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Abstract

Topics in Modeling of Cochlear Dynamics: Computation, Response and Stability
Analysis

by

Maurice G. Filo

This thesis touches upon several topics in cochlear modeling. Throughout the literature,
mathematical models of the cochlea vary according to the degree of biological realism
to be incorporated. This thesis casts the cochlear model as a continuous space-time
dynamical system using operator language. This framework encompasses a wider class
of cochlear models and makes the dynamics more transparent and easier to analyze before
applying any numerical method to discretize space. In fact, several numerical methods are
investigated to study the computational e�ciency of the finite dimensional realizations in
space. Furthermore, we study the e↵ects of the active gain perturbations on the stability
of the linearized dynamics. The stability analysis is used to explain possible mechanisms
underlying spontaneous otoacoustic emissions and tinnitus. On a di↵erent page, Dynamic
Mode Decomposition (DMD) is introduced as a useful tool to analyze the response of
nonlinear cochlear models. Cochlear response features are illustrated using DMD which
has the advantage of explicitly revealing the spatial modes of vibrations occurring in the
Basilar Membrane (BM). Finally, we address the dynamic estimation problem of BM
vibrations using Extended Kalman Filters (EKF). Due to the limitations of noninvasive
sensing schemes, such algorithms are inevitable to estimate the dynamic behavior of a
living cochlea.
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Chapter 1

Introduction & Brief Physiology

The physiological basis for cochlear sound processing continues to attract increased at-
tention particularly with the advent of in vivo recordings in living animals ([1], [2], [3],
[4]). Early in the past century (1937), the physical understanding of sound processing in
the mammalian ear, particularly the cochlea, lead to the development of the nowclassical
audio frequency decompositions (the Mel spectrum) which had a salient impact in the
automated processing, storage, and understanding of sound signals ([5], [6], [7], [8]). It
also became clear that even at this early stage of the auditory stream, sound pressure
waves undergo active and nonlinear processing that impart an increased sensitivity to low
amplitude sounds and an exquisite frequency selectivity in mechanical vibration that are
subsequently transduced into the electrical signals traveling along the auditory nerve ([9],
[10], [11], [12]). Moving higher in the auditory stream, several experiments looked into
the neural signatures of sound features, such as pitch and complex tones in the auditory
cortex ([13], [14], [15]).

With continuing investigation of the auditory pathways and availability of data, the
introduction of e�cient modeling of the various subsystems involved has become increas-
ingly valuable both for scientific discovery and engineering. In addition to guiding exper-
imental design, deciphering key players in audio perception can potentially impact the
development of novel signal processing tools that increase the naturalness and robustness
of sounds in audio applications.

This thesis touches upon several topics on the cochlea varying from mathematical
modeling to numerical methods and stability analysis. Furthermore, tools such as Dy-
namic Mode Decomposition (DMD) and Kalman filters are employed as means of ana-
lyzing cochlear response. First, in chapter 2, we reformulate an existing class of cochlear
models in a continuous space-time, descriptor state space form using operator language.
This form has two advantages: (a) it encompasses a wider class of cochlear models and
(b) it makes the dynamics more transparent and easier to analyze before applying any nu-
merical method (that is, before discretizing space). In chapter 3, we investigate di↵erent
numerical methods that realize the various spatial operators of the mathematical model.
With the numerical methods in hand, we study the possible sources of instabilities in

1



Introduction & Brief Physiology Chapter 1

Figure 1.1: Ear Anatomy

chapter 4. In chapter 5, we show that Dynamic Mode Decomposition (DMD) is a useful
tool to analyze cochlear response. Finally, in chapter 6, we apply the extended Kalman
filter as a means of estimating the basilar membrane vibrations assuming we are given a
set of measurements.The rest of this chapter gives a brief exposé of the physiology of the
ear as an adaptive transduction device. For a more thorough reading on the physiology
of the ear, we refer the reader to [16].

The primate ear is built to adapt for di↵erent sound intensity levels and across the
entire audible frequency range (20Hz to 20 kHz). It is composed anatomically, of three
principal parts: outer, middle and inner ear (refer to Figure 1.1). The outer ear is
mainly composed of the pinna and the external auditory canal. The pinna collects and
transforms the sound waves and plays a role in sound source localization. The external
auditory canal serves as a filter, which resonates and amplifies tones ranging between 3
and 4 kHz. The middle ear is mainly composed of the ear drum (tympanic membrane),
the ossicles and the neighboring cavity. Sound pressure waves pass through the external
ear canal and reach the eardrum causing it to vibrate. The neighboring cavity balances
the pressure between the middle and outer ear thus preventing eardrum vibrations in the
absence of sound waves. Induced eardrum vibrations are then transmitted to the inner
ear via three bone structures (ossicles) that collectively act both as an amplifier of the
vibration force and as an impedance matching device between the air medium (middle
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Figure 1.2: (a) Stretched Cochlea (b) Cochlear Partition

ear) and fluid medium (inner ear) thus preventing excessive energy loss as waves travel
between the two di↵erent media. In the inner ear, the cochlea is the organ where the main
nonlinear biomechanical processing takes place. It is a sensory organ where sound signals
are transformed into electrical signals. The cochlea is divided into two chambers: Scala
Vestibuli (SV) and Scala Tympani (ST) filled with incompressible fluid and are partly
separated by the cochlear partition (refer to Figure ). At one end of the SV, the oval
window acts as an entry port where pressure waves arriving from the stapes of the middle
ear enter the inner ear. These waves travel along the SV and enter the second chamber
ST through a connection point (Helicotrema). Finally, a round window at the other end
of the ST serves to release pressure traveling in the incompressible fluid. As the pressure
waves travel along the two chambers, fluid pressure fluctuations permeate the first wall
of the cochlear partition to cause vibrations in two connected wall structures termed the
tectorial membrane (TM) and basilar membrane (BM). Anchored in the BM are rows of
thin cells termed inner and outer hair cells which are moved as the two membranes vibrate
in di↵erent directions. The inner hair cells are the main nerve cells that transduce the
mechanical vibrations to electrical impulses. Finally, the outer hair cells act to amplify
vibrations specifically under low pressure fluctuations. The mechanical characteristics of
the BM varies along its length from being narrow and sti↵ at the oval window (entry
point) to being wide and compliant at the apex. This party endows the cochlea with
spatially-tuned resonances: lower frequencies cause slow vibrations closer to the apex
while higher frequencies are closer to the oval window. Other factors that contribute
to cochlear response include dynamics of the fluid and active feedback of the outer hair

3
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cells.
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Chapter 2

Mathematical Model

This chapter develops the details of the mathematical model. After describing the gov-
erning dynamics, the mathematical model is recast in a continuous space-time, descriptor
form using operator language. The mathematical model in this thesis is based on [17].
However, our operator reformulation encompasses a wider class of cochlear models ([18],
[19], [20], [21] among others). First, we present Table 2.1 that summarizes the model
parameters with their numerical values that are going to be used throughout the thesis.

2.1 Model Dynamics

This section sequentially introduces the mechanical stages that describe the propaga-
tion of the vibrations in the ear. The dynamics of the middle ear is first given. Then the
macro and micro-mechanical stages are introduced along with the mathematical model
of the active gain.

2.1.1 Middle Ear

Starting with the middle ear, a second order mass-damping-spring system (2.1) is
utilized to model air wave transformation and amplification, prior to its injection to the
inner ear at the oval window (stapes). The input to the middle ear is the pressure at the
ear drum, and the output is the displacement of the stapes.

pe(t) = mms̈(t) + cmṡ(t) + kms(t)

ṡ(0) = s(0) = 0
(2.1)

where s(t) is the acceleration of the stapes, pe(t) is the air pressure wave at the ear
drum, and mm, cm and km are the mass, damping and sti↵ness factors of the middle
ear respectively. Note that the terminologies, description and numerical values of the
model parameters are given in Table 2.1. Arriving at the inner ear, a macro-mechanical

5
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Symbols Description Numerical Values Units
mm Mass per unit area of the middle ear 6.7⇥ 10�3 g.cm�2

cm Damping per unit area of the middle ear 2.36⇥ 102 dyn.s.cm�3

km Sti↵ness per unit area of the middle ear 4.23⇥ 106 dyn.cm�3

H Height of the extended cochlea 0.1 cm
L Length of the extended cochlea 2.5 cm
⇢ Cochlea fluid density 0.1 g.cm�3

Nx Number of grid points along the BM/TM
Ny Number of grid points along the fluid chamber
�x Discretization step along the BM/TM cm
�y Discretization step along the fluid chamber cm
x Spatial variable along the length of the extended cochlea cm
y Spatial variable along the height of the extended cochlea cm
m1 Mass per unit area of the BM 3⇥ 10�3 g.cm�2

m2 Mass per unit area of the TM 5⇥ 10�2 g.cm�2

c1(x) Damping per unit area at location x of the BM 2e�0.2773x(20 + 1500e�2x) dyn.s.cm�3

c2(x) Damping per unit area at location x of the TM 2e�0.2773x(10e�2.2x) dyn.s.cm�3

c3(x) BM/TM coupled damping per unit area at location x 2e�0.2773(2e�0.8x) dyn.s.cm�3

c4(x) Active damping per unit area at location x 2e�0.2773x(1040e�2x) dyn.s.cm�3

k1(x) Sti↵ness per unit area at location x of the BM 1.1⇥ 109e�4x dyn.cm�3

k2(x) Sti↵ness per unit area at location x of the TM 7⇥ 106e�4.4x dyn.cm�3

k3(x) BM/TM coupled sti↵ness per unit area at location x 1⇥ 107e�4x dyn.cm�3

k4(x) Active sti↵ness per unit area at location x 6.15⇥ 108e�4x dyn.cm�3

✓ Nonlinearity coupling factor 0.5
� Spreading factor 0.08 cm

Pref Pressure reference at the threshold of hearing 2⇥ 10�4 dyn.cm�2

R BM displacement normalization factor 1⇥ 10�7 cm
u(x, t) BM displacement at location x at time t cm
v(x, t) TM displacement at location x at time t cm
s(t) Stapes displacement at time t cm
pe Pressure at the ear drum at time t dyn.cm�2

p(x, y, t) Fluid pressure di↵erence at location (x, y) dyn.cm�2

�0(x) Linearized active gain profile at location x

Table 2.1: Parameter Description and Numerical Values

6
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and a micro-mechanical stage are introduced to produce BM vibrations in the cochlear
partition as detailed next.

2.1.2 Macro-Mechanical Stage

This stage models the fluid dynamics responding to the vibration of the stapes. The
cochlea has a spiral shape; however, for simplification purposes, it is stretched and
rectified to become a rectangular shape as shown in Figure 2.1. Let pf (x, y, t) rep-
resent the fluid pressure at location (x, y) at time t. Thus the pressure di↵erence is
(x, y, t) = pf (x, y, t) � pf (x, y, t). Since, p(x,�y, t) = �p(x, y, t) and the model deals
with the pressure di↵erence rather than the pressure itself, the model can be simplified
to only one chamber as illustrated in Figure 2.1. Linearizing the Navier-Stokes equations

Figure 2.1: Model of the Stretched Cochlea

under the assumptions that the fluid is incompressible, inviscid and the vibrations of the
cochlear partitions are negligible with respect to the cochlear dimensions, we arrive at a
boundary value problem (summarized in Figure 2.2) where the Laplacian of the pressure
di↵erence inside the simplified chamber is zero. Here, the Basal wall at (x = 0) is moving
with the stapes and the chamber floor at (y = 0) is moving with the BM. Therefore,
the pressure variation along the x-axis (y-axis) is dependent on the force acting on the
stapes (BM), respectively. On the other hand, the upper wall is considered to be rigid
thus the vertical variation of the pressure di↵erence is zero. Finally, the boundary at
(x = L) is considered to be a pressure release end. For future reference, the boundary

7
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Figure 2.2: Boundary Value Problem

value problem is summarized in (2.2).

(
@2

@x2
+

@2

@y2
)p(x, y, t) = 0

@

@x
p(0, y, t) = 2⇢

d2

dt2
s(t)

p(L, y, t) = 0

@

@y
p(x, 0, t) = 2⇢

@2

@t2
u(x, t)

@

@y
p(x,H, t) = 0

(2.2)

2.1.3 Micro-Mechanical Stage

This stage governs the dynamics of the cochlear partition represented by the two
lumped membranes: the tactorial and basilar membranes. Figure 2.3 shows the model
which is comprised of two arrays of second order mass-damper-spring systems decoupled
horizontally but locally coupled vertically. This stage responds to the pressure di↵erence
that resulted from the Macro-Mechanical stage. Note that although individual systems in
the array are decoupled horizontally, the coupling does exist via the fluid pressure within
the cochlear partition and in the two chambers. The resultant system of equations is
written in matrix form in (2.3).

mP
@2

@t2
⇠(x, t) + cP (x)

@

@t
⇠(x, t) + kP (x)⇠(x, t) = FP (x, t) (2.3)

8
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where

⇠(x, t) =



u(x, t)
v(x, t)

�

FP (x, t) =



p(x, 0, t)
0

�

mP =



m1 0
0 m2

�

cP (x) =



c1(x) + c3(x) �c3(x)
�c3(x) c2(x) + c3(x)

�

kP (x) =



k1(x) + k3(x) �k3(x)
�k3(x) k2(x) + k3(x)

�

u(x, t) and v(x, t) are the BM and TM displacements, respectively. As seen earlier,

Figure 2.3: Model of the Cochlear Partition

the fluid pressure is applied on the cochlear partition. This corresponds to the passive
excitation of the latter. To account for the Outer Hair cells which are responsible for the
active nature of the cochlea, another active force term is introduced to (2.3). This active
force depends on the di↵erence between the TM/BM displacements and velocities and is
shown in (2.4).

FA(x, t) =



�
⇥

c4(x)
@
@t
+ k4(x)

⇤

[u(x, t)� v(x, t)]
0

�

(2.4)

9
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Including the active term in the passive micro-mechanical model shown in (2.3) yields
the active micro-mechanical model shown in (2.5).

mp
@2

@t2
⇠(x, t)+[cp(x)� �cA(x)] @

@t
⇠(x, t)+[kp(x)� �kA(x)] ⇠(x, t) = Fp(x, t) x 2 [0, L]

(2.5)
where

cA(x) =



c4(x) �c4(x)
0 0

�

kA(x) =



k4(x) �k4(x)
0 0

�

� is the active gain which is allowed to vary in a nonlinear nonlocal fashion depending
on the BM profile.

2.1.4 Nonlinear Active Gain

The active gain � is mathematically constructed to capture three essential features
of the cochlear response.

• Compressive nonlinearity: the active gain should be high for small vibrations and
low for large vibrations.

• Critical bands: the active gain at location x depends not only on the vibration at
location x, but also on a range (critical band) centered around location x.

• Distortion products: the active gain should create harmonic frequencies. That is,
the vibrations at locations x do not oscillate at a single frequency (natural frequency
of location x), but also has di↵erent frequencies.

A suggested model for the active gain is given by equation (2.6).

�(x, t) =
�0(x)

1 + ✓ũ(x, t)

ũ(x, t) =

R L

0 e
�(x�s)2

�

2 u2(s,t)
R2 ds

R L

0 e
�(x�s)2

�

2 ds

(2.6)

where �, ✓ and R are constants. Moreover, �0(x) is the full gain profile. That is, when
the basilar membrane is not moving, the active gain is at full throttle �(x, t) = �0(x).
The full gain is typically taken to be unity i.e. �0(x) = 1. Note that the integral in the
denominator is a normalization factor.
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2.2 The Cochlear Model as an Infinite Dimensional

Distributed System: Operator Approach

In this section, we reformulate the model, that was previously developed, using op-
erators. This formulation is easier to write down and analyze since it is independent of
the numerical method used to solve the macro-mechanical stage. Furthermore, the lin-
earization of the model in operator form is easier to carry out. The pressure p(x, 0, t) at
the BM can be thought of as the solution of the macro-mechanical stage given by (2.2).
As a matter of fact, p(x, 0, t) can be seen as the output of a linear time invariant system
with a scalar input: stapes acceleration s̈(t) and a distributed input: BM acceleration
ü(x, t). Therefore, the pressure can be written as a superposition of two linear operators
acting on the inputs: p(x, 0, t) = � (Ms(s̈) +Mf (ü)), where:

Ms : R! L2 ([0, L])

s̈ 7!Ms(s̈)

Mf : L2 ([0, L])! L2 ([0, L])

ü 7!Mf (ü)

(2.7)

such that p(x, 0, t) = �[Ms(s̈)](x, t)� [Mf (ü)](x, t) solves (2.2). Ms and Mf are opera-
tors that correspond to the mass e↵ect of the stapes and fluid on the BM. Hence we term
Mf and Ms as the fluid mass and stapes mass operators, respectively. The complete
model of the cochlea shown in equations (2.5) and (2.6) can thus be written as:



m1 0
0 m2

� 

ü
v̈

�

+



c1 + c3 � �(u)c4 �(u)c4 � c3
�c3 c2 + c3

� 

u̇
v̇

�

+



k1 + k3 � �(u)k4 �(u)k4 � k3
�k3 k2 + k3

� 

u
v

�

= �
Ms(s̈) +Mf (ü)

0

�

[�(u)] (x) =
�0(x)

1 + ✓
⇥G�

�

u2

R2

�⇤

(x)

(2.8)

Note that we dropped the spatial and temporal variables (x and t, respectively) where
necessary for convenience. Ms and Mf are spatial linear time invariant operators that
solve the macro-mechanical stage. G� is a linear operator that performs a normalized
Gaussian weighing.

G� : L2 ([0, L])! L2 ([0, L])

u 7! G�(u) :=
R L

0 e
�(x�s)2

�

2 u(s, t)ds
R L

0 e
�(x�s)2

�

2 ds

(2.9)

Note that L2 ([0, L]) is the space of square integrable functions defined on [0, L].
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By defining the state space variable to be:

 :=

2

6

6

4

u
v
u̇
v̇

3

7

7

5

(2.10)

the system (2.8) can be recast in descriptor state space form as follows:

E @
@t
 = Au + Bs̈ (2.11)

where E , Au and B are matrices of operators defined as follows:

E :=

2

6

6

4

I 0 0 0
0 I 0 0
0 0 m1I +Mf 0
0 0 0 m2I

3

7

7

5

B :=

2

6

6

4

0
0
�Ms

0

3

7

7

5

[�(u)] (x) =
�0(x)

1 + ✓
⇥G�

�

u2

R2

�⇤

(x)

Au :=

2

6

6

4

0 0 I 0
0 0 0 I

�(u)k4 � (k1 + k3) k3 � �(u)k4 �(u)c4 � (c1 + c3) c3 � �(u)c4
k3 �(k2 + k3) c3 �(c2 + c3)

3

7

7

5

I is the identity operator. It is worth to emphasize here that E and B are linear operators,
but Au is a nonlinear operator that depends on the BM displacement u expressed as its
subscript.
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Chapter 3

Numerical Realizations

Capturing sharp cochlear response often demands relatively high computational e↵orts.
Particularly, if cochlear models are to be used for audio signal processing, the computa-
tional load of simulations becomes critical. For such reasons, e�cient numerical methods
were devised to march simulations of the cochlea in time [22]. Furthermore, model or-
der reduction techniques [23] were used. However, less attention was given to numerical
methods that treat the spatial variable. This chapter deals with the numerical methods
to realize three spatial operators: (1) the stapes mass operator Ms, (2) the fluid mass
operator Mf and (3) the Gaussian weighing operator G� given in (2.7) and (2.9). Three
di↵erent methods are explained: finite di↵erence, Chebyshev collocation and a spectral
method.

3.1 Finite Di↵erence Method

To realize the operators using a finite di↵erence method, we first lay down an (Nx +
1)⇥ (Ny + 1) two dimensional grid as shown in Figure 3.1. Thus

xi = i�x �x =
L

Nx

i = 0, 1, 2, ..., Nx

yj = j�y �y =
H

Ny

j = 0, 1, 2, ..., Ny

Discretizing (2.2) in space using central di↵erence approximations of the first and second
spatial derivatives with careful incorporation of the boundary conditions, we obtain a
second order finite di↵erence scheme summarized as follows:

AFDPFD(t) = bFD(t) (3.1)
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where � = �2
x +�2

y and

AFD =
1

�x�y

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

T 2N 0 · · · · · · · · · · · · 0

N T N
. . .

...

0 N T N
. . .

...
...

. . . . . . . . . . . . . . .
...

...
. . . . . . . . . . . . . . .

...
...

. . . N T N 0
...

. . . N T N
0 · · · · · · · · · · · · 0 2N T

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

PFD(t) =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

P0,0(t)
...

PN
x

+1,0(t)
...
...

P0,N
y

+1(t)
...

PN
x

+1,N
y

+1(t)

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

T =

2

6

6

6

6

6

6

4

�2� 2�2
y 0 · · · 0

�2
y �2� �2

y
. . .

...

0
. . . . . . . . . 0

...
. . . �2

y �2� �2
y

0 · · · 0 0 1

3

7

7

7

7

7

7

5

N = �2
x

2

6

6

6

6

6

6

4

1 0 0 · · · 0

0 1 0
. . .

...

0
. . . . . . . . . 0

...
. . . 0 1 0

0 · · · 0 0 0

3

7

7

7

7

7

7

5

bFD(t) = 4⇢
⇣

�yS2s̈(t) +�xS
T
1 Ü(t)

⌘

U(t) =

2

6

6

6

6

6

4

u(x0, t)
u(x1, t)

...
u(xN

x

, t)
u(xNx+1, t)

3

7

7

7

7

7

5

ST
1 =

2

6

6

6

4

Ĩ
0
...
0

3

7

7

7

5

Ĩ =

2

6

6

6

6

6

6

4

1 0 0 · · · 0

0 1 0
. . .

...

0
. . . . . . . . . 0

...
. . . 0 1 0

0 · · · 0 0 0

3

7

7

7

7

7

7

5

S2 =

2

6

6

6

4

1
1
...
1

3

7

7

7

5

⌦

2

6

6

6

4

1
0
...
0

3

7

7

7

5

Finally, the pressure at the lower boundary (y = 0),

P0(t) =
⇥

P0,0(t) P1,0(t) · · · PN
x

�1,0(t) PN
x

,0(t)
⇤T

is given by:

P0(t) = 4⇢S1A
�1
FD

⇣

�yS2s̈(t) +�xS
T
1 Ü(t)

⌘

(3.2)

Therefore, the operators Ms and Mf are realized by the matrices Ms 2 RN
x

+1 and
Mf 2 R(N

x

+1)⇥(N
x

+1), respectively, as follows:

Ms = �4⇢�yS1A
�1
FDS2

Mf = �4⇢�xS1A
�1
FDS

T
1

(3.3)

Next, we construct a numerical realization of the linear operator G� so that the active gain
in (2.6) can be e�ciently calculated. Using the trapezoidal rule on the lower boundary
of the mesh grid in Figure 3.1, we can calculate a realization G� 2 R(Nx+1)⇥(Nx+1) of G�
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Figure 3.1: Finite Di↵erence Spatial Grid

to approximate the integral in (2.9) as follows:

ũ(x, t) ⇡
P

N

x

j=0 e
�(i�j)2�2

x

�

2 u

2(s
j

,t)
R

2 �

x

w
j

P

N

x

j=0 e
�(i�j)2�2

x

�

2
�

x

w
j

=

1

P

N

x

j=0 e
�(i�j)2�2

x

�

2
�

x

w
j

h

e�(i�0)2
�2

x

�

2 e�(i�1)2
�2

x

�

2 · · · e�(i�N

x

+1)2
�2

x

�

2 e�(i�N

x

)2
�2

x

�

2

i

W
U2

(t)

R2

where wj are the integration weights. For the trapezoidal rule, wj = 1 everywhere except
at the two boundaries where they are set to 0.5.

W =

2

6

6

6

6

6

6

4

0.5 0 · · · · · · 0

0 1
. . .

...
...

. . . . . . . . .
...

...
. . . 1 0

0 · · · · · · 0 0.5

3

7

7

7

7

7

7

5

U2(t) =

2

6

6

6

6

6

4

u2(x0, t)
u2(x1, t)

...
u2(xN

x

�1, t)
u2(xN

x

, t)

3

7

7

7

7

7

5

Now, define

Ũ2(t) =

2

6

6

6

6

6

4

ũ2(x0, t)
ũ2(x1, t)

...
ũ2(xN

x

�1, t)
ũ2(xN

x

, t)

3

7

7

7

7

7

5
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G̃� =

2

6

6

6

6

6

6

6

6

4

e�(0�0)2
�2
x

�

2 e�(0�1)2
�2
x

�

2 · · · e�(0�N
x

+1)2
�2
x

�

2 e�(0�N
x

)2
�2
x

�

2

e�(1�0)2
�2
x

�

2 e�(1�1)2
�2
x

�

2 · · · e�(1�N
x

+1)2
�2
x

�

2 e�(1�N
x

)2
�2
x

�

2

...
...

...
...

e�(N
x

�1�0)2
�2
x

�

2 e�(N
x

�1�1)2
�2
x

�

2 · · · e�(N
x

�1�N
x

+1)2
�2
x

�

2 e�(N
x

�1�N
x

)2
�2

x

�

2

e�(N
x

�0)2
�2
x

�

2 e�(N
x

�1)2
�2
x

�

2 · · · e�(N
x

�N
x

+1)2
�2

x

�

2 e�(N
x

�N
x

)2
�2
x

�

2

3

7

7

7

7

7

7

7

7

5

Finally,

G� = diag
⇣

G̃�W.~1
⌘�1

G̃�W (3.4)

where ~1 is a vector of ones and diag(v) is a matrix with the vector v on its diagonal.

3.2 Chebyshev Collocation Method

To realize the operators using a Chebyshev collocation method, we lay down a two
dimensional grid similar to that shown in Figure 3.1, but with a non-uniform step size
as follows:

xi =
L

2

✓

1� cos

✓

⇡i

Nx

◆◆

i = 0, 1, 2, ..., Nx � 1, Nx

yi =
H

2

✓

1� cos

✓

⇡j

Ny

◆◆

j = 0, 1, 2, ..., Ny � 1, Ny

(3.5)

Let Dx and Dy be the Chebyshev di↵erential matrices in the x and y directions respec-
tively. Hence (2.2) is discretized as follows:

⇥

IN
y

+1 ⌦D2
x +D2

y ⌦ IN
x

+1

⇤

PCC(t) = 0
⇥

IN
y

+1 ⌦ (Sx
0Dx)

⇤

PCC(t) = 2⇢~1N
y

+1s̈(t)
⇥

IN
y

+1 ⌦ Sx
L

⇤

PCC(t) = 0

[(Sy
0Dy)⌦ IN

x

+1]PCC(t) = 2⇢Ü(t)

[(Sy
HDy)⌦ IN

x

+1]PCC(t) = 0

(3.6)

where
Sx
0 =

⇥

1 0 · · · 0
⇤

N
x

+1
Sx
L =

⇥

0 · · · 0 1
⇤

N
x

+1

Sy
0 =

⇥

1 0 · · · 0
⇤

N
y

+1
Sy
H =

⇥

0 · · · 0 1
⇤

N
y

+1

⌦ is the Kronecker product, IN
x

+1 and IN
y

+1 are the identity matrices with the corre-
sponding sizes and ~1N

y

+1 is the one vector with the corresponding size. Therefore the
solution of (3.6) is given by

PCC(t) = A†
CCbCC
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where † is the matrix pseudo-inverse and

ACC =

2

6

6

6

6

4

IN
y

+1 ⌦D2
x +D2

y ⌦ IN
x

+1

IN
y

+1 ⌦ (Sx
0Dx)

IN
y

+1 ⌦ Sx
L

(Sy
0Dy)⌦ IN

x

+1

(Sy
HDy)⌦ IN

x

+1

3

7

7

7

7

5

bCC = 2⇢

2

6

6

6

6

6

4

~0(N
x

+1)(N
y

+1)

~1N
y

+1

~0N
y

+1

~0N
x

+1

~0N
x

+1

3

7

7

7

7

7

5

s̈(t) + 2⇢

2

6

6

6

6

4

0(N
x

+1)(N
y

+1)⇥N
x

+1

0N
y

+1⇥N
x

+1

0N
y

+1⇥N
x

+1

IN
x

+1

0N
x

+1⇥N
x

+1

3

7

7

7

7

5

Ü(t)

Therefore, the solution to (3.6) is given by

PCC(t) = 2⇢A†
CCS3s̈(t) + 2⇢A†

CCS4Ü(t)

where

S3 =

2

6

6

6

6

6

4

~0(N
x

+1)(N
y

+1)

~1N
y

+1

~0N
y

+1

~0N
x

+1

~0N
X

+1

3

7

7

7

7

7

5

S4 =

2

6

6

6

6

4

0(N
x

+1)(N
y

+1)⇥N
x

1+1

0N
y

+1⇥N
x

+1

0N
y

+1⇥N
x

+1

IN
x

+1

0N
x

+1⇥N
x

+1

3

7

7

7

7

5

Finally, the pressure at the lower boundary (y = 0) is given by (3.7)

P0(t) = 2⇢S1A
†
CC

⇣

S3s̈(t) + S4Ü(t)
⌘

(3.7)

Finally, the operators Ms and Mf are realized by the matrices Ms 2 RN
x

+1 and Mf 2
R(N

x

+1)⇥(N
x

+1), respectively, as follows:

Ms = �2⇢S1A
†
CCS3

Mf = �2⇢S1A
†
CCS4

(3.8)

3.3 Spectral Method: Basis Expansion

The macro-mechanical stage can be seen as a static linear system with two inputs:
the stapes and basilar membrane vibrations. By the superposition principle of linear
systems, we will study each input by itself and then add them up. So, first, lets consider
the basilar membrane vibration and set the stapes vibration to be zero. In other words,
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lets solve the boundary value problem given by (3.9).

(
@2

@x2
+

@2

@y2
)p(x, y, t) = 0

@

@x
p(0, y, t) = 0

p(L, y, t) = 0

@

@y
p(x, 0, t) = 2⇢

@2

@t2
u(x, t)

@

@y
p(x,H, t) = 0

(3.9)

Define the operator rx as

rx : D(rx)! L2 [0, L]

f(.) 7! rxf(.) =
@2

@x2
f(.)

where

D(rx) =

⇢

f 2 L2 ([0, L]) ,
@2

@x2
f 2 L2 ([0, L]) ,

@

@x
f(0) = f(L) = 0

�

and L2 ([0, L]) is the space of square integrable functions. It can be shown that this
operator is self adjoint with discrete infinitely countable eigenvalues �n and orthogonal
eigenfunctions �n given by (3.10).

�n = �(n+
1

2
)2
⇡2

L2
 ! �n(x) =

r

2

L
cos



(n+
1

2
)
⇡

L
x

�

n = 0, 1, 2, ... (3.10)

Then the pressure can be expanded in the basis formed of the eigenfunctions �n(x) for
n = 0, 1, 2, ... as follows:

p(x, y, t) =
1
X

n=0

↵n(y, t)�n(x) (3.11)

where ↵n(y, t) for n = 0, 1, 2, ... are the coe�cients of p(x, y, t) in the �n(x) basis.

↵n(y, t) = hp(., y, t),�ni =
Z L

0

p(�, y, t)�n(�)d�
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Substituting, (3.11) in (3.9) and projecting onto the basis functions, we get a family of
di↵erential equations given by (3.12)

@2

@y2
↵n(y, t) + �n↵n(y, t) = 0

@

@y
↵n(0, t) =

⌧

2⇢
@2

@t2
u(., t),�n(x)

�

=

Z L

0

2⇢
@2

@t2
u(�, t),�n(�)d�

@

@y
↵n(H, t) = 0

(n = 0, 1, 2, ...)

(3.12)

Note that time can be treated as a dummy parameter in the di↵erential equations. Solving
(3.12) for ↵n(y, t) and substituting in (3.11), we get:

p(x, y, t) =
1
X

n=0

e(n+
1
2 )

⇡

L

(y�2H) + e�(n+ 1
2 )

⇡

L

y

(n+ 1
2)

⇡
L
(e�2H(n+ 1

2 )
⇡

L � 1)
�n(x)

Z L

0

2⇢
@2

@t2
u(�, t)�n(�)d�

Hence, the pressure at the lower boundary (y = 0) is given by

p(x, 0, t) =
1
X

n=0

e�(n+ 1
2 )

⇡

L

(2H) + 1

(n+ 1
2)

⇡
L
(e�2H(n+ 1

2 )
⇡

L � 1)
�n(x)

Z L

0

2⇢
@2

@t2
u(�, t)�n(�)d�

=
1
X

n=0

�coth
⇥

(n+ 1
2)

⇡H
L

⇤

(n+ 1
2)

⇡
L

�n(x)

Z L

0

2⇢
@2

@t2
u(�, t)�n(�)d�

Therefore,

p(x, 0, t) = �4⇢

⇡

1
X

n=0

coth
⇥

(n+ 1
2)

⇡H
L

⇤

n+ 1
2

cos



(n+
1

2
)
⇡

L
x

�

Z L

0

@2

@t2
u(�, t)cos



(n+
1

2
)
⇡

L
�

�

d�

(3.13)
On the other hand, lets consider the stapes vibration and set the basilar membrane
vibration to zero. In other words, lets solve the boundary value problem given by (3.14).

(
@2

@x2
+

@2

@y2
)p(x, y, t) = 0

@

@x
p(0, y, t) = 2⇢

d2

dt2
s(t)

p(L, y, t) = 0

@

@y
p(x, 0, t) = 0

@

@y
p(x,H, t) = 0

(3.14)
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It is easy to show that the solution to (3.14) is given by (3.15)

p(x, y, t) = 2⇢
d2

dt2
s(t) [x� L] (3.15)

Therefore, by the superposition principle, the complete analytic expression of the pressure
at the lower boundary (y = 0) is given by (3.16)

p(x, 0, t) = �2⇢ d
2

dt2
s(t) [L� x]

� 4⇢

⇡

1
X

n=0

coth
⇥

(n+ 1
2)

⇡H
L

⇤

n+ 1
2

cos



(n+
1

2
)
⇡

L
x

�

Z L

0

@2

@t2
u(�, t) cos



(n+
1

2
)
⇡

L
�

�

d�

(3.16)
There are several ways of calculating the integral in (3.16). We will investigate two meth-
ods: trapezoidal and Fredholm operations (using Clenshaw-Curtis quadrature rules).

3.3.1 Trapezoidal Integration

We discretize the x-axis in a similar manner to that performed in Figure 3.1, that is
xi = i�x where �x = L

N
x

for i = 0, 1, ..., Nx � 1, Nx. Then, we use the trapezoidal rule
to calculate the integral to get the pressure at the lower boundary (y = 0).

P0(t) = �2⇢(L~1� ~x)s̈(t)� 4⇢�x

⇡
AT Ü(t) (3.17)

where

W =

2

6

6

6

6

6

6

4

1
2 0 0 · · · 0

0 1 0
...
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. . . . . . . . .

...
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0 · · · · · · 0 1

2

3

7

7

7
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5
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~1 =
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AT =
p

X

n=0

coth
⇥

(n+ 1
2)

⇡H
L

⇤

n+ 1
2

cos



(n+
1

2
)
⇡

L
~x

�

cos



(n+
1

2
)
⇡

L
~xT

�

W

Finally, the operators Ms and Mf are realized by the matrices Ms 2 RN
x

+1 and Mf 2
R(N

x

+1)⇥(N
x

+1), respectively, as follows:

Ms = 2⇢(L~1� ~x)
Mf =

4⇢�x

⇡
AT

(3.18)
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3.3.2 Fredholm Operator, Clenshaw-Curtis Quadrature

Define the linear operator ⇤n for n = 0, 1, 2, ... as

⇤n : L2 ([0, L]) �! L2 ([0, L])

f(.) �! ⇤nf(.)

where

(⇤nf)(x) =

Z L

0

Kn(x,�)f(�)d�

Kn(x,�) = cos



(n+
1

2
)
⇡

L
x

�

cos



(n+
1

2
)
⇡

L
�

� (3.19)

Hence, ⇤n for n = 0, 1, 2, ... are a family of Fredholm operators with Kn(x,�) as their
corresponding Kernel. Then, (3.16) can be written as :

p(x, 0, t) = �2⇢ d
2

dt2
s(t) [L� x]� 4⇢

⇡

@2

@t2

1
X

n=0

coth
⇥

(n+ 1
2)

⇡H
L

⇤

n+ 1
2

[⇤nu(t)](x)

Discretize the x dimension using a Chebyshev Collocation grid similar to [24] and obtain
a matrix realization Fn for the Fredholm operators ⇤n for n = 1, 2, ..., p using Clenshaw-
Curtis quadratures. Thus the pressure at the lower boundary (y = 0) can be written as:

P0(t) = �2⇢(L~1� ~x)s̈(t)� 4⇢

⇡
AF Ü(t) (3.20)

where

AF =
p

X

n=0

coth
⇥

(n+ 1
2)

⇡H
L

⇤

n+ 1
2

Fn

Finally, the operators Ms and Mf are realized by the matrices Ms 2 RN
x

+1 and Mf 2
R(N

x

+1)⇥(N
x

+1), respectively, as follows:

Ms = 2⇢(~x� L~1)

Mf =
4⇢

⇡
AF

(3.21)

3.4 Numerical Experiments on the Fluid Boundary

Value Problem

In this section, we will test the accuracy of the di↵erent finite realization schemes of
the fluid mass operatorMf . To do so, we calculate the action of the matrixMf , the finite
realization ofMf , on three test inputs with di↵erent spatial variations: f(x) = e�xcos(x),
e�xcos(30x) and e�xcos(60x). Since the action of Mf on such inputs is not analytically
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tractable, we assume that the finite realization with a very fine (N e
x+1)⇥ (N e

y +1)�grid
is exact. This realization is denoted by M e

f defined on the grid points: {(xe
i , y

e
j )}. In this

section, we use a finite di↵erence method with N e
x = 2000, N e

y = 100 to realize M e
f . In

order to get an idea of the finite realization error for each method, we first evaluate f at
the fine grid points {xe

i} to form an N e
x + 1 vector denoted by f e. Then, for each finite

realization method, we proceed as follows:

1. Compute the finite realization Mf 2 R(N
x

+1)⇥(N
x

+1) of Mf defined on the grid
points {xi}, for i = 1, 2, ..., Nx � 1, Nx.

2. Evaluate f at the grid points {xi} to form an Nx + 1 vector denoted by fa.

3. Compute ge = M e
ff

e.

4. Using Chebyshev interpolation, evaluate ge at {xi} to form an Nx+1 vector denoted
by ginterp.

5. Compute the error in the L2 norm sense: ||Mff
a � ginterp||L2 .

Figure 3.2 summarizes the results. The test inputs are shown in the first row of the
Figure . The second row shows that Chebyshev collocation method clearly outperforms
the finite di↵erence method. The third row shows that the choices of the grid size Nx

and the number of basis functions p are related. For a given Nx, p should not exceed a
certain value. This can be explained by over-fitting: as we include more basis functions
by increasing p, a finer grid is required to capture the faster spatial variations of those
basis functions. Hence, good values of p lie in a range with a lower limit set by the
number of important basis functions that shouldn’t be truncated, and an upper limit
that is set by the capability of the grid resolution to capture the spatial variations of
the faster basis functions. This range becomes narrower as the spatial variation of the
input is faster. This can be explained by the need for more basis functions to capture
the more rapidly varying input on one hand, and the limitation of the grid resolution
on the other hand. These trends are also exhibited by the Clenshaw-Curtis quadrature
rule for integration as illustrated in the fourth row. However, the critical value of p,
at which the accuracy suddenly degrades is around half of that corresponding to the
trapezoidal integration method. Hence, although the Cleshaw-Curtis quadrature rule
achieves considerably higher accuracy, it is more susceptible to over-fitting and thus p
must be chosen carefully. Since the basilar membrane my exhibit rapid spatial variations,
we further test the finite realizations of Mf on even spatially faster test inputs: f(x) =
e�xcos(90x), e�xcos(140x) and e�xcos(180x). Figure 3.3 illustrates the results in a similar
fashion to Figure 3.2. We notice that the Chebyshev collocation and Clenshaw-Curtis
integration methods degrade with faster spatially varying inputs. This indicates that
the Chebyshev grid performs weakly for rapid spatial variations which is typical in the
cochlear response. For rapid spatial variations, the finite di↵erence method and the basis
expansion with trapezoidal integration have comparable performances. The latter has a

22



Numerical Realizations Chapter 3

better performance with the cost of choosing the right number of basis functions p. The
right choice of p gives a better performance than the finite di↵erence method.

3.5 Frequency Response Using Di↵erent Numerical

Methods

This section further illustrates the e↵ectiveness of the di↵erent numerical methods.
The complete model of the middle/inner ear is considered in the linear regime where the
active gain � is preset to a constant. Define the Fourier transform of the pressure at the
ear drum to be p̂e(j!) and that of the basilar membrane vibration at a location x to be
û(x, j!), where ! = 2⇡f denotes the angular frequency and f is expressed in Hertz. The
transfer function relating the basilar membrane displacement at a given location to the
pressure at the ear drum can be shown to be:

û(x, j!)

p̂e(j!)
= C (j!E �A)�1 B �!2

km �mm!2 + cmj!
(3.22)

where mm, cm and km are the mass, damping and sti↵ness of the middle ear given in
table 2. The operators A,B and E are given in 2.11 such that A is equal to Au with
a fixed unit active gain, say �(u) = 0.8. Furthermore, C is an operator that selects the
basilar membrane displacement from the state space variable given in (2.10).

C :=
⇥I 0 0 0

⇤

(3.23)

To compare the accuracy of the di↵erent numerical methods, we assume that the finite
di↵erence realization with a very fine 2001⇥101�grid gives the exact frequency response
shown in Figure 3.4. We test the di↵erent numerical methods by computing the error
from the exact frequency response for two grid sizesNx = 150 and 80. Since the frequency
response is a complex quantity, the absolute value of the real and imaginary parts of the
error are plotted at each location for every frequency. Figure 3.5 shows the error plots
for all four methods. Clearly, the basis expansion method with trapezoidal integration
has the lowest error. Moreover, as one would expect, the finite di↵erence method has
the worst performance. However, for a coarser grid (Nx = 80), the finite di↵erence
method shows better performance than the Chebyshev collocation and Clenshaw-Curtis
integration methods as illustrated in Figure 3.6. Still, with the right choice of the
number of basis functions p, the trapezoidal integration method is outperforming the
other methods.

23



Numerical Realizations Chapter 3

Figure 3.2: Finite realization error of the fluid mass operator Mf . The error is

computed through the action of Mf on three di↵erent inputs shown in the first row.

The second row shows the behavior of the error, for each input, as Nx is varied using

the finite di↵erence and Chebyshev collocation methods. The third and fourth rows

depict the e↵ect of the grid size Nx and the number of basis functions p on the

finite realization error while using the trapezoidal and Clenshaw-Curtis quadratures

for integration, respectively.
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Figure 3.3: Finite realization error of the fluid mass operatorMf similar to Figure 3.2

but for three di↵erent test inputs with higher spatial variations.
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Figure 3.4: Frequency Response relating the basilar membrane displacement u at a

location x to the pressure at the eardrum pe.
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Figure 3.5: Frequency response error of the di↵erent numerical methods. The error is

calculated as the deviation of the transfer function given in 3.22, as realized by each

numerical method with 150 grid points, from the exact transfer function. The exact

transfer function is approximated by a finite di↵erence method with a very fine grid.
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Figure 3.6: Frequency response error of the di↵erent numerical methods. The error is

calculated as the deviation of the transfer function given in 3.22, as realized by each

numerical method with 90 grid points, from the exact transfer function. The exact

transfer function is approximated by a finite di↵erence method with a very fine grid.
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Chapter 4

Possible Sources of Instability in the
Cochlea

In this chapter, we analyze the stability of the cochlear model developed in the previous
chapters. The cochlea is a highly sensitive device that is capable of sensing sound waves
across a broad spectrum of frequencies (20� 20000Hz) and across a wide range of sound
intensities ranging from 0dB (threshold of hearing) up to 120dB (sound of a jet engine).
The cochlea was believed to be a passive device that acts like a Fourier analyzer: each
frequency causes a vibration at a particular location on the basilar membrane (BM). This
mechanism was discovered by the Nobel Prize winner George von Békésy who carried
out his experiments on cochleae of human cadavers. However, in 1948, Thomas Gold
hypothesized that the ear is rather an active device that has a component termed the
cochlear amplifier. Although Gold’s hypothesis was rejected by von Békésy, David Kemp
validated it thirty years later by measuring emissions from the ear. These emissions,
termed otoacoustic emissions (OAEs) are sound waves that are produced by the cochlea
and can be measured in the ear canal.

It is widely accepted that the outer hair cells, anchored on the cochlear partition, are
responsible for the active gain in the cochlea that produces these emissions. However, the
underlying mechanism is still not well understood. For example, spontaneous otoacoustic
emissions (SOAEs) –emissions generated in the absence of any stimulus – are studied in
[25]. The authors showed that random active gain profiles cause instabilities in a linear
model of the cochlea. Their analysis was carried out through Monte Carlo simulations
by studying the stability for 400 di↵erent randomly generated active gain profiles with a
spatially-invariant mean. In this chapter, we study two possible sources of instabilities.
The first one being the level of the active gain and the second being the rapid spatial
variations of the spatial gain. Our analysis is carried out on the linearization of the
cochlear model. Furthermore, rather than just looking at the eigenvalues, we study the
rate of change of the eigenvalues due to small perturbations in the active gain profile.
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4.1 System Linearization

The general linearization around any given state  ̄ will be given in details in chapter
6 for the application of the extended Kalman filter. However, for the rest of the current
chapter, we linearize around the origin (fixed point) to study the stability. In fact, the
linearization around  ̄ = 0 yields the original dynamics (2.11) but with the nonlinear
time-varying active gain �(u) replaced by the time-invariant gain �0(x).

E @
@t
 = A + Bs̈ (4.1)

where

A :=

2

6

6

4

0 0 I 0
0 0 0 I

�0k4 � (k1 + k3) k3 � �0k4 �0c4 � (c1 + c3) c3 � �0c4
k3 �(k2 + k3) c3 �(c2 + c3)

3

7

7

5

Equipped with the linearized dynamics (4.1), we carry out two di↵erent approaches to
analyze the stability. The first approach studies the e↵ect of the gain level �0(x). This
approach assumes a spatially constant gain �0(x) = �0. Tools such as root locus come in
handy for this approach to study the stability versus the value of �0. On the other hand,
the second approach studies the e↵ect of the spatial variation of �0(x) on stability.

4.2 Stability E↵ect of the Gain Level

In this section, we study the stability of the linearized cochlear dynamics (4.1) as we
vary a spatially constant gain from 0 (indicating no gain at all) up to 1 (indicating full
active gain) as shown in Figure 4.1. For each value of �0, we compute the eigenvalues of
the operator E�1A and plot them in the complex plane as shown in Figure 4.2. The root
locus, in Figure 4.2, demonstrates that when �0 = 0.89, a conjugate pair of eigenvalues
crosses the imaginary axis towards the right half plane. Thus for �0 � 0.89, the linearized
dynamics become unstable. In fact, the root locus shows that the unstable pair of
eigenvalues are very sensitive to the variations of �0: they move much faster, as we vary �0,
than all the other eigenvalues close to the imaginary axis. The frequency of the unstable
eigenvalues is around 250Hz. The magnitude and phase of the unstable eigenfunction
corresponding to the unstable eigenvalue are plotted in Figure 4.3 demonstrating an
instability at an apical location corresponding to 250Hz.

4.3 Stability E↵ect of Rapid Spatial Perturbations

In this section, we impose a rapid spatial perturbation on the gain profile �0(x). First,
we analyze the e↵ect of an infinitesimal perturbation of the gain profile on the rate of
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Figure 4.1: Sweeping the level of the active gain from 0 to 1 but remaining spatially constant.

change of the eigenvalues. Then, we investigate the e↵ect of di↵erent perturbations at
di↵erent locations with various gain levels.

4.3.1 Rate of variation of the perturbed eigenvalues

We study the stability e↵ect of a small but rapid spatial perturbation at some loca-
tion, say x = 1.25cm, as illustrated in Figure 4.4. The location on the basilar membrane
at x = 1.25cm has a characteristic frequency of 3.6kHz as shown in Figure 4.5. That is,
for a stimulus at a frequency of 3.6kHz, the maximal vibration at the basilar membrane
occurs at the location x = 1.25cm.
We are interested in the rate of change of the eigenvalues of A with respect to the per-
turbation ✏. For this reason, we give an eigenvalue perturbation analysis of the operator
Ā := E�1A. The gain given in Figure 4.4 can be written as:

�0(x) = 1� ✏�1(x)

where �1(x) is a step function:

�1(x) =

(

1, x  1.25

0, x > 1.25

This allows us to write the operator Ā as

Ā = Ā0 + ✏Ā1 (4.2)

where Ā0 := E�1A0 and Ā1 := E�1A1 such that:
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Figure 4.2: Locus of the eigenvalues of the linearized cochlear dynamics as �0 varies

from 0 (no active gain) up to 1 (full active gain). The Figure on the top shows the

eigenvalues for di↵erent values of �0. The magenta crosses corresponds to �0 = 0,

the blue dots corresponds to the range of �0 where the system is stable. The black

asterisks correspond to �0 = 0.89 where the eigenvalues first cross to the right half

plane rendering the system unstable. Finally, the red dot correspond to the range of

�0 where the system is unstable ending with red circles for �0 = 1.
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Figure 4.3: Magnitude and phase of the unstable mode of the linearized cochlear

dynamics when �0(x) = 0.89.

Figure 4.4: Rapid spatial perturbation imposed at x = 1.25cm on the gain profile

�0(x). ✏ denotes an arbitrary small number.

A0 :=

2

6

6

4

0 0 I 0
0 0 0 I

k4 � (k1 + k3) k3 � k4 c4 � (c1 + c3) c3 � c4
k3 �(k2 + k3) c3 �(c2 + c3)

3

7

7

5

A1 := �1

2

6

6

4

0 0 0 0
0 0 0 0
�k4 k4 �c4 c4
0 0 0 0

3

7

7

5
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Figure 4.5: Frequency to location mapping. This intensity plot depicts the frequency

response of the linearized cochlear dynamics for �0(x) = 1 as shown in equation (3.22)

such that ! = 2⇡f with f denoting the frequency in kHz. The peaks of the intensity

plot correspond to the characteristic frequency (CF) of each location. The CF of

x = 1.25cm is 3.6kHz.

Now suppose that � is an eigenvalue of Ā with � being the corresponding right eigen-
function. Then,

Ā � = ��

Since �,� and  are all functions of ✏, we expand them in Taylor series around ✏ = 0 up
to first order:

� = �0 + ✏�1 +O(✏2)

� = �0 + ✏�1 +O(✏2)

 =  0 + ✏ 1 +O(✏2)

Note that �1 =
d
d✏
�(✏ = 0). By replacing all the expansion in (4.2), we get:

�Ā0 + ✏Ā1

�

(�0 + ✏�1) = (�0 + ✏�1) (�0 + ✏�1) +O(✏2)
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Collecting same orders in ✏, we arrive at:

✏0 : Ā0�0 = �0�0

✏1 : Ā1�0 + Ā0�1 = �1�0 + �0�1

The first equation suggests that �0 is an eigenvalue of Ā0 with �0 being the corresponding
right eigenfunction. Let  0 be the left eigenfunction of Ā0 corresponding to the eigenvalue
�0, that is Ā⇤

0 0 = �0 0, where Ā⇤
0 is the adjoint of Ā0. We then project the second

equation on  0 and proceed as follows.

h 0, Ā1�0 + Ā0�1i = h 0,�1�0 + �0�1i
h 0, Ā1�0i+ h 0, Ā0�1i = �1h 0,�0i+ �0h 0,�1i
h 0, Ā1�0i+ hĀ⇤

0 0,�1i = �1h 0,�0i+ �0h 0,�1i
h 0, Ā1�0i+ �0h 0,�1i = �1h 0,�0i+ �0h 0,�1i

where h, i denotes the inner product. Canceling the same terms on both sides of the
equation and solving for �1, we finally get:

�1 =
h 0, Ā1�0i
h 0,�0i

Therefore, the rate of change of � with respect to ✏ is described by the following equation:

d

d✏
�(✏ = 0) =

h 0, E�1A1�0i
h 0,�0i (4.3)

where �0 and  0 are the left and right eigenfunctions of Ā0 = E�1A0 corresponding to
the eigenvalue �0, respectively. Equation (4.3), in fact, represents the initial velocity of
the eigenvalues of the linearized dynamics of the cochlea as we begin to spatially perturb
the gain function �0(x) at the location x = 1.25cm. Figure 4.6 illustrates the behavior of
the eigenvalues of Ā as ✏ is slightly perturbed from zero. The plot to the left shows the
eigenvalues of Ā0 in the complex plane, in red. The velocities of the eigenvalues, d

d✏
�(✏ =

0), are also shown as blue vectors. It is clear that the velocities are negligible for all the
eigenvalues except those close to the characteristic frequency (CF) of the perturbation
location. The Figure to the right zooms in to the relatively large vectors to show that
the eigenvalues with frequencies close to the CF of x = 1.25cm move rapidly in di↵erent
directions. In fact some of them move to the right half plane and render the linearized
dynamics unstable. For example, we take ✏ = 0.01 and the eigenvalues are shown in
Figure 4.7. Clearly, several eigenvalues with frequencies close to the characteristic
frequency of x = 1.25cm lie in the right half plane. The magnitude and phase of the
eigenfunctions corresponding to the unstable eigenvalues are depicted in Figure 4.8.
Again, the unstable modes have peaks close to the location of the perturbation of the
active gain.
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Figure 4.6: Perturbation of the eigenvalues of the linearized cochlear dynamics due to

a rapid spatial perturbation of the gain function �0(x) at location x = 1.25cm whose

characteristic frequency (CF) is 3.6kHz. The plot to the left shows the eigenvalues

of the unperturbed dynamics along with the velocities of the eigenvalues as the gain

function is perturbed as shown in Figure 4.4. The plot to the right zooms in to the

large velocity vectors.

4.3.2 Stability e↵ect of the perturbation location

In this section, we consider the profile for the linearized active gain shown in Fig-
ure 4.9 such that:

�0(x) = (�max � ✏) + ✏h(x� xp) (4.4)

where h(.) is the Heaviside function. We study the e↵ect of the three parameters: the
maximal gain �max, the perturbation ✏ and the location of the perturbation xp on the
stability of the linearized dynamics. For each �max and xp, we find the value of ✏ that
causes eigenvalues with corresponding frequencies to cross the imaginary axis to the
right half plane. Figure 4.10 plots the minimum values of ✏ that causes instabilities for
di↵erent (xp, �max). The results show that it is more likely to have instabilities in a
bounded region. As a matter of fact, �max can be designed to bound the locations of
instabilities arising from rapid spatial variations. For example, for �max = 0.785, the
instabilities are bounded for 0.55 < xp < 1.25. Thus, the frequencies are band limited to
[3.5kHz, 14kHz].
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Figure 4.7: Distribution of eigenvalues for the linearized cochlear dynamics with a

spatially perturbed active gain as shown in Figure 4.4 where ✏ = 0.01.

Figure 4.8: Unstable modes of the linearized cochlear dynamics with a spatially per-

turbed active gain as shown in Figure 4.4 where ✏ = 0.01.
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Figure 4.9: Rapid spatial perturbation imposed at x = xpcm on the gain profile �0(x).
✏ denotes the intensity of the perturbation and �max denotes the maximum gain.

Figure 4.10: Instabilities caused by perturbations at di↵erent locations xp for di↵er-

ent values of �max. The value of ✏ indicates the minimum perturbation that causes

instabilities around the corresponding location on the basilar membrane.
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Figure 4.11: Temporal evolution of the basilar membrane profile without any input.

The nonlinear model (2.11) was used to generate this plot with �0(x) = 1. A Limit

cycle is born at the apical location (x = 2.41cm) of the unstable mode peak of the

linearized dynamics shown in Figure 4.3.

4.4 Limit Cycles of the Nonlinear Model

The previous two sections propose two di↵erent sources of instabilities in the cochlear
model. The stability analysis was carried out for the linearized dynamics. We show
now the behavior of the nonlinear model in the presence of these instabilities. For the
first kind of instability, we use the nonlinear model (2.11) with �0(x) = 1. We show the
temporal evolution of the basilar membrane in the 3D plot of Figure 4.11. Clearly, a
limit cycle is formed around the location of the unstable mode peak of the linearized
dynamics. This limit cycle is caused by the saturating e↵ect of the nonlinear active gain
�(u) since for small BM vibrations, �(u) is large; and for large BM vibrations �(u) is
small. Moreover, we place a virtual probe on the apical location x = 2.41cm to measure
the basilar membrane vibrations u(x = 2.41, t). This is the location that corresponds to
the peak of the unstable mode shown in Figure 4.3. The vibration grows until it reach
a maximum value as shown in the first plot of Figure 4.12. Let û(x = 2.41, j!) denote
the Fourier transform of the time signal u(x = 2.41, t). The second plot in Figure 4.12
shows the magnitude of û(x = 2.41, j2⇡f) which verifies that the prominent frequency is
the same as the characteristic frequency corresponding to x = 2.41cm.
On the other hand, for the second kind of instability we use again the nonlinear model
(2.11) but with a spatially perturbed �0(x) as shown in Figure 4.9 with ✏ = 0.001,
�max = 1 and xp = 1.25cm. Figure 4.13 shows the time evolution of the basilar membrane
displacement profile. It clearly shows a limit cycle that emerges at the location of the
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Figure 4.12: Basilar membrane vibration at the location x = 2.41cm with a charac-

teristic frequency of 250Hz. The Figure at the top shows the temporal evolution.

That at the bottom shows the Fourier transform that confirms that the vibration has

a frequency equal to the characteristic frequency at that location.

perturbation. To look at the frequency content of the vibrations, we place a virtual probe
on the location of the perturbation and compute the Fourier transform as depicted in
Figure 4.14. The main frequency of the vibration at the location of the perturbation is the
same as the characteristic frequency of the latter. However, additional frequencies, close
to the characteristic frequency, are also present. The additional frequencies correspond
to the unstable eigenvalues of the linearized dynamics shown in Figure 4.7.
Finally, we look at the e↵ect of the value of ✏ on the nonlinear dynamics. Figure 4.15
shows that as ✏ is increased, the magnitude of the limit cycle slightly increases. Moreover,
after some value of ✏, the frequencies of the limit cycle merge and become a single
frequency but shifted or ”detuned” to a lower frequency. This larger value of ✏ sort of
”masks” the other frequencies corresponding to the unstable eigenvalues of the linearized
dynamics. This phenomenon will be addressed in more details in the next chapter.
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Figure 4.13: Temporal evolution of the basilar membrane profile without any input

but with a spatial perturbation of the active gain �0(x) as shown in Figure 4.9. The

nonlinear model (2.11) was used to generate this plot with �max = 1, ✏ = 0.001 and

xp = 1.25cm. A Limit cycle is born at the perturbed location (xp = 1.25cm).

Figure 4.14: Basilar membrane vibration at the perturbed location x = 1.25cm whose

characteristic frequency is 3.6kHz. The Figure at the top shows the temporal evolu-

tion. That at the bottom shows the Fourier transform that confirms that the vibration

has a frequency equal to the characteristic frequency at that location in addition to

the other close frequencies that are shown in Figure 4.7.
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Figure 4.15: Basilar membrane vibration at the perturbed location x = 1.25cm whose

characteristic frequency is 3.6kHz for three di↵erent values of ✏. The Figure at the

top shows the temporal evolution. That at the bottom shows the Fourier transform.
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Chapter 5

Cochlear Dynamic Mode
Decomposition

For a linear dynamical system, one can infer almost all the information underlying the
dynamics from the eigenvalues and eigenfunctions of the system A matrix. As a mat-
ter of fact, the eigenfunctions provide information about the modes and the eigenvalues
provide information about the frequencies and decay rates of the corresponding modes.
However, for a general nonlinear dynamical system, it is not possible to compute the
modes, frequencies and decay rates from the system equations. Dynamic mode decom-
position (DMD), on the other hand, has proven to give accurate approximations of the
eigenvalues and eigenfunctions from data without using the system equations. In fact,
DMD uses the data to compute an approximation of the A matrix in a lower dimensional
subspace where the data evolve. Hence, the lower dimensional approximation is used to
approximate the eigenvalues and eigenfunctions of the nonlinear system evolving in the
tangent space defined by the given data. To our knowledge, DMD hasn’t been applied
on cochlear response yet. It is a useful tool to compute the modes of vibration and their
frequencies exhibited by the nonlinear cochlear model. Moreover, DMD is particularly
useful to test whether these modes are persistent or decaying in time. Furthermore, DMD
can also be used to compare di↵erent cochlear models by comparing their dynamic modes
rather than their temporal evolution which can be misleading: for example a small phase
shift between two di↵erent models can yield a large temporal error.

This chapter first reviews the theory behind DMD. Then DMD is applied on vari-
ous cochlear responses to illustrate the features that are present: detuning, otoacoustic
emissions, distortion products and frequency to location mapping.

5.1 Linear Algebra Preliminaries

Before we start with the details of DMD, we state two important notions in linear
algebra that are required for the derivations.
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Theorem 5.1 Consider a discrete time-invariant dynamical system defined by the evo-
lution equation:  n = A n�1 starting from a given initial condition  0 2 RN

x. Let
µ =

⇥

µ1 µ2 · · · µN
x

⇤

and P =
⇥

p1 p2 · · · pN
x

⇤

, where µi and pi are the eigenvalues

and eigenvectors of A, respectively. Define  Nt�1
0 =

⇥

 0  1 · · ·  N
t

�1

⇤ 2 RN
x

⇥N
t.

Then:
 Nt�1
0 = PD↵Vand

where ↵ := P�1 0 is the coordinates of  0 in the basis {p1, p2, ..., pN
x

}, D↵ := diag(↵)
and Vand is the Vandermonde matrix defined as:

Vand :=

2

6

6

6

4

1 µ1 µ2
1 · · · µN

t

�1
1

1 µ2 µ2
2 · · · µN

t

�1
2

...
...

... · · · ...
1 µN

x

µ2
N

x

· · · µN
t

�1
N

x

3

7

7

7

5

2 RN
x

⇥N
t

Proof: Using the eigenvalues and eigenvectors of A, one can write  n in terms of
the initial condition  0:

 n = PDn
µP

�1 0

= PDn
µ↵

= PD↵µ
n

where µn :=
⇥

µn
1 µn

2 · · · µn
N

x

⇤T
. Then,

 Nt�1
0 =

⇥

 0  1  2 · · ·  N
t

�1

⇤

=
⇥

PP�1 0 PD↵µ PD↵µ
2 · · · PD↵µ

N
t

�1
⇤

= PD↵Vand

Theorem 5.2 Let A : RN
x 7! RN

x be an Nx⇥Nx matrix. Let  Nt�1
0 =

⇥

 0  1 · · ·  N
t

�1

⇤ 2
RN

x

⇥N
t whose columns span a subspace SU of RN

x. Then, the optimal representation of
A in the subspace SU is given by F : Rr 7! Rr, such that

F = U⇤AU

where r is the rank of  Nt�1
0 and U 2 RN

x

⇥r is a matrix whose columns form an or-
thonormal basis of SU . Note that U can be obtained from the economy singular value
decomposition:  Nt�1

0 = U⌃rV
⇤.

Proof: Let {u1, u2, ...ur} be an orthonormal basis of SU , obtained from the columns
of U . Let w and y 2 RN

x such that y = Aw. The projections of w and y onto SU are
wr = U⇤w and yr = U⇤y, respectively. Then, the matrix F maps wr to yr: yr = Fwr. To
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compute F , we proceed as follows:

yr = U⇤y = U⇤Aw

In general, w may lie outside SU . However, the optimal approximation of w in SU is its
projection. The projection of w onto SU , expressed in the basis {u1, u2, ...ur}, is Uwr,
thus w ⇡ Uwr. Finally, we get yr ⇡ U⇤AUwr. Therefore,

F = U⇤AU

5.2 Review on DMD

The goal of dynamic mode decomposition is to decouple the spatial modes of a dy-
namically evolving function in separate frequencies. To be more precise, suppose we are
given a function  of space x and time t. The goal of DMD is to find a sequence of
basis functions �n(x), a sequence of amplitudes ↵n, a sequence of decaying rates �n and
a sequence of angular frequencies !n to expand  as follows:

 (x, t) =
1
X

n=1

�n(x)↵ne
(�

n

+j!
n

)t (5.1)

where j =
p�1. This expansion suggests that  (x, t) is comprised of a set of spatial

modes �n(x). Each mode has an amplitude ↵n and is evolving in time with a single
frequency !n and a decaying rate �n. In practice,  (x, t) is given as data discretized
in time and space so that  i 2 RN

x is a vector that represents a snapshot at a time
instant ti = i�t with i = 0, 1, ..., Nt and �t is the time step. Then, the DMD is given by
 Nt�1
0 = �D↵Vand that is the discrete space-time version of 5.1. where

 Nt�1
0 :=

⇥

 0  1 · · ·  N
t

�1

⇤ 2 RN
x

⇥N
t � :=

⇥

�1 �2 · · · �r

⇤ 2 RN
x

⇥r

↵ :=

2

6

6

6

4

↵1

↵2
...
↵r

3

7

7

7

5

Vand :=

2

6

6

6

4

1 µ1 µ2
1 · · · µN

t

�1
1

1 µ2 µ2
2 · · · µN

t

�1
2

...
...

... · · · ...
1 µr µ2

r · · · µN
t

�1
r

3

7

7

7

5

2 Rr⇥N
t

such that µn = e(�n+j!
n

)�t and r is the rank of  Nt�1
0 . D↵ is a diagonal matrix that

arranges the vector ↵ on the diagonal. Vand is the Vandermonde matrix. The rest of this
section explains how to compute �,↵ and Vand.
To proceed with the decomposition, we write the time evolution as follows:  n = A n�1,
where A 2 RN

x

⇥N
x is the best linear mapping that maps one snapshot to the next. If we

know A, the DMD can be obtained by making use of theorem 5.1 which demonstrates
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that the spatial modes are the eigenvectors of A, the amplitudes are the coordinates of
the initial condition  0 expressed in the basis formed of the eigenvectors, the decay rates
and the frequencies are �n + j!n = 1

�t
log µn.

However, in practice, A is unknown. Even if we approximate it, computing the eigenval-
ues and eigenvectors of an Nx ⇥Nx matrix is ine�cient, especially if Nx > Nt. For this
reason, theorem 5.2 is employed to provide an optimal representation of the matrix A in
the subspace SU spanned by the columns of  Nt�1

0 . This can be easily done using the econ-
omy singular value decomposition:  Nt�1

0 = U⌃rV
⇤. Thus FDMD = U⇤AU . To compute

FDMD, by first defining another snapshot matrix  Nt
1 :=

⇥

 1  2 · · ·  N
t

⇤ 2 RN
x

⇥N
t .

Since  n = A n�1 for n = 1, 2, ..., Nt, then:

 Nt
1 = A Nt�1

0

 Nt
1 = AU⌃rV

⇤

 Nt
1 V ⌃�1

r = AU

=) FDMD = U⇤AU

= U⇤ Nt
1 V ⌃�1

r

With FDMD 2 Rr⇥r at hand, we apply theorem 5.1 on ⇠n = FDMD⇠n�1 rather than
 n = A n�1, where ⇠n = U⇤ n is the projection of  n onto SU . We get:

⇠Nt�1
0 = PD↵Vand

where P 2 Rr⇥r is a matrix whose columns are the eigenvectors of FDMD, ↵ = P�1⇠0 =
P�1U⇤ 0, and Vand is the Vandermonde matrix formed from the eigenvalues µ =

⇥

µ1 µ2 · · · µr

⇤T

of FDMD. Recalling that ⇠n is the coordinates of the projection of  n onto SU expressed
in the basis formed by the columns of U , we approximate  n ⇡ U⇠n. Therefore,

 Nt�1
0 ⇡ U⇠Nt�1

0 = (UP )D↵Vand

To summarize, given a snapshots matrix  Nt
0 =

⇥

 0  1  2 · · ·  N
t

⇤

, the dynamic
mode decomposition can be calculated by following the steps in algorithm 1. This al-
gorithm spits out the dynamic modes �n, each with amplitude ↵n and evolving in time
with a single frequency and decay rate �n + j!n = 1

�t
log(µn), for n = 1, 2, ..., r.

5.3 Cochlear Response Features using DMD

In this section, we show important features present in the response of the cochlea
using dynamic mode decomposition. In particular, we show the detuning phenomenon,
frequency to location maps, distortion products and limit cycles that might be sources of
spontaneous otoacoustic emissions and/or tinnitus. In the literature, these phenomena
were shown using Fourier transforms. This is done by taking the Fourier transform of
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Algorithm 1 DMD

1: Compute the economy singular value decomposition of  Nt�1
0 2 RN

x

⇥N
t :

 Nt�1
0 :=

⇥

 0  1  2 · · ·  N
t

�1

⇤

= U⌃rV
⇤

with r = rank( Nt�1
0 ).

2: Compute the optimal low dimensional representation of the linear evolution matrix:

FDMD = U⇤ Nt
1 V ⌃�1

r 2 Rr⇥r

where  Nt
1 :=

⇥

 1  2  3 · · ·  N
t

⇤ 2 RN
x

⇥N
t .

3: Compute the eigenvalues µn and eigenvectors pn of FDMD.
4: Form the following matrices:

P :=
⇥

p1 p2 p3 · · · pr
⇤ 2 Rr⇥r

Vand :=

2

6

6

6

4

1 µ1 µ2
1 · · · µN

t

�1
1

1 µ2 µ2
2 · · · µN

t

�1
2

...
...

... · · · ...
1 µr µ2

r · · · µN
t

�1
r

3

7

7

7

5

2 Rr⇥N
t

D↵ := diag(↵) with ↵ = P�1U⇤ 0 =
⇥

↵1 ↵2 ↵3 · · · ↵r

⇤T 2 Rr

5: The DMD is thus given by:
 Nt�1
0 = �D↵Vand

where:

� = UP

=
⇥

�1 �2 �3 · · · �r

⇤ 2 Rr⇥r
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the time evolution of the local basilar membrane displacement at every location. This
method doesn’t immediately provide information about the spatial mode of vibration
of the basilar membrane as a whole. To do so, further post processing of the Fourier
transform is required. Moreover, it cannot predict the decay rate of a particular mode
of vibration if it exists.
Before we describe the cochlear response features, we give a brief comparison between the
DMD and Fourier transform approaches. We note that for all the subsequent simulations
in this chapter, �0(x) = 1 unless explicitly stated otherwise. As an example, we apply
a pressure wave at the ear drum comprised of four frequencies: 1, 4, 6 and 10kHz at
60dB relative to the sound pressure level at the threshold of hearing (20µPa). Figure 5.1
shows the results. The surface plot in Figure 5.1(a) shows the Fourier transform of the
vibrations at each location on the basilar membrane. Whereas, Figure 5.1(b) extracts
from the simulation the ten most prominent dynamic modes of vibration, where each
mode vibrates at a single frequency shown in the legend of the Figure 5.1. To compare
both approaches, we overlay the two Figure s such that each dynamic mode is superposed
at the corresponding frequency. Figure 5.1(c) clearly shows the matching between the
two di↵erent approaches.

5.3.1 Detuning

Each region on the basilar membrane responds maximally to a sound pressure wave
carrying a certain frequency. This region is called the characteristic place (CP) which
responds maximally to the corresponding, so called, characteristic frequency (CF). How-
ever, the characteristic place for a certain frequency is slightly variable depending on the
magnitude of the stimulant. As a matter of fact, as the stimulant intensity increases,
the characteristic place slightly shifts towards the stapes. This is known as detuning. To
illustrate this phenomenon, we simulate the nonlinear model 2.11 at a particular single
frequency, say 4.1kHz, at di↵erent dB levels ranging from 0dB up to 120dB. DMD
is then used to extract the most prominent dynamic mode. Figure 5.2 shows that the
characteristic place for 4.1kHz is at x = 1.185cm for a stimulus at 0dB and shifts to
x = 1.079cm for a stimulus at 120dB.

5.3.2 Frequency to Location Maps

For the linear cochlear model, one can plot the frequency to location map using
the transfer function as done in Figure 4.5. For the nonlinear model, DMD can be
employed to compute the frequency to location mapping for every dB intensity level of
the stimulus. To do so, we apply a pure tone at the eardrum for di↵erent frequencies and
dB intensity levels. For each simulation, we extract the most dominant dynamic mode.
The characteristic place is, thus, defined to be at the peak of the dynamic mode. Figure
5.3 shows the frequency to location maps calculated using DMD for di↵erent stimulus
intensity levels ranging from 0dB up to 120dB. In fact, Figure 5.3 can be used to analyze
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(a) (b)

(c)

Figure 5.1: Comparison between the Fourier transform and DMD. Figure (a) shows the

Fourier transform of the vibrations everywhere on the basilar membrane. Figure(b)

shows the ten most prominent (in magnitude) dynamic modes of vibration. Figure

(c) overlays the Fourier transform and DMD at the corresponding frequencies.

the detuning phenomenon everywhere on the basilar membrane. Particularly, it suggests
that detuning at apical locations on the basilar membrane is less than basal locations
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Figure 5.2: The detuning phenomenon. The most dominant dynamic mode is ex-

tracted from simulations with a pure tone stimulus at 4.1kHz for di↵erent dB in-

tensity levels ranging from 0dB which corresponds to the threshold of hearing up to

120dB.

where detuning can shift the characteristic place around 0.35cm towards the stapes.

5.3.3 Linear Instabilities and Limit Cycles

In chapter 4, possible sources of instabilities were discussed by linearizing the dynam-
ics around the origin for di↵erent profiles of �0(x). In this section, we show the dynamic
modes corresponding to the two di↵erent types of linearized instabilities. To do so, we
carry out a long simulation of the nonlinear model for �0(x) = 0.95 + 0.05h(x � 1.25)
in the absence of a stimulus, where h(.) is the Heaviside function. This corresponds to
the profile shown in Figure 4.9 for �max = 1, ✏ = 0.05 and xp = 1.25cm. This profile
gives rise to the two di↵erent types of instabilities simultaneously. Figure 5.4 shows the
dominant dynamic modes. The blue curve, representing the dynamic mode vibrating
at 245Hz, corresponds to the limit cycle caused by the linearized instability of a high
gain level. On the other hand, the red, magenta and black curves represent the dynamic
modes caused by the linearized instabilities due to the spatial gain perturbation.
As mentioned earlier in section 4.4, for larger values of the perturbation ✏, the di↵erent
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Figure 5.3: Frequency to location map of the nonlinear cochlear model at di↵erent

dB intensity levels of the stimulus.

Figure 5.4: Dominant dynamic modes of the basilar membrane vibrations in the

absence of a stimulus for �0(x) = 0.95 + 0.05h(x� 1.25).

frequencies of the vibration at the location of perturbation merge to become a single
frequency. In addition to that, it is observed that the 3 modes of vibration corresponding
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Figure 5.5: Dominant dynamic mode of the basilar membrane vibrations in the ab-

sence of a stimulus for �0(x) = 0.9 + 0.1h(x� 1.25).

to the linearized instability at the perturbation also merge to become a single dynamic
mode. As an example, we set the linearized active gain �0(x) = 0.9 + 0.1h(x� 1.25) and
compute the dominating dynamic modes. Figure 5.5 shows that only one dynamic mode
vibrating at 3.17kHz emerges from the large gain perturbation. This observation might
be related to tinnitus or spontaneous otoacoustic emission where a single frequency is
perceived. A large perturbation of the structural properties at a particular location at
the basilar membrane causes the perception/emission of a single pure tone.

5.3.4 Distortion Products

When the ear is stimulated with two tones, the ear produces additional fill-in fre-
quencies called the distortion-products otoacoustic emissions. Perhaps the most domi-
nant distortion product is the Cubic Distortion Tone (CDT): if a sound wave comprised
of two frequencies f1 and f2 (f1 < f2) stimulates the ear, a CDT of frequency 2f1f2 is
emitted back to the eardrum. This is believed to be caused by vibrations at the charac-
teristic place of the CDT. For example, we stimulate the ear by two tones of f1 = 7kHz
and f2 = 10kHz at 60dB. The most prominent distortion product corresponds to the
dynamic mode vibrating at a frequency of 4kHz. This is the mode corresponding to
the CDT. Additional persistent dynamic modes vibrate at 1 and 2kHz. We note that
other modes, not shown here, also exist for this stimulus. These modes have smaller
magnitudes and are not persistent in the sense that their decay rates are large. Decaying
modes might be useful in the analysis of the transient behavior which is not in the scope
of this paper.
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Figure 5.6: Dominant dynamic modes of the basilar membrane vibrations for a stim-

ulus of two tones of 7 and 10kHz at 60dB.

5.4 Conclusion

This chapter reviewed the theory underlying dynamic mode decomposition and a
comparison with Fourier transforms was given. Then, DMD was applied on cochlear
response to di↵erent stimuli. Typical features in cochlear response was shown using
DMD. To our knowledge, two new observations were made using the dynamic modes
extracted: (a) the detuning phenomenon is more intense on apical locations on the basilar
membrane and (b) large perturbations of the structural properties of the cochlea at a
particular location initiate a limit cycle vibrating at a single frequency. The second
observation might be an explanation of tinnitus or spontaneous otoacoustic emissions of
a single pure tone.
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Chapter 6

Estimating Basilar Membrane
Vibration using Extended Kalman
Filters

Taking measurements of vibrations in the cochlea is essential to understand the un-
derlying mechanics. Throughout the literature, several experiments and techniques were
devised to take measurements (in vivo and in vitro) of vibrations in the cochlea ([26], [27],
[1]). Recently, displacement-sensitive heterodyne laser interferometers are most widely
used to measure extremely small vibrations, in the order of nanometers, as in the case
of the cochlea ([28], [29]). However, these techniques give only point-wise measurements
as the laser is directed towards a single vibrating point. Furthermore, to understand the
active nature of the cochlea, measurements need to be done while the cochlea is still in-
tact. In fact, particular locations might be easier to measure in order to avoid destroying
structures in the cochlea.

This chapter aims at estimating distributed spatial vibrations using (1) developed
mathematical models for the cochlea and (2) (simulated) point-wise measurements given,
for example, by the laser interferometer. Particularly, extended Kalman filters are used
for the estimation process since the cochlear model is nonlinear.

6.1 Kalman Filter Framework in Distributed Envi-

ronments

In this section, we review the work done by [30] to describe the Kalman filter algorithm
for linear spatio-temporal distributed systems. The algorithm is very similar to the finite
dimensional case, however the notation needs to be stated carefully.

Let x and t be the space and time variables, respectively. Consider the linear dis-
tributed system given in descriptor state space form, with a state space variable  , an
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input u and an output y:

E @
@t
 (x, t) = A (x, t) + Bu(x, t) + Lw(x, t);  (x, 0) =  0(x)

yk = C k(x) + vk

where A,B,L, E and C are matrices of linear operators.  , u and w are vectors of func-
tions. The output equation is given in discrete time such that yk := y(tk),  k(x) :=
 (tk, x) and vk := v(tk) are vectors, where tk := k�t and �t is the time step. The pro-
cess noise w and measurement noise v are assumed to be uncorrelated Gaussian white
noise such that:

E{w(x, t)w⇤(�, ⌧)} = Qc(x,�)�(t� ⌧)
E{w(x, t)} = 0

E{vk, vTk } = Rk

E{vk} = 0

E{w(x, t)vk} = 0

where w⇤ is the adjoint of w,Qc(x, ⇠) is the covariance kernel of w and Rk is the covariance
matrix of vk. Clearly, we are dealing with a hybrid system where the state evolution
equation is in continuous time, and the measurement equation is in discrete time. Now,
define the state estimate  ̂ and the state estimation error covariance P as follows:

 ̂(x, t) = E{ (x, t)}
E
n⇣

 (x, t)�  ̂(x, t)
⌘⇣

 (�, ⌧)�  ̂(�, ⌧)
⌘⇤o

= P(x,�; t)�(t� ⌧) (6.1)

For notational convenience, the covariance kernel evaluated at time instant tk is denoted
by Pk(x,�). The discrete time covariance kernel of the measurement noise is approxi-
mated by Q(x,�) = Qc(x,�)(1 � e��t). Moreover, define the state transition operator
F := eE

�1A�t. Therefore, the Kalman filter algorithm for distributed hybrid systems can
be stated as follows:

1. Initialization: Set k = 1 and start with some initial estimates of the state and
the covariance kernel:

•  ̂+
0 (x)

• P+
0 (x, ⇠)

2. Model Dynamics : Propagate the state and the covariance kernel through the
model dynamics from time instants tk�1 to tk:

• Integrate E @
@t
 ̂(x, t) = A ̂(x, t)+Bu(x, t) from {tk�1,  ̂

+
k�1(x)} to {tk,  ̂�

k (x)}
• Compute: P�

k (x,�) = FP+
k�1(x,�)F⇤ + LQ(x,�)L⇤

3. Kalman Gain: Calculate the optimal Kalman gain:
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• Kk(x) = P�
k (x,�)C⇤ ⇥CP�

k (x,�)C⇤ +Rk

⇤�1

4. Measurement Update: Update the state and covariance kernel estimates from
the model dynamics by incorporating the measurement information:

•  ̂+
k (x) =  ̂�

k (x) +Kk(x)
h

yk � C ̂�
k (x)]

i

• P+
k (x,�) = [I �Kk(x)C]P�

k (x,�) [I �Kk(x)C]⇤ +Kk(x)RkKk(x)⇤

Set k = k + 1 and go to step 2.

where ”⇤ ” is the adjoint operator. Note that, operators acting from the left side operate
on the first spatial variable x, and those acting form the right side operate on the second
spatial variable �.
For a linear system, the operator F can be calculated once and o↵-line. However, for
nonlinear systems of the form:

E @
@t
 (x, t) = [f( , u)](x, t) + Lw(x, t);  (x, 0) =  0(x)

Extended Kalman filters can be employed instead. The Extended Kalman filter is the
same as the algorithm stated above except that Step 2 is replace by the following:

• Integrate E @
@t
 ̂(x, t) = [f( ̂, u)](x, t) from {tk�1,  ̂

+
k�1(x)} to {tk,  ̂�

k (x)}
• Compute: P�

k (x,�) = FkP+
k�1(x,�)F⇤

k + LQ(x,�)L⇤

where: Fk := eE
�1A

k

�t andAk :=
@
@ 
f( k, uk). Note that, for extended Kalman filters, Fk

is not a constant anymore and it has to be calculated at each time step. In this chapter,
the Pade approximation method was used to e�ciently calculate the exponential of a
matrix.

6.2 System Linearization

In order to apply the extended Kalman filter to the cochlear model given in descriptor
form (2.11), we proceed by linearizing the system dynamics around some given state

 ̄ =
⇥

ū v̄ ˙̄u ˙̄v
⇤T
. Hence, we wish to give a linear approximation of the nonlinear

operator defined by f( ) := Au around  ̄, where Au is repeated here for convenience.

Au :=

2

6

6

4

0 0 I 0
0 0 0 I

�(u)k4 � (k1 + k3) k3 � �(u)k4 �(u)c4 � (c1 + c3) c3 � �(u)c4
k3 �(k2 + k3) c3 �(c2 + c3)

3

7

7

5
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We can rewrite Au as a sum of two terms: Au = A0 + B0�(u)C0, where

A0 :=

2

6

6

4

0 0 I 0
0 0 0 I

�(k1 + k3) k3 �(c1 + c3) c3
k3 �(k2 + k3) c3 �(c2 + c3)

3

7

7

5

B0 :=

2

6

6

4

0
0
I
0

3

7

7

5

C0 :=
⇥

k4 �k4 c4 �c4
⇤ C :=

⇥I 0 0 0
⇤

Let  ̃ be a small perturbation from  ̄ so that  =  ̄ +  ̃.

Then f( ) = f( ̄ +  ̃) ⇡ f( ̄) +
h

@
@ 
f( ̄)

i ⇣

 ̃
⌘

, where
h

@
@ 
f( ̄)

i ⇣

 ̃
⌘

is the Fréchet

derivative of f evaluated at  ̄ in the direction of the perturbation  ̃. The Fréchet
derivative is calculated to be:



@

@ 
f( ̄)

�

⇣

 ̃
⌘

= [Aū]
⇣

 ̃
⌘

+
⇥

dA ̄

⇤

⇣

 ̃
⌘

where dA ̄ is a linear operator whose action on  ̃ is defined as follows:

⇥

dA ̄

⇤

( ̃) := B0



@

@u
�(ū)

�

⇣

C ̃
⌘

C0 ̄

such that
⇥

@
@u
�(ū)

⇤

(ũ) is the Fréchet derivative of the active gain � evaluated at ū in the
direction of the BM perturbation ũ and it is easy to show that:



@

@u
�(ū)

�

(ũ)

�

�

�

�

�

x

= � 2✓

R2

�0(x) [G�(ūũ)] (x)
�

1 + ✓
⇥G�

�

u2

R2

�⇤

(x)
�2

To summarize, given the cochlear model in (2.11): E @
@t
 = Au + Bs̈, the linearized

dynamics around  ̄ =
⇥

ū v̄ ˙̄u ˙̄v
⇤T

are given by:

E @
@t
 =

�Aū + dA ̄

�

 + Bs̈� dA ̄ ̄ (6.2)

where

E :=

2

6

6

4

I 0 0 0
0 I 0 0
0 0 m1I +Mf 0
0 0 0 m2I

3

7

7

5

B :=

2

6

6

4

0
0
�Ms

0

3

7

7

5

Aū :=

2

6

6

4

0 0 I 0
0 0 0 I

�(ū)k4 � (k1 + k3) k3 � �(ū)k4 �(ū)c4 � (c1 + c3) c3 � �(ū)c4
k3 �(k2 + k3) c3 �(c2 + c3)

3

7

7

5
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⇥

dA ̄

⇤

( ̃) := B0



@

@u
�(ū)

�

⇣

C ̃
⌘

C0 ̄

B0 :=

2

6

6

4

0
0
I
0

3

7

7

5

C0 :=
⇥

k4 �k4 c4 �c4
⇤ C :=

⇥I 0 0 0
⇤

[�(u)] (x) :=
�0(x)

1 + ✓
⇥G�

�

u2

R2

�⇤

(x)



@

@u
�(ū)

�

(ũ)

�

�

�

�

�

x

= � 2✓

R2

�0(x) [G�(ūũ)] (x)
�

1 + ✓
⇥G�

�

u2

R2

⇤

)
⇤

(x)
�2

We note that, given the finite realization of the operator G� in (3.4), we can realize the
operators @

@u
�(ū) and dAū by the following matrices, respectively:

d�ū := � 2✓

R2
D{�0}D

(

✓

1 +
✓

R2
G�ū

2

◆�2
)

G�D{ū}

dA ̄ := B0D{C0 ̄}d�ūC

where all the variables here are meant to be vectors with each entry corresponding to a
spatial location x. D is the operator that forms a diagonal matrix from a vector.

6.3 Numerical Results and Analysis

In this section, we use a sound signal of three tones at 1, 4 and 8kHz with a magnitude
of 60dB to simulate the cochlear model with a grid size of Nx = 500. This simulation is
used to generate the measurements. Now, to study the performance of the Kalman filter,
we carry out two scenarios as described in the subsequent section. In order to design the
process and measurement noise covariances Qc and Rc, we note the order of vibrations,
velocities and accelerations of the Tactorial and Basilar membranes. Displacements are
in the order of 1nm, velocities are in the order of 1cms�1. Accelerations are in the order
of 100cms�2. These values are the basis of the selection of the modeled process and
measurement noise. Before presenting simulation results, we define an error measure on
which we base our comparisons. Let û(x; t) be an estimate of u(x; t), then the error is
defined to be:

e(t) =

R L

0 (u(x, t)� û(x, t))2dx
R L

0 u2(x, t)dx
(6.3)

Furthermore, for the purpose of reducing the computational load of the extended Kalman
filter, the linearization of the dynamics is not carried out at each time step. In fact,
the linearization is carried out Nl times such that the Jacobians are approximated to
be equal between two subsequent linearizations. We leave Nl as a design parameter
that compromises between the desired accuracy and the computational load. In the
subsequent sections, we set Nl = 100.
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6.3.1 Uncertain Initial Conditions

In this section, we assume that we have a perfect model of the cochlea with perfect
measurements. However, the initial conditions are assumed to be unknown. First, we
spread 20 equally spaced sensors on each of the two membranes to take measurements of
the displacements. The design parameters of the filter are as follows:

Q =

2

6

6

4

10�4Icm2 s�2 0 0 0
0 10�4Icm2 s�2 0 0
0 0 104Icm2 s�4 0
0 0 0 104Icm2 s�4

3

7

7

5

;

P0 =

2

6

6

4

10�10Icm2 0 0 0
0 10�10Icm2 0 0
0 0 Icm2 s�2 0
0 0 0 Icm2 s�2

3

7

7

5

; R = 10�24Icm2;

where I is the identity operator. These design parameters reflect our trust in our modeled
dynamics and the available measurements. But the large initial covariance P0 reflects
our distrust in our estimation of the initial condition.

To asses the precision of the designed extended kalman filter and how well it responds
to uncertain initial conditions, we generate a random initial condition as shown in Figure
6.1(a). The initial condition is considerably erroneous compared to the true initial condi-
tion which is zero. The rest of Figure 6.1 shows three snapshots of the BM displacement
profile at t = 0.1, 0.5 and 3ms, respectively. Clearly, the extended kalman filter locks to
the true profile after some time. To show this more explicitly, we plot the time evolution
of the estimation error using equation (6.3) in the presence and absence of measurements.
Figure 6.2 shows that in the absence of measurements, the error decreases to some steady
state value. On the other hand, with available measurements, the error is large initially
because of the erroneous estimate of the initial condition. However, it decreases with
time until the estimate locks onto the true states. Furthermore, we test the perfor-
mance of the extended Kalman filter by spreading less sensors. Figure 6.3 shows the
time evolution of the relative estimation error as computed using equation (6.3) for the
case where no measurements are available, and for 20, 10 and 5 sensors spread equally
on each of the two membranes. Clearly, the estimation accuracy is higher when more
sensors are introduced.

6.3.2 Uncertain Model Dynamics

In this section, we asses the robustness of the designed filter when the available model
is inaccurate. First, we start by choosing a grid size Nx = 200 instead of Nx = 500.
This coarse discretization of the spatial variable introduces erroneous behavior of the
dynamics. Particularly, linearized instabilities arise near the stapes for such coarse grids.
Figure 6.4 (a) shows a snapshot at t = 10ms of the true and estimated basilar membrane
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Figure 6.1: Snapshots of the true and estimated basilar membrane displacement pro-

file. The figure to the top shows the true initial condition which is zero but assumed

to be unknown. The estimated initial condition is randomly generated to asses the

response of the extended Kalman filter to uncertain initial conditions. The subsequent

figures show three snapshots of the BM displacement profile at t = 0.1, 0.5 and 3ms,

respectively.
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Figure 6.2: The evolution of the estimation error in the presence and absence of

measurements.
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Figure 6.3: Comparison of the relative estimation error for di↵erent number of measurements.

profiles where 20 sensors are equally spread along the two membranes. Figure 6.4 shows
the relative estimation error with and without measurements. The filter is doing a good
job in rejecting the linearized instabilities that occur near the stapes. However, small
oscillations were inevitable. To get rid of these kind of artifacts, more sensors can be
deployed near the stapes.

Finally, we asses the performance of the filter when there are defects in the structural
parameters of the model. For example, we modify ✓ and � from their values given in
table 2 to be 0.7 and 0.4, respectively. Figure 6.5(a) shows snapshots of the true and
estimated basilar membrane profiles at t = 10ms where, again, 20 sensors are equally
spread along the two membranes. In the absence of measurements, the relative estimation
error is around 25%, which shows the sensitivity of the model to the values of the defected
parameters ✓ and �. However, with measurements available, the estimation error drops
to less than 10%.

61



0 0.5 1 1.5 2 2.5
-3

-2

-1

0

1

2

3

(a)

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

(b)

Figure 6.4: Estimation performance of the extended Kalman filter with a coarse spatial

grid. (a) Snapshots of the true and estimated basilar membrane displacement profile.

(b) The evolution of the estimation error in the presence and absence of measurements.
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Figure 6.5: Estimation performance of the extended Kalman filter with defected pa-

rameters. (a) Snapshots of the true and estimated basilar membrane displacement

profile. (b) The evolution of the estimation error in the presence and absence of

measurements.
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[30] S. Särkkä and J. Hartikainen, “Infinite-dimensional kalman filtering approach to
spatio-temporal gaussian process regression.,” in AISTATS, vol. 22, pp. 993–1001,
2012.

66


	Abstract
	List of Figures
	List of Tables
	Introduction & Brief Physiology
	Mathematical Model
	Model Dynamics
	The Cochlear Model as an Infinite Dimensional Distributed System: Operator Approach

	Numerical Realizations
	Finite Difference Method
	Chebyshev Collocation Method
	Spectral Method: Basis Expansion
	Numerical Experiments on the Fluid Boundary Value Problem
	Frequency Response Using Different Numerical Methods

	Possible Sources of Instability in the Cochlea
	System Linearization
	Stability Effect of the Gain Level
	Stability Effect of Rapid Spatial Perturbations
	Limit Cycles of the Nonlinear Model

	Cochlear Dynamic Mode Decomposition
	Linear Algebra Preliminaries
	Review on DMD
	Cochlear Response Features using DMD
	Conclusion

	Estimating Basilar Membrane Vibration using Extended Kalman Filters
	Kalman Filter Framework in Distributed Environments
	System Linearization
	Numerical Results and Analysis

	Bibliography

