃k


− Luk −B∗kλk

such that x̃k(0) = 0 and λ̃k(T ) = φxk + φxxk x̃k(T )− λk(T ).

(7.8)

Finally, the algorithm for this second order method is summarized in Algorithm 1.
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Algorithm 1 Second Order Method: Lagrangian Approach

1: Start with an initial guess (x1, u1, λ1) and set k = 1.

2: Given (xk, uk, λk), compute :

Ak = ∂xf(xk,uk), Bk = ∂uf(xk,uk),

Lxk = ∂xL
∗
(xk,uk), Luk = ∂uL

∗
(xk,uk),

Qk = ∂2
xL(xk,uk), Rk = ∂2

uL(xk,uk),

Nk = ∂xuL(xk,uk),

φxk = ∂xφ
∗
xk(T ), φxxk = ∂2

xφxk(T ),

W xx
k =

n∑

i=1

∂2
xfi(xk, uk)λ

(k)
i , W xu

k =
n∑

i=1

∂xufi(xk, uk)λ
(k)
i ,

W ux
k = (W xu

k )∗, W uu
k =

n∑

i=1

∂2
ufi(xk, uk)λ

(k)
i .

3: Solve the following linear two point boundary value problem (with an algebraic con-

straint) to obtain (x̃k, ũk, λ̃k):

d

dt



x̃k

λ̃k


 =




Ak 0

− (Qk +W xx
k ) −A∗k






x̃k

λ̃k


+




Bk

− (Nk +W xu
k )


 ũk +



f(xk, uk)−Dxk
−Lxk − λ̇k − A∗kλk




(Rk +W uu
k )ũk = −

[
N∗k +W ux

k B∗k

]


x̃k

λ̃k


− Luk −B∗kλk

such that x̃k(0) = 0 and λ̃k(T ) = φxk + φxxk x̃k(T )− λk(T ).

4: Update the state, control and Lagrange multiplier using a step size αk:




xk+1

uk+1

λk+1




=




xk

uk

λk




+ αk




x̃k

ũk

λ̃k



.

5: Set k = k + 1 and go back to step 2. Repeat until convergence.
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Substitution Approach

In this approach, we convert the constrained optimization (6.3) to an unconstrained one

by substituting the dynamical constraints in the cost functional. This results in a new

cost functional that depends only on the control input u.

Define the system operator H that acts on a control variable u to produce a state

variable x as

H : L2
m[0, T ]→ L2

n[0, T ]

u 7→ x := H(u) such that Dx = f(x, u),

(8.1)

where D is the time derivative operator defined in Section 6.1. By substituting the

expression of the state x = H(u) in the original cost functional J of (6.1), we obtain a

new cost functional that only depends on the control input u, that is

J (u) := J (H(u), u) =

∫ T

0

L
(

[H(u)](t), u(t)
)
dt+ φ

(
STH(u)

)
. (8.2)

With the resulting unconstrained optimization problem at hand, we can develop first

and second order numerical methods to approximate the solution as follows: given the

current iterate uk, we calculate the update direction ũk and obtain the next iterate using

some step size αk as

uk+1 = uk + αkũk. (8.3)

114



Substitution Approach Chapter 8

Table 8.1: System Operator Derivatives and Adjoint. This table shows the expressions of the first and

second directional derivatives of the system operator H evaluated at a given uk and acting on some ũ.

Furthermore, the adjoint of the directional derivative evaluated at uk is also shown. The expressions

are given in their operator forms and their associated differential equations. Refer to Section 6.1 for an

explanation of the time derivative operators D,D0, and DT , and the second derivative operator Fk.

Notation Operator Form Differential Equations Form

System

Operator

xk = H(uk) Dxk = f(xk, uk) ẋk = f(xk, uk); xk(0) = x0

Derivative x̃k = ∂Huk(ũ) x̃k = (D0 − Ak)−1Bkũ ˙̃xk = Akx̃k +Bkũ; x̃k(0) = 0

Adjoint µk = ∂H∗uk(χ) µk = −B∗k(DT+A∗k)
−1χ

λ̇k = −A∗kλk − χ; λk(T ) = 0

µk = B∗kλk

Second

Derivative

x̄k = ∂2Huk(ũ)

x̄k = (D0 − Ak)−1z̃∗kFkz̃k

z̃k :=



x̃k

ũ




˙̄xk = Akx̄k+ z̃∗kFkz̃k; x̄k(0) = 0

The update direction depends on the gradient and/or Hessian of J which, naturally,

depend on the first and second directional derivatives of H. Table 8.1 summarizes the

results of the calculations carried out in Appendix 10.C. It shows the formulas for the

first directional derivative, its adjoint, and the second directional derivative of H. The

formulas are written in both operator form and differential equation form. We now

proceed to calculate the gradient and Hessian of J .
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8.1 Gradient of J (u)

Recall that the new cost functional J is a function of the control input u only. Using

the chain rule, we calculate the directional derivative of J in terms of the original cost

functional J . Starting from (8.2), we have

∂Juk(ũ) = ∂J(H(uk),uk)(ũ) = ∂xJ(H(uk),uk)

(
∂Huk(ũ)

)
+ ∂uJ(H(uk),uk)(ũ)

=

〈

∂xJ(H(uk),uk)

∂uJ(H(uk),uk)


 ,



∂Huk(ũ)

ũ



〉

=

〈
∂Jzk ,



∂Huk

Im


 ũ
〉

∂Juk(ũ) =

〈[
∂H∗uk Im

]
∂Jzk , ũ

〉
=: 〈∂Juk , ũ〉 , (8.4)

where Im is the identity matrix of size m, and zk := (xk, uk) = (H(uk), uk). Note that

Juk given in (8.4) represents the abstract form of the gradient of J at uk. It is expressed

explicity in terms of original cost functional J and the system operator H. Substituting

the expressions of ∂H∗uk from Table 8.1 and ∂Jzk from (6.15) yields

∂Juk(ũ) =

〈
−
[
B∗k (DT + A∗k)

−1 Im

]


Lxk + S∗Tφxk

Luk


 , ũ

〉

=
〈
−B∗k (DT + A∗k)

−1 (Lxk + S∗Tφxk
)

+ Luk , ũ
〉

∂Juk(ũ) = 〈B∗kλk + Luk , ũ〉 =: 〈∂Juk , ũ〉 , (8.5)

where λk is an intermediate variable (which is referred to as the costate in the literature)

and is defined as

λk := − (DT + A∗k)
−1 (Lxk + S∗Tφxk

)
. (8.6)

The differential equation associated with (8.6) can be obtained by acting on both sides

by DT + A∗k and invoking Appendix 10.E to obtain

λ̇k(t) = −A∗k(t)λk(t)− Lxk(t); λk(T ) = φxk. (8.7)
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Note that the λ define in (8.7) is fundamentally different from the λ introduced in the

Lagrangian approach, although they play similar roles. In the latter, λ is a Lagrange

multiplier that doesn’t have to satisfy any differential equation. However, the former is

the costate variable that has to satisfy the differential equation in (8.7) at every iteration.

Nonetheless, these two λ’s become equal at the optimum.

8.2 Hessian of J (u)

The Hessian of J at uk acting on ũ can be calculated using the chain rule. By cal-

culating the directional derivative of the gradient from (8.4), we can express the Hessian

in terms of the original cost functional J .

∂2Juk(ũ) =

〈

∂2
xJzk ∂xuJzk

∂uxJzk ∂2
uJzk






∂Huk

Im


 ũ,



∂Huk

Im


 ũ
〉

+

〈

∂xJzk

∂uJzk


 ,



∂2Huk(ũ)

0



〉

=

〈[
∂H∗uk Im

]
∂2Jzk



∂Huk

Im


 ũ, ũ

〉
+
〈
∂xJzk , ∂

2Huk(ũ)
〉
.

Substituting the expressions of ∂2Huk(ũ) from Table 8.1 and ∂xJzk from (6.15) yields

∂2Juk(ũ) =

〈[
∂H∗uk Im

]
∂2Jzk



∂Huk

Im


 ũ, ũ

〉
+
〈
Lxk + S∗Tφxk, (D0 − Ak)−1z̃∗kFkz̃k

〉

=

〈[
∂H∗uk Im

]
∂2Jzk



∂Huk

Im


 ũ, ũ

〉
+
〈
−(DT + A∗k)

−1
(
Lxk + S∗Tφxk

)
, z̃∗kFkz̃k

〉

where z̃k :=



∂Huk

Im


 ũ, Fk is defined in (6.6), and the second equality follows from (6.4).

By using the same definition of the intermediate variable λk in (8.6) and exploiting
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(6.9), we obtain

∂2Juk(ũ) =

〈[
∂H∗uk Im

]
∂2Jzk



∂Huk

Im


 ũ, ũ

〉
+ 〈Fkλkz̃k, z̃k〉

=

〈[
∂H∗uk Im

]
∂2Jzk



∂Huk

Im


 ũ, ũ

〉
+

〈
Fkλk



∂Huk

Im


 ũ,



∂Huk

Im


 ũ
〉

=

〈[
∂H∗uk Im

](
∂2Jzk + Fkλk

)


∂Huk

Im


 ũ, ũ

〉
,

where Fkλk is the time-varying matrix given in (7.5). Finally, substituting for ∂2Jzk from

(6.16) yields

∂2Juk(ũ) =

〈[
∂H∗uk Im

]


Qk +W xx

k + S∗Tφxxk ST Nk +W xu
k

N∗k +W ux
k Rk +W uu

k






∂Huk

Im


 ũ, ũ

〉

=:
〈
∂2Juk ũ, ũ

〉
. (8.8)

Equation (8.8) explicitly shows, in operator form, the action of the Hessian of J on a

given ũ. Note that the expressions of ∂Huk and its adjoint are give in Table 8.1. Equipped

with the gradient and Hessian of J , we can now calculate the update direction ũk in (8.3).

8.3 First Order Method for the Substitution Ap-

proach

A first order method is obtained by simply choosing the update direction ũk to be

the negative of the gradient, that is ũk := −(B∗kλk +Luk), where λk is given in (8.7). The

algorithm for this first order method is summarized in Algorithm 2.
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Algorithm 2 Gradient Descent Method

1: Start with an initial guess u1 and set k = 1.

2: Solve for the state xk:

ẋk = f(xk, uk); xk(0) = x0.

3: Compute:

Ak = ∂xf(xk,uk), Bk = ∂uf(xk,uk),

Lxk = ∂xL
∗
(xk,uk), Luk = ∂uL

∗
(xk,uk), φxk = ∂xφ

∗
xk(T ).

4: Solve for the costate λk:

λ̇k = −A∗kλk − Lxk; λk(T ) = φxk.

5: Update the control with a step size αk:

uk+1 = uk − αk(B∗kλk + Luk).

6: Set k = k + 1 and go back to step 2. Repeat until convergence.
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8.4 Second Order Method for the Substitution Ap-

proach

A second order method is obtained by choosing the update direction ũk according

to (6.14). That is, by substituting the expressions of the gradient (8.5) and the Hessian

(8.8), we obtain

∂2Juk(ũk) = −∂Juk
[
∂H∗uk Im

]


Qk +W xx

k + S∗Tφxxk ST Nk +W xu
k

N∗k +W ux
k Rk +W uu

k






∂Huk

Im


 ũk = −(B∗kλk + Luk).

Carrying out the matrix-vector multiplications yields

∂H∗uk (Qk +W xx
k + S∗Tφxxk ST ) ∂Huk(ũk) + (Rk +W uu

k )ũk

+ ∂H∗uk(Nk +W xu
k )ũk + (N∗k +W ux

k )∂Huk(ũk) = −(B∗kλk + Luk).

Now define x̃k := ∂Huk(ũk), and substitute for the expression of ∂H∗uk from Table 8.1 to

obtain

−B∗k(DT + A∗k)
−1
(

(Qk +W xx
k + S∗Tφxxk ST ) x̃k + (Nk +W xu

k )ũk

)

+ (N∗k +W ux
k )x̃k + (Rk +W uu

k )ũk = −(B∗kλk + Luk).

Finally, introduce a new intermediate variable

λ̃k := −(DT + A∗k)
−1
(

(Qk +W xx
k + S∗Tφxxk ST ) x̃k + (Nk +W xu

k )ũk

)
, (8.9)

and therefore, the update direction ũk is given by the following algebraic equation

(Rk +W uu
k )ũk = −B∗k(λk + λ̃k)− (N∗k +W ux

k )x̃k − Luk , (8.10)

where x̃k = ∂Huk(ũk), and λ̃k solves (8.9) that can be rewritten as a differential equation

by invoking Appendix 10.E to get rid of S∗T . We have

˙̃λk = −A∗kλ̃k − (Qk +W xx
k )x̃k − (Nk +W xu

k )ũk; λ̃k(T ) = φxxk x̃k(T ). (8.11)
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Therefore, using x̃k = ∂Huk(ũk), (8.11) and (8.10), we obtain the update direction by

solving the following linear two point boundary value problem with an algebraic con-

straint

d

dt



x̃k

λ̃k


 =




Ak 0

− (Qk +W xx
k ) −A∗k






x̃k

λ̃k


+




Bk

− (Nk +W xu
k )


 ũk

(Rk +W uu
k )ũk = −

[
N∗k +W ux

k B∗k

]


x̃k

λ̃k


− Luk −B∗kλk

such that x̃k(0) = 0 and λ̃k(T ) = φxxk x̃k(T ),

(8.12)

where λk solves (8.7). The algorithm for this second order method is summarized in

Algorithm 3.
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Algorithm 3 Second Order Method: Substitution Approach
1: Start with an initial guess u1 and set k = 1.

2: Solve for the state xk(t):

ẋk = f(xk, uk); xk(0) = x0.

3: Compute:

Ak = ∂xf(xk,uk), Bk = ∂uf(xk,uk),

Lxk = ∂xL
∗
(xk,uk), Luk = ∂uL

∗
(xk,uk),

Qk = ∂2
xL(xk,uk), Rk = ∂2

uL(xk,uk),

Nk = ∂xuL(xk,uk),

φxk = ∂xφ
∗
xk(T ), φxxk = ∂2

xφxk(T ).

4: Solve for the costate λk(t):

λ̇k = −A∗kλk − Lxk; λk(T ) = φxk.

5: Compute:

W xx
k =

n∑

i=1

∂2
xfi(xk, uk)λ

(k)
i ; W xu

k =
n∑

i=1

∂xufi(xk, uk)λ
(k)
i ;

W ux
k = (W xu

k )∗; W uu
k =

n∑

i=1

∂2
ufi(xk, uk)λ

(k)
i .

6: Solve for ũk:

d

dt



x̃k

λ̃k


 =




Ak 0

− (Qk +W xx
k ) −A∗k






x̃k

λ̃k


+




Bk

− (Nk +W xu
k )


 ũk;

xk(0) = 0

λ̃k(T ) = φxxk x̃k(T )

(Rk +W uu
k )ũk = −

[
N∗k +W ux

k B∗k

]


x̃k

λ̃k


− Luk −B∗kλk.

7: Update the control with a step size αk:

uk+1 = uk + αkũk.

8: Set k = k + 1 and go back to step 2. Repeat until convergence.
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Projection-Based Approach

In this section, we generalize the projection-based method developed in [29]. This method

is particularly useful for optimal control problems where the dynamics are either unstable

or sensitive. Observe that in the numerical methods developed using the substitution

approach, a simulation of the dynamics ẋk = f(xk, uk) is required at each iteration.

However, for unstable or sensitive systems, such methods are not recommended, because

small perturbations in the control uk induce large perturbations in the corresponding

state xk. This causes the methods to behave poorly and thus leads to either divergence

or extremely slow convergence. In [29], the constrained OCP (6.3) is converted to an

unconstrained optimization problem by means of a nonlinear projection operator that

adds a degree of freedom to be tuned (a linear feedback gain). The objective of the

tuning (or design of the feedback gain) is to massage the dynamics to either stabilize

them or reduce their sensitivity to perturbations of the control input. In this paper, we

generalize this method by using a projection operator with a general nonlinear feedback

gain. This is advantageous in scenarios where, for example, a nonlinear feedback gain

is known to stabilize the dynamics of an unstable system. It is worth to note that our

mathematical derivations are slightly different from those in [29]. In our approach, we
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exploit the system operator H defined (and analyzed) in the previous section (see the

chapter on Substitution Approach for more details). This allows us to use previous results

throughout the derivations.

Similar to the other methods, we first show how the OCP (6.3) is converted to an

unconstrained optimization problem. Afterwards, what remains is simply the calculation

of the gradient and the Hessian of the resulting unconstrained cost functional. Although

the calculations are tedious, they really boil down to the proper application of the chain

rule. We start by defining and analyzing the projection operator similar to [29], but with

a nonlinear feedback gain.

9.1 Projection Operator

Define the projection operator P that acts on a state-control pair ẑ := (x̂, û), which

does not have to satisfy the system dynamics, to yield another state-control pair z :=

(x, u) that satisfies the system dynamics

z = P(ẑ)⇐⇒





x = H(u)

u = û+ g(x̂− x),

(9.1)

where g : Rn → Rm is a twice differentiable function such that g(0) = 0, and H is the

system operator defined in (8.1). Note that the projection operator in [29] is obtained

by setting g(x − x̂) = K(x − x̂), where K is a linear gain (that can be time-varying).

Observe that all trajectories of the dynamics (that is, the state-control pair (x, u) that

satisfies x = H(u)) are fixed points of the mapping P . In other words, if x̂ = H(û) then

ẑ = P(ẑ). Note also that P is a projection operator because P ◦ P = P . Therefore, the
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OCP in (6.3) can be converted to an unconstrained optimization problem as follows

minimize
ẑ

J(ẑ)

subject to C(ẑ) = 0,

⇐⇒
minimize

ẑ
J(ẑ)

subject to ẑ = P(ẑ),

⇐⇒ minimize
ẑ

J
(
P(ẑ)

)
.

Therefore the new unconstrained cost functional is

J (ẑ) = J (P(ẑ)) . (9.2)

With the resulting unconstrained optimization problem at hand, we can exploit the

unconstrained optimization techniques explained in Section 6.2 to develop the numerical

methods as follows: given the current iterate ẑk, we calculate an update direction, denoted

here by
¯
zk, and obtain the next iterate using some step size αk as

ẑk+1 = ẑk + αk
¯
zk. (9.3)

The update direction depends on the gradient and/or Hessian of J which, naturally,

depend on the first and second directional derivatives of P . Table 9.1 summarizes the

results of the calculations carried out in 10.D. It shows the formulas for the first direc-

tional derivative, its adjoint, and the second directional derivative of P . The formulas

are written in both operator form and differential equations form. We now proceed to

calculate the gradient and Hessian of J .

9.2 Gradient of J

The new cost functional is really the composition between the projection operator

P and the original cost functional J . Using the chain rule, we calculate the directional

derivative of J , evaluated at ẑk := (x̂k, ûk) acting on
¯
z := (

¯
x,

¯
u) as

∂Jẑk(¯z) = ∂JP(ẑk)

(
∂Pẑk(¯z)

)
=
〈
∂JP(ẑk), ∂Pẑk(¯z)

〉
=
〈
∂P∗ẑk (∂Jzk) ,¯

z
〉

=: 〈∂Jẑk ,¯z〉 , (9.4)
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Table 9.1: Projection Operator Derivatives and Adjoint. This table shows the expressions of the first

and second directional derivatives of the projection operator P evaluated at a given ẑk := (x̂k, ûk).

Furthermore, the adjoint of the directional derivative evaluated at ẑk is also shown. The expressions are

given in their operator forms and their associated differential equations. Note that H, ∂H, ∂H∗ and ∂2H

are given in Table 8.1. We use Fk and Gk to denote the second derivative operators of f at zk and g at

x̂k − xk, respectively. Refer to Appendix 10.D for details.

Notation Operator Form Differential Equations Form

Projection

Operator

(xk, uk) = P(x̂k, ûk)
(
zk = P(ẑk)

)




xk = H(uk)

uk = ûk + g(x̂k − xk)




ẋk = f(xk, uk); xk(0) = x0

uk = ûk + g(x̂k − xk)

Derivative

(x̃k, ũk) = ∂Pẑk(¯x, ¯u)
(
z̃k = ∂Pẑk(¯z)

)




x̃k = ∂Huk(ũk)

ũk =
¯
u+Kk(

¯
x− x̃k)





˙̃xk = (Ak −BkKk)x̃k +Bk(
¯
uk +Kk

¯
xk)

ũk =
¯
u+Kk(

¯
x− x̃k)

x̃k(0) = 0;

Adjoint

(χ̃k, µ̃k) = ∂P∗ẑk(χ, µ)
(
ζ̃k = ∂P∗ẑk(ζ)

)




χ̃k = K∗k µ̃k

µ̃k = µ+ ∂H∗uk(χ− χ̃k)





χ̃k = K∗k (µ+B∗kλk)

µ̃k = µ+B∗kλk

λ̇k = −(Ak −BkKk)
∗λk − (χ−K∗kµ)

λk(T ) = 0

Second

Derivative

(x̄k, ūk) = ∂2Pẑk(¯x, ¯u)
(
z̄k = ∂2Pẑk(¯z)

)




x̄k = ∂Huk(ūk) + ∂2Huk(ũk)

ūk = (
¯
x− x̃k)∗Gk(

¯
x− x̃k)−Kkx̄k





˙̄xk = (Ak −BkKk)x̄k + z̃∗kFkz̃k

+Bk(
¯
x− x̃k)∗Gk(

¯
x− x̃k)

ūk = (
¯
x− x̃k)∗Gk(

¯
x− x̃k)−Kkx̄k

x̄k(0) = 0
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where zk := (xk, uk) := P(ẑk), ∂Jzk is given in (6.15), and ∂P∗ẑk is the adjoint of ∂Pẑk
and is given in Table 9.1. Equation (9.4) gives the expression of the gradient of J at ẑk

in operator form in terms of J and P . Using (6.15) and Table 9.1, we can rewrite the

gradient in differential equations form as

∂Jẑk(¯z) =
〈
∂P∗ẑk (Lxk + S∗Tφxk, Luk) ,¯z

〉
=

〈

K∗k

Im


 (Luk +B∗kλk) ,¯

z

〉
=: 〈∂Jẑk ,¯z〉 , (9.5)

where Kk := ∂gx̂k−xk , and the intermediate variable λk (which is similar to the costate

variable and Lagrange multiplier) is calculated by using Table 9.1

λ̇k = −(Ak −BkKk)
∗λk − (Lxk + S∗Tφxk −K∗kLuk); λk(T ) = 0,

which after invoking Appendix 10.E to get rid of S∗T yields

λ̇k = −(Ak −BkKk)
∗λk − (Lxk −K∗kLuk) ; λk(T ) = φxk. (9.6)

Therefore, the gradient of J at ẑk is given by (9.5) where λk is given by (9.6) and

zk = P(ẑk). The necessary conditions of optimality are obtained by setting the gradient

to zero. It is easy to check that necessary conditions of optimality are the same as those

given in (7.4).

9.3 Hessian of J

The Hessian can be calculated by applying the chain rule on (9.4) to obtain

∂2Jẑk(¯z) =
〈
∂2JP(ẑk)∂Pẑk¯z, ∂Pẑk¯z

〉
+
〈
∂JP(ẑk), ∂

2Pẑk(¯z)
〉

=
〈
∂P∗ẑk∂

2Jzk∂Pẑk¯z,¯z
〉

+ 〈∂Jzk , z̄k〉 , (9.7)

where zk := P(ẑk) and z̄k := ∂2Pẑk(¯z). Note that ∂Pẑk , ∂P∗ẑk and ∂2Pẑk are all given

in Table 9.1. The rest of this section examines the second term in (9.7). In fact, the
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differential equation form of ∂2Pẑk in Table 9.1 can be rewritten using the time derivative

operator D0 as

z̄k =



In

−Kk



(
D0 − (Ak −BkKk)

)−1(
z̃∗kFkz̃k +Bk(

¯
x− x̃k)∗Gk(

¯
x− x̃k)

)
+




0

(
¯
x− x̃k)∗Gk(

¯
x− x̃k)


 ,

(9.8)

where z̃k := (x̃k, ũk) = ∂Pẑk(¯z). Note that Fk and Gk are the second derivative operators

of f at zk and g at x̂k − xk, respectively (refer to Section 6.1.5 for more details). To

express 〈∂Jzk , z̄k〉 in terms of
¯
z, we substitute for ∂Jzk from (6.15) and z̄k from (9.8) to

obtain

〈∂Jzk , z̄k〉 =

〈
−
(
DT + (Ak −BkKk)

∗
)−1

[
In −K∗k

]


Lxk + S∗Tφxk

Luk


 , z̃∗kFkz̃k

〉

+

〈
−B∗k

(
DT + (Ak −BkKk)

∗
)−1

[
In −K∗k

]


Lxk + S∗Tφxk

Luk


 , (

¯
x− x̃k)∗Gk(

¯
x− x̃k)

〉

+

〈

Lxk + S∗Tφxk

Luk


 ,




0

(
¯
x− x̃k)∗Gk(

¯
x− x̃k)



〉

= 〈λk, z̃∗kFkz̃k〉+ 〈B∗kλk + Luk , (¯
x− x̃k)∗Gk(

¯
x− x̃k)〉 ,

where λk is the intermediate variable defined in (9.6). By letting θk := B∗kλk + Luk and

invoking the inner product property of the second derivative operators (6.9), we obtain

〈∂Jzk , z̄k〉 = 〈Fkλkz̃k, z̃k〉+ 〈Gkθk(
¯
x− x̃k),

¯
x− x̃k〉

= 〈Fkλk∂Pẑk¯z, ∂Pẑk¯z〉+

〈
Gkθk

[
In 0

]
(
¯
z − z̃k),

[
In 0

]
(
¯
z − z̃k)

〉

=
〈
∂P∗ẑkFkλk∂Pẑk¯z,¯z

〉
+

〈
Gkθk

[
In 0

]
(In+m − ∂Pẑk)¯z,

[
In 0

]
(In+m − ∂Pẑk)¯z

〉

=

〈
∂P∗ẑkFkλk∂Pẑk + (In+m − ∂P∗ẑk)



In

0


Gkθk

[
In 0

]
(In+m − ∂Pẑk)




¯
z,

¯
z

〉
.

(9.9)
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Note that Fkλk is a time-varying matrix defined in (7.5). Similarly, we define another

time-varying matrix Sk as

Gk(t)θk(t) :=
m∑

j=1

G
(k)
j (t)θ

(k)
j (t) =

m∑

j=1

∂2gj
(
x̂k(t)− xk(t)

)
θ

(k)
j (t) =: Sk(t). (9.10)

Thus, using the matrices Wk from (7.5) and Sk from (9.10), we can rewrite (9.9) as

〈∂Jzk , z̄k〉 =

〈
∂P∗ẑk






W xx
k + Sk W xu

k

W ux
k W uu

k





 ∂Pẑk +



Sk 0

0 0


− ∂P∗ẑk



Sk 0

0 0


−



Sk 0

0 0


 ∂Pẑk




¯
z,

¯
z

〉

Finally, by substituting 〈∂Jzk , z̄k〉 in (9.7) and using the expression of ∂2Jzk from (6.16),

we obtain the expression (in operator form) that describes the action of the Hessian,

evaluated at ẑk, on
¯
z

∂2Jẑk(¯z) =

〈
∂P∗ẑk






Qk +W xx

k + Sk + S∗Tφxxk ST Nk +W xu
k

N∗k +W ux
k Rk +W uu

k





 ∂Pẑk +



Sk 0

0 0


− ∂P∗ẑk



Sk 0

0 0


−



Sk 0

0 0


 ∂Pẑk




¯
z,

¯
z

〉

(9.11)

9.4 Second Order Method for the Projection Ap-

proach

A second order method is obtained by choosing the update direction
¯
zk according to

(6.14), that is ∂2Jẑk(¯zk) = −∂Jẑk . By substituting the expressions of the gradient (8.5)

and the Hessian (8.8), we obtain


∂P∗ẑk






Qk +W xx

k + Sk + S∗Tφxxk ST Nk +W xu
k

N∗k +W ux
k Rk +W uu

k





 ∂Pẑk +



Sk 0

0 0


− ∂P∗ẑk



Sk 0

0 0




−



Sk 0

0 0


 ∂Pẑk




¯
zk = −



K∗k

Im


 (Luk +B∗kλk) .
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To obtain the differential equations that produce the update direction
¯
zk, we proceed as

follows. Recall that θk := Luk +B∗kλk and let z̃k := (x̃k, ũk) = ∂Pẑk(¯zk), then

∂P∗ẑk






Qk +W xx

k + S∗Tφxxk ST Nk +W xu
k

N∗k +W ux
k Rk +W uu

k






x̃k

ũk


−



Sk 0

0 0








¯
xk

¯
uk


−



x̃k

ũk








+



Sk 0

0 0








¯
xk

¯
uk


−



x̃k

ũk





 = −



K∗k

Im


 θk.

(9.12)

For the sake of simplicity in the remaining mathematical manipulations, define the matrix

Ck as

Ck :=



Qk +W xx

k + S∗Tφxxk ST Nk +W xu
k

N∗k +W ux
k Rk +W uu

k


 . (9.13)

Then, by recalling that ũk =
¯
uk +Kk(

¯
xk − x̃k) (refer to Table 9.1), and by defining

dk :=

[
Kk Im

]

¯
xk

¯
uk


 , (9.14)

we can rewrite (9.12) as

∂P∗ẑk


Ck



In

−Kk


 x̃k + Ck




0

Im


 dk −



Sk

0


 (

¯
xk − x̃k)


+



Sk

0


 (

¯
xk − x̃k) = −



K∗k

Im


 θk,

or


χ̃k

µ̃k


+



Sk

0


 (

¯
xk − x̃k) = −



K∗k

Im


 θk, (9.15)

where


χ̃k

µ̃k


 := ∂P∗ẑk






χk

µk





 ;



χk

µk


 := Ck



In

−Kk


 x̃k + Ck




0

Im


 dk −



Sk

0


 (

¯
xk − x̃k).

(9.16)
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Using the differential equation form of ∂P∗ẑk in Table 9.1, (9.16) can be rewritten as


χ̃k

µ̃k


 =



K∗k

Im



(
B∗kλ̃k + µk

)

=



K∗k

Im





B∗kλ̃k +

[
0 Im

]
Ck



In

−Kk


 x̃k +

[
0 Im

]
Ck




0

Im


 dk


 , (9.17)

where the second intermediate variable λ̃k is defined as

DT λ̃k = −(Ak −BkKk)
∗λ̃k −

[
In −K∗k

]


χk

µk




= −(Ak −BkKk)
∗λ̃k −

[
In −K∗k

]

Ck



In

−Kk


 x̃k + Ck




0

Im


 dk −



Sk

0


 (

¯
xk − x̃k)




DT λ̃k = −(Ak −BkKk)
∗λ̃k −

(
Qk +W xx

k + S∗Tφxxk ST +K∗k(Rk +W uu
k )Kk

)
x̃k + Sk(

¯
xk − x̃k)

+
(
K∗k(N∗k +W ux

k ) + (Nk +W xu
k )Kk

)
x̃k − (Nk +W xu

k )dk +K∗k(Rk +W uu
k )dk.

(9.18)

Substituting (9.17) in (9.15) yields


K∗k

Im





B∗kλ̃k +

[
0 Im

]
Ck



In

−Kk


 x̃k +

[
0 Im

]
Ck




0

Im


 dk + θk


+



Sk

0


 (

¯
xk − x̃k) =




0

0


 ,

which, by substituting for Ck and θk, yields two equations

Sk(
¯
xk − x̃k) = 0 (9.19)

(Rk +W uu
k )dk = −

(
N∗k +W ux

k − (Rk +W uu
k )Kk

)
x̃k −B∗k(λk + λ̃k)− Luk . (9.20)

By substituting for Sk(
¯
xk − x̃k) and (Rk + W uu

k )dk in (9.18), many terms cancel out to

obtain

DT λ̃k = −A∗kλ̃k −
(
Qk +W xx

k + S∗Tφxxk ST − (Nk +W xu
k )Kk

)
x̃k − (Nk +W xu

k )dk −B∗kλk − Luk .

(9.21)
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Furthermore, since (9.19) has to be satisfied regardless of the choice of the nonlinear gain

g (hence Sk), then
¯
xk = x̃k which also implies that

¯
uk = ũk. This further simplifies (9.20)

and (9.21) by substituting dk = Kk
¯
xk +

¯
uk = Kkx̃k + ũk to obtain

(Rk +W uu
k )ũk = −(N∗k +W ux

k )x̃k −B∗k(λk + λ̃k)− Luk

DT λ̃k = −A∗kλ̃k −
(
Qk +W xx

k + S∗Tφxxk
)
x̃k − (Nk +W xu

k )ũk −B∗kλk − Luk .
(9.22)

Finally, by combining z̃k = ∂Pẑk(¯zk) and (9.22), and invoking Appendix 10.E, we ob-

tain the following linear two-point boundary value problem coupled with an algebraic

constraint

d

dt



x̃k

λ̃k


 =




Ak 0

−
(
Qk +W xx

k

)
−A∗k






x̃k

λ̃k


+




Bk

−(Nk +W xu
k )


 ũk +




0

−B∗kλk − Luk




(Rk +W uu
k )ũk = −

[
N∗k +W ux

k B∗k

]


x̃k

λ̃k


−B∗kλk − Luk (9.23)

such that x̃k(0) = 0, λ̃k(T ) = φxxk x̃k(T ).

The algorithm for this second order method is summarized in Algorithm 4.
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Algorithm 4 Second Order Method: Projection Operator Approach
1: Start with an initial guess (û1, x̂1) and set k = 1.

2: Compute the projection (xk, uk) := P(x̂k, ûk):





xk = f(xk, uk)

uk = ûk + g(x̂k − xk),

3: Compute:

Ak = ∂xf(xk,uk), Bk = ∂uf(xk,uk),

Lxk = ∂xL
∗
(xk,uk), Luk = ∂uL

∗
(xk,uk),

Qk = ∂2
xL(xk,uk), Rk = ∂2

uL(xk,uk),

Nk = ∂xuL(xk,uk), Kk = ∂2gx̂k−xk ,

φxk = ∂xφ
∗
xk(T ), φxxk = ∂2

xφxk(T ),

4: Solve for the costate λk(t):

λ̇k = −(Ak −BkKk)
∗λk − (Lxk −KkL

u
k) ; λk(T ) = φxk.

5: Compute:

W xx
k =

n∑

i=1

∂2
xfi(xk, uk)λ

(k)
i ; W xu

k =
n∑

i=1

∂xufi(xk, uk)λ
(k)
i ;

W ux
k = (W xu

k )∗; W uu
k =

n∑

i=1

∂2
ufi(xk, uk)λ

(k)
i .

6: Solve for (x̃k, ũk):

d

dt



x̃k

λ̃k


 =




Ak 0

−
(
Qk +W xx

k

)
−A∗k






x̃k

λ̃k


+




Bk

−(Nk +W xu
k )


 ũk +




0

−B∗kλk − Luk




(Rk +W uu
k )ũk = −

[
N∗k +W ux

k B∗k

]


x̃k

λ̃k


−B∗kλk − Luk

such that x̃k(0) = 0, λ̃k(T ) = φxxk x̃k(T ).

7: Update the control with a step size αk:



x̂k+1

ûk+1


 =



x̂k

ûk


+ αk



x̃k

ũk




8: Set k = k + 1 and go back to step 2. Repeat until convergence.
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Preconditioned

Constrained-Gradient Descent

This section develops a preconditioned constrained-gradient descent (PCGD) method as

an iterative numerical algorithm to solve (6.3). The building blocks of the algorithm are

based on projected gradient descent methods in infinite dimensional optimization prob-

lems (for example [61]) . By utilizing the special structure of optimal control problems

and preconditioning the state-control space, we achieve higher convergence rates than

the well known gradient descent method [37].

Projection based methods have been widely used to numerically solve optimal control

problems with constraints ( [8], [44], [9] among others). These methods treat the dynami-

cal equality constraint as part of the cost functional. That is, the states are thought of as

functions of the controls within the cost functional, leaving only inequality constraints.

Typically, these methods project the cost functional gradient onto the feasible set de-

fined by the inequality constraints. The PCGD method developed in this section, on

the other hand, projects onto the dynamical equality constraint itself, thus treating the

states and controls within the cost functional as two independent variables. This allows
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us to precondition the state-control space to boost the convergence rate of the method.

This is possible because, generally, in optimal control problems, the complexity arises

in the nonlinear dynamics; whereas, the cost functionals are typically simpler (such as

quadratic functionals). We show that the PCGD method yields a particular algorithm

that lies under the family of Quasi-Newton methods explained by [29] (which is gener-

alized in the previous section). In fact, we carry the dynamical constraints throughout

without the calculation of second derivatives of the dynamics (as second order methods

require).

10.1 Geometric Description of the PCGD

We start by providing the geometric description of the PCGD algorithm. For clarity

of exposure, we consider three different cases in increasing generality: (a) quadratic cost

functional with spherical level sets, (b) quadratic cost functional with shifted ellipsoidal

level sets and (c) general positive semi-definite cost functional. For simplicity, the geo-

metric description is given, in the absence of a terminal cost, using a finite-dimensional

geometric demonstration. It should be noted that the geometric demonstration is not

meant to provide a rigorous proof but to build a geometric intuition.

10.1.1 Cost Functional with Spherical Level Sets

First, consider the simplest case where the cost functional has spherical level sets

(centered around the origin). That is, we set the cost functional in (6.3) to J(z) = 1
2
〈z, z〉

(see Figure 10.1-a). Observe that ∂Jzk = zk and ∂2Jzk = In+m, where In+m is the identity

matrix of size n + m. The algorithm proceeds as follows: given the current iterate zk,
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(a) Spherical Level Sets:

J(z) = 1
2 〈z, z〉

(b) Shifted Ellipsoidal Level Sets:

J(z) = 1
2 〈Hz, z〉+ 〈L, z〉

x1

u
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Mk := {z(k)m ;Hk(z
(k)
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Π
Hk
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(c) General Positive Semi-definite Cost Functional

Figure 10.1: The three figures show the dynamical constraints manifold T , the tangent space TzkT at the current

iterate zk and the level sets of three different cost functionals. The main idea is to project the vector anchored at the

current iterate zk and pointing towards the minimum of the unconstrained cost functional onto the tangent space. For

(a), the unconstrained minimum is the origin and the projection is orthogonal since the level sets are spherical. For (b),

the unconstrained minimum is shifted to zm and the projection is oblique to respect the skewness of the ellipsoidal level

sets governed by the positive definite Hessian H. For (c), the unconstrained minimum may degenerate into an affine space

Mk due to the possible non-definiteness of the Hessian. This makes the level sets take an elliptic cylindrical shape (thus

the need for a three dimensional representation). For all scenarios, an additional procedure is carried out, after taking a

step in the tangent space, to force the dynamical constraints to be satisfied. This is achieved by the projection ΠT which

takes the u-component and computes the corresponding state x.
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compute the next iterate zk+1 using some step size αk as





z̃k = −ΠTzkT (∂Jzk)

ẑk+1 = zk + αkz̃k

zk+1 = ΠT (ẑk+1),

(10.1)

where ΠTzkT is an orthogonal projection operator that projects onto the tangent space

TzkT , and ΠT is a nonlinear projection operator that projects onto the dynamical con-

straint set T (see Section 6.1.6 for more details). In words, the gradient ∂Jzk = zk is

first projected onto the tangent space, which really corresponds to the linearized dynam-

ics around zk. The negative of the projected gradient constitutes the update direction

along which we “move” using a step size αk to obtain ẑk+1. Finally, we project ẑk+1

onto the constraint set using ΠT to force the next iterate zk+1 to be a trajectory of the

nonlinear dynamics. Therefore, in this case, the PCGD is really the projected-gradient

descent method followed by a projection ΠT . Figure 10.1-a provides a geometric picture

of (10.1). The spherical nature of the level sets gives rapid convergence properties of the

projected-gradient descent algorithm. In fact, if the dynamical system were linear (that

is, T in Figure 10.1-a is a straight line), it is easy to see geometrically that convergence

is achieved in only one step.

10.1.2 Cost Functional with Shifted Ellipsoidal Level Sets

We generalize the previous method to a linear-quadratic cost functional J(z) =

1
2
〈Hz, z〉+ 〈L, z〉 where H is positive definite. Observe that ∂Jzk = Hzk +L, ∂2Jzk = H,

and zm := −H−1L is the unconstrained minimum of the cost functional J . The level

sets of J are now elliptical and are centered around the unconstrained minimum zm (see

Figure 10.1-b). Applying a projected-gradient descent method here is likely to result in

slow convergence due to the skewness of the level sets. The main advantage of treating
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the cost functional and dynamical constraints separately is that it allows to precondition

the original state-control space (x, u) based on the cost functional only. More precisely,

carrying out an affine transformation on the z-space defined as

z′ = T (z) := H
1
2 (z − zm) ⇐⇒ z = T−1(z′) = zm +H−

1
2 z′, (10.2)

yields a new cost functional J ′(z′) = J(z) that has spherical level sets, because

J ′(z′) = J(z) =
1

2
〈Hz, z〉+ 〈L, z〉

=
1

2

〈
Hzm +H

1
2 z′, zm +H−

1
2 z′
〉

+
〈
L, zm +H−

1
2 z′
〉

=
1

2

〈
−L+H

1
2 z′,−H−1L+H−

1
2 z′
〉

+
〈
L,−H−1L+H−

1
2 z′
〉

=
1

2

〈
H

1
2 z′, H−

1
2 z′
〉
− 1

2

〈
H

1
2 z′, H−1L

〉
− 1

2

〈
L,H−

1
2 z′
〉

+
1

2

〈
L,H−1L

〉

+
〈
L,H−

1
2 z′
〉
−
〈
L,H−1L

〉

J ′(z′) =
1

2
〈z′, z′〉+

1

2
〈L, zm〉 , (10.3)

where the last equality follows by exploiting the fact that H is symmetric positive definite

and thus H,H−1, H−
1
2 , and H

1
2 are all symmetric. Recall that zm := −H−1L, and thus

the second term in (10.3) is a constant. Since the Hessian of J ′ is the identity matrix, the

level sets in the new state-control space z′ are spherical. Therefore, applying a projected-

gradient descent in the transformed space yields a faster convergence rate. The PCGD

method in this case can thus be written as follows: given the current iterate zk, we obtain

the next iterate zk+1 using some step size αk as




z′k = T (zk)

z̃′k = −ΠTz′
k
T ′(∂J

′
z′k

)

ẑ′k+1 = z′k + αkz̃
′
k

ẑk+1 = T−1(ẑ′k+1)

zk+1 = ΠT (ẑk+1),

(10.4)
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where ∂J ′z′k
= z′k, and T ′ is the dynamical constraint set in the transformed z′-space.

The key idea here is that the projection of the gradient onto the tangent space is carried

out in the transformed z′-space where the level sets are spherical rather than elliptical.

The rest of this section shows that the orthogonal projection in (10.4) is equivalent to

an oblique projection (see Section 6.1.6 for details) in the original z-space. Using the

definition of the orthogonal projection, z̃′k in (10.4) can be written as

z̃′k = ΠTz′
k
T ′(−z′k) = argmin

z̃′

1

2
〈−z′k − z̃′,−z′k − z̃′〉 =

s.t. z̃′ ∈ Tz′kT
′

argmin
z̃′

1

2
〈z′k + z̃′, z′k + z̃′〉 ,

s.t. ∂C ′z′k(z̃
′) = 0

(10.5)

where C ′(z′) := C(z) is the dynamical constraint operator in the transformed z′-space.

Note that if z̃′ is in the tangent space, then it has to satisfy the linearized dynamics,

that is ∂C ′z′k(z̃
′) = 0. Using the chain rule, we have ∂Czk(z̃) = ∂C ′z′k(H

1
2 z̃). By letting

z̃′ := H
1
2 z̃, we obtain ∂Czk(z̃) = ∂C ′z′k(z̃

′). Then, (10.5) can be rewritten in the original

z-space as

z̃′k = argmin
H

1
2 z̃

1

2

〈
H

1
2 (zk − zm) +H

1
2 z̃, H

1
2 (zk − zm) +H

1
2 z̃
〉

s.t. ∂Czk(z̃) = 0

= H
1
2 argmin

z̃

1

2

〈
H
(

(zk − zm) + z̃
)
, (zk − zm) + z̃

〉

s.t. ∂Czk(z̃) = 0

z̃′k = −H 1
2 ΠH

TzkT
(zk − zm). (10.6)

Finally, (10.4) can be rewritten in the original z-space as




z̃k = −ΠH
TzkT

(zk − zm) = −ΠH
TzkT

(H−1∂Jzk)

ẑk+1 = zk + αkz̃k

zk+1 = ΠT (ẑk+1) .

(10.7)

139



Preconditioned Constrained-Gradient Descent Chapter 10

There are two key differences between (10.1) and (10.7). First, the projection is now

oblique (rather than orthogonal) with a direction defined by the Hessian H. Second,

H−1∂Jzk is now projected rather than the gradient ∂Jzk . In fact, the gradient is first

preconditioned before performing the projection. More precisely, the preconditioning

maneuvers the gradient at zk to point towards the minimum zm of the unconstrained

cost functional J as illustrated geometrically in Figure 10.1-b (since H−1∂Jzk = zk−zm).

Indeed, the preconditioning of the gradient together with the oblique projection have an

effect of shifting the level sets in Figure 10.1-b to the origin and “de-skewing” them to

become spherical as in Figure 10.1-a, and thus boosting the convergence of the PCGD

method as compared to the traditional gradient descent.

10.1.3 General Positive Semi-Definite Cost Functional

Now we consider the general case for any cost functional J described in Section 6.3.

First, consider the case where there is no terminal cost, that is φ = 0. We assume

that the Hessian at zk, Hk := ∂2Jk, is generally positive semi-definite. The quadratic

approximation of the unconstrained cost functional J around the current iterate zk is

denoted by Jk and can be written as

Jk(z) =
1

2
〈Hk(z − zk), z − zk〉+ 〈Lk, z − zk〉+ J(zk), (10.8)

where Lk := ∂Jzk . In general, as opposed to the previous two scenarios, Jk doesn’t have

a unique minimum because, possibly, Hk might have a nontrivial nullspace. In fact, the

unconstrained minimum of Jk at the kth iteration, denoted by z
(k)
m , satisfies

Hk(z
(k)
m − zk) = −Lk. (10.9)

This is obtained by setting the gradient of Jk to zero. Clearly, when Hk is positive semi-

definite, the solution to (10.9) degenerates to an affine subspace denoted byMk, that is
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Mk := {z(k)
m ;Hk(z

(k)
m − zk) = −Lk}. (10.10)

This is illustrated in Figure 10.1-c. The degeneration of the unconstrained minimum into

an affine subspace causes the level sets to become elliptic-cylindrical (see Figure 10.1-c).

The PCGD method in this case is similar to (10.7)




z̃k = −ΠHk
TzkT

(zk − z(k)
m )

ẑk+1 = zk + αkz̃k

zk+1 = ΠT (ẑk+1) .

(10.11)

The two differences (generalizations) are that the oblique projection direction, governed

by Hk, changes every iteration, and the unconstrained minimum z
(k)
m ∈Mk also changes

every iteration and is not unique. However, we show next that the subsequent iterate

zk+1 does not depend on a particular choice of z
(k)
m ∈ Mk. Using the definition of the

oblique projection (refer to Section 6.1.6), we have

z̃k = argmin
z̃

1

2

〈
Hk(z

(k)
m − zk − z̃), z(k)

m − zk − z̃
〉

s.t. ∂Czk z̃ = 0.

(10.12)

This is a linear-quadratic optimization problem whose necessary conditions of optimality

can be derived by constructing the Lagrangian at the kth iteration as

L(k)(z̃, λ̃) :=
1

2

〈
Hk(z

(k)
m − zk − z̃), z(k)

m − zk − z̃
〉

+
〈
λ̃, ∂Czk z̃

〉
.

Thus the necessary conditions of optimality are simply obtained by setting the gradient

of L(k) to zero. We have

∂L(k)

(z̃k,λ̃k)
(w, ξ) =

〈
Hk(z̃k + zk − z(k)

m ), w
〉

+
〈
∂C∗zk λ̃k, w

〉
+ 〈ξ, ∂Czk z̃k〉

=

〈

Hk(z̃k + zk − z(k)

m ) + ∂C∗zk λ̃k
∂Czk z̃


 ,



w

ξ



〉

=:

〈
∂L(k)

(z̃k,λ̃k)
,



w

ξ



〉
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Setting the gradient to zero yields the necessary conditions of optimality



Hk ∂C∗zk
∂Czk 0






z̃k

λ̃k


 =



Hk(z

(k)
m − zk)

0


 . (10.13)

However, observe that the right hand side of (10.13) doesn’t depend on z
(k)
m since for

any z
(k)
m ∈ Mk, we have Hk(z

(k)
m − zk) = −Lk. This shows that the next iterate doesn’t

depend on z
(k)
m ∈Mk.

Finally, the same analysis can be carried out to include the terminal costs to obtain



∂2Jzk ∂C∗zk
∂Czk 0






z̃k

λ̃k


 =



−∂Jzk

0


 . (10.14)

Solving (10.14) gives the update direction z̃k. Note that (10.14) is written in operator

form. To obtain the underlying differential equations, we substitute the expressions of

the Hessian and gradient of J from (6.16) and (6.15), respectively, to obtain




Qk + S∗Tφxxk ST Nk DT + A∗k

N∗k Rk B∗k

−D0 + Ak Bk 0







x̃k

ũk

λ̃k




= −




Lxk + S∗Tφxk
Luk

0



,

where ∂Czk =

[
−D0 + Ak Bk

]
. This can be rearranged and rewritten as

D0x̃k = Akx̃k +Bkũk

DT λ̃k + S∗T (φxxk x̃k(T ) + φxk) = −Qkx̃k − A∗kλ̃k −Nkũk − Lxk

Rkũk = −N∗k x̃k −B∗kλ̃k − Luk .

By invoking Appendix 10.E, we can get rid of S∗T and rewrite the result as a linear

differential algebraic equation (DAE) where the differential equations take the form a
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two point boundary value problem. We have

d

dt



x̃k

λ̃k


 =



Ak 0

−Qk −A∗k






x̃k

λ̃k


+



Bk

−Nk


 ũk +




0

−Lxk




Rkũk = −
[
N∗k B∗k

]


x̃k

λ̃k


− Luk

such that x̃k(0) = 0 and λ̃k(T ) = φxk + φxxk x̃k(T ).

(10.15)

Finally, the algorithm for the PCGD method is summarized in Algorithm 5.

10.2 Connection with the General Projection Ap-

proach

It turns out that the PCGD method is a particular realization of the family of quasi-

Newton methods developed by Hauser ( [29], [31], [56]) that is generalized in the previous

section. The Projection Operator based Newton Method for Trajectory Optimization

(PRONTO) employs a stabilizing projection operator to project the whole state-control

space onto the trajectory manifold. This transforms the constrained optimization prob-

lem into an unconstrained one to be solved using a Newton method. Subsequently, a

family of quasi-Newton methods can be devised (example [29]) in order to obtain descent

directions when the Newton method fails to do so.

The comparison with the projection approach can be done by examining Algorithms 4

and 5. Observe that by setting g = 0 (which makes ΠT = P), and neglecting the

matrix Wk in Algorithm 4 yields Algorithm 5. In fact, neglecting Wk is exactly what

makes PCGD a quasi-newton method under the (Newton) projection approach. This

follows by examining (9.11) which shows that neglecting Wk means that we are simply

approximating the Hessian, and thus constructing a quasi-newton method. Although
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Algorithm 5 PCGD

1: Start with an initial guess (x̂1, û1) and set k = 1.

2: Compute the projection (xk, uk) := ΠT (x̂k, ûk):





xk = f(xk, uk)

uk = ûk,

3: Given (xk, uk), compute :

Ak = ∂xf(xk,uk), Bk = ∂uf(xk,uk),

Lxk = ∂xL
∗
(xk,uk), Luk = ∂uL

∗
(xk,uk),

Qk = ∂2
xL(xk,uk), Rk = ∂2

uL(xk,uk),

Nk = ∂xuL(xk,uk),

φxk = ∂xφ
∗
xk(T ), φxxk = ∂2

xφxk(T ).

4: Solve the following linear two point boundary value problem (with an algebraic con-

straint) to obtain (x̃k, ũk):

d

dt



x̃k

λ̃k


 =



Ak 0

−Qk −A∗k






x̃k

λ̃k


+



Bk

−Nk


 ũk +




0

−Lxk




Rkũk = −
[
N∗k B∗k

]


x̃k

λ̃k


− Luk

such that x̃k(0) = 0 and λ̃k(T ) = φxk + φxxk x̃k(T ).

5: Update the state, control and Lagrange multiplier using a step size αk:



xk+1

uk+1


 =



xk

uk


+ αk



x̃k

ũk


 .

6: Set k = k + 1 and go back to step 2. Repeat until convergence.
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this approximation may seem at first somehow heuristic, the derivations carried out to

develop the PCGD method gives a geometrical meaning to this approximation.

In fact, the PCGD method begins by keeping the control and state variables separate

as a constraint in function space that defines a manifold. A gradient descent algorithm is

then used but with a “constrained-gradient”, that is, a gradient that is projected onto the

tangent space of the constraint manifold. This is geometrically compelling, and has the

advantage of making the required preconditioning obvious since the objective is not mixed

up with the dynamical mapping as in PRONTO. In our derivation, a second projection

onto the actual manifold (to yield feasible trajectories) is done after the descent direction

is projected onto the tangent space. While the PCGD method can be regarded as a

particular realization of the family of quasi-Newton methods of PRONTO, the derivation

is geometrically more transparent and clarifies why the preconditioning (which is critical)

produces faster convergence. Finally, we note that the PCGD method can be easily

generalized to g 6= 0 to treat unstable or sensitive systems. This boils down to setting

Wk = 0 only in Algorithm 4.

10.3 Illustrative Numerical Examples

In this section, we present two numerical examples of nonlinear optimal control prob-

lems to compare the gradient descent method (Algorithm 2) to the PCGD method (Al-

gorithm 5). Note that the Armijo rule [2] is employed to calculate the step size αk in all

the numerical examples.
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10.3.1 A Continuous Stirred-Tank Chemical Reactor

The state equations for a continuous stirred-tank chemical reactor are given below [38,

Example 6.2-2]

d

dt
x1 = −2(x1 + 0.25) + (x2 + 0.5)e

25x1
x1+2 − (x1 + 0.25)u,

d

dt
x2 = 0.5− x2 − (x2 + 0.5)e

25x1
x1+2 ,

x1(0) = 0.05, x2(0) = 0.

(10.16)

This dynamical system represents the first order, irreversible exothermic reaction con-

trolled by the flow of a coolant, u, through a coil inserted in the reactor. The deviation

from the steady state temperature and concentration are expressed by x1 and x2, respec-

tively. It is required to maintain the temperature and concentration close to their steady

state values without expending large amounts of control effort. The cost functional is

thus given by

J(x, u) =
1

2

∫ 0.78

0

[
x(t)TQx(t) +Ru2(t)

]
dt, (10.17)

where Q = 2I, R = 0.2, x =

[
x1 x2

]∗
and I is a 2× 2 identity matrix. The results are

shown in Figure 10.2. The gradient descent method takes 39 iterations to converge with

considerable variations of the step size in each iteration . Whereas, the PCGD method

converges in only 4 iterations with a consistent choice of the step size at each iteration.

10.3.2 A Bilinear Quantum System

A quantum system acted upon an external field is governed by the famous Schrödinger

equation with a forcing term

i~
d

dt
ψ(t) = [H0 + V u(t)]ψ(t); ψ(0) = ψ0 (10.18)

where ψ is the complex wave function, i =
√
−1 and ~ is the Planck constant divided by

2π, but is considered to be one here due to normalization. The time-independent system
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Figure 10.2: Optimal Control of a Continuous Stirred-Tank Chemical Reactor. (a) and (b) show the

optimal control and states as calculated by the two methods with an initial guess of u1(t) = 1. (c)

shows the step sizes taken at each iteration for both methods. (d) compares the convergence rates. The

gradient descent method takes 39 iterations to converge with considerable variations of the step size in

each iteration . Whereas, the PCGD method converges in only 4 iterations with a consistent choice of

the step size at each iteration.
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Hamiltonian H0 describes the internal dynamics of the system. V is referred to as the

control Hamiltonian that describes the coupling of the system to the external field u(t).

In this section, we consider energy-optimal population transfers similar to that presented

in [28]. That is, we aim at finding a control u that transfers the system to a desired final

population and minimizes

J(x, u) =
1

2

∫ T

0

[
|ψ(t)∗Q̄ψ(t)|+Ru2(t)

]
dt, (10.19)

where |.| is the modulus of complex numbers and Q̄ ≥ 0 is designed depending on the

desired final population. By defining x =

[
real(ψ) imag(ψ)

]∗
, we transform the complex

optimal control problem into a real optimal control problem of the following form

minimize
z

J(z) =
1

2
〈x,Qx〉+

1

2
〈u,Ru〉

subject to
d

dt
x(t) = [A+Bu(t)]x(t); x(0) = x0

A =




0 H0

−H0 0


 ; B =




0 V

−V 0


 ; Q =



Q̄ 0

0 Q̄


 .

In this example, we consider a three-state quantum system where it is required to carry

out a population transfer : ψ0 =

[
1 0 0

]∗
7→ ψd =

[
0 0 1

]∗
in T = 20π. Hence Q̄ is

designed as

Q̄ =




1 0 0

0 1 0

0 0 0



,

and R = 1. The results are shown in Figure 10.3. Clearly, the gradient descent method

fails to achieve the optimum in 100 iterations, and it has to choose very small step sizes

to proceed. On the other hand, the PCGD shows a rapid convergence near the solution.
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Figure 10.3: Optimal Control of a Three-State Quantum System. (a) and (b) show the optimal control

and states as calculated by the PPGD method with a random initial guess of u1(t) = 1. (c) shows the

step sizes taken at each iteration of both methods. (d) shows the convergence rates on a log scale. The

gradient descent method fails to converge in 100 iterations, and it has to choose very small step size αk

to proceed. Whereas, the PCGD method shows rapid convergence near the solution.
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Appendix

10.A Directional Derivative & Adjoint

Let x̃ ∈ X0 and x ∈ X. The directional (Gâteaux) derivative of Dx in the direction

of x̃ is calculated as

[∂xDx] (x̃) = lim
ε→0

D(x+ εx̃)−Dx
ε

= lim
ε→0

ẋ+ ε ˙̃x− ẋ
ε

= ˙̃x

=: D0x̃,

where the last equality holds because x̃ ∈ X0. For short, we simply write ∂xD = D0.

Furthermore, it can be shown that D∗0 = −DT . Let x ∈ X0 and y ∈ L2
n[0, T ], then

〈D0x, y〉 =

∫ T

0

ẋ∗(t)y(t)dt

= x∗(T )y(T )− x∗(0)y(0)−
∫ T

0

x∗(t)ẏ(t)dt

= −〈x,DTy〉 ,

where the second equality follows by applying integration by parts, and the third equality

follows by recalling that x(0) = 0 (since x ∈ X0) and by requiring that y ∈ XT which

guarantees that y(T ) = 0.

150



Preconditioned Constrained-Gradient Descent Chapter 10

10.B Rigged Hilbert Space and Bilinear Forms

Let ST : Ψ ⊂ L2
n[0, T ] → Rn be the evaluation operator over the subspace Ψ. That

is, the action of ST on some y ∈ Ψ is defined as

STy := y(T ).

Observe that ST is an unbounded operator on L2
n[0, T ]; however, it is bounded over the

subspace Ψ := Cn[0, T ] (space of bounded continuous functions). The goal here is to

give a rigorous explanation that justifies the formal mathematical statement that for any

y ∈ Ψ and v ∈ Rn, we have

〈STy, v〉 = 〈y,S∗Tv〉 (10.B.1)

where the first inner product is understood in Rn, that is 〈STy, v〉 = y∗(T )v, and

S∗T (t) := δ(t− T ). First, notice that the second “inner product” is not well posed, be-

cause S∗Tv /∈ L2
n[0, T ]. However, with the suitable framework, this “inner product” is

given a meaning and the technical issue here boils down to a slight abuse of notation.

Let Ψ′ ⊂ Ψ∗ be a subset of the dual space Ψ∗ of Ψ, containing all linear continuous

functionals that map Ψ→ R. Since Ψ is dense in L2
n[0, T ], then the triple (Ψ,L2

n[0, T ],Ψ′)

forms a Rigged Hilbert Space where Ψ ⊂ L2
n[0, T ] ⊂ Ψ′. For any v ∈ Rn, define the family

of bounded linear functionals S∗Tv ∈ Ψ′ that map any y ∈ Ψ as

S∗Tv(y) := y∗(T )v.

Furthermore, the action of the functional S∗Tv on y ∈ Ψ can be represented using the

canonical bilinear form [1] over Ψ×Ψ′ as

〈y,S∗Tv〉(Ψ,Ψ′) := S∗Tv(y).

Hence, for any v ∈ Rn and y ∈ Ψ, this bilinear form (unlike the inner product) is well
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defined. Then, we have

〈y,S∗Tv〉(Ψ,Ψ′) := S∗Tv(y) := y∗(T )v = 〈STy, v〉.

Therefore, with a slight abuse of notation, we drop the subscript “(Ψ,Ψ′)” of the bilinear

form to yield (10.B.1).

This extends the inner products in L2
n[0, T ] to the more general notion of bilinear

forms on (Ψ × Ψ′) and motivates viewing S∗T : Rn → Ψ∗ as the adjoint operator of ST .

It also justifies the common abuse of notation

y∗(T )v =

(
“

∫ T

0

δ(t− T )y∗(t)dt”

)
v,

where the right hand side really means the bilinear form 〈y,S∗Tv〉(Ψ,Ψ′). Finally we note

that we adopt this abuse of notation throughout the paper, for simplicity, since X0 ⊂ Ψ.

10.C Directional Derivatives & Adjoint of the Sys-

tem Operator

Let H be the system operator defined in (8.1). To calculate the first and second

directional derivatives of H, we carry out a perturbation analysis. More precisely, we

perturb uk by εũ to obtain H(uk + εũ). A Taylor expansion in ε yields

H(uk + εũ) = H(uk) + ε∂Huk(ũ) +
1

2
ε2∂2Huk(ũ) +O(ε3). (10.C.1)

Define

xε := H(uk + εũ) (10.C.2)

xk := H(uk)

x̃k := ∂Huk(ũ)
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x̄k := ∂2Huk(ũ),

so that (10.C.1) can be rewritten as

xε = xk + εx̃k +
1

2
ε2x̄k +O(ε3). (10.C.3)

Using the definition (8.1) of the system operator, (10.C.2) can be rewritten as

ẋε = f(xε, uk + εũ); x(0) = x0, (10.C.4)

Substituting for the expression of xε given by (10.C.3) in (10.C.4) (while truncating

higher orders of ε) yields

ẋk + ε ˙̃xk +
1

2
ε2 ˙̄xk = f

(
xk + ε

(
x̃k +

1

2
εx̄k

)
, uk + εũ

)
; xk(0) + εx̃k(0) +

1

2
ε2x̄k(0) = x0.

Then xk(0) = x0 and x̃k(0) = x̄k(0) = 0. Using the appropriate time derivative operators

to respect the domains (see Section 6.1 for details) and expanding f around zk := (xk, uk)

up to second order in ε, we obtain

Dxk + εD0x̃k +
1

2
ε2D0x̄k = f(xk, uk) + ε∂fzk



x̃k + 1

2
εx̄k

ũ


+

1

2
ε2∂2fzk(x̃k, ũ)

Dxk + εD0x̃k +
1

2
ε2D0x̄k = f(xk, uk) + ε

[
Ak Bk

]


x̃k

ũ


+

1

2
ε2
(
Akx̄k + ∂2fzk(x̃k, ũ)

)

Finally, to obtain the expressions of the directional derivatives of H, we equate the same

orders in ε. In fact, equating the zeroth orders in ε simply yields xk = H(uk), and

equating the first orders in ε yields D0x̃k = Akx̃k +Bkũ, and thus

x̃k = ∂Huk(ũ)⇐⇒ x̃k = (D0 − Ak)−1Bkũ.

Furthermore, equating the second orders in ε yields D0x̄k = Akx̄k + ∂2fzk(x̃k, ũ). By

exploiting the notation for the second derivative in (6.7), we obtain

x̄k = ∂2Huk(ũ)⇐⇒ x̄k = (D0 − Ak)−1 z̃∗kFkz̃k,
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where z̃k is defined as

z̃k :=



x̃k

ũ


 =



∂Huk(ũ)

ũ


 .

Finally, since ∂Huk = (D0 − Ak)−1Bk, then by using (6.4), we obtain

∂H∗uk = −B∗k (DT + A∗k)
−1.

10.D Directional Derivatives & Adjoint of the Pro-

jection Operator

Let P be the projection operator defined in (9.1). To calculate the first and second

directional derivatives of P , we carry out a perturbation analysis. More precisely, we

perturb ẑk := (x̂k, ûk) by ε
¯
z := ε(

¯
x,

¯
u) to obtain P(ẑk + ε

¯
z). A Taylor expansion in ε

yields

P(ẑk + ε
¯
z) = P(ẑk) + ε∂Pẑk(¯

z) +
1

2
ε2∂2Pẑk(¯

z) +O(ε3). (10.D.1)

Define

zε := (xε, uε) := P(ẑk + ε
¯
z) (10.D.2)

zk := (xk, uk) := P(ẑk)

z̃k := (x̃k, ũk) := ∂Pẑk(¯z)

z̄k := (x̄k, ūk) := ∂2Pẑk(¯z),

so that (10.D.1) can be rewritten as

zε = zk + εz̃k +
1

2
ε2z̄k +O(ε3). (10.D.3)

Using the definition (9.1) of the projection operator, (10.D.2) can be rewritten as



xε = H(uε)

uε = ûk + ε
¯
u+ g(x̂k + ε

¯
x− xε).

(10.D.4)
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Substituting the expressions of (xε, uε), given by (10.D.3), in (10.D.4) (while truncating

higher orders of ε) yields





xk + εx̃k +
1

2
ε2x̄k = H

(
uk + ε

(
ũk +

1

2
εūk

))

uk + εũk +
1

2
ε2ūk = ûk + ε

¯
u+ g

(
(x̂k − xk) + ε

(

¯
x− x̃k −

1

2
εx̄k

))
.

Expanding H around uk and g around x̂k − xk, up to second order in ε, yields





xk + εx̃k +
1

2
ε2x̄k = H(uk) + ε∂Huk

(
ũk +

1

2
εūk

)
+

1

2
ε2∂2Huk

(
ũk +

1

2
εūk

)

uk + εũk +
1

2
ε2ūk = ûk + ε

¯
u+ g(x̂k − xk) + ε∂gx̂k−xk

(

¯
x− x̃k −

1

2
εx̄k

)

+
1

2
ε2∂2gx̂k−xk

(

¯
x− x̃k −

1

2
εx̄k

)
,

where the directional derivatives of the system operator H are given in Table 8.1. Note

that ∂gx̂k−xk and ∂2gx̂k−xk are the Jacobian and second derivative of g evaluated at x̂k−xk,

respectively. By exploiting the linearity of ∂Huk and truncating ε3, we obtain





xk + εx̃k +
1

2
ε2x̄k = H(uk) + ε∂Huk(ũk) +

1

2
ε2
(
∂Huk(ūk) + ∂2Huk(ũk)

)

uk + εũk +
1

2
ε2ūk = ûk + g(x̂k − xk) + ε

(
¯
u+ ∂gx̂k−xk(¯

x− x̃k)
)

+
1

2
ε2
(
∂2gx̂k−xk(¯

x− x̃k)− ∂gx̂k−xk(x̄k)
)
.

Finally, to obtain the expressions of the directional derivatives of P , we equate the same

orders in ε. In fact, equating the zeroth orders in ε simply yields (xk, uk) = P(x̂k, ûk) ,

and equating the first orders in ε yields

(x̃k, ũk) = ∂Pẑk(¯x, ¯u)⇐⇒




x̃k = ∂Huk(ũk)

ũk =
¯
u+Kk(

¯
x− x̃k),

(10.D.5)

where Kk := ∂gx̂k−xk . Equation (10.D.5) describes the action of ∂Pẑk in terms of the

system operator H. Using the expression of ∂Huk in Table 8.1, we obtain the differential

equation form shown in Table 9.1.
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To calculate the second derivative, equate the second orders in ε to obtain

(x̄k, ūk) = ∂2Pẑk(¯
x,

¯
u)⇐⇒




x̄k = ∂Huk(ūk) + ∂2Huk(ũk)

ūk = (
¯
x− x̃k)∗Gk(

¯
x− x̃k)−Kkx̄k,

(10.D.6)

where we exploit the notation developed in the section on Section 6.1.5 for the second

derivative of a vector-valued function. Again, by substituting the expressions of ∂Huk

and ∂2Huk from Table 8.1, we obtain the differential equation form shown in Table 9.1.

Now we calculate the adjoint of ∂Pẑk , denoted by ∂P∗ẑk . We first write ∂Pẑk as an

operator-valued matrix. From (10.D.5), we have

x̃k = ∂Huk

(
¯
u+Kk(

¯
x− x̃k)

)
= ∂Huk

[
Kk I

]

¯
x

¯
u


− ∂HukKkx̃k

x̃k = (I + ∂HukKk)
−1∂Huk

[
Kk I

]

¯
x

¯
u


 ,

where I is the identity operator. Then the operation (x̃k, ũk) = ∂Pẑk(¯x, ¯u) in (10.D.5)

can be rewritten as


x̃k

ũk


 := ∂Pẑk


¯
x

¯
u


 =




(I + ∂HukKk)
−1∂Huk

I −Kk(I + ∂HukKk)
−1∂Huk



[
Kk I

]

¯
x

¯
u


 .

Then the adjoint is

∂P∗ẑk =



K∗k

I



[
∂H∗uk

(
I +K∗k∂H∗uk

)−1 I − ∂H∗uk(I +K∗k∂H∗uk)−1K∗k

]
,

where ∂H∗uk is given in Table 8.1. To compute the action of the adjoint in terms of ∂H∗uk
without the inverse operations, we proceed as follows. Let (χ̃k, µ̃k) = ∂P∗ẑk(χ, µ), then




χ̃k = K∗k µ̃k

µ̃k = ∂H∗uk(I +K∗k∂H∗uk)
−1(χ−K∗kµ) + µ =: ∂H∗ukαk + µ,

(10.D.7)
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where the intermediate variable αk is defined as

αk := (I +K∗k∂H∗uk)
−1(χ−K∗kµ). (10.D.8)

But χ̃k in (10.D.7) can be rewritten in terms of αk as

χ̃k = K∗k µ̃k = K∗k∂H∗ukαk +K∗kµ, (10.D.9)

and αk in (10.D.8) can be rewritten as

χ− αk = K∗k∂H∗ukαk +K∗kµ. (10.D.10)

Comparing (10.D.9) and (10.D.10) yields χ̃k = χ−αk or αk = χ−χ̃k. Finally, substituting

for αk in (10.D.7) yields

(χ̃k, µ̃k) := ∂P∗ẑk(χ, µ)⇐⇒




χ̃k = K∗k µ̃k

µ̃k = µ+ ∂H∗uk(χ− χ̃k).
(10.D.11)

By substituting the expression of ∂H∗uk from Table 8.1, we obtain the differential equation

form shown in Table 9.1.

10.E Replacing S∗T with a Boundary Condition

In this appendix, we show that when S∗T appears in a differential equation, we can

remove it by a suitable modification of the boundary condition.

Consider the following differential equation

λ̇(t) + f(t) + S∗Tv = 0; λ(T ) = 0, (10.E.1)

where f is some bounded function of time and v is a constant vector. Integrating both

sides of the differential equation from T − ε to T + ε yields

∫ T+ε

T−ε
λ̇(t)dt+

∫ T+ε

T−ε
f(t)dt+

∫ T+ε

T−ε
δ(t− T )vdt = 0.

157



Preconditioned Constrained-Gradient Descent Chapter 10

When we take the limit as ε → 0, the second term goes to zero because f is finite to

obtain

λ(T + ε)− λ(T − ε) + v = 0,

where we exploit the sifting property of the Dirac delta function. Given the original

boundary condition λ(T ) = 0, that is λ(T + ε) = 0, we obtain

λ(T − ε) = λ(T + ε) + v = v.

Therefore, the new boundary condition becomes λ(T ) = v, and hence (10.E.1) can be

replaced by the following differential equation

λ̇(t) + f(t) = 0; λ(T ) = v.
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Optimal Estimation & Tomographic

Sensing in Distributed Environments

159



Chapter 11

Introduction

Model-based dynamic estimation is a widely used methodology for incorporating partial

measurements of a process with some knowledge of its underlying dynamics. Most no-

tably is the Kalman filter in the Linear Quadratic case, and its many nonlinear versions.

In this paper, we are concerned with dynamical processes that are described by Partial

Differential Equations (PDEs) in two or three spatial dimensions, particularly ones that

describe fluid flow and advection of temperature and concentration fields. Incorporating

measurements into such basic physics models is referred to as “data assimilation” in the

Atmospheric Sciences literature [52].

The setting that motivates our current work is on a smaller scale such as local outdoor

environments, or time-critical situations such as forest fires or hazardous plumes. In such

situations mobile sensors collect limited measurements that need to be “assimilated” into

fluid flow models. Since temperature, concentration and flow fields follow well-known

physical laws, it is reasonable to expect that incorporating these PDEs can significantly

enhance the reconstruction fidelity and spatial resolution of limited measurements.

While the foregoing is a standard dynamic estimation and data assimilation problem,

our concern in the present work is how should mobile sensors move so as to optimize
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estimation errors in the dynamic setting? This is especially important if sensors’ ma-

neuverability and time is limited, and this optimization of the sensors’ paths become

critical. This is essentially a mobile version of the classic “sensor placement” prob-

lem [14,15,21,32,40].

The approach we adopt is a sort of double optimization (a min-min problem), where

the sensors’ paths are chosen to minimize metrics related to the estimator of minimal er-

ror. For example, if the underlying dynamics are linear and the estimation error criterion

is quadratic, then the optimal estimation error covariance (over a finite-time horizon) is

given by the differential Riccati equation of the Kalman filter. The sensor’s paths enter

as a time-varying signal in the “C matrix” of the system’s output equation, which enters

quadratically in the Riccati equation. One can now think of a purely deterministic op-

timal control problem where the dynamics are given by the matrix (or operator)-valued

Riccati differential equation, and the time-varying sensors’ paths are the “control inputs”

into this equation. The sensor paths can now be chosen to minimize criteria such as com-

binations of the trace of the error covariance and costs of sensor motion. In the nonlinear

dynamics case, the error covariance is not given by a Riccati equation, but the min-min

optimization problem formulation is still valid. The optimal path is chosen to minimize

an error criterion (error variance, relative entropy or others) of the best estimator. This

is similar in spirit to the approach adopted in [12,32].

First we formulate the optimal distributed estimation problem where the sensors’

locations are chosen a-priori. Then, we address the problems of sensor placement (for

static sensors) and path planning (for mobile sensors) in the subsequent chapters.

The setting is the standard stochastic estimation with process disturbances and mea-

surement noise. In addition, we do not assume that boundary conditions are known

or fixed, but rather stochastic with some prior knowledge of the relative time scale of

their variations (e.g. the daily cycle of the sun’s radiation heating). We model two
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different measurement operators: (1) point-wise measurements and (2) line integral mea-

surements. The latter being relevant to acoustic tomography sensing (which will be

addressed in details in the subsequent chapters).
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Chapter 12

Acoustic Tomography & Estimation

of Static Temperature Fields

In this chapter, we first give a brief description on the basic concepts of acoustic to-

mography and explain how it can be exploited in estimating temperature fields. Then a

couple of case studies are considered to describe how we estimate unknown temperature

fields in 2 dimensions using tomographic sensing techniques.

12.1 Acoustic Tomography for Static Temperature

Fields

Acoustic Tomography [35], [36], [63] is a technique for reconstructing scalar fields (e.g.

temperature) or vector fields (e.g. wind velocity) from the time of flight of ultrasonic

sound signals between transmitters and receivers. The transceivers can be deployed

outside the region to be mapped which might be advantageous in some scenarios (such

as hazardous plumes, forest fires, etc.). In this section, we show how acoustic tomographic

can be exploited to estimate unknown temperature fields.
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In dry air, the equation that relates the temperature to the speed of sound is given

by

c =
√
γψ, (12.1)

where γ = γ0R
M

, c is the speed of sound [m/s] at a temperature ψ [◦K]. γ0 = 1.4 is the

adiabatic index, R = 8.31451 is the molar gas constant and M = 0.0289645 is the mean

molar mass of dry air. The velocity of an acoustic ray is given by

~vray = c~n+ ~v, (12.2)

where ~n is the unit wavefront normal and ~v is the wind speed. Denote by τij to be the

time of flight between transceivers i and j. Denote by ~l to be the unit direction vector of

the line joining the two transceivers. Also, let Γij be the straight path from transceiver

i to j. Then, the time of flight τij is

τij :=

∫

Γij

dt =

∫

Γij

1

~vray.~l
dl. (12.3)

Hence the time of flight measurements are going to be some known nonlinear function of

the temperature and velocity fields

τij = G(ψ,~v). (12.4)

The goal of acoustic tomography is to recover the temperature and velocity fields from

available time of flight measurements. Naturally, some questions can be asked here: (a) is

this inverse problem solvable? (b) if yes, how many transceivers are required for accurate

recovery? (c) where to deploy the limited number of available transceivers? (d) how to

deal with dynamical fields that are time varying? The Fourier Slice theorem [48] proves

that using the Radon transform (which computes line integrals over the whole domain),

one can recover only the temperature field. However, other set of measurements are

needed in addition to (12.4) for a full reconstruction of the velocity vector field [10].
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For example, [35] utilizes the angle of departure/arrival of the acoustic waves using the

bent ray model. In this dissertation, we study the recovery of temperature fields in a

stationary medium (~v = 0) with a straight ray model for acoustic signals (~n = ~l).

12.2 Posing the Inverse Problem

Let ψ(x, y) denote the temperature at location (x, y). Then the time of flight between

transceivers i and j, denoted by τij, is given by

τij =

∫

Γij

dl√
γψ

. (12.5)

Linearizing around some operating point ψ̄, we obtain

τij =
1√
γψ̄

(
3

2
Lij −

1

2ψ̄

∫

Γij

ψ(x, y)dl

)
. (12.6)

with Lij being the distance between transceivers i and j. We denote the line integral of

the temperature field along Γij by mij which can be expressed in terms of the time of

flight τij as

mij := 2ψ̄

(
3

2
Lij −

√
γψ̄τij

)
. (12.7)

For the rest of the dissertation, we assume that mij is directly available as measurements.

Therefore the inverse problem for one line integral measurement is given by mij = Cij(ψ),

where Cij is the line integral operator defined as follows:

Cij(ψ) :=

∫

Γij

ψ(x, y)dl. (12.8)

Now, let m and C be two vectors that concatenate mij and Cij for all possible lines,

respectively. That is, m := {mij} and C := {Cij}. Let Nm be the number of lines used.

Then the inverse problem is to find ψ(x, y) that satisfies

m = C(ψ). (12.9)
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Ultimately, since the scalar temperature field has an infinite number of unknowns and the

measurements (line integrals) are finite, then the inverse problem is under-determined. A

common method ( [35] and the references therein) to overcome this issue is to parametrize

the scalar field with a finite number of unknowns Nn using some numerical method such as

finite elements or finite differences with Nn < Nm. Then a pseudo inverse is used to invert

the line integral operator. In other words, the numerical method is deliberately designed

to make the inverse problem solvable. However, for applications where the region of the

unknown field is large, and the number of transceivers is limited, this method will force

a coarse grid. This significantly degrades the reconstruction accuracy. A better scheme

should not depend on the numerical method used to solve the infinite dimensional inverse

problem.

12.3 Solution Schemes for the Inverse Problem

In this section, we show and compare three different methods to solve the inverse

problem (12.9).

12.3.1 Norm Minimization of the Error

In this section we present the method that has been widely used by signal processing

people and we thus call it “traditional method”. This method, as mentioned before,

parametrizes the scalar field with a number of unknowns less than the number of available

measurements so that a pseudo-inverse method can be applied to minimize the error.

Formally, this method solves the following problem

ψ∗ = argmin
ψ
||m− C(ψ)|| (12.10)
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To solve this problem using finite elements, we cover the region with a tile of Nt triangles

with a total of Nn nodes. Inside each triangle we have

ψ(x, y) =

nl=3∑

nl=1

ψnlφnl(x, y) (12.11)

where nl is the local index of nodes for a particular triangle, ψnl is the value of the scalar

field at the node of a local index nl, and φnl is a linear basis function that is equal to 1

at the local node nl and zero at all other nodes in the region. Thus, ψ(x, y) is linearly

interpolated between the nodes. Finally, the line integral operator Cij can be numerically

approximated as follows (refer to figure 12.1)

Cij(ψ) ≈
nt=Nt∑

nt=1

∫

Γij∩Trianglent

dl

nl=3∑

nl=1

ψnlφnl(x, y)

=
nt=Nt∑

nt=1

nl=3∑

nl=1

ψnl

∫

Γij∩Trianglent

φnl(x, y)dl

(12.12)

Eventually, using this method, C will be realized as some matrix C. Moreover the
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Figure 12.1: Line Integral on Finite Element Triangulation

unknowns can be formed as a vector

vec(ψ) := [ψ1 ψ2 ... ψNn ]T . (12.13)
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The problem can thus be expressed as

vec(ψ∗) = argmin
ψ
||m− Cvec(ψ)||. (12.14)

This problem can be easily solved using the pseudo inverse. Hence the reconstructed

temperature is

vec(ψ∗) = (CTC)−1CTm. (12.15)

For this method to give meaningful results, Nm needs to be greater or equal to Nn.

In applications with large region Ω and limited number of transceivers, the mentioned

condition means that the finite element grid needs to be coarse enough to reduce the

number of unknowns. This will give accurate reconstruction only at the locations of the

nodes. However, the accuracy will degrade significantly at the locations between nodes

especially for fields with rapid spatial variations. This is illustrated in subsequent case

studies.

12.3.2 Alternative Minimization

The actual inverse problem is different, in essence, from the approach presented in the

previous section. The number of unknowns is actually infinite and in practice we can only

obtain a finite number of measurements. This certainly fails to apply to the condition

for the previous approach: Nm ≥ Nn. In fact, the null space of the operator C is infinite

dimensional. A better solution scheme shouldn’t depend on the numerical method used.

Attempting to overcome this limitation, we incorporate the physical laws that govern the

scalar field under study. For the temperature problem, the field is governed by the heat

equation

Aψ(x, y) = 0 for all(x, y) ∈ Ω

with A :=
∂2

∂x2
+

∂2

∂y2
.

(12.16)
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Incorporating Physical Laws (Attempt 0): Instead of solving the inverse problem

in equation (12.9), we solve the following inverse problem




0

m


 =M0ψ where M0 =



A

C


 . (12.17)

Here, the extra piece of information added is the physical laws that govern the interior

of the region Ω with no additional information on the boundaries. It turns out the null

space of M0 is still non trivial. This will be illustrated in the numerical example later

on.

Incorporating Physical Laws with a Minimization Criterion: The previous at-

tempt didn’t trivialize the null space of the operator to be inverted. Then there are

infinite number of solutions from which we have to pick the best in some sense. One way

to do that is by casting an alternative minimization problem. Two different minimization

criteria were chosen: the spatial variations and the spatial curvature on the boundaries;

that is, we minimize the tangential derivative ∂~t and tangential second derivative ∂2
~t

on

the boundaries, respectively.

Attempt 1:

ψ∗ = argmin
ψ

1

2
〈∂~tψ, ∂~tψ〉

subject to: M0ψ =




0

m




(12.18)

Attempt 2:

ψ∗ = argmin
ψ

1

2
〈∂2
~t
ψ, ∂2

~t
ψ〉

subject to: M0ψ =




0

m




(12.19)
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Solution of the Minimization Problems: In this section, we present the solution

procedure for attempts 1 and 2. In general, assume that the minimization problem is:

ψ∗ = argmin
ψ

1

2
〈Dψ,Dψ〉

subject to: Mψ = b.

(12.20)

where D is a linear operator and b is some vector.

Using Lagrangian multipliers λ, we form:

L(ψ, λ) :=
1

2
〈Dψ,Dψ〉+ λ∗(Mψ − b). (12.21)

Hence to find the stationary points, we require the partial derivatives ∂L
∂ψ

and ∂L
∂λ

to be

zero. Thus, we arrive at the necessary conditions:



DD∗ M∗

M 0






ψ

λ


 =




0

b


 . (12.22)

Equation (12.22) can be solved to recover the temperature ψ.

In the subsequent section, we give a case study where we estimate the temperature

distribution using line integral measurements as described in this section.

12.4 Case Study 1: Estimating a Static Temperature

Field on a Rectangle

Consider a two-dimensional rectangular region Ω of height H = 4 and length L = 5

with no heat sources/sinks within. The boundaries admit Dirichlet conditions on the

top and the left (T1 = 20 and T2 = 30) and the other boundaries admit Neumann

conditions (refer to figure 12.2). However, the boundary conditions (on ∂Ω) are assumed

to be unknown. The operators A, C ∂~t, and ∂2
~t

are realized using a finite difference
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Figure 12.2: Heat Equation on a Rectangular Region

method with a grid size of 30 by 20 and the linearization was carried out around T̄ =

25. 14 transceivers are deployed on the boundary as shown in figure 12.3 and time of

flights between transceivers along the boundaries are not allowed thus giving Nm = 59

measurements. With this spatial discretization, the number of unknowns is Nn = 600.
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Figure 12.3: Location of the Deployed Transceivers

Clearly, the first method cannot be applied. In fact with this number of measurements

available, it can only recover the temperature field for a grid with a maximum of 59 nodes

(for example an 8 by 7 grid). This will certainly degrade the quality of the reconstructed
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field. Attempt 0 still has nontrivial null space. For this method, there are an infinite

number of solutions out of which that of a minimal norm is shown in figure 12.4. Indeed
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Figure 12.4: Failed Temperature Reconstruction using the Traditional Method and At-

tempt 0

figure 12.4 shows how the two methods fails to reconstruct the temperature. However,

the large variations of the reconstructed field at the boundary in attempt 0 motivated us

to look for solutions with some conditions on the boundaries. Thus attempts 1 and 2 were

made. In fact, figure 12.5 shows the error percentage of the reconstructed temperature

fields using attempts 1 and 2. Although attempt 1 shows better reconstruction inside the

region, the reconstruction at the boundaries shows curvature variations. This motivated

attempt 2 where the curvature along the boundaries is minimized thus reconstructing

the temperature field with small errors.

The message taken from this case study is that when the number of transceivers
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Figure 12.5: Temperature Reconstruction using Attempt 1 and 2

is limited, there is no way around incorporating our knowledge from the physics to

reconstruct the unknown field accurately.

12.5 Case Study 2: Temperature Reconstruction on

a Disk, Analytical Example

To get insights and intuition on the number of transceivers required to fully recover

the temperature field, we study a particular example that can be analyzed analytically.

In this example, we consider the exact reconstruction of unknown temperature fields on a

disk using line integral measurements. The temperature field is assumed to be governed

by the two dimensional static heat equation.

Let Ω be the region strictly inside a unit disk. Let (x, y) and (r, θ) be the Cartesian

and polar coordinates respectively such that

x = r cos(θ) and y = r sin(θ). (12.23)
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Then, the region Ω along with its boundary ∂Ω can be represented as follows:

Ω = {(x, y); 0 ≤ x2 + y2 < 1} = {(r, θ); 0 ≤ r < 1,−π ≤ θ < π}

∂Ω = {(x, y); x2 + y2 = 1} = {(r, θ); r = 1,−π ≤ θ < π}.
(12.24)

Let ψ(x, y) represent the temperature at location (x, y). Assume that the steady state

heat equation (Laplace equation) governs Ω with a Dirichlet boundary condition on ∂Ω.

(
∂2

∂x2
+

∂2

∂y2

)
ψ(x, y) = 0 (x, y) ∈ Ω

ψ(x, y) = h(θ) (x, y) ∈ ∂Ω.

(12.25)

The Poisson Integral Formula [11] gives a closed form for boundary value problem (12.25)

in polar coordinates:

ψ(r, θ) =
1

2π

∫ π

−π
h(φ)

1− r2

1 + r2 − 2r cos(θ − φ)
dφ. (12.26)

Line Integrals over Diameters: First, we assume that the line integrals are calcu-

lated on lines passing through the origin as shown in figure 12.6.

bbb

b

θ

r

1

(x, y) Lθ

aθ

bθ

O

Figure 12.6: Unit Disk
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Define Cθ to be the line integral operator where the line of integration is parametrized

by the angle θ.

Cθ : L2([0, 1], [−π, π[)→ R

ψ 7→ Cθ(ψ) =

∫ bθ

aθ

ψ(r, θ)dl.
(12.27)

The line integral can be divided into two parts

Cθ(ψ) =

∫ 0

aθ

ψ(r, θ)dl +

∫ bθ

0

ψ(r, θ)dl =

∫ 1

0

ψ(r, θ)dr +

∫ 1

0

ψ(r, θ + π)dr, (12.28)

by exploiting the fact that ψ(r, θ) is periodic in θ.

Now, define

I(θ) :=

∫ 1

0

ψ(r, θ)dr. (12.29)

Hence

Cθ(ψ) = I(θ) + I(θ + π). (12.30)

Substituting the expression ψ(r, θ) from (12.26) in (12.30), we get

I(θ) =

∫ 1

0

1

2π

∫ π

−π
h(φ)

1− r2

1 + r2 − 2r cos(θ − φ)
dφdr

=
1

2π

∫ π

−π
h(φ)

∫ 1

0

1− r2

1 + r2 − 2r cos(θ − φ)
drdφ

=
1

2π

∫ π

−π
h(φ)J(θ − φ)dφ,

(12.31)

where J is the integral of the Poisson kernel

J(φ) :=

∫ 1

0

1− r2

1 + r2 − 2r cos(φ)
dr. (12.32)

Equation(12.31) suggests that the line integral I(θ) is the convolution of the boundary

condition with the Poisson kernel J . As a matter of fact, the integral of the Poisson

kernel can be shown to have a closed form. It is given by

J(φ) = −1−cos(φ) log(2−2 cos(φ))+2π| sin(φ)|
[
tri2π(φ− π) +

1

2
tri2π(φ)− 1

2

]
, (12.33)
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where triT (φ) is a triangular periodic function as shown in figure 12.7. Furthermore,

J(φ) is plotted in Figure 12.8. Since h(φ), J(φ) and I(φ) are periodic functions in their

argument, then their Fourier Series can be calculated.

J(φ) =
k=+∞∑

k=−∞

Ĵ [k]eikφ Ĵ [k] =
1

2π

∫ π

−π
J(φ)e−ikφdφ

h(φ) =
k=+∞∑

k=−∞

ĥ[k]eikφ ĥ[k] =
1

2π

∫ π

−π
h(φ)e−ikφdφ

I(φ) =
k=+∞∑

k=−∞

Î[k]eikφ Î[k] =
1

2π

∫ π

−π
I(φ)e−ikφdφ.

(12.34)

Ĵ [k], ĥ[k] and Î[k] are the Fourier coefficients of J(φ), h(φ) and I(φ), respectively. In

fact, the Fourier series for J(φ) can be explicitly calculated

Ĵ [k] =
1

2π

∫ π

−π
(−1− cos(φ) log(2− 2 cos(φ))

+2π| sin(φ)|
[
tri2π(φ− π) +

1

2
tri2π(φ)− 1

2

])
e−ikφdφ

=
1

|k|+ 1
.

(12.35)

Figure 12.8 plots the Fourier coefficients J [k] of J(φ) and some truncated partial sums

of the Fourier series. Taking the Fourier Series of equation (12.30) yields
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Figure 12.8: Integral of the Poisson Kernel and its Fourier Series

Ĉk(ψ) = Î[k] + eikπ Î[k] = (1 + eikπ)Î[k]

= (1 + eikπ)ĥ[k]Ĵ [k] =
1 + (−1)k

|k|+ 1
ĥ[k]

= F̂ [k]ĥ[k]

F̂ [k] =





0, k odd

2ĥ[k]
|k|+1

, k even

(12.36)

where Ĉk(ψ) is the Fourier Coefficient of the line integral operator.

Ĉk(ψ) =
1

2π

∫ π

−π
Cθ(ψ)e−ikθdθ. (12.37)

Equation(12.36) shows that Cθ(ψ) = 0 for any angle θ if the boundary condition h(θ) has

only odd spatial frequency contents. This result is intuitive since the scalar field with

odd spatial frequency contents on the boundary forms an anti symmetric temperature
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distribution within the disk, and thus the line integral will cancel out. We conclude that

the operator Cθ has an infinite dimensional nullspace and is not invertible: any scalar

field with anti symmetric components (due to odd spatial frequency contents on the

boundary) cannot be reconstructed from line integrals along the diameters.

As an illustrative example, we solve the forward problem using the following boundary

condition:

h(θ) = 20 + 5 cos(θ) + 3 cos(2θ) + 7 cos(3θ). (12.38)

The line integral for all possible θ is calculated by first calculating Ĉk(ψ) using equa-

tion(12.36) and then calculate its inverse Fourier Series using:

Cθ(ψ) =
k=+∞∑

k=−∞

Ĉk(ψ)eikθ. (12.39)

Figure 12.9 shows the calculated line integral along with the Fourier Series and the im-

posed boundary condition.
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Figure 12.9: Line Integral along Diameters of the Disk

Now to solve the inverse problem, we assume that we are given the line integrals for all

lines passing through the origin as shown in figure 12.9 and we are required to reconstruct

the scalar field ψ(r, θ) using equations (12.34, 12.36 and 12.37). Figure 12.10 shows the
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original temperature field along with the reconstructed field. The reconstructed field is

not the same as the true field. In fact, it corresponds to the boundary condition with no

odd spatial frequency contents. Moreover, the unreconstructed field corresponds to the

field with only odd spatial frequency contents on the boundary.
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Figure 12.10: Reconstructed and Unreconstructed Temperature Fields

As a conclusion, this reconstruction procedure is capable of reconstructing only the sym-

metric component of the temperature field.

Line Integrals along Radii: The reason for the aforementioned null space is that

the line integrals are along diameters. On the other hand, if sensors are allowed to be

deployed inside the region, then one can deploy only one transmitter at the origin and

spread receivers along the boundary. Then the line integral operator would be:

Cθ(ψ) =

∫ 1

0

ψ(r, θ)dr = I(θ). (12.40)

Hence, its Fourier series would be

Ĉk(ψ) = Ĵ [k]ĥ[k] =
1

|k|+ 1
ĥ[k]. (12.41)
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Equation(12.41) suggests that the new line integral operator will never nullify the scalar

field unless the boundary condition is zero. That is, the null space of this operator is

trivial and hence it is invertible. As a conclusion, this scheme is capable of completely

reconstructing the temperature field from the line integrals. In practice, only finite

number of receivers can be deployed. In fact, to fully recover the temperature field

from a finite number of line integrals, the Nyquist-Shannon sampling theorem must be

respected. That is, if the highest spatial frequency contained in h(θ) is Nh, then 2Nh + 1

receivers are required to fully recover the temperature field.
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Chapter 13

Estimation of Dynamic Distributed

Fields Via Tomographic Sensing

In this chapter, we formulate the optimal distributed estimation problem where the

sensors’ locations are chosen a-priori. After developing the theoretical framework, we

consider a case study where we estimate an unknown dynamically evolving temperature

field in a two dimensional room.

13.1 Formulation of the Dynamic Distributed Esti-

mation Problem

The setting considered here is the standard stochastic estimation with process distur-

bances and measurement noise. In addition, we do not assume that boundary conditions

are known or fixed, but rather stochastic with some prior knowledge of the relative time

scale of their variations (e.g. the daily cycle of the sun’s radiation heating). We model

two different measuring operators for the cases of point-wise sampling, and line integral

measurements respectively. The latter being relevant to acoustic tomography sensing.
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13.1.1 Physical Dynamics and the Measurement Models

Let ψ denote a dynamical field in a region Ω with its boundary ∂Ω = ∂ΩD ∪ ∂ΩN ;

∂ΩD and ∂ΩN are subsets of the boundary where Dirichlet and Neumann conditions are

respectively imposed. The governing dynamics are transcribed by the following partial

differential equation:

∂

∂t
ψ(x, t) = Aψ(x, t) + w(x, t); ψ(0,x) = ψ0(x)

ψ(x, t)

∣∣∣∣
∂ΩD

= ψD(x, t);
∂

∂~n
ψ(x, t)

∣∣∣∣
∂ΩN

= ψN(x, t)
(13.1)

where w is a zero-mean white Gaussian noise field with covariance Pw. A is a spatial

operator defined on the domain of fields satisfying the boundary conditions in (13.1),

and ~n is a unit vector normal to ∂ΩN . ψD and ψN are unknown, possibly time varying,

fields defined on the boundaries ∂ΩD and ∂ΩN , respectively. For the rest of the paper,

we drop the dependence of the fields on the spatial variable x whenever no confusion is

caused.

The available sensors are assumed to be capable of taking either point-wise or line

integral measurements (such as transceivers). For this purpose, define the line integral

and sampling operators as follows:

Cijψ :=

∫

Γij

ψ(x)dx and Ckψ := ψ(xk) (13.2)

The linear spatial operator Cij acts on a field, defined on Ω, to yield its line integral over

the straight path Γij connecting transceivers i and j. On the other hand, Ck samples the

field at the location xk of the point-wise sensor k. Taking all possible measurements by

the available transceivers and point-wise sensors, we get the output equation:

m(t) = Cψ(t) + vc(t) (13.3)

where C is the vector concatenation of Cij and Ck, and vc is a zero-mean white Gaussian

noise vector with covariance Rc.
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The ultimate target of this paper is to design schemes to assimilate our knowledge

of the model with the available measurements in order to optimally estimate the un-

known fields ψ, ψD and ψN . In fact, we target two challenges facing this problem: (1)

unknown boundary conditions and (2) where to place the sensors and how to control

their movement.

13.1.2 Incorporating Unknown Boundary Conditions and their

Dynamics

We now tackle the first challenge by modeling the dynamics of the boundary condi-

tions based on our knowledge of the physical laws governing the fields. By absorbing our

modeled stochastic dynamics of ψD and ψN , we formulate the estimation problem in a

standard Kalman filter setting.

The boundary conditions ψD and ψN can be seen as inputs to the dynamical system

defined in (13.1). Since they are unknown, we assume that they have dynamics of their

own. We model their dynamics by the following evolution equations driven by white

Gaussian noise:
∂

∂t
ξD(t) = ADξD(t) + BDwD(t); ξD(0) = ξD0

∂

∂t
ξN(t) = ANξN(t) + BNwN(t); ξN(0) = ξN0

(13.4)

where ξD and ξN are the states of the dynamical systems modeling the Dirichlet and

Neumann boundary conditions, respectively. For example, if the modeled dynamics are of

first order, then ξD = ψD. In the case of second order dynamics, ξD =

[
ψD

∂
∂t
ψD

]T
and

so on. Moreover, wD and wN are zero-mean white Gaussian noise fields with covariances

PD and PN , respectively. The operators AD, AN , BD and BN will shape the response of

the modeled boundary dynamics and are designed depending on the application at hand.

By absorbing the modeled dynamics of the boundary conditions (13.4) in (13.1), we
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get the augmented (continuous time) evolution equation with the corresponding output

equation:

ψc(t) = Acψc(t) + wc(t); ψc(0) = ψc0

m(t) =

[
C 0

]
ψc(t) + vc(t)

E{wc(x, t)w∗c (χ, τ)} = Qc(x,χ)δ(t− τ)

E{vc(t)vTc (τ)} = Rcδ(t− τ)

(13.5)

ψc :=




ψ

ξD

ξN




ψc0 :=




ψ0

ξD0

ξN0



Ac :=




A 0 0

0 AD 0

0 0 AN




wc :=




w

wD

wN



Qc :=




Pw 0 0

0 BDPDB∗D 0

0 0 BNPNB∗N




where δ(t) is the Dirac delta function and ”∗” is the adjoint operator. Note that, we

assume that there is no correlation between the different boundary conditions and the

interior field, hence Qc is block diagonal. If correlation is required in a particular appli-

cation, off-diagonal terms can be added.

Assuming that the sensors are already deployed in fixed locations, the C operator

is thus known and time invariant. Hence, the estimation problem can be optimally

solved using Kalman filters. The design parameters are the modeled dynamics of the

boundary conditions in (13.4) and (Qc, Rc) in (13.5). The design completely depends on

the application at hand. As a case study, the next section will illustrate an application

on temperature fields and acoustic tomography.
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13.2 Case Study: Dynamic Acoustic Tomography of

Temperature Fields

Acoustic tomography [35], [36], [63] is a technique for reconstructing scalar tempera-

ture fields and/or vector velocity fields from the time of flight of ultrasonic sound signals

between transceivers. The transceivers can be deployed outside the region to be mapped

which might be advantageous in some scenarios (such as hazardous plumes, forest fires,

etc.). In this example, we utilize the technique developed in the previous section to esti-

mate dynamic temperature fields in a static (zero velocity) medium. The measurement

scheme employed is based on tomographic sensing, i.e. line integral measurements are

taken.

13.2.1 Temperature Dynamics and Tomographic Sensing

Consider Ω to be a rectangular region to simulate a two dimensional room as shown

in Fig. 13.1(a). Hence, the spatial variable x =

[
x y

]T
is two dimensional. The

temperature field is governed by the dynamical heat equation with a diffusion constant

α. Unknown non-homogeneous Dirichlet conditions are imposed on the left (∂Ω1) and

top (∂Ω2) boundaries to simulate heat sources/sinks (i.e. ∂ΩD = ∂Ω1 ∪ ∂Ω2). For

simplicity, the other boundary conditions (on ∂ΩN) are known to be insulated walls with

homogeneous Neumann conditions imposed. Then the A operator in (13.1) is defined as

follows:

Aψ := α

(
∂2

∂x2
+

∂2

∂y2

)
ψ

with ψN(t) = 0 and ψD(t) =



ψD1(t)

ψD2(t)




(13.6)

In acoustic tomography, transceivers measure the time of flight of ultrasonic acoustic
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(0, 0) (L, 0)

(L,H)(0, H) ψ(x,H, t) = ψD2
(x, t)

ψ
(0
,y
,t

)
=
ψ
D

1
(y
,t

)

∂
∂yψ(x, 0, t) = 0

∂ ∂
y
ψ

(L
,y
,t

)
=

0

∂
∂tψ = α

(
∂2

∂x2 + ∂2

∂y2

)
ψ + w

∂ΩD

Ω

∂ΩN

(0, 0) (L, 0)

(L,H)(0, H)

(a) Room Dynamics (b) Deployed Transceivers

Figure 13.1: (a) The 2-dimensional dynamical heat equation is considered with a diffusion constant α.

The unknown Dirichlet boundary conditions to the top and the left are allowed to be varying in space

and time. The Neumann boundary conditions to the bottom and the right are assumed to be known

and homogeneous, thus modeling insulated walls. (b) Transceivers are deployed on the boundaries to

measure the time of flight of ultrasonic signals between them.

signals. It can be shown [35] that the time of flight depends on the temperature field

along the path traveled. For simplicity, we assume that the transceivers are directly

measuring the line integrals of the temperature field along the straight paths between

them.

13.2.2 Modeling the Unknown Dynamics of the Boundary Con-

ditions

Since the boundaries with Neumann conditions are known to be homogeneous, xN0,

AN and BN are all zeros in (13.4). In this example, we assume that the temporal

frequency of the temperature variations along the boundaries are known to be less than

a given frequency fn. As a result, we model the boundaries with Dirichlet conditions to be

the outputs of a second order low pass filter fed by a zero-mean white Gaussian noise field,
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wD. Let fn and ζ denote the natural frequency and damping ratio of the second order low

pass filter. Note that wD can be divided into two separate sources, wD1 and wD2 , affecting

each Dirichlet boundary condition separately. That is, wD(t) :=

[
wD1(t) wD2(t)

]T
. Let

PD1 and PD2 denote the covariance of wD1 and wD2 , respectively. Based on a physical

intuition of the smoothness of temperature distributions, we assume that the temperature

fields along the Dirichlet boundaries are spatially correlated with correlation lengths of

σ1 and σ2. Hence one way to represent the covariance is by using a Gaussian kernel as

follows:

PD1(y, ξ) = a1e
− (y−ξ)2

2σ2
1 ; PD2(x, χ) = a2e

− (x−χ)2

2σ2
2 (13.7)

Finally, by letting ωn = 2πfn and recalling the dynamics of a second order low pass filter,

the parameters in (13.4) are summarized as follows:

AD =




0 0 I 0

0 0 0 I

−ω2
nI 0 −2ζωnI 0

0 −ω2
nI 0 −2ζωnI




BD =




0 0

0 0

ω2
nI 0

0 ω2
nI



ξD =




ψD1

ψD2

∂
∂t
ψD1

∂
∂t
ψD2



PD =



PD1 0

0 PD2




(13.8)

where I is the identity operator.
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13.2.3 Numerical Results for Temperature Field Estimation

For a numerical example, we use L = 5 m and H = m with periodic Dirichlet

boundary conditions (period = 1 day) as follows:

ψ(0, y, t) = 20 + 10 sin

(
2π

24× 60
t

)

ψ(x,H, t) = 30− 10 sin

(
2π

24× 60
t

)

where t is expressed in minutes and ψ in ◦C. The initial temperature field is ψ0 = 10◦C.

The true diffusion constant α is 0.05m2s−1. To simulate an inaccessible interior region,

we deploy 14 transceivers on the boundaries, as shown in Fig. 13.1(b), allowing us to

take a total of 59 measurements at each instant of time. The operators Ac, C, and Qc are

realized using a finite difference method, by laying down a 35 by 40 two dimensional grid.

In our simulations, we assume that our sensors and the model in (13.6) are accurate, so

we let Rc = 0.01I and Pw = 0.01I, where I and I are the identity matrix and identity

operator, respectively. The design parameters are a1, a2, σ1, σ2, ζ and fn. Their choice

should be based on the available information (physical intuition) on the temperature field.

For example, we predict that the temperature variations on the boundaries are around

40◦C with a period more than 3 days. We also predict that the spatial temperature

variations along the Dirichlet boundaries are small. Then we choose a1 = a2 = 402,

fn = 1
5

days−1, σ1 = 5H and σ2 = 5L. The low pass filter is designed to be critically

damped, that is ζ = 0.707.

To test the robustness of our estimation scheme, we carry out two simulations with

no prior knowledge of the initial temperature field in both cases. First, we assume that

we have exact knowledge of the diffusion constant, that is we know that α = 0.05. This is

still challenging the Kalman filter since the Dirichlet boundary conditions are unknown.

Fig. 13.2 shows two snapshots of the exact and estimated temperature fields at t = 12 min

and t = 2.5 hrs. The figure clearly shows how accurate the estimation is. For the second
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simulation, we assume that we don’t have perfect knowledge of the diffusion constant;

say we predict α̂ = 0.1. This is considerably different from the actual diffusion constant.

Fig. 13.3 shows the estimation error as a function of time for both scenarios: exact and

perturbed diffusion constant. In fact, the figure shows how the estimation accuracy is

degraded for the perturbed model; however, it is still doing a very good job given the

severe perturbation of the diffusion constant.
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Exact Temperature Field Estimated Temperature Field

t
=

12
m

in
t

=
2
.5

h
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Figure 13.2: Performance of the Kalman Filter. This figure shows two snapshots of the exact tempera-

ture field and the estimated temperature field at t = 12 min and t = 2.5 hrs, respectively. The estimation

process is carried out by deploying 14 transceivers to take line integral measurements. A Kalman filter

algorithm that absorbed the dynamics of the unknown boundary conditions, as described by section

13.1, is employed to estimate the temperature field. Indeed, the figure shows the high accuracy of the

estimation even if the initial estimate was considerably off from the actual temperature field.
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Figure 13.3: Comparison between the performance of the Kalman filter with an exact and a perturbed

diffusion constant for the 2D heat equation. This figure shows the relative estimation error for two

different scenarios. The first scenario assumes that the diffusion constant is predicted exactly. The

second scenario assumes that the diffusion constant was predicted to be 0.1 when it is actually 0.05. The

relative error was calculated by taking the norm of the estimation error relative to the norm of the true

temperature field at each time instant. The red curve shows a drop in accuracy compared to the blue

curve. However, taking into consideration the large perturbation of the model, the performance is still

acceptable.
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Chapter 14

Optimal Sensor Placement & Path

Planning in Distributed

Environments

After formulating the estimation problem in the previous chapter, we target the challenges

of optimal sensor placement and path planning. This chapter deals with schemes to

design the C operator in (13.5) using optimal control theory. For simplicity, we consider

taking only one measurement (point-wise or line integral). Clearly, the optimization

problem at hand requires a performance measure to quantify the estimation accuracy. [12]

employs the mutual information between the estimated states and the measurements as a

performance measure for point-wise sensor trajectory planning. In this paper, we intend

to minimize the state estimation error variance which is the trace of the estimation error

covariance. For this purpose, define the state estimate and estimation error covariance,
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respectively as follows:

ψ̂(t) := E{ψ(t)}

E{[ψ(t)− ψ̂(t)][ψ(τ)− ψ̂(τ)]∗} := X (t)δ(t− τ).

(14.1)

Note that, for notational convenience, the subscript of the state variable ψc in (13.5) is

dropped for the rest of the paper. Let Cp denote the measurement operator in (13.3)

parametrized by p. In the case of point-wise measurements, p is just the coordinates of

the measurement location. Hence, Cp is a sampling operator that acts on a field ψ as

follows:

Cpψ := ψ(p) =

∫

Ω

δ(x− p)ψ(x)dx

C∗p(x) = δ(x− p)
(14.2)

where C∗p is the adjoint operator of Cp. On the other hand, in the case of line integral

measurements, p is the set of parameters of a line (for example polar coordinates in

Fig. 14.1). Hence, Cp is a line integral operator that acts on a field ψ as follows:

Cpψ :=

∫

Γp

ψ(x)dx =

∫

Ω

(∫

Γp

δ(x− xp(l))dl
)
ψ(x)dx

C∗p(x) =

∫

Γp

δ(x− xp(l))dl
(14.3)

where Γp is a line parametrized by p and xp is a position vector spanning Γp (refer to

Fig. 14.1). The propagation of the estimation error covariance X in the dynamics of

(13.5) is governed by the continuous time Riccati equation. For notational convenience,

we define the Riccati operator as follows:

R(p,X ) := AcX + XA∗c +Qc −
1

Rc

XC∗pCpX . (14.4)

Equipped with a performance metric, tr(X ), and a measurement operator Cp, (14.2) and

(14.3), we will show next how to find the optimal locations for fixed sensors, and the

optimal trajectories for mobile sensors.
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Figure 14.1: Parametrization of a line in a region Ω. Any line can be parametrized by its polar

coordinates p = (ρ, θ). Let xp(l) denote a position vector that spans the line Γp as l varies between l1

to l2. Note that l1 and l2 specify the shape of the region Ω.

x
0 L

∂
∂t
ψ(x, t) = α ∂2

∂x2
ψ(x, t) + w(x, t)

ψ(0, t) = ψD1(t) ψ(L, t) = ψD2(t)p

Sensor

Ω

Figure 14.2: The one-dimensional dynamic heat equation is considered with a diffusion constant α.

The two boundaries satisfy Dirichlet conditions. The sensor capable of taking point-wise measurements

is located at x = p.

14.1 Optimal Static Sensor Placement

In this section, we consider another case study: the dynamical heat equation in one

dimension with unknown periodic Dirichlet boundary conditions on both ends (refer

to Fig. 14.2). Hence, in this example, ψD1(t) and ψD2(t) are unknown scalar periodic

functions of time with an unknown frequency f . We apply the technique described in

section 13.1 in a similar fashion to the case study in section 13.2. Thus, our modeled

dynamics of the boundaries in (13.4) are given by (13.8), where I, PD1 and PD2 are all

scalars now. Our goal is to deploy one sensor, capable of taking point-wise measurements

continuously in time, at an optimal fixed location x = p. The optimization objective is to
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minimize the steady state 1 estimation error. For a given sensor location p0, we know that

the steady state estimation error covariance, Xss, solves the algebraic Riccati Equation:

R(p0,Xss) = 0. Hence, we can pose the underlying optimization problem as follows:

P0 :





p̄ = argmin
{0≤p≤L;Xss}

tr(Xss)

s.t. R(p,Xss) = 0

(14.5)

To explore and characterize the problem, we do a brute force search by computing tr(Xss)

for all possible values of p. Fig. 14.3 shows the cost function (tr(Xss)) as a function of

sensor location for different values of three design parameters: fn, PD2 and β, where we

let Pw = βI (recall that Pw is the covariance of the white Gaussian noise field in (13.1)

and fn is the natural frequency of the second order low pass filter introduced in section

13.2.2). The conclusions that can be drawn here are: (a) as the natural frequency fn

is increased compared to the actual frequency of the Dirichlet boundary conditions f ,

the filter realizes that the boundary conditions are varying rapidly and thus it would be

more informative to measure towards the interior. (b) as β is increased, less trust is put

into the interior of the model, thus the filter chooses to measure locations in the interior

domain to compensate for the lack of trust. (c) as PD2 is decreased relative to PD1 , more

trust is put into the corresponding boundary and thus the filter chooses to measure the

other boundary (Note that PD1 = 202).

14.2 Optimal Sensor Path Planning

In this section we allow the sensor to move around and take measurements (be it

point-wise or line integral). Our goal here is to design an optimal path for the sensor.

The optimization objective depends on the application requirement. In this section, we

1Steady state is achieved after the transient response (due to initial conditions) dies out. Hence, a
steady state can be fixed or oscillatory.
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Figure 14.3: Effect of the design parameters on the optimal static sensor location for the 1D heat

equation. This figure shows plots of the trace of the steady state estimation error covariance Xss as

a function of sensor location for point-wise measurements. The top plot to the left varies the natural

frequency of the second order low pass filter fn compared to the frequency f of the periodic Dirichlet

boundary conditions. That to the right varies the intensity of the process noise inside the region of the

heat equation. The plot at the bottom varies the covariance of the white Gaussian noise feeding the low

pass filter of one of the two boundary conditions.

will consider two different objective functions.

This optimization can be thought of as an optimal control problem. We let the

control to be the velocity of the sensor in order to penalize it in the objective function.

Otherwise, the sensor would be allowed to move instantaneously from one location to

another. Hence the states are the covariance operator X and the sensor location p. Two

196



Optimal Sensor Placement & Path Planning in Distributed Environments Chapter 14

different problems can be posed here:

P1 :





p̄(t) = argmin
{p(t);X (t)}

tr(X (tf )) +
µ

2

∫ tf

0
(ṗ(t))2dt

s.t.
Ẋ (t) = R(p(t),X (t)); X (0) = X0

ṗ(t) = u(t); p(0) = p0

(14.6)

P2 :





p̄(t) = argmin
{p(t);X (t)}

∫ tf

0

(
tr(X (t)) +

µ

2
(ṗ(t))2

)
dt

s.t.
Ẋ (t) = R(p(t),X (t)); X (0) = X0

ṗ(t) = u(t); p(0) = p0

(14.7)

where µ is the mobility penalty of the sensor. P1 and P2 are nonlinear optimal control

problems. P1 searches for the optimal control that gives the best estimate at the final

time. So, given a time duration tf , the sensors are allowed to move to give the best

estimate at the end of the given time duration. On the other hand, P2 searches for the

optimal control that minimizes the estimation error as the sensor is moving. To solve

the two optimal control problems, we form the Hamiltonian then develop the costate

equations. To do so, we need to calculate the Frechét derivatives:
(
∂
∂p
R(p,X )

)
(δp)

and
(
∂
∂XR(p,X )

)
(δX ). These are the directional partial derivatives of R(p,X ) in the

directions of δp and δX , respectively. It can be shown 2 that
(
∂

∂p
R(p,X )

)
(δp) = − 1

Rc
XWp(δp)X

(
∂

∂X R(p,X )

)
(δX ) = [Ac − LpCp] δX + δX [Ac − LpCp]∗

(14.8)

where Lp := XC∗pR−1
c is the Kalman gain and Wp(δp) :=

(
∂
∂p

[C∗pCp]
)

(δp). The Hamilto-

nian functions for P1 and P2 are denoted by H1 and H2, respectively.

H1 :=
µ

2
u2(t) + 〈Λ(t),R(p(t),X (t))〉+ 〈λ(t), u(t)〉

H2 := tr(X (t)) +H1

(14.9)

2The derivations for a simpler (finite dimensional) setting is given in Appendix B.
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The costates for P1 can be shown to be:

Λ̇(t) = −Λ(t)[Ac − Lp(t)(t)Cp(t)]− [Ac − Lp(t)(t)Cp(t)]∗Λ(t)

λ̇(t) =
1

Rc
tr(Λ∗(t)X (t)Wp(t)X (t))

Λ(tf ) = −X 2(tf ); λ(tf ) = 0

(14.10)

The costates for P2 can be shown to be:

Λ̇(t) = −I − Λ(t)[Ac − Lp(t)(t)Cp(t)]−

[Ac − Lp(t)(t)Cp(t)]∗Λ(t)

λ̇(t) =
1

Rc
tr(Λ∗(t)X (t)Wp(t)X (t))

Λ(tf ) = 0; λ(tf ) = 0

(14.11)

The state equations for both P1 and P2 are the same:





Ẋ (t) = R(p(t),X (t)); X (0) = X0

ṗ(t) = u(t); p(0) = p0

u(t) = −λ(t)

µ

(14.12)

To solve the optimal control problems P1 and P2, one needs to solve the costate and

state equations in (14.10) through (14.12). This is, numerically, a very large scale problem

since the states are typically large covariance matrices. Efficient numerical schemes to

tackle these problems are currently under investigation.

14.2.1 Sub-optimal Path Planning in Discrete Time

We present a sub-optimal algorithm for the path planning problem in discrete time.

First, we discretize (13.5) in time to get:




ψk+1 = Adψk + wk

mk = Cpkψk + vk

(14.13)
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with

Ad := exp(Ac∆t); Qd :=

∫ ∆t

0

exp(Adτ)Qc exp(A∗dτ)dτ

Rd :=
Rc

∆t
; E[wkw

∗
s ] := Qdδks; E[vkv

∗
s ] = Rdδks

where δks is the Kronecker delta and ∆t is the discretization time step. Note that Qd
can be computed using Van Loan’s algorithm [59] for example. The propagation of the

covariance in discrete time is dictated by the discrete time Riccati equation:

Yk = AdXk−1A∗d +Qd

Xk =
[
Y−1
k + C∗pkR

−1
d Cpk

]−1
(14.14)

Hence, at each time step we have an optimization problem to be solved as follows. Given

pk−1 and Xk−1, select pk that minimizes the estimation error at time step k. For the case

study explained in section 14.1 but with a moving point-wise sensor, the optimization

problem can be written as follows:

p̄k = argmin
{0≤pk≤L;Xk}

tr(Xk) +
µ

2∆t2
(pk − pk−1)2

s.t. Yk = AdXk−1A∗d +Qd

Xk =
[
Y−1
k + C∗pkR

−1
d Cpk

]−1

(14.15)

Fig. 14.4 plots the optimal trajectory for different set of design parameters. In fact, for

the set of design parameters used, the optimal trajectory turned out to be periodic. The

period and the shape of the trajectory depend on the design parameters used. Note that

the typical numerical values used for the design parameters are as follows: µ = 0.1, fn =

3f , β = 52, and PD1 = PD2 = 402, where f = 1 reflects a time scale of heat transfer on

the rod (refer to Appendix A). Fig. 14.4 shows only the values of the modified design

parameters. As a matter of fact, for higher mobility penalty, the sensor tends to move

less and spends more time on the boundaries. Moreover, when PD2 is decreased, the

sensor visits the second boundary for smaller duration of time to reflect higher trust in
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the latter. On the other hand, higher values of fn indicates that the boundaries are

allowed to vary faster and thus the sensor stays at the boundaries for longer periods of

time. Finally, smaller values of β indicates that we trust the interior of the model more,

thus the sensor visits the interior less frequently.

14.3 Conclusion and Future Work

This paper approaches the optimal estimation problem in distributed dynamic en-

vironments, where measurements taken by available mobile sensors and physics-based

models are assimilated to enhance the estimation accuracy. The optimal sensor path

planning was then cast as a continuous time-space optimal control problem. The nec-

essary conditions of optimality were derived to yield operator valued state and costate

differential equations. Efficient numerical methods to solve this, generally, large scale op-

timal control problem are currently under investigation. It is believed that the optimal

control has a special structure (such as periodic) as shown in the discrete time version

solution of the one dimensional heat equation example. Solving the optimal control prob-

lem will give us insights on the structure of the optimal sensor path. On the other hand,

other applications such as flow estimation will be considered. In this application, the

physics-based model to be employed is the nonlinear Navier-Stokes equation. Acous-

tic tomography sensing techniques can also be used, using the framework developed in

section 13.1, to design sensor trajectories that optimally estimate the flow fields.
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Figure 14.4: Optimal paths for a mobile sensor capable of taking point-wise measurements using the

discrete time Kalman filter algorithm for the 1D heat equation. The four plots show the calculated

optimal paths for two different values of the mobility penalty µ, the error covariance PD2
of the white

Gaussian noise feeding one of the Dirichlet boundaries, the natural frequency fn of the low pass filter

and the intensity of the process noise β inside the region of the heat equation.
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Appendix

14.A Heat Equation on a Rod: Transfer Functions

Consider the one-dimensional simplified heat transfer problem on a rod that is dynam-

ically heated on the left boundary. We are interested in studying how heat propagates

in the rod in response to the dynamically heated end. We will analyze two problems. In

the first, we consider an semi-infinite rod and calculate a transfer function from x = 0 to

x = L. Then, we consider a finite rod of length L that is thermally isolated on the right

boundary. Mathematically, the dynamics for the two problems are give by

M∞ :





∂tψ(x, t) = α∂2
xψ(x, t); x ∈ [0,+∞)

ψ(0, t) = u(t)

ψ(x, 0) = 0

ML :





∂tψ(x, t) = α∂2
xψ(x, t); x ∈ [0, L]

ψ(0, t) = u(t)

∂xψ(L, t) = 0

ψ(x, 0) = 0.

(14.A.1)

Our goal is find a transfer function between the input heater u(t) and the output y(t) =

ψ(L, t) for both problems M∞ and ML.
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14.A.1 Heat Equation on the Semi-infinite Line

In this section, we considerM∞. This is approached by taking the Laplace transform

in time. Taking Laplace transforms in time of M∞, we get:

sψ̂(x, s) = α∂2
xψ̂(x, s)

ψ̂(0, s) = û(s).

This really can be posed as follows:

∂x



ψ̂(x, s)

∂xψ̂(x, s)


 =




0 1

s
α

0






ψ̂(x, s)

∂xψ̂(x, s)


 ;



ψ̂(0, s)

∂xψ̂(0, s)


 =



û(s)

v̂(s)


 ,

where v̂(s) is unknown and needs to be determined from the extra condition that

lim
x→+∞

ψ(x, t) = lim
x→+∞

ψ̂(x, s) = 0.

The solution can be written using the variation of constants formula as



ψ̂(x, s)

∂xψ̂(x, s)


 = e




0 1

s
α

0

x
 û(s)

v̂(s)




=




cosh
(√

s
α
x
) √

α
s

sinh
(√

s
α
x
)

√
s
α

sinh
(√

s
α
x
)

cosh
(√

s
α
x
)






û(s)

v̂(s)




Writing the first equation of the matrix equation, we have

ψ̂(x, s) = cosh

(√
s

α
x

)
û(s) +

√
α

s
sinh

(√
s

α
x

)
v̂(s)

=
(
e
√

s
α
x + e−

√
s
α
x
) û(s)

2
+
(
e
√

s
α
x − e−

√
s
α
x
)√α

s

v̂(s)

2

=
e
√

s
α
x

2

(
û(s) +

√
α

s
v̂(s)

)
+
e−
√

s
α
x

2

(
û(s)−

√
α

s
v̂(s)

)

203



Optimal Sensor Placement & Path Planning in Distributed Environments Chapter 14

Observe that for the limit of ψ̂(x, s) as x → ∞ to vanish, we have û(s) +
√

α
s
v̂(s) = 0.

Then

ψ̂(x, s) = e−
√

s
α
x.

Finally, the output is given by y(t) = ψ(L, t), then

ŷ(s)

û(s)
= e−

√
s
α
L. (14.A.2)

The frequency response is then given by

ŷ(j2πf)

û(j2πf)
= e−

√
j2πf
α

L = e−
√

2πf
α
L
√
j = e

−
√

2πf
α
L 1√

2
(1+j)

= e−
√
L2πf
α e−j

√
L2πf
α

Therefore the magnitude and phase of the transfer function are given by

∥∥∥∥
ŷ(j2πf)

û(j2πf)

∥∥∥∥ = e−
√
L2πf
α Phase

(
ŷ(j2πf)

û(j2πf)

)
= −

√
L2πf

α
. (14.A.3)

For L = 5m, α = 0.05m2/s, the frequency response is depicted in Figure 14.A.1.

14.A.2 Solution of the Heat Equation with Inhomogeneous Dirich-

let and Homogeneous Neumann Boundary Conditions,

Method 1

To transformML in (14.A.1) so that the boundary conditions become homogeneous,

we define a new state space variable Ψ(x, t) := ψ(x, t) − u(t). Hence, the dynamics in

the new state space variable Ψ can be expressed as

∂tΨ(x, t) = α∂2
xΨ(x, t)− u̇(t)

Ψ(0, t) = 0

∂xΨ(L, t) = 0

Ψ(x, 0) = g(x)− u(0).

(14.A.4)
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Figure 14.A.1: Frequency Response at a location x = L of a semi-infinite rod heated at

x = 0.

Now, we will solve the easier problem (14.A.4) since it has homogeneous boundary con-

ditions. Define the following operator

∇Ψ(x) = ∂2
xΨ(x); with domainD(∇) := {Ψ ∈ L2[0, L]; ∂2

x ∈ L2[0, L]; Ψ(0) = ∂xΨ(L) = 0}.

It can be shown that this operator is self-adjoint and it has a full set of orthonormal

eigenfunctions given by:

λn = −
(
n+

1

2

)2
π2

L2
←→ φn(x) =

√
2

L
sin(
√
−λnx) n ∈ N.

Knowing that the eigenfunctions for n ∈ N form an orthonormal basis, we can expand

any Ψ ∈ D(∇) as

Ψ(x, t) =
∑

n∈N

Ψ̂n(t)φn(x) ←→ Ψ̂n(t) = 〈φn,Ψ(., t)〉,
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where 〈., .〉 is the L2[0, L] inner product defined as 〈f, g〉 =
∫ L

0
f(x)g(x)dx. We substitute

the basis expansion in (14.A.4) and proceed as

∑

n∈N

d

dt
Ψ̂n(t)φn(x) = α

∑

n∈N

Ψ̂n(t)λnφn(x)− u̇(t)

=⇒ 〈φk,
∑

n∈N

d

dt
Ψ̂n(t)φn〉 = 〈φk,

∑

n∈N

αΨ̂n(t)λnφn − u̇(t)〉 (Project on φk)

d

dt
Ψ̂k(t) = αλkΨ̂k(t)−

∫ L

0

u̇(t)φk(x)dx

d

dt
Ψ̂k(t) = αλkΨ̂k(t)− u̇(t)

√
2

L

∫ L

0

sin(
√
−λkx)dx

d

dt
Ψ̂k(t) = αλkΨ̂k(t) + u̇(t)

√
2

L

1√
−λk

cos(
√
−λkx)

∣∣∣∣
L

0

d

dt
Ψ̂k(t) = αλkΨ̂k(t) + u̇(t)

√
2

L

L

(n+ 1
2
)π

(
cos(

√
−λkL)− 1

)

d

dt
Ψ̂k(t) = αλkΨ̂k(t) + µku̇(t)

(
µk := −

√
2L

(k + 1
2
)π

)
.

The initial condition can be calculated as

Ψ̂k(0) = 〈φk,Ψ(., 0)〉 = 〈φk, g − u(0)〉 = 〈φk, g〉 − u(0)

√
2

L

∫ L

0

sin(
√
−λkx)dx

= ĝ + µku(0)

Therefore, the coefficients of Ψ(x, t) in the basis {φk}k∈N evolves according to the following

set of decoupled ordinary differential equations

d

dt
Ψ̂k(t) = αλkΨ̂k(t) + µku̇(t); Ψ̂k(0) = ĝ + µku(0),

where µk := −
√

2L
(k+ 1

2
)π

. The solution of these decoupled ODEs is easily obtained using the

variation of constants formula

Ψ̂n(t) = eαλntΨ̂n(0) +

∫ t

0

eαλn(t−τ)µnu̇(τ)dτ ; Ψ̂n(0) = ĝ + µku(0).

We, now use integration by parts to express Ψ̂n(t) in terms of u(t) rather than u̇(t).

Ψ̂n(t) = eαλntΨ̂n(0) + µne
αλnt

∫ t

0

e−αλnτ u̇(τ)dτ
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= eαλntΨ̂n(0) + µne
αλnt

(
e−αλnτu(τ)

∣∣∣∣
t

0

+ αλn

∫ t

0

e−αλnτu(τ)dτ

)

= eαλntΨ̂n(0) + µne
αλnt

(
e−αλntu(t)− u(0) + αλn

∫ t

0

e−αλnτu(τ)dτ

)

= eαλnt
(
ĝ + µnu(0) + µn

(
e−αλntu(t)− u(0) + αλn

∫ t

0

e−αλnτu(τ)dτ

))

= eαλntĝ + µnu(t) + αλnµn

∫ t

0

eαλn(t−τ)u(τ)dτ.

The solution of (14.A.4) can thus be written as

Ψ(x, t) =
∑

n∈N

(
eαλntĝ + µnu(t) + αλnµn

∫ t

0

eαλn(t−τ)u(τ)dτ

)
φn(x)

Therefore, the solution in the original state space is given by

ψ(x, t) = u(t) +
∑

n∈N

(
eαλntĝ + µnu(t) + αλnµn

∫ t

0

eαλn(t−τ)u(τ)dτ

)
φn(x)

Transfer Function: In this section, we assume that g(x) = 0, then the output y(t)

can be calculated as

y(t) = ψ(L, t) = u(t) +
∑

n∈N

(
µnu(t) + αλnµn

∫ t

0

eαλn(t−τ)u(τ)dτ

)
φn(L)

= u(t) +
∑

n∈N

(
µnu(t) + αλnµn

∫ t

0

eαλn(t−τ)u(τ)dτ

)√
2

L
sin(
√
−λnL)

= u(t) +

√
2

L

∑

n∈N

(
µnu(t) + αλnµn

∫ t

0

eαλn(t−τ)u(τ)dτ

)
(−1)n

= u(t)−
√

2

L

∑

n∈N

(−1)n
√

2L

(n+ 1
2
)π
u(t)

+ α

√
2

L

∑

n∈N

(−1)n
(
n+

1

2

)2
π2

L2

√
2L

(n+ 1
2
)π

∫ t

0

eαλn(t−τ)u(τ)dτ

= u(t)− 2

π
u(t)

∑

n∈N

(−1)n

n+ 1
2

+ α
2π

L2

∑

n∈N

(−1)n
(
n+

1

2

)∫ t

0

eαλn(t−τ)u(τ)dτ

= u(t)− 4

π
u(t)

∑

n∈N

(−1)n

2n+ 1
+ α

2π

L2

∑

n∈N

(−1)n
(
n+

1

2

)∫ t

0

eαλn(t−τ)u(τ)dτ
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= u(t)− 4

π
u(t) tan−1(1) + α

2π

L2

∑

n∈N

(−1)n
(
n+

1

2

)∫ t

0

eαλn(t−τ)u(τ)dτ

= u(t)− 4

π
u(t)

π

4
+ α

2π

L2

∑

n∈N

(−1)n
(
n+

1

2

)∫ t

0

eαλn(t−τ)u(τ)dτ

=⇒ y(t) = α
2π

L2

∑

n∈N

(−1)n
(
n+

1

2

)∫ t

0

eαλn(t−τ)u(τ)dτ

This is an input-output dynamical system that can be realized in state space as explained

next. First define a family of state space variables as follows:

zn(t) :=

∫ t

0

eαλn(t−τ)(−1)n
(
n+

1

2

)
u(τ)dτ, (n ∈ N).

Then the output can be written as

y(t) = α
2π

L2

∑

n∈N

zn(t).

The state space realization can thus be expressed as an infinite dimensional system as

follows:




d

dt




z0(t)

z1(t)

...

zn(t)

...




=




αλ0

αλ1

. . .

αλn

. . .







z0(t)

z1(t)

...

zn(t)

...




+




1
2

−3
2

...

(−1)n
(
n+ 1

2

)

...




u(t);




z0(0)

z1(0)

...

zn(0)

...




= 0

y(t) =

[
α 2π
L2 α 2π

L2 · · · α 2π
L2 · · ·

]




z0(t)

z1(t)

...

zn(t)

...




(14.A.5)
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The transfer function is thus obtained by taking Laplace transforms:

ŷ(s) =

[
α 2π
L2 α 2π

L2 · · · α 2π
L2 · · ·

]




1
s−αλ0

1
s−αλ1

. . .

1
s−αλn

. . .







1
2

−3
2

...

(−1)n
(
n+ 1

2

)

...




û(s)

Therefore

Ĥ(s) :=
ŷ(s)

û(s)
= α

2π

L2

∑

n∈N

(−1)n
(
n+ 1

2

)

s+
(
n+ 1

2

)2
α π2

L2

. (14.A.6)

By defining cn := α π2

L2

(
n+ 1

2

)2
, we can rewrite Ĥ(s) as

Ĥ(s) =
2
√
α

L

∑

n∈N

(−1)n
√
cn

s+ cn
←→ H(t) =

2
√
α

L

∑

n∈N

(−1)n
√
cne
−cnt.

14.A.3 Solution of the Heat Equation with Inhomogeneous Dirich-

let and Homogeneous Neumann Boundary Conditions,

Method 2

By taking the Laplace transform ofML in (14.A.1), we obtain a two point Boundary

Value Problem in space, where we treat the Laplace variable s as a parameter. The BVP

can be written as

sψ̂(x, s) = α∂2
xψ̂(x, s)

ψ̂(0, s) = û(s)

∂xψ̂(L, s) = 0

(14.A.7)

The solution to the BVP can be easily calculated to be

ψ̂(x, s) =

(
cosh

(√
s

α
x

)
− sinh

(√
s

α
x

)
tanh

(√
s

α
L

))
û(s).

209



Optimal Sensor Placement & Path Planning in Distributed Environments Chapter 14

Define a transfer function at location x as Ĥ(x, s) := ψ̂(x,s)
û(s)

. This can be rewritten as

Ĥ(x, s) = cosh

(√
s

α
x

)
− sinh

(√
s

α
x

)
tanh

(√
s

α
L

)

=
cosh

(√
s
α
x
)

cosh
(√

s
α
L
)
− sinh

(√
s
α
x
)

sinh
(√

s
α
L
)

cosh
(√

s
α
L
)

=
cosh

(√
s
α

(x− L)
)

cosh
(√

s
α
L
) .

Finally, we have

Ĥ(L, s) =
1

cosh
(√

s
α
L
) . (14.A.8)

Note that this derivation, by comparing with (14.A.6), allows us to compute the following

sum (for α = 1 and L = π)

2

π

∑

n∈N

(−1)n
n+ 1

2

s+
(
n+ 1

2

)2 =
1

cosh (π
√
s)
.

For L = 5m, α = 0.05m2/s, the frequency response is depicted in Figure 14.A.2. Observe

that the ga

14.B Derivation of Sufficient Conditions of Optimal-

ity: A Finite Dimensional Example

In this appendix, we derive the necessary conditions of optimality of the sensor motion

problem of Chapter 14. The setting considered here is the finite dimensional setting for

simplicity.

14.B.1 System Dynamics

Consider the following linear, finite dimensional dynamical system

ψ̇(t) = Aψ(t) + w(t); ψ(0) = ψ0

y(t) = C(p(t))ψ(t) + v(t);

(14.B.1)
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Figure 14.A.2: Frequency Response at a location x = L of a Finite rod heated at x = 0.

where w(t) and v(t) are zero-mean Gaussian White Noise, such that

E{w(t)wT (t)} := Qδ(t− τ)

E{v(t)vT (t)} := Rδ(t− τ)

and p(t) ∈ R is a scalar variable that parameterizes one sensor. The dimensions are given

below:

ψ(t), w(t) ∈ RN ; y(t), v(t), p(t) ∈ R

A ∈ RN×N ; C(p(t)) ∈ R1×N

Q = QT ≥ 0 ∈ RN×N ; R > 0 ∈ R
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14.B.2 Sensor Dynamics

Let the sensor dynamics be governed by the state space equation

ż(t) = Asz(t) +Bsu(t); z(0) = z0

p(t) = Csz(t);

(14.B.2)

where z(t) and u(t) are the state space variable and control of the sensor dynamics,

respectively. The dimensions are given below:

z(t) ∈ RNz ; u(t) ∈ RNu ; p(t) ∈ R

As ∈ RNz×Rz ; Bs ∈ RNz×Nu ; Cs ∈ R1×Nz

14.B.3 Optimal Control Problem: Path Planning for Optimal

State Estimation

Let the state estimate and estimation error be denoted by ψ̂(t) and e(t), respectively

such that

ψ̂(t) := E{ψ(t)}

e(t) := ψ(t)− ψ̂(t)

Furthermore, let the estimation error covariance be denoted by the matrix X(t) =

XT (t) ≥ 0 ∈ RN×N such that

E{e(t)eT (τ)} := X(t)δ(t− τ)
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Let P = P T ≥ 0 ∈ RN×N be some positive semidefinite matrix. Observe that

tr(PX(t)) = tr(PE{e(t)eT (t)})

= E{tr(Pe(t)eT (t))}

= E{tr(eT (t)Pe(t))} (circular property of the trace)

= E{(eT (t)Pe(t)} (eT (t)Pe(t) is a scalar)

= E{||e(t)||2P} (P -Weighed L2-Norm)

This is a Weighed Mean Square Error which will be used as a cost functional to be

minimized for optimal estimation.

14.B.4 Without a Terminal Cost

The optimal path p(t) to estimate ψ(t) can be calculated by solving the following

optimal control problem

min
{p(t);X(t)}

∫ tf

0

(
tr(PX(t)) +

1

2
zT (t)Qsz(t) +

1

2
uT (t)Rsu(t)

)
dt

s.t.





Ẋ(t) = AX +XAT +Q− 1

R
XC(p)TC(p)X; X(0) = X0

ż(t) = Asz(t) +Bsu(t); z(0) = z0

p(t) = Csz(t)

(14.B.3)

where P = P T ≥ 0 ∈ RN×N , Qs = QT
s ≥ 0 ∈ RNz×Nz and Rs = RT

s > 0 ∈ RNu×Nu are

penalization terms.

14.B.4.1 Necessary conditions of optimality: Summary

In this section, we state the necessary conditions of optimality leaving the derivations

for the subsequent sections.
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Necessary Conditions of Optimality: State and Costate Equations

Ẋ = AX +XAT +Q− 1

R
XC(p)TC(p)X; X(0) = X0

ż = Asz +Bsu; z(0) = z0

−Λ̇ =

(
A−K(X, p)C(p)

)T
Λ + Λ

(
A−K(X, p)C(p)

)
+ P ; Λ(T ) = 0

−λ̇ = ATs λ+Qsz −
1

R
CT
s tr

(
XW (p)XΛ

)
; λ(T ) = 0

u = −R−1
s BT

s λ

p = Csz

where

K(X, p) := XCT (p)R−1

W (p̄) :=
d

dp
CT (p̄)C(p̄) + CT (p̄)

d

dp
C(p̄)

.

14.B.4.2 Definitions of Riccati operator and time-differentiation operators

First, we define some useful operators. Define the Riccati operator as follows

R(X, p) := AX +XAT +Q− 1

R
XC(p)TC(p)X (14.B.4)

Define the affine time-differentiation operator D that acts on matrix and vector functions

of time as follows

D : [DX](t) = Ẋ(t); dom(D) = {X;X(t) ∈ RN×N ∀t ∈ [0, T ] and X(0) = X0}

D : [Dz](t) = ż(t); dom(D) = {z; z(t) ∈ RNz ∀t ∈ [0, T ] and z(0) = z0}
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Moreover, define the linear time-differentiation operators D0 and DT that act on matrix

and vector functions of time as follows

D0 : [DX](t) = Ẋ(t); dom(D0) = {X;X(t) ∈ RN×N ∀t ∈ [0, T ] and X(0) = 0}

D0 : [Dz](t) = ż(t); dom(D0) = {z; z(t) ∈ RNz ∀t ∈ [0, T ] and z(0) = 0}

DT : [DΛ](t) = Λ̇(t); dom(DT ) = {Λ; Λ(t) ∈ RN×N ∀t ∈ [0, T ] and Λ(T ) = 0}

DT : [Dλ](t) = λ̇(t); dom(DT ) = {λ;λ(t) ∈ RNz ∀t ∈ [0, T ] and λ(T ) = 0}

It is easy to derive the following relationships between the various time-differentiation

operators

∂

∂X
D = D0,

∂

∂z
D = D0 and D∗0 = −DT

where ∗ is the adjoint operator.

14.B.4.3 Lagrangian Analysis

Let Λ ∈ RN×N and λ ∈ RNz be the Lagrange multipliers associated with the opti-

mization problem (14.B.3). Using appropriate inner products, the Lagrangian L can be

written as follows

L(X, z,Λ, λ, u) := 〈P,X〉+1

2
〈Qsz, z〉+

1

2
〈Rsu, u〉+〈Λ,R(X,Csz)−DX〉+〈λ,Asz+Bsu−Dz〉

where the operators R and D are defined in section 14.B.4.2, and the inner products are

defined as follows

If X1(t), X2(t) ∈ Rn×n ∀t ∈ [0, T ], then 〈X1, X2〉 :=

∫ T

0

tr
(
XT

1 (t)X2(t)
)
dt

If z1(t), z2(t) ∈ Rn ∀t ∈ [0, T ], then 〈z1, z2〉 :=

∫ T

0

zT1 (t)z2(t)dt

The necessary conditions of optimality are obtained by setting the Fréchet derivatives to

zero as follows

[
∂ηL(X̄, z̄, Λ̄, λ̄, ū)

]
(η̃) = 0 for (η, η̃) ∈ {(X, X̃); (z, z̃); (Λ, Λ̃); (λ, λ̃); (u, ũ)}
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Before we start computing the Fréchet derivatives of the Lagrangian, lets calculate the

Fréchet derivative of the Riccati operator defined in (14.B.4).

[
∂XR(X̄, p̄)

]
(X̃) = AX̃ + X̃AT − 1

R

(
X̄CT (p̄)C(p̄)X̃ + X̃CT (p̄)C(p̄)X̄

)

[
∂pR(X̄, p̄)

]
(p̃) = − 1

R
X̄

(
d

dp
CT (p̄)C(p̄) + CT (p̄)

d

dp
C(p̄)

)
X̄p̃

(14.B.5)

where d
dp
C(p) is defined as follows:

C(p) =

[
C1(p) C2(p) · · · CNz(p)

]

d

dp
C(p) =

[
d
dp
C1(p) d

dp
C2(p) · · · d

dp
CNz(p)

]

Now, we are ready to compute the various Fréchet derivatives:

1. Setting
[
∂ΛL(X̄, z̄, Λ̄, λ̄, ū)

]
(Λ̃) = 0, we get the Differential Riccati Equation.

˙̄X(t) = R(X̄(t), p̄(t)); X̄(0) = X0 (14.B.6)

2. Setting
[
∂λL(X̄, z̄, Λ̄, λ̄, ū)

]
(λ̃) = 0, we get the state space equation of the sensor

dynamics.

˙̄z(t) = Asz̄(t) +Bsū(t); z̄(0) = z0 (14.B.7)

3. Let’s calculate LX such that
[
∂XL(X̄, z̄, Λ̄, λ̄, ū)

]
(X̃) := 〈LX , X̃〉.

〈LX , X̃〉 = 〈P, X̃〉+ 〈Λ̄,
[
∂XR(X̄, p̄)

]
(X̃)−D0X̃〉

= 〈P, X̃〉+ 〈Λ̄, AX̃ + X̃AT − 1

R

(
X̄CT (p̄)C(p̄)X̃ + X̃CT (p̄)C(p̄)X̄

)
−D0X̃〉

= 〈P + AT Λ̄ + Λ̄A+DT Λ̄, X̃〉 − 1

R
〈CT (p̄)C(p̄)X̄Λ̄ + Λ̄X̄CT (p̄)C(p̄), X̃〉

= 〈P + AT Λ̄ + Λ̄A+DT Λ̄− 1

R

(
CT (p̄)C(p̄)X̄Λ̄ + Λ̄X̄CT (p̄)C(p̄)

)
, X̃〉

=⇒ LX = P + AT Λ̄ + Λ̄A+DT Λ̄− 1

R

(
CT (p̄)C(p̄)X̄Λ̄ + Λ̄X̄CT (p̄)C(p̄)

)

Setting LX = 0, we get the following costate differential equation:

− ˙̄Λ =

(
A−K(X̄, p̄)C(p̄)

)T
Λ̄+Λ̄

(
A−K(X̄, p̄)C(p̄)

)
+P ; Λ̄(T ) = 0 (14.B.8)
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where K(X, p) := XCT (p)R−1 is the Kalman gain.

4. Let’s calculate Lz such that
[
∂zL(X̄, z̄, Λ̄, λ̄, ū)

]
(p̃) := 〈Lz, z̃〉. Define p̃ := Csz, and

employ the chain rule to calculate the Fréchet derivative of R with respect to z.

〈Lz, z̃〉 = 〈Qsz̄, z̃〉+ 〈Λ̄,
[
∂pR(X̄, p̄)

](
[∂zCsz̄](z̃)

)
〉+ 〈λ̄, Asz̃ −D0z̃〉

= 〈Qsz̄ + ATs λ̄+DT λ̄, z̃〉 − 〈Λ̄,
1

R
X̄

(
d

dp
CT (p̄)C(p̄) + CT (p̄)

d

dp
C(p̄)

)
X̄Csz̃〉

Define

W (p̄) :=
d

dp
CT (p̄)C(p̄) + CT (p̄)

d

dp
C(p̄)

Observe that W (p̄) = W T (p̄) ∈ RN×N . Then

〈Lz, z̃〉 = 〈Qsz̄ + ATs λ̄+DT λ̄, z̃〉 − 〈Λ̄,
1

R
X̄W (p̄)X̄Csz̃〉

Let’s calculate the second term while keeping in mind that Csz̃ is a scaler function

of time.

〈Λ̄, 1

R
X̄W (p̄)X̄Csz̃〉 =

1

R

∫ T

0

tr

(
Λ̄T X̄W (p̄)X̄Csz̃

)
dt

=
1

R

∫ T

0

tr

(
Λ̄T X̄W (p̄)X̄

)
Csz̃dt

=
1

R

∫ T

0

tr

(
X̄W (p̄)X̄Λ̄

)
Csz̃dt

=
1

R
〈tr
(
X̄W (p̄)X̄Λ̄

)
, Csz̃〉

=
1

R
〈CT

s tr

(
X̄W (p̄)X̄Λ̄

)
, z̃〉

Hence,

〈Lz, z̃〉 = 〈Qsz̄ + ATs λ̄+DT λ̄−
1

R
CT
s tr

(
X̄W (p̄)X̄Λ̄

)
, z̃〉

Setting Lz = 0, we get the second costate differential equation:

− ˙̄λ = ATs λ̄+Qsz̄ −
1

R
CT
s tr

(
X̄W (p̄)X̄Λ̄

)
; λ̄(T ) = 0 (14.B.9)
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5. Setting
[
∂uL(X̄, z̄, Λ̄, λ̄, ū)

]
(ũ) = 0, we get the simple relationship that links λ̄ with

ū.

[
∂uL(X̄, z̄, Λ̄, λ̄, ū)

]
(ũ) = 〈Rsū, ũ〉+ 〈λ̄, Bsũ〉

= 〈Rsū+BT
s λ̄, ũ〉

Therefore,

ū = −R−1
s BT

s λ̄ (14.B.10)

Equations (14.B.6), (14.B.7), (14.B.8), (14.B.9) and (14.B.10) form the set of necessary

conditions of optimality.
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[31] Andreas J Häusler, Alessandro Saccon, António Pedro Aguiar, John Hauser, and
António M Pascoal. Energy-optimal motion planning for multiple robotic vehi-
cles with collision avoidance. IEEE Transactions on Control Systems Technology,
24(3):867–883, 2016.

[32] K Hiramoto, H Doki, and G Obinata. Optimal sensor/actuator placement for active
vibration control using explicit solution of algebraic riccati equation. Journal of
Sound and Vibration, 229(5):1057–1075, 2000.

[33] Roger A Horn and Roy Mathias. An analog of the cauchy–schwarz inequality for
hadamard products and unitarily invariant norms. SIAM Journal on Matrix Analysis
and Applications, 11(4):481–498, 1990.

[34] Ichiro Ito. On the existence and uniqueness of solutions of stochastic integral equa-
tions of the volterra type. Kodai Mathematical Journal, 2(2):158–170, 1979.

[35] Ivana Jovanovic, Luciano Sbaiz, and Martin Vetterli. Acoustic tomography for scalar
and vector fields: theory and application to temperature and wind estimation. Jour-
nal of Atmospheric and Oceanic Technology, 26(8):1475–1492, 2009.

[36] D Keith Wilson and Dennis W Thomson. Acoustic tomographic monitoring of
the atmospheric surface layer. Journal of Atmospheric and Oceanic Technology,
11(3):751–769, 1994.

[37] Henry J Kelley. Gradient theory of optimal flight paths. Ars Journal, 30(10):947–
954, 1960.

[38] Donald E Kirk. Optimal control theory: an introduction. Courier Corporation, 2012.

[39] Emery M Ku, Stephen J Elliott, and Ben Lineton. Statistics of instabilities in a
state space model of the human cochlea. The Journal of the Acoustical Society of
America, 124(2):1068–1079, 2008.

221



[40] CS Kubrusly and H Malebranche. Sensors and controllers location in distributed
systems—a survey. Automatica, 21(2):117–128, 1985.

[41] M Drew LaMar, Jack Xin, and Yingyong Qi. Signal processing of acoustic signals in
the time domain with an active nonlinear nonlocal cochlear model. Signal processing,
86(2):360–374, 2006.

[42] Jianbo Lu and Robert E Skelton. Mean-square small gain theorem for stochastic
control: discrete-time case. IEEE Transactions on Automatic Control, 47(3):490–
494, 2002.

[43] Gisiro Maruyama. Continuous markov processes and stochastic equations. Rendi-
conti del Circolo Matematico di Palermo, 4(1):48, 1955.

[44] Raman Mehra and R Davis. A generalized gradient method for optimal control prob-
lems with inequality constraints and singular arcs. IEEE Transactions on Automatic
Control, 17(1):69–79, 1972.

[45] BCJ Moore. Parallels between frequency selectivity measured psychophysically and
in cochlear mechanics. 1986.

[46] Stephen T Neely. Finite difference solution of a two-dimensional mathematical model
of the cochlea. The Journal of the Acoustical Society of America, 69(5):1386–1393,
1981.

[47] Stephen T Neely and DO Kim. A model for active elements in cochlear biomechanics.
The Journal of the Acoustical Society of America, 79(5):1472–1480, 1986.

[48] Stephen J Norton. Tomographic reconstruction of 2-d vector fields: application to
flow imaging. Geophysical Journal International, 97(1):161–168, 1989.

[49] AL Nuttall, K Grosh, J Zheng, E De Boer, Y Zou, and Tianying Ren. Spontaneous
basilar membrane oscillation and otoacoustic emission at 15 khz in a guinea pig.
Journal of the Association for Research in Otolaryngology, 5(4):337–348, 2004.

[50] Bernt Øksendal. Stochastic differential equations. In Stochastic differential equa-
tions, pages 65–84. Springer, 2003.

[51] Andy Packard and John Doyle. Structured singular value with repeated scalar
blocks. 1988.

[52] Seon Ki Park and Liang Xu. Data assimilation for atmospheric, oceanic and hydro-
logic applications, volume 2. Springer Science & Business Media, 2013.

[53] Pablo A Parrilo and Sven Khatri. On cone-invariant linear matrix inequalities. IEEE
Transactions on Automatic Control, 45(8):1558–1563, 2000.

222



[54] James O Pickles. An introduction to the physiology of hearing, volume 2. Academic
press London, 1988.

[55] Anil V Rao. A survey of numerical methods for optimal control. Advances in the
Astronautical Sciences, 135(1):497–528, 2009.

[56] Alessandro Saccon, John Hauser, and Alessandro Beghi. Trajectory exploration
of a rigid motorcycle model. IEEE Transactions on Control Systems Technology,
20(2):424–437, 2012.

[57] Charles R Steele and Larry A Taber. Comparison of wkb and finite difference
calculations for a two-dimensional cochlear model. The Journal of the Acoustical
Society of America, 65(4):1001–1006, 1979.

[58] RL Stratonovich. A new representation for stochastic integrals and equations. SIAM
Journal on Control, 4(2):362–371, 1966.

[59] Charles Van Loan. Computing integrals involving the matrix exponential. Technical
report, Cornell University, 1977.

[60] JL Willems. Mean square stability criteria for stochastic feedback systems. Inter-
national Journal of Systems Science, 4(4):545–564, 1973.

[61] Hong-Kun Xu. Averaged mappings and the gradient-projection algorithm. Journal
of Optimization Theory and Applications, 150(2):360–378, 2011.

[62] Kemin Zhou, John Comstock Doyle, Keith Glover, et al. Robust and optimal control,
volume 40. Prentice hall New Jersey, 1996.

[63] A Ziemann, K Arnold, and A Raabe. Acoustic tomography in the atmospheric
surface layer. In Annales Geophysicae, volume 17, pages 139–148. Springer, 1998.

223



Chapter 15

Conclusion & Future Directions

The first part of the dissertation presented a framework to track mean-square stability
and performance of linear time-invariant systems in feedback with multiplicative stochas-
tic uncertainties. The analysis was carried out using a purely input/output approach
which uncovered new tools that are borrowed from stochastic calculus. The main as-
sumption of our analysis is that the multiplicative uncertainties are white (uncorrelated)
in time. A future direction in this line of research is to consider colored (temporally
correlated) uncertainties as well. Furthermore, although our analysis encompasses infi-
nite dimensional systems, but the number of uncertain parameters considered are finite.
Future work would include extending our results to spatially distributed uncertainties
that obey certain symmetries (for example spatially invariant or circulant systems).

The second part applied the theory developed for structured stochastic uncertainty
to stochastic cochlear models. Stochastic disturbances were assumed to infiltrate the
cochlea within the cochlear amplifier, and thus mean-square stability and performance
analysis was carried out. Future work includes studying the effect of stochastic uncer-
tainties in different structural parameters in the cochlea, such as the fluid density.

The third part suggested an alternative derivations for existing numerical methods
to solve optimal control problems using a function-space approach. This approach gave
rise to geometrical interpretations and insights that lead to the development of two new
numerical methods as well. Future work in this line of research would involve adding
inequality constraints to the optimal control problems that are considered and following
the same function-space approach.

Finally, the fourth part lay down a theoretical framework to design optimal trajecto-
ries for mobile sensors whose goal is to minimize the estimation error of an unknown field.
The mobile sensors are assumed to move in stochastic and distributed environments to
collect measurements of an unknown field whose underlying physical laws are available.
Although the underlying dynamics are stochastic, we were able to pose the problem as
a deterministic optimal control problem whose states are operator valued. Future work
would involve using efficient numerical methods to solve such large scale optimal control
problems.

224


	Curriculum Vitae
	Abstract
	Introduction
	Part I Structured Stochastic Uncertainty
	An Input-Output Approach to Structured Stochastic Uncertainty in Continuous Time
	Preliminaries and Notation
	Problem Formulation
	Main Results
	Application to State Space Realizations & SDEs
	Stochastic Block Diagram Conversion Technique
	Loop Gain Operator & MSS Conditions
	Conclusion

	Appendices
	Interpretations of Stochastic Convolution
	Calculation of DN(t) in (2.25)
	Second Moments of Cross Terms
	Useful Equalities & Inequalities
	Total & Quadratic Variations of Deterministic Functions
	Second Moment of Quadratic Variations


	Part II Investigating Cochlear Instabilities Using Structured Stochastic Uncertainty
	Introduction & Brief Physiology
	Mean-Square Stability Analysis of the Cochlea
	Biomechanical Model of the Cochlea
	Stochastic Uncertainties in the Active Gain
	Instabilities in Linearized Cochlear Dynamics

	Nonlinear Stochastic Simulation of the Cochlea
	Nonlinear Descriptor State Space Formulation in Continuous Space-Time
	Description of the Numerical Method for Simulations
	Simulation of the Nonlinear Stochastic Model
	Discussion
	Conclusion and Future Work

	Appendices
	Mass Operators
	Matrix Approximation of Spatial Operators
	System Linearization
	Equivalent Rectangular Bandwidth


	Part III Function Space Approach to Numerical Methods in Optimal Control
	Introduction, Notation & Preliminaries
	Problem Statement, Notation & Preliminaries
	Brief Tutorial on Optimization in Function-Space
	Gradient and Hessian of J

	Lagrangian Approach
	Gradient of the Lagrangian
	Hessian of the Lagrangian
	Second Order Method for the Lagrangian Approach

	Substitution Approach
	Gradient of J(u)
	Hessian of J(u)
	First Order Method for the Substitution Approach
	Second Order Method for the Substitution Approach

	Projection-Based Approach
	Projection Operator
	Gradient of J
	Hessian of J
	Second Order Method for the Projection Approach

	Preconditioned Constrained-Gradient Descent 
	Geometric Description of the PCGD
	Connection with the General Projection Approach
	Illustrative Numerical Examples

	Appendices
	Directional Derivative & Adjoint
	Rigged Hilbert Space and Bilinear Forms
	Directional Derivatives & Adjoint of the System Operator
	Directional Derivatives & Adjoint of the Projection Operator
	Replacing ST* with a Boundary Condition


	Part IV Optimal Estimation & Tomographic Sensing in Distributed Environments
	Introduction
	Acoustic Tomography & Estimation of Static Temperature Fields
	Acoustic Tomography for Static Temperature Fields
	Posing the Inverse Problem
	Solution Schemes for the Inverse Problem
	Case Study 1: Estimating a Static Temperature Field on a Rectangle
	Case Study 2: Temperature Reconstruction on a Disk, Analytical Example

	Estimation of Dynamic Distributed Fields Via Tomographic Sensing
	Formulation of the Dynamic Distributed Estimation Problem
	Case Study: Dynamic Acoustic Tomography of Temperature Fields

	Optimal Sensor Placement & Path Planning in Distributed Environments
	Optimal Static Sensor Placement
	Optimal Sensor Path Planning
	Conclusion and Future Work

	Appendices
	Heat Equation on a Rod: Transfer Functions
	Derivation of Sufficient Conditions of Optimality: A Finite Dimensional Example

	Bibliography
	Conclusion & Future Directions


