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Abstract

Modeling and Control of an Actuated Stirling Engine

Mitchel John Craun

This work proposes a new Stirling engine design which we refer to as an ac-

tuated Stirling engine. The thermodynamic cycle which drives the engine is con-

trolled by the motion of the displacer piston. In traditional designs this motion

is a result the design parameters of the engine. In the Beta engine design the

motion of the displacer is determined by the design of the flywheel, while in a

free piston design the motion is determined by the restorative force applied to the

displacer (be that from a gas spring used in some designs or a mechanical spring

used in others). This work proposes a new design wherein the displacer motion is

directly controlled via an actuator. This allows for more direct control over the

thermodynamic process which drives the engine. To answer the question of how

well this engine design compares to a more traditional engine, the best possible

design of both engines are compared to one another. This requires optimizing not

only the proposed design, but the more traditional design as well.

The traditional Beta engine design is chosen as the benchmark with which

the actuated design is compared to. Optimizing the design of the Beta engine

is a standard parameter optimization problem, as the motion of the pistons is
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determined by the flywheel parameters. Optimizing the actuated engine is more

difficult as it requires finding the optimal trajectory of the displacer, which is an

optimal control problem.

This work is divided into two sections. In the first section the problem of

optimally designing both the actuated and Beta engine designs is solved using

a very simple of the Stirling engine, the isothermal (or Schmidt) model. In the

second section the same design problem is solved but with a much higher fidelity

engine model. The large state dimension of the high fidelity model makes it ill

suited for use in an optimization algorithm. To resolve this, a method of model

reduction is proposed and applied to the high fidelity model to yield a reduced

model more suitable for use in an optimization algorithm. For both the simple

isothermal and high fidelity models it is shown that the actuated design has the

potential to significantly outperform the more traditional Beta engine design.
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Chapter 1

Introduction

Stirling engines are heat air engines that can operate using any heat power

source such as external combustion, waste heat, or solar thermal power. They

operate by cycling air between an expansion and a compression chamber, one

hot and one cold. This creates pressure fluctuations which are used to drive a

power piston which produces work. Stirling engines are theoretically capable of

Carnot efficiency. However, they are not commonly used in industry because the

technology has not advanced enough for them to approach this theoretical limit.

They are receiving renewed interest as a potentially competitive energy con-

version technology in several domains including micro Combined Heat and Power

(such as the WhisperGen units made by WisperTech of New Zealand), and solar
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thermal energy conversion (such as those made by SunPower Inc. and Infinia

Corp.).

There has been recent interest in more detailed modeling and optimization of

Stirling engines and coolers [19]. Related recent work on control-oriented modeling

of a Stirling engine was done in [24, 8, 9, 22], while the concept of an Active

Stirling Engine [6] has been recently proposed. This latter concept is similar to

our current work, where the displacer piston motion is the control input. Rather

than let displacer motion be determined by the mechanical engine design (whether

in kinematically-linked engines or the free-piston variety), this new Stirling engine

concept is based on directly actuating the displacer piston. This provides a large

amount of control authority over the engine dynamics. A natural question then

is how to exploit this new control possibility to optimize the operation of the

engine, and whether significant increases in efficiency and/or power output can

be achieved. In contrast to [6] where the control objective is for the displacer

to track a predetermined trajectory, we formulate a problem where the periodic

piston motions are optimally designed.

This work casts the active control problem of a Stirling engine as a problem in

Optimal Periodic Control. This is motivated by the observation that the ultimate

motion of such devices is cyclical, but the optimal limit cycle is not known a

priori, but is to be designed through the optimal control problem. We therefore
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do not have a traditional trajectory tracking problem, but rather a problem of

optimal trajectory design with periodic boundary conditions, i.e. optimal limit

cycle design. Since one of the main concerns with Stirling engines is their relatively

low power density, we set up a problem where the mechanical power output is to

be maximized while trading off the control effort.

A standard kinematically-linked engine design (also know as a beta engine de-

sign) was chosen as the benchmark to which the aforementioned actuated design

is compared to. In order to truly test to see if the actuated design is an improve-

ment over to the beta engine, the design of the beta engine must also optimized

while keeping all of the design characteristic common to both engines fixed. The

motion of the two pistons is how these engine designs differ; as such, the piston

motions for the Beta design must also be optimized. For the beta design the

piston motion is determined by the kinematic linkage. Therefor, the parameters

which describe this linkage must be optimally selected. This is not an optimal

control problem, but instead a standard parameter optimization problem. As

such, common parameter optimization tools are used to solve this optimization

problem.

Stirling engines are a type of heat engine which work by cycling air between an

expansion and a compression chamber, one hot and one cold. This creates pressure

fluctuations which are used to drive a power piston which produces work. Stirling
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engines are theoretically capable of Carnot efficiency. However, they are not

commonly used in industry because the technology has not advanced enough for

them to approach this theoretical limit. In order for the engine to run as efficiently

as possible, a large temperature difference between the hot and cold chambers

needs to be maintained. To this end the channel connecting the two chambers is

replaced with a regenerator, which acts as a heat capacitor. A regenerator is a

channel filled with a high heat capacitance matrix material which is in thermal

contact with the air flowing through the channel. During steady state operation, a

constant thermal gradient is maintained along the matrix material. This heats the

cold air entering the hot chamber and cools the hot air entering the cold chamber,

vastly improving the efficiency of the engine.

When simulating Stirling engines for design or other purposes, the regenera-

tor is often the most computationally expensive component. The expansion and

compression chambers are generally assumed to be well mixed and thus can be

modeled using simple ODEs. However, the regenerator depends on physical gra-

dients which require nonlinear PDEs to model. The goal of this research is to

present a viable method for model reduction of a regenerator. Doing so would re-

duce the computational complexity required when modeling Stirling engines and

other similar heat devices.
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Chapter 2

Inital Model

2.1 Chapter Overview

A Stirling engine is an air engine in which pressure oscillations drive a power

piston that performs mechanical work on a load. These pressure oscillations are

in turn driven by the mechanical motion of both power and displacer pistons.

We present the simplest possible model for this engine, the so-called isothermal

Schmidt model. The first model is that of an engine with an actuated displacer but

without kinematic linkages between power and displacer pistons (Figure 2.1(c)).

We use this model for optimal cycle design. The second model has flywheel

kinematic linkages, resulting in a so-called Beta-type engine (Figure 2.1(b)) which

we use as a benchmark case for performance comparisons.
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This chapter is organized as follows. Section 2.2 describes the dynamical model

used, which is the so-called isothermal Schmidt model. This is the simplest pos-

sible model of a Stirling engine, and is used as a proof-of-concept to illustrate

the potential advantages of optimal cycle design. The methodology presented is

however applicable to higher fidelity engine models as well. The results obtained

in this chapter from the optimization of the isothermal model motivate the work

presented in the following chapter where a similar optimization problem is solve

using a higher fidelity model.

Section 2.3 sets up optimal cycle design as an Optimal Periodic Control (OPC)

problem, and presents the iterative numerical hill-climbing algorithm we used.

There are special issues introduced by the periodic boundary conditions which

require careful treatment, and these are discussed in some detail. We also solve

this problem using the concept of differential flatness. This enables us to express

the state trajectories as a fourier series which allows us to convert the problem

into a standard parameter optimization problem where we search over the set

of fourier coefficients. In addition we also use the software package ACADO,

which specializes in solving optimal control problems, by casting the problem as

a nonlinear program. Finally, Section 2.3.3 presents a case study with numerical

results, together with a comparison to a well-designed kinematically-linked, beta
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type Stirling engine. Significant output mechanical power improvement on the

order of 40% was achieved for this example.

2.2 Model Derivation

Figure 2.1(a) is a diagram of the basic compartments and pistons of a Stirling

engine. The engine is composed of three sections, the hot and cold chambers and

the regenerator. The hot chamber is in thermal contact with a heat source and the

cold chamber is in thermal contact with a heat sink. Gas can move between the

two chambers through the regenerator channel. The power piston performs work

on a load, while the displacer piston’s primary task is to move the working gas

between the hot and cold chambers through the regenerator. Mechanical motion

induces thermodynamic changes as follows: As the displacer piston oscillates, air is

shuttled between the hot and cold chambers through the regenerator channel. This

shuttling creates oscillations in the average (over all sections) gas temperature,

which in turn cause oscillations in engine pressure. The pressure oscillations drive

the power piston, which is how the gas thermodynamics induce mechanical motion.

In a beta-type engine such as the one shown in Figure 2.1(b), the kinematic

linkages provide a feedback path between the power piston motion and displacer

piston, which shuttles the gas, and thus drives the gas thermodynamics. When the
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parameters are properly designed, this feedback creates self-sustaining oscillations

in the engine.

(a) The basic components of a

Stirling engine.

(b) A Beta-type Stirling engine.

(c) A Stirling engine with active

displacer actuation.

Figure 2.1: Conceptual diagrams of Stirling engines where (a) shows the basic compartments
and pistons, while (b) shows a beta-type engine where pistons are kinematically linked through

a flywheel, and (c) shows the new concept of an engine with active control through direct
actuation of the displacer piston. Linkages and actuators are shown conceptually and their

actual geometry is not reflected in these diagrams.

In a Stirling engine, the regenerator is a channel filled with a porous metal

matrix material. Its purpose is to act as a thermal capacitance, heating the cold

air before it enters the hot section and cooling the hot air before it enters the cold

section, thus significantly reducing loss of heat that is not converted to mechanical

energy.
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2.2.1 Assumptions

Mathematical models of such engines can be complex, but the iso-thermal

Schmidt model is the simplest one and invokes the following assumptions.

1. Mass is conserved

2. The gas obeys the ideal gas law

3. The gas is perfectly mixed in each section

4. The kinetic energy of the gas is ignored.

5. Pressure is uniform throughout the engine.

6. The temperature profile in the regenerator is linear and interpolates between

the temperatures of the adjacent hot and cold sections.

7. The heat exchangers are perfect, so the temperatures of the hot and cold

sections are constant in time (thus the term “isothermal”) and equal to the

temperatures of the heat source and sink respectively. This is equivalent

to the assumption that heat transfer between external reservoirs and the

internal gas sections is instantaneous.

The first four assumption are considered rather realistic, and subsequent ones are

listed in increasing order of severity. The last assumption is perhaps the most
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drastic. It is popular since it simplifies mathematical modeling, at the expense of

neglecting heat transfer dynamics which maybe significant in certain engines.

The above assumptions lead to a dynamical model derived below. The model

derivations below are abbreviated since they are variations on a more detailed

treatment available elsewhere [32].

2.2.2 Mechanics

Actuated Design

If we denote power and displacer piston positions by xp and xd respectively

(see Figure 2.1(c)), and power piston mass by mp, then the mechanical portion of

the dynamics is simply

mpẍp = FP (xp, xd) − Cpẋp, (2.1)

ẋd = u(t),

where Cp is the coefficient of a damper load through which power is extracted, and

Fp(xp, xd) is the pressure force on power piston to be discussed shortly. Displacers

are typically very light, and therefore assumed massless. The control effort in this

setting is related to the power needed to move the displacer back and forth. This

is primarily related to pressure losses (viscous friction) within the regenerator

loop. We will show these to be a function of displacer velocity, and we therefore
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choose that velocity (rather than displacer position) as the control input u. Of

course once optimal displacer velocity is determined, it is a simple matter to obtain

optimal displacer displacement by integration.

Beta Design

This traditional type of Stirling engine has kinematic linkages and no active

control. We use it as a benchmark design for performance comparison with our

engine with optimally designed cycle. A typical beta Stirling engine design is

shown in Figure 2.1(b). Any parameters in common between the Beta engine and

the actively controlled one (Figure 2.1(c)) were set equal. The main difference

between the two is that kinematic linkages enforce constraints between the power

and displacer piston motions. The dynamics for the Beta engine can be written

down using the model (2.13) and the geometrical relations from Figure 2.1(b) as

follows

mpẍp = FP (xp, xd)− Cpẋp − Fp, (2.2)

Iθ̈ = FpRpsin(θ − φ)− AdRd∆Psin(θ), (2.3)

xd = −Rdcos(θ), (2.4)

xp = −Rpcos(θ − φ), (2.5)

where I and θ are the moment of inertia and angular position of the flywheel

respectively, Fp is the reaction force between the power piston and the flywheel,

11



φ is the phase difference between the two pistons, Rp and Rd are the radial at-

tachment locations of the pistons on the flywheel,Ad is the cross sectional area

of the displacer, and ∆P is the pressure difference across the displacer caused by

forcing the working fluid to flow through the regenerator, Equation (2.17). These

equations were derived assuming that the displacer and the arms connecting the

pistons to the flywheel are massless. The latter are assumed to be sufficiently long

so that the forces they exert on the flywheel and pistons are essentially horizontal.

2.2.3 Pressure forces on power piston

In the iso-thermal model, temperatures in each section are assumed to be

constant in time. Pressure is assumed to be uniform throughout all sections of

the engine, but possibly time varying. Therefore, the volume oscillations of the

hot and cold chambers, which are caused by the motion of the displacer (xd) and

power piston (xp), create oscillations in average gas temperature, which in turn

creates pressure oscillations. This shows that the pressure force on the power

piston is a function Fp(xp, xd) of only those two dynamic variables.

The total gas mass in the engine is mt = mc+mr+mh, where mc, mr, and mh

are the masses of the gas in the cold, regenerator and hot sections respectively.

In each section, the ideal gas law expresses this mass as m = PV/RT , where R is

the gas constant, V and T are volume and temperature of the respective section
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(pressure P is assumed equal for all sections). We note that since the temperature

in the regenerator is not spatially uniform, the relation mr = PVr/RTr needs to

be interpreted in the sense of an “effective regenerator temperature” Tr, an issue

which will be addressed shortly. Therefore, the ideal gas law implies that the total

mass is

mt =
P

R

(
Vc
Tc

+
Vr
Tr

+
Vh
Th

)
. (2.6)

Note that Vr is constant, while the volumes of the hot and cold chambers are

functions of piston displacements

Vh = Vho + Adxd,

Vc = Vco − Adxd + Apxp,

(2.7)

where Ad and Ap are the cross sectional areas of the displacer and power piston

respectively, and Vho and Vco are the nominal volumes (at xp = xd = 0) of the hot

and cold chambers respectively. Equations (2.6-2.7) can now be solved to obtain

pressure as a function of piston displacements xp and xd. It remains to calculate

the effective regenerator temperature Tr.

The regenerator is assumed to be a linear, one dimensional element with a tem-

perature distribution T (l) = Th− Th−Tc
L

l which linearly interpolates the boundary

temperatures Th and Tc over the interval l ∈ [0, L]. Using the ideal gas law in
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each infinitesimal cross section gives the total regenerator mass as

mr =

∫ L

0

P (Ardl)

R T (l)
=

∫ L

0

P

R(Th − Th−Tc
L

l)
Ar dl,

where Ar is the cross sectional area through which fluid can flow in the regenerator.

This integral yields

mr =
PVr

R(Th − Tc)
ln

(
Th
Tc

)
, (2.8)

where Vr is the volume of the regenerator. We now observe that Equation (2.8)

is an ideal gas law for the regenerator if its temperature is taken as

Tr :=
Th − Tc

ln
(
Th
Tc

) . (2.9)

Solving Equation (2.6) for pressure and substituting for the variables Vh, Vc

and Tr from Equations (2.7) and (2.9) gives

P =
mtR(

Vc
Tc

+ Vr
Tr

+ Vh
Th

)
P =

mtR(
Vco
Tc

+ Vho
Th

+
Vrln

(
Th
Tc

)
Th−Tc

− Ad
Tc
xd + Ap

Tc
xp + Ad

Th
xd

) . (2.10)

For notational clarity, the following constants are defined

ap :=
Ap

TcVmt
, ad :=

Ad
Vmt

[
1

Tc
− 1

Th

]
,

Vmt :=
Vho
Th

+
Vrln

(
Th
Tc

)
Th − Tc

+
Vco
Tc
,

14



and the expression (2.10) can be more clearly rewritten as a function of piston

displacements

P =
mtR

Vmt

(
1

1 + apxp − adxd

)
. (2.11)

The above expression for the pressure finally gives the pressure force term

Fp(xp, xd) in (2.1) and 2.2, as

Fp(xp, xd) = ApPm

(
1

1 + apxp − adxd

)
, (2.12)

where Pm := mtR/Vmt is the nominal pressure (at xp = xd = 0) which is also

assumed to be equal to the pressure on the external side of the power piston. 1.

The engine dynamics for the two models can now be rewritten as

mpẍp = ApPm

[
1

1 + apxp − adxd − 1
]
− Cpẋp,

ẋd = u(t),

and

mpẍp = ApPm

[
1

1 + apxp − adxd
− 1

]
− Cpẋp − Fp, (2.13)

Iθ̈ = FpRpsin(θ − φ)− AdRd∆Psin(θ), (2.14)

xd = −Rdcos(θ), (2.15)

xp = −Rpcos(θ − φ). (2.16)

1In other words, the origins of the xp and xd axes are chosen such that at xp = xd = 0,
internal engine pressure is equal to the external atmospheric pressure. This makes the zero
state an equilibrium of the dynamics.
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2.2.4 Pressure losses in regenerator and control power

Although in the derivation above pressure was assumed uniform throughout

the engine, there is in reality a small pressure drop due to viscous friction when

fluid flows across the regenerator matrix material. In an actively controlled Stirling

engine (Figure 2.1(c)) the actuator primarily works against that small pressure

drop, which we need to characterize in order to quantify control effort. We point

out that this pressure drop is typically much smaller than the pressure oscillations

in the engine, which is the reason it can be neglected when calculating the force

on the power piston in the previous section. This fact is recognized in traditional

Stirling engines. It is also true in our controlled engine with optimally designed

cycle as a consequence of the optimization objective (2.22). Maximization of this

objective has the consequence of insuring that viscous losses (which are related to

control power) are kept at a minimum compared with pressure oscillations (which

determine the output power of the engine).

A standard model [32] for viscous pressure losses assumes them to be in the

same direction as the average flow velocity vr. but proportional in magnitude to

its square

∆P =
ρrfL

rh
(vr)

2
± (2.17)
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where we have used the following notation for the “signed square” function (α)2
± := α|α|.

The constants in the above expression are the fluid density ρr, f is the Fanning

friction factor, L the length of the regenerator, and rh is the hydraulic radius.

By conservation of mass, the average flow velocity vr can be related to the

cold and hot sections’ mass flow rates by

ρrvrAr =
1

2
(ṁc − ṁh) =

1

2

d

dt
(ρcVc − ρhVh) , (2.18)

where ρc and ρh are the fluid densities in the cold and hot sections respectively.

Using the ideal gas law with the assumption that pressure is uniform throughout,

the densities can be expressed as

ρr =
P

RTr
, ρh =

P

RTh
, ρc =

P

RTc
. (2.19)

The relative amplitudes of density oscillations are typically very small and there-

fore taken as constant. This simplifies the time derivative in (2.18), and yields

the following expression for regenerator flow velocity as a function of the pistons’

velocities

vr =
Tr

2Ar

(
Ap
Tc

ẋp −
Ad(Tc + Th)

TcTh
ẋd

)
. (2.20)

This last expression for vr and the expression (2.17) for the pressure loss now

give an expression for the control power required in terms of the state variables

and input. If the displacer piston is assumed to be nearly massless, then the

force Fd needed to drive the displacer is equal and opposite to the force due
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to pressure difference across the displacer, which is just the pressure loss in the

regenerator. The instantaneous control power is therefore the product of that

force with displacer velocity yielding

Fdẋd = (−Ad∆P ) ẋd =
AdρrfLT

2
r

4rhA2
r

(
Ad(Tc + Th)

TcTh
ẋd −

Ap
Tc
ẋp

)2

±
ẋd. (2.21)

2.3 Optimal Cycle Design

The optimization framework was applied to a Stirling engine model where the

displacer piston motion is the control input, and a performance comparison with

a standard kinematically-linked Stirling engine was performed. We chose a so-

called Beta-type engine as a benchmark case for comparison. Such an engine has

several design parameters that need to be chosen for satisfactory performance.

An important consideration is that a fair comparison should be done to a “well-

designed” benchmark case. Since there are currently no universally agreed-upon

standardized Stirling engine designs, we have chosen to parametrically optimize a

Beta type engine to serve as our benchmark reference. Other basic parameters of

the engines that are not to be optimized (such as reservoir temperatures, cylinder

areas, and nominal pressure) are taken from [32].
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The goal is to find the cyclical displacer motion which will maximize the av-

erage net power produced by the Stirling engine over one period. We formulate

this problem as an Optimal Periodic Control (OPC) problem, which is a stan-

dard optimal control problem, but with periodic boundary conditions. We then

outline a first order numerical method referred to as “hill climbing” to maximize

the objective. The issue of enforcing periodic boundary conditions on both the

state and co-state equations requires some special care which is expounded on in

Section 2.3.2.

OPC has been an area of active research in the past, and it would be difficult to

give a complete background here. Some of the more notable work [29, 31, 30, 4, 5]

was partially motivated by energy efficiency problems starting in the 70’s. That

work was dominated by the question of when cycling is more efficient than steady

operation. However, here we have a slightly different setting in that the engines

we deal with naturally (i.e. without control) would cycle. The availability of a

control input then gives the additional design freedom of finding non-natural limit

cycles that are energetically more favorable. The basic theoretical framework of

OPC is however common to our present work and the earlier literature.
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2.3.1 Optimization Formulation

Actuated Design

Power is extracted from the engine via a damper attached to the power piston,

and some power is used up by the displacer actuator to work against viscous

pressure losses across the regenerator. The average net power over one cycle is

the difference between the two, and is given by

J =
1

T

∫ T

0

φ(x, u)dt =
1

T

∫ T

0

(
Cpẋ

2
p − Fdu

)
dt. (2.22)

The dynamics are given by (2.13) and the control power Fdu is

Fdu = α (αdu − αpẋp)
2
± u, (2.23)

where the constants α, αd and αp are given by (2.21). The period T is fixed in

this formulation, and a search of a set of periods is done as an outer loop in the

algorithm. All states and the control are required to satisfy periodic boundary

conditions

xp(0) = xp(T ), ẋp(0) = ẋp(T ), xd(0) = xd(T ),

u(0) = u(T ). (2.24)

A final constraint we require is that of no collision between the pistons and the

collision barrier or the engine walls. These can be expressed using the inequality
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constraints

Ld ≤ xd(t) ≤ Ld

Lp ≤ xp(t)

, (2.25)

where Ld, Lp and Ld are the lower and upper limits on the displacer and power

pistons’ positions respectively. Hard limit constraints such as these are typically

difficult to enforce in numerical optimal control problems, so a “soft constraints”

approach is used by augmenting the objective with suitably designed penalty

functions Pd and Pp that grow unboundedly as the states approach the constraints

J =
1

T

∫ T

0

(
Cpẋ

2
p − Fdu− Pd(xd)− Pp(xp)

)
dt. (2.26)

In summary, our optimal control problem has the dynamics

ẋ1 = x2

ẋ2 = ApPm
mp

[
1

1 + apx1 − adx3
− 1
]
− Cp

mp
x2,

ẋ3 = u,

where x1 := xp, x2 := ẋp, and x3 := xd. The boundary conditions (2.24) are

T -periodic. The objective is to maximize the performance

J =
1

T

∫ T

0

(
Cpx

2
2 − α (αdu − αpx2)2

± u− Pd(x3)− Pp(x1)
)
dt. (2.27)
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Beta Design

There is no control input for the Beta engine design. As such, the objective is

simply the average output power.

J =
1

T

∫ T

0

(
Cpẋ

2
p

)
dt. (2.28)

Optimizing the Beta engine design requires that the design of the flywheel be

optimized, as this is what determines the motion of the pistons. The flywheel is is

fully described by its moment of inertia (I), the radial attachment locations of the

the two pistons (Rd , Rp), and the phase angle between these two locations (φ).

Thus, this optimization problem is a common parameter optimization problem,

and not on optimal control problem. The collision constraints are the same as

those in (2.25). However, the maximum displacement of the pistons is simply

given by their radial attachment locations. So these constraints can be simplified

to

Rd ≤ min(|Ld|, |Ld|)

Rp ≤ |Lp|
, (2.29)

For simplicity Ld and Ld were chosen to be equal in magnitude. For simplicity,

this length will be referred to as Ld, so to will |Lp| be referred to as Lp. Formally,

the optimization problem is to maximize (2.28) over the set {I, Rd, Rp, φ} subject
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to

0 < I, 0 < Rd ≤ Ld, 0 < Rp ≤ Lp, −π ≤ φ ≤ π,

θ(0) = θ(T ), θ̇(0) = θ̇(T ).

(2.30)

2.3.2 Optimization Solution

Beta Design

The benchmark engine used is the Beta model of the engine. This engine’s

optimization parameters including the flywheel and its kinematic linkages φ, Rp,

Rd, and I. A standard nonlinear programming method of optimization was applied

to obtain the parameter values producing the maximum average power over one

engine cycle. The objective function used was (2.28). It was found that if I

was large enough, it served mainly to change the time needed for the engine to

reach steady state, but had little effect on the resulting average power produced

at steady state. This is illustrated in Figure 2.2. Therefore I was chosen as

constant and not a parameter in the optimization routine. The constraints were

that the radii must be positive, while being small enough to prevent collisions

with the engine wall and the collision barrier. The fmincon routine in MATLAB

was used to find the optimal radii and the phase difference. The function called

by fmincon simulated the beta engine given the radii and phase difference. Once

the engine reached steady state, the function returned the average rate of power

extraction over one period to fmincon.
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Figure 2.2: This plot shows that once the moment of inertia of the flywheel is large enough,
it has little to no effect on the average power produced by the engine.

Figure 2.3 shows the engine’s net mechanical power output as a function of

the three design variables. This figure illustrates that power output is relatively

insensitive to power piston amplitude, while optimal phase is close to 90o, and

that larger displacer piston motions (limited by constraints that avoid collisions)

produce higher power.

Actuated Design

Hill climbing
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Figure 2.3: A plot showing the effect of three parameters of a beta-engine on power output.
The parameters are the phase difference, displacer, and piston amplitude. Small blue spheres
represent small objective values while large dark red spheres represent large objective values.
The small dots represent points that either don’t produce limit cycles, or results in collisions.
The optimal phase is around 90 degrees, power piston amplitude has relatively little effect on

performance, while larger displacer amplitudes produce more power.

First order variations In deriving first order necessary conditions for op-

timality as well as first order numerical algorithms, it is useful to calculate varia-

tions using a co-state as a Lagrange multiplier. These calculations are standard

in any optimal control textbook [26, 2, 16], so we only recap what we need here to

highlight the role of periodic boundary conditions. Consider an optimal control

problem with the dynamical constraint

ẋ = f(x, u), x(0) = x(T ), (2.31)
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and the performance objective J = 1
T

∫ T
0
φ(x, u)dt. A Lagrangian objective J is

defined using a Lagrange multiplier function λ(t), t ∈ [0, T ] termed the co-state

by

J :=
1

T

∫ T

0

(
φ(x, u) − λT (ẋ− f(x, u))

)
dt. (2.32)

The standard calculus of variations argument yields the following expression for

the variations in J

δJ =
1

T

∫ T

0

[
∂φ

∂x
δx+

∂φ

∂u
δu− λT

[
δẋ− ∂f

∂x
δx− ∂f

∂u
δu

]]
dt. (2.33)

Integration by parts yields

δJ =
1

T
(

∫ T

0

[
∂φ

∂x
+ λ̇T + λT

∂f

∂x

]
δx dt

− [λT (T )− λT (0)] δx(0)

+

∫ T

0

[
∂φ

∂u
+ λT

∂f

∂u

]
δu dt

)
. (2.34)

If the co-state is defined to satisfy the following adjoint equation with periodic

boundary conditions

λ̇ = −
(
∂f

∂x

)T
λ −

(
∂φ

∂x

)T
, λ(0) = λ(T ), (2.35)

then, with the addition of the states’ periodic boundary conditions x(0) = x(T ) ⇒ δx(0) =

δx(T ), the variations in J can finally be expressed as

δJ =
1

T

∫ T

0

[
∂φ

∂u
(x, u) + λT

∂f

∂u
(x, u)

]
δu dt, (2.36)
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where u, x and λ satisfy (2.31) and (2.35). When deriving first order necessary

conditions for optimality, the term in square brackets in (2.36) is set to zero.

Alternatively, this expression for δJ is used to propose updates to control inputs

in an iterative numerical algorithm, which is presented in the next section.

Hill Climbing Expression (2.36) can be used to build an iterative algorithm

for maximizing the objective (thus the term “Hill Climbing”). The initialization

step consists of applying some periodic input u0 to the system, and obtaining the

corresponding periodic state trajectory x0. For each subsequent step, let (un, xn)

be the functions obtained at the n’th step of the algorithm, then the next iteration

is chosen according to

λ̇n = −
(
∂f

∂x
(xn, un)

)T
λn −

(
∂φ

∂x
(xn, un)

)T
,

λn(T ) = λn(0), (2.37)

un+1 = un + ε

(
∂φ

∂u
(xn, un) + λTn

∂f

∂u
(xn, un)

)
, (2.38)

ẋn+1 = f(xn+1, un+1), xn+1(T ) = xn+1(0). (2.39)

Several remarks can be made about this algorithm

• Since (un, xn, λn) simultaneously satisfy the state and co-state equations,

the expression (2.36) for the variation guarantees that if (δu)n := un+1− un
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is chosen according to (2.38), then

δJ =
ε

T

∫ T

0

[
∂φ

∂u
(x, u) + λT

∂f

∂u
(x, u)

]2

dt ≥ 0,

and thus there exists a sufficiently small step size ε such that the value of

the objective at step n+ 1 is improved over that at step n.

• Both equations (2.39) and (2.37) require finding T -periodic solutions to the

corresponding differential equations. These issues are carefully addressed in

Section 2.3.2.

The method just described is a standard one in numerical optimal control, and

was first used for periodic optimal control problems by Horn and Lin [12]. Similar

methods have also been used by Kowler [20], and Noorden [33]. There are two

main distinctions between their algorithms and ours. The first is that the existence

of periodic solutions to the co-state equation (2.35) was implicitly assumed and not

addressed in [12, 20, 33]. These equations do not always admit periodic solutions,

and we analyze conditions that guarantee existence in the sequel. The second

distinction is in how the periodic state and co-state trajectories are determined. A

Newton-Raphson iteration is used in [12, 20] to find the periodic state trajectories,

and then the co-state trajectories are found by a decomposition into homogeneous

and particular solutions. A more sophisticated Newton-Picard iterative algorithm

is used in [33] to solve for both the state and co-state trajectories. In the present
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work, the state trajectories were found by simply simulating the state equations

for sufficiently long times to reach periodic steady state conditions. For problems

with slow dynamics, it is preferable to use an iterative method to find the periodic

state trajectories associated with a given input. However, the dynamics associated

with our problem converged relatively quickly, so the added complexity associated

with an iterative routine was not deemed necessary. To find the periodic co-state

trajectories, we developed an algorithm described in Section 2.3.2 which uses the

variation of constants formula to find the periodic boundary conditions directly.

Enforcing Periodicity We begin with enforcing the periodicity of the state

equation (2.39) as it is the simpler case. Since the input enters the dynamics

through an integrator (the equation for ẋ3 in (2.27)), a necessary condition for

x3 to be periodic is for u to have zero average in time. Therefore the zero-

average constraint on controls needs to be added to our OPC problem. It is not

difficult to show2 that this amounts to simply removing any DC component of

un+1 in (2.38) at every step of the iteration. While this is a necessary but not

sufficient condition for the periodicity of the state trajectory, it was found through

extensive numerical experiments that this condition alone resulted in a T -periodic

steady state trajectory (after simulation over several cycles) of (2.39) when the

2This follows from the observation that un+1 − nn needs to be in the direction δu that
maximizes (2.36) subject to the constraint of zero average. This direction is simply the projection
of the square bracketed term onto the subspace of zero-average signals, i.e. removing the DC
term.
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input is T -periodic and has zero mean. This is likely due to the physical nature

of this particular model.

As for the co-state equation 2.35, note that it is a linear, periodically time-

varying system (for λ) where the function
(
∂φ
∂x

)T
is an input. It is thus of the

form

λ̇(t) = A(t) λ(t) + B(t), λ(0) = λ(T ), (2.40)

where both A(.) and B(.) are periodic functions with period T . The periodic

boundary condition λ(0) = λ(T ) amounts to requiring this equation to have a

T -periodic solution. However, it is not always true that a linear T -periodically

time-varying system with a T -periodic input must have a T -periodic trajectory,

more complex behavior can occur [36]. Here we give conditions for the required

periodic solution to exist, and then show how the additional flexibility available

through selecting penalty functions can be used to insure this condition is satisfied.

First we show how all initial conditions leading to T -periodic solutions can be

characterized. Using the variations-of-constants formula on (2.40) gives

λ(T ) = Φ(T, 0) λ(0) +

∫ T

0

Φ(T, t)B(t) dt, (2.41)

where Φ is the state transition matrix of the system. Now the existence of an

initial condition leading to a periodic solution λ̄ = λ(0) = λ(T ) is equivalent to
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the existence of a vector λ̄ that solves the following matrix-vector equation

(
I − Φ(T, 0)

)
λ̄ =

∫ T

0

Φ(T, t)B(t) dt. (2.42)

We note that if such initial conditions exist, their calculation is a linear algebra

problem. The vector
∫ T

0
Φ(T, t)B(t) dt is calculated from a simulation of system

(2.40) with zero initial conditions, while the matrix Φ(T, 0) can be calculated in

the standard manner from the linear initial value problems,

Φ̇(t, 0) = A(t)Φ(t, 0), Φ(0, 0) = I. (2.43)

After these calculations, the linear system of equations (2.42) can be solved for λ̄.

It now remains to provide conditions as to when the system (2.42) has solutions

λ̄, or equivalently as to when the linear, T -periodic system (2.40) has T -periodic

solutions. This question has previously been addressed in the literature [36]. We

rephrase the main result here in a form that is directly applicable to the present

problem.

Theorem 1. The following three statements are equivalent

• The linear T -periodic system

λ̇(t) = A(t)λ(t) +B(t) (2.44)

has a T -periodic solution, i.e. such that λ(0) = λ(T ).
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• The following matrix-vector equation has a solution λ̄

(
I − Φ(T, 0)

)
λ̄ =

∫ T

0

Φ(T, t)B(t) dt, (2.45)

where Φ is the state transition matrix of A.

• For any T -periodic solution z of the homogenous adjoint system ż(t) = −

A∗(t) z(t), the following orthogonality condition holds

∫ T

0

zT (t) B(t) dt = 0. (2.46)

Furthermore, each T -periodic solution of (2.44) is such that λ(0) = λ̄, where λ̄

is a solution to (2.45), and vice versa, i.e. there is a one-to-one correspondence

between T -periodic solutions of (2.44) and vector solutions of (2.45).

This theorem is a reformulation of a result in [36, Sec. 2.10, Lemma I]. For

completeness, we provide a brief, self-contained proof in Appendix 2.3.4. Condi-

tion (2.46) can be used to check whether a given system has T -periodic solutions,

then solutions of the matrix-vector equation (2.45) are used to find the corre-

sponding initial conditions, and thus the T -periodic solutions.

To see the consequences of condition (2.46) to the present problem, equa-

tion (2.37) is written out explicitly after reference to the dynamics (2.27) and
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performance objective (2.27)
λ̇1

λ̇2

λ̇3

 =


0 ap (ApPm/mp)

(1+apx1−adx3)2
0

−1 Cp
mp

0

0 −ad (ApPm/mp)

(1+apx1−adx3)2
0




λ1

λ2

λ3

−

P ′p(x1)

∂φ
∂x2

P ′d(x3)

 , (2.47)

where P ′ stands for the derivative of the corresponding single-variable function

P , and the exact form of ∂φ/∂x2 is irrelevant in the sequel. To apply Theorem 1,

we note that A := −
(
∂f
∂x

)T
above has the following left null vector

vn =

[
ad 0 ap

]
for any state trajectory. This implies that zn := vTn is always a right null vec-

tor for the adjoint system ż = −AT (t)z, and thus gives constant (and there-

fore T -periodic) solutions. Condition (2.46) applied to this solution zT (t) =[
ad 0 ap

]
gives the requirement

∫ T

0

(
ad P

′
p (x1(t)) + ap P

′
d (x3(t))

)
dt = 0. (2.48)

Extensive numerical investigations were carried out, and no other periodic solu-

tions of the homogenous system adjoint to (2.47) were found. We thus proceed

with the assumption that condition (2.48) is the only one that needs to be checked.

In our routines, the constraint (2.48) is enforced on each term in the integral

separately. Consider the displacer position penalty first. A sketch of a typical

Pd is shown in Figure 2.4 where it is termed the “fixed penalty”. This penalty

33



Figure 2.4: A schematic of the fixed and variable penalties on the displacer (top) and power
(bottom) pistons’ positions. The variable penalties’ shifts Sp, Sd and Sd are parameters

determined at each iteration step of the algorithm to enforce condition (2.48).

has even symmetry about the midpoint of [Ld, Ld], and therefore P ′d has corre-

sponding odd symmetry3. If the trajectory of xd is symmetric in time about the

midpoint, then clearly the integral of P ′d(xd(t)) over one periodic will be zero.

However, as is typical in the initial steps of the algorithm, xd may not have that

temporal symmetry. We therefore augment Pd with an additional function (Pdv),

termed “variable penalty” in Figure 2.4, which has variable parameters Sd and

Sd. These parameters essentially bias the even symmetry of the augmented Pd

3In our particular implementation, all penalty functions (fixed and variable) are sums of
reflections and shifts of a one-sided penalty function used as a basic building block.
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(and consequently the odd symmetry of P ′d). Therefore even when the trajectory

xd does not have temporal symmetry about the midpoint, parameters Sd and Sd

can be found such that the integral of the sum (P ′d(xd(t)) +P ′dv(xd(t)) is zero over

one period. This sum retains the barrier penalty features at Ld and Ld of the

original one, and has the additional property of satisfying the integral constraint.

A similar technique is used for the power piston penalty function as illustrated in

the bottom part of Figure 2.4. Those details are omitted for brevity. Thus, the

objective function which is used in the routine is actually

J =
1

T

∫ T

0

(
Cpẋ

2
p − Fdu− Pd(xd)− Pp(xp)− Pdv(xd, Sd, Sd)− Ppv(xp, Sp)

)
dt.

(2.49)

Finally, we note that at each step of the iteration, the parameters Sd, Sd and Sp

required to enforce (2.48) are found using a zero finding routine such as “fzero”

in MATLAB.

The case of multiple solutions Much of the above discussion was aimed

at insuring the existence of a solution to the co-state equation (2.37). It is pos-

sible that this equation may have multiple solutions as well (though this case

was not encountered in the present work). In such cases, the multiplicity of so-

lutions can help the objective improvements at each step. The set of solutions

of (2.37) is a linear affine space completely characterized by solutions of the vector
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equation (2.45). The “steepest direction” δu to take in (2.36) is the one that corre-

sponds to the λ amongst all solutions of (2.37) that maximizes the L2 norm of the

square bracketed term in (2.36). This is a convex, finite-dimensional, quadratic

optimization problem where the number of variables is precisely the number of

linearly independent solutions of (2.37).

Summary of the algorithm The Hill Climbing method with periodicity

enforcement is now summarized. The following procedure is done within a loop

where the optimal period is search for using a bisection method. The procedure

is initialized by choosing a suitable starting control input u0 (e.g. a sinusoid) and

associated period T , simulating the open loop dynamics over several cycles until a

steady-state periodic solution is reached. This provides the initializing trajectories

(u0, x0) for (2.37).

1. Simulate the dynamics until a periodic limit cycle is reached. If a collision

occurs while simulating, reduce ε and compute a new input using equation

(2.38); then repeat step one. If no collision occurs, proceed to step two.

2. If the resulting objective is greater than the current optimum define this

input and performance objective to be the new optimums, increase ε and

proceed to step 3. Otherwise, reduce ε and compute a new input using

equation (2.38); then repeat step one.
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3. Determine the parameters Sd, Sd, and Sp which ensure condition (2.48) is

satisfied.

4. Compute the state transition matrix for system (2.47) by simulating system

(2.43), as well as the response to forcing by simulating system (2.41) with

zero initial conditions.

5. Solve linear system (2.42) to determine the initial condition which satisfies

equation (2.47). The costate trajectory can then be determined by either

simulating system (2.37), or by using the state transition matrix and re-

sponse to forcing if those time histories have been saved.

6. Form a new input using equation (2.38).

7. Repeat steps 1 through 6 until convergence is achieved, then proceed to step

8

8. Tighten the penalty functions.

9. Repeat steps 1 through 8 until convergence is achieved.

Flatness In addition to the hill climbing method mentioned previously, it is

also possible to solve this optimal control problem using differential flatness. In-

formally, a system is differentially flat if all of the states and the input can be

expressed in terms of an output (called the flat output) and its time derivatives.
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In addition, the flat output must be the same dimension as the input.4 The

Schmidt model of the actuated engine is differentially flat and a flat output is the

position of the displacer piston (xp). Clearly, ẋp can be expressed in terms of the

time derivatives of xp. The remaining states (xd) and the input (u) can also be

expressed in terms of xp and its derivatives. This is illustrated below.

xd =
1

ad
+
ap
ad
xp−

1

ad + ad
ApPm

(mpẍp + Cpẋp)
, u =

ap
ad
ẋp+

ad
ApPm

(mp
...
x p + Cpẍp)[

ad + ad
ApPm

(mpẍp + Cpẋp)
]2

Substituting these expressions into the performance objective

J =
1

T

∫ T

0

(
Cp(ẋp)

2 − α (αdu − αpẋp)
2
± u)

)
dt, (2.50)

results in an expression which is a function of only xp, its time derivatives, and

the period. If xp is expressed as a Fourier series

xp(t) =
n∑
i=1

ai sin(
2πi

T
t) + bi cos(

2πi

T
t) + c,

then the input, states, constraints and objective can all be expressed as functions

of c, the bi’s, the ai’s, and T using the flatness relations. Thus, the optimal control

problem is now a standard parameter optimization problem.

ACADO Finally, the optimal control problem was also solved using the software

package ACADO. ACADO is a software package, that has an optional MATLAB

4For further details on differential flatness and how it applies to optimal periodic control
problems the reader is referred to [34].
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interface, which is designed to solve optimal control problems (as well as other

control related problems). Once the user specifies the state and control variables

(and any variable parameters as well) they can either specify the differential con-

straints directly, have ACADO refer to a MATLAB m file which calculates the

time derivatives of the states. The users then specifies any additional constraints,

the objective, and provides an initial input and associated state trajectory and

ACADO converts the optimal control problem into a nonlinear program, which

it then attempts to solve. Further details regarding ACADO can be found here

[13, 1] .

2.3.3 Results and Comparison

The hill climbing algorithm was used to optimize the operating cycle of a

displacer-actuated version of the parametrically optimized beta-engine. For a

range of operating frequencies, the algorithm was executed and Figure 2.5 shows

the resulting maximum average net power as a function of frequency. The maxi-

mum average net power produced was just under 1800 watts at approximately 17

Hz.

At the frequency corresponding to maximum net power, optimal displacer and

power piston trajectories are shown in Figure 2.6. Note that displacer motion

is closer to a square wave than a pure sinusoid; this maximizes the time spent
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Figure 2.5: The maximum average net power produced by the actuated Stirling engine as a
function of displacer frequency. The peak in power production occurs around 17 Hz.

at the two pressure extremes (c.f. Figure 2.6), and thus impulses applied to the

power piston will be maximized and minimized in the appropriate directions. This

intuitively shows how maximum power is transferred to the power piston. The

two piston trajectories appear to be approximately 90o out of phase, though it is

a little difficult to unambiguously measure phase shifts for non-sinusoidal signals.

We note however that this phase shift is an outcome of the optimization rather

than being enforced with kinematic linkages as is the case in traditional Stirling

engines.
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Figure 2.6: The optimal motions and the pressure and velocity curves are displayed here for
the actuated displacer model. The optimal displacer motion resembles that of a square wave.

This maximizes the time spend at both pressure extremes.

For comparison, the optimal displacer and power piston trajectories for the

beta model are shown in Figure 2.7. Note how these motions resemble those of

a pure sinusoid; this is primarily a result of the rotational inertia of the flywheel

causing it to spin at near constant speed.

Finally, the PV-diagrams for both the beta and optimally actuated models are

shown in Figure 2.8. The areas enclosed by the two models are very similar in

size, so they produce roughly the same energy per cycle. However, the operating

frequency of the actuated model is faster than that of the beta model (as can be

seen when comparing Figures 2.6 and 2.7), so it completes more cycles in a given
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Figure 2.7: The optimal motions and the pressure and velocity curves are displayed here for
the beta Stirling model. The optimal piston motions resemble that of a sine wave. This is a

result of the rotational inertia causing the flywheel to spin at near constant speed.

amount of time. The end result is that the optimally actuated model produces

42% more power than the optimally designed beta model.

A natural question is what the performance of the beta engine would be if

operated at the faster frequency that is optimal for the actuated engine? However,

in order to insure a valid comparison between the two engines, the only changes

which can be made to the beta engine design are those used in the construction of

the flywheel; thus, this is the only way the operating frequency can be adjusted.

Since the flywheel parameters were already optimized for maximum average net

power, any alteration to their values would result in decreased performance.
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Figure 2.8: A Pressure/Volume (PV) diagram showing the optimally actuated cycle and the
optimal beta cycle. The curves proceed clockwise and the area enclosed by the either curve is

the mechanical energy output (per cycle) of the engine.

Flatness

As described in section 2.3.2, by exploiting the flatness of the dynamics it

is possible to convert the optimal control problem into a parameter optimization

problem. This was solved with six harmonics (n = 6) using MATLAB’s fmincon

to search over the ai’s, the bi’s, and c found in equation refflatequ. After a solution

is found T is changed using a bisection method and fmincon is called again. This

is repeated until convergence is achieved. The resulting optimal trajectories for
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the actuated model are shown in Figure 2.9. Again, the optimal displacer motion

resembles that of a square wave.
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Figure 2.9: The optimal motions, pressure, and velocity curves found using the flatness
approach are displayed here for the actuated Stirling model.

ACADO

The optimal control problem was solved a final time using the software package

ACADO. The resulting optimal trajectories are shown in Figure 2.10 Again, the

resulting trajectories are nearly identical to those found previously. This suggests

that we can be quite confident that the three solutions are very close to the true

optima.
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Figure 2.10: The optimal motions, pressure, and velocity curves found using ACADO are
displayed here for the actuated Stirling model.

Concluding Remarks

We have shown how the framework of Optimal Periodic Control (OPC) can be

used to design optimal cycles for displacer-actuated Stirling engines. The perfor-

mance objective is the net power harvested by the engine from the heat reservoirs’

temperature difference. Both the optimal engine’s cycling frequency, as well as the

optimal piston motion waveforms are obtained as a result of the optimization. The

optimal waveforms show significant higher harmonic content, and displacer piston

motions in particular are closer to square waves than they are to pure sinusoids.

The operating frequencies are also different from those that result from optimized
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kinematic linkages. A case study was presented where an optimally actuated en-

gine produced 42% more mechanical power than a comparable, best-case-design

kinematically-linked engine.

This is a starting point for the use of OPC for actuated Stirling engine opti-

mization. One of the major drawbacks of the isothermal Schmidt model is the

assumption of instantaneous heat transfer from the external reservoirs to the work-

ing gas. Current work includes the application of the OPC framework presented

here to higher fidelity models of the Stirling engine which incorporate finite-rate

heat transfer, as well as more detailed models of regenerator dynamics. We ex-

pect that OPC would be even more critical and beneficial in these more complex

models.

On a more general note, it is likely that OPC is the proper framework for

a large class of energy conversion and harvesting problems. Cyclic operation is

natural in such problems, and when active actuation is introduced, the role of OPC

is to find more energetically favorable limit cycles than the ones that would occur

naturally without active actuation. We have demonstrated this idea for a simple

Stirling engine model in the present work, but we believe this basic framework to

be applicable to several other energy conversion problems as well.
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2.3.4 Appendix: Existence of Periodic Solutions to Peri-

odically Time-Varying Systems

The equivalence of the first and second clause of Theorem 1 is a simple argu-

ment that was outlined in the text leading to Equation (2.42). It remains to show

the equivalence of the second and third clauses.

Considering the matrix-vector equation (2.45), and recall two fundamental

facts from linear algebra. A matrix-vector equation of the form

M λ̄ = w,

has a solution λ̄ if and only if the vector w is in the range (column span) of the

matrix M , i.e. w ∈ R(M). The second fact is that for any matrix, its range and

the null space of its adjoint are orthogonal and complementary, i.e.

R(M) ⊥ N (MT ).

This means that w ∈ R(M) iff it is perpendicular to every element of the null

space of MT , i.e.

w ∈ R(M) ⇔ ∀ z̄ s.t. MT z̄ = 0, z̄Tw = 0. (2.51)

Now applying this to the matrix-vector equation (2.45), we see that the condition

MT z̄ = 0 amounts to
(
I − ΦT (T, 0)

)
z̄ = 0. The latter statement is equivalent
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to

z̄ = ΦT (T, 0) z̄ ⇔ ΦT (0, T ) z̄ = z̄,

since
(
ΦT (T, 0)

)−1
= ΦT (0, T ). It is well known that Φa(T, 0) = ΦT (0, T ) is the

state transition matrix of the adjoint system

ż(t) = − AT (t) z(t), (2.52)

and therefore the statement ΦT (0, T ) z̄ = z̄ is equivalent to the existence of a

T -periodic solution of the system (2.52) with z(0) = z(T ) = z̄. Finally, we rewrite

the dot product term z̄Tw in (2.51) as applied to (2.45)

z̄T
∫ T

0

Φ(T, t) B(t) dt =

∫ T

0

(
ΦT (T, t) z̄

)T
B(t) dt,

and observe that the function ΦT (T, .) z̄ = Φa(., T ) z̄ is simply the solution

of (2.52) with the final boundary condition z(T ) = z̄, therefore a T -periodic

solution.

In summary, applying the fundamental linear algebra result (2.51) to the sys-

tem (2.45) gives the following: for all z̄ such that ΦT (0, T ) z̄ = z̄ (i.e. for all

periodic solutions z(.) of (2.52)), we must have

∫ T

0

zT (t) B(t) dt = 0,

which is the second clause of the theorem.

48



Chapter 3

High Fidelity Model

3.1 Chapter Overview

This chapter is split into two main sections. The first is the modeling section.

This section considers the problem of developing a low order, control-oriented

model of typical regenerator components in Stirling engines. We begin with a

first principles model which is in the form of a 1-dimensional nonlinear partial

differential equation incorporating advection, friction and heat transfer between

the regenerator metal matrix and the working gas. The resulting model is quite

complex, has a large state dimension, and results in long simulation times. As

such, this model is not well suited to be used within an optimization routine.

As such, combinations of averaging, perturbation analysis, and proper orthogonal
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decomposition are proposed as possible methods of model reduction in order to

obtain models useful for engine optimization and control. Several parameters

can be assumed to be quite small for most engine designs, and these parameters

identify which terms in the governing equations can be neglected. The resulting

equations are then further reduced using either proper orthogonal decomposition

(POD) or additional perturbation analysis. These relations are then used in the

simulation of two Stirling engine models and the results are compared to those

wherein the unreduced PDE model is simulated using a nonlinear finite difference

scheme. A comparison of the models shows that for certain engine configurations,

they behavior similarly to the PDE model.

The second section then uses this reduced model within optimization routines

to find the optimal design of both the beta and actuated engine models. The

performance of the optimally designed actuated and beta engine designs are then

compared.

3.2 Modeling

3.2.1 Modeling Introduction and Reduction Motivation

Stirling engines are a type of heat engine which work by cycling air between an

expansion and a compression chamber, one hot and one cold. This creates pressure
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fluctuations which are used to drive a power piston which produces work. Stirling

engines are theoretically capable of Carnot efficiency. However, they are not

commonly used in industry because the technology has not advanced enough for

them to approach this theoretical limit. In order for the engine to run as efficiently

as possible, a large temperature difference between the hot and cold chambers

needs to be maintained. To this end the channel connecting the two chambers is

replaced with a regenerator, which acts as a heat capacitor. A regenerator is a

channel filled with a high heat capacitance matrix material which is in thermal

contact with the air flowing through the channel. During steady state operation, a

constant thermal gradient is maintained along the matrix material. This heats the

cold air entering the hot chamber and cools the hot air entering the cold chamber,

vastly improving the efficiency of the engine.

When simulating Stirling engines for design or other purposes, the regenera-

tor is often the most computationally expensive component. The expansion and

compression chambers are generally assumed to be well mixed and thus can be

modeled using simple ODEs. However, the regenerator depends on physical gra-

dients which require nonlinear PDEs to model. The goal of this research is to

present a viable method for model reduction of a regenerator. Doing so would re-

duce the computational complexity required when modeling Stirling engines and

other similar heat devices.
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There is no universally applicable method of model reduction when dealing

with nonlinear systems. For the purpose of modeling the regenerator in a Stirling

engine we propose using time scale separation via singular perturbation analysis

with the possible addition of proper orthogonal decomposition to reduce the gas

dynamics, while the dynamics of the matrix material are reduced using averaging.

In the case of a Stirling engine, the relevant dynamics are those of advection and

heat transfer. These processes take place on a time scale which is much slower

than the time scale of acoustic phenomena, while at the same time taking place

on a faster time scale than that of the mechanical motion of the engine. By using

perturbation analysis the terms which model the fast acoustic phenomena can be

removed while at the same time the quasi steady state nature of the advection

and heat transfer processes can be approximated.

Figure 3.1 is a diagram of the basic compartments and pistons of a Stirling

engine. The engine is composed of three sections, the hot and cold chambers

and the regenerator. The hot chamber is in thermal contact with a heat source

and the cold chamber is in thermal contact with a heat sink. The power piston

performs work on a load, while the displacer piston’s primary task is to move the

working gas between the hot and cold chambers through the regenerator channel.

Mechanical motion induces thermodynamic changes as follows: as the displacer

piston oscillates, air is shuttled between the hot and cold chambers through the
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Figure 3.1: A simple model of a beta type Stirling engine. The primary components are the
hot and cold chambers (colored red and blue), the regenerator connecting them, the displacer
and power piston, the load on the power piston, and the mechanical linkage connecting the two

pistons.

regenerator. This shuttling creates oscillations in the average (over all sections)

gas temperature, which in turn cause oscillations in engine pressure. The pressure

oscillations drive the power piston, which is how the gas thermodynamics induce

mechanical motion. In a beta-type engine such as the one shown in Figure 3.1,

the kinematic linkages provide a feedback path between the power piston and

the displacer, which shuttles the gas, and thus drives the gas thermodynamics.

When the parameters are properly designed, this feedback creates self-sustaining

oscillations in the engine. An alternative engine model is that of an actuated

Stirling engine, as was proposed in [6] and [3]. In this design the flywheel and
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kinematic linkages are removed and the displacer motion is controlled externally.

This design is shown in Figure 3.2.

Figure 3.2: A simple model of an actuated Stirling engine. It is similar to the beta engine
design, except that the kinematic linkage between the displacer and power piston are removed

and the displacer is controlled externally.

3.2.2 Model Derivation

Assumptions

Mathematical models of such engines can be complex, and this model is no

exception. The goal was to derive a model using the least severe assumptions as

possible while not bothering to model phenomena which was considered superflu-

ous. The primary assumptions are listed below.

1. Mass is conserved
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2. Energy is conserved

3. The gas obeys the ideal gas law

4. The gas is perfectly mixed in each chamber

5. All the kinetic energy flowing into the chambers is converted into heat. This

results in the gas having zero velocity in the chambers.

6. The flow in the regenerator is assumed to be Hagen-Poiseuille laminar flow.

7. There are only temperature and density variations along the length of the

regenerator. Therefor, the regenerator can me modeled in just one dimen-

sion.

8. The temperature of the chamber walls are constant and act as the heat

source and heat sink.

9. Heat exchange between the gas and the engine material is assumed to be

proportional to the temperature difference.

10. Supersonic effects are assumed to be negligible.

11. Heat due to friction is absorbed entirely by the gas, and not the material.

The above assumptions lead to a dynamical model derived below.
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Dynamics

Chamber Models The chamber gas dynamics are derived from conservation

of mass and conservation of energy. The gas is assumed to be well mixed, obey

the ideal gas law, and have negligible velocity. This last assumption is equivalent

to assuming that all the kinetic energy of the gas flowing into the chamber is

converted into heat. These assumptions yield the following equations,

[Vz(t)ρz(t)]t = (±)zAzrρzr(t)vzr(t),

Ez(t)t = (±)zvzr(t)Azr

[
cvρzr(t)Tzr(t) +

1

2
ρzr(t)vzr(t)

]
(±)zAzrPzr(t)vzr(t)− Pz(t)Vz(t)t +Kw(Twz − Tz(t)),

Ez(t) = Cvρz(t)Vz(t)Tz(t),

Pz(t) = ρz(t)RTz(t). (3.1)

The variables are as follows: V is volume of the chamber, ρ is density, v is velocity,

E is energy, T is temperature, P is pressure, cv is the specific heat of the gas,

Kw is the heat transfer coefficient between the chamber walls and the gas in the

chamber, and Azr is the cross sectional area of the interface between the chamber

and the regenerator channel. The subscript z is a placeholder to represent either

the hot chamber (h) or the cold chamber (c), and zr represents the interface

between the chamber and the regenerator. The first equation expresses the fact

that the rate of change of the mass in chamber z is equal to the rate at which
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mass flows in or out of the chamber. The second equation captures the fact that

the rate of change of the energy of the gas is equal to the rate at which energy is

flowing into the chamber, plus the work rate of pressure forces, minus the work

done by the gas, plus the rate at which heat is exchanged between the gas and

the chamber walls. The walls of the chamber act as the heat source and heat

sink of the engine and are assumed to be at constant temperatures, Twh and Twc.

The third equation defines what is meant by the energy of the gas, and the last

equation is the ideal gas law. Both the hot and cold chambers are modeled using

their own set of these equations.

Regenerator Model The regenerator consists of an open tube filled with the

working gas as well as a matrix material which runs lengthwise down the tube,

both of which interact by exchanging heat. The governing equations are the 1D

compressible flow equations with the addition of a matrix material, and terms
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accounting for friction and heat exchange. The equations are listed below.

ρ(x, t)t =− [ρ(x, t)v(x, t)]x (3.2)

[ρ(x, t)v(x, t)]t =−
[
ρ(x, t)v(x, t)2 + P (x, t)

]
x
− βv(x, t) (3.3)

E(x, t)t =− [(E(x, t) + P (x, t)) v(x, t)]x (3.4)

+ kg(Tm(x, t)− Tg(x, t)) (3.5)

E(x, t) =ρ(x, t)cvTg(x, t) +
1

2
ρ(x, t)v(x, t)2 (3.6)

cpρmTm(x, t)t =kg(Tg(x, t)− Tm(x, t)) + kmTm(x, t)xx (3.7)

P (x, t) =ρ(x, t)RTg(x, t) (3.8)

Equation 3.2 is the conservation of mass equation. It is driven by a single term

which describes the mass flux in and out of a differential element. Equation 3.3

enforces conservation of momentum. The first term in this equation accounts

for both the momentum flux in and out of a differential element and describes

the pressure difference across the differential element; the end term accounts for

friction. Equation 3.4 is the conservation of energy equation. The first term

here accounts for the energy flux and the work rate of pressure forces, and the

second term describes how heat is exchanged between the matrix material and the

gas (this will be elaborated on shortly). Equation 3.6 defines what is meant by

energy; it consists of the internal thermal energy of the gas and its kinetic energy.

Equation 3.7 is the energy equation for the matrix material. It accounts for the
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heat exchanged between the matrix and the gas, as well as the conductive heat

transfer within the material. Equation 3.8 is the familiar ideal gas law.

The term accounting for the heat exchange between the matrix material and

the gas is modeled as proportional to the temperature difference; it is selected

considering both conduction and convection. This is based on the work of [8],

where a combined conduction and convection coefficient was used and shown to

be accurate. The regenerator modeled here is a scaled version of the one presented

in [8], in which air was used as the working fluid. However, our model assumes

helium as the working fluid since it is more common in industrial Stirling engines.

To account for this, the conduction/convection coefficient given in [8] was scaled

by the ratio of helium’s thermal conductivity to air’s thermal conductivity. The

rest of the gas and engine coefficients were chosen assuming helium as the working

gas, while the matrix material was assumed to be made of graphite to match the

regenerator model in [8].

The choice of boundary conditions was made assuming the regenerator was

connected to two ideal gas chambers where the densities, temperatures, and thus

pressures were known. These were then imposed as boundary conditions on the

compressible flow equations, while the ends of the matrix material were assumed

to be in thermal contact with the chamber walls. The outputs of the model

were the gas state variables (density, temperature, and velocity) at the locations
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nearest the boundaries. These are assumed to be the values of the gas states at

the interface between the regenerator and the chambers, Tzr, ρzr, vzr, Pzr, and are

used as inputs for the chamber dynamics. The diagram in figure 3.3 illustrates

this discretization further.

Figure 3.3: Model showing the discretization of the regenerator model. The boundary
conditions at the end are equal to the gas values in the corresponding chambers.

Modeling this system using finite differences is not straightforward. Applying

common difference approximations to the first order derivatives results in unstable

numerics. The method used to model this system of equations was the Essentially

Nonoscillatory (ENO) scheme, which is commonly used to model the compressible

flow equations as it is able to accurately capture shock behavior and can stably

compute the advective terms. The ENO scheme will not be covered in great deal

here, but interested readers are referred to [23] , [28] , and [7]. The method
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behind the ENO scheme is that the system of equations is transformed into a set

of coordinates where the first order advective terms are diagonal. Once diagonal-

ized, the direction of information propagation is determined and an appropriate

upwinding difference approximation is used in the transformed coordinates to

estimate the numerical flux entering the differential element. This flux is then

transformed back into the original coordinates where it is used to calculate the

spatial first order derivatives at that location. The diagonalizing transformation is

found by computing the eigenvectors of the Jacobian of the advective terms. Un-

fortunately, the Jacobian varies with space and time since the dynamic variables

vary in both space and time. Thus, this diagonalization/coordinate transforma-

tion must be performed at every location in space and at every instance in time.

This can be quite computationally expensive, further motivating the search for a

model reduction method.

Kinematics The remaining engine dynamics are those of the mechanical link-

age. In the beta engine design the displacer and power piston are connected

to a flywheel which provides the feedback necessary for a stable limit cycle to

form. The kinematics for the beat engine can be expressed using the geometrical
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relations from Figure 3.1 as follows:

mpẍp = Ap [Pc(t)− Pex]− cpẋp − Fp, (3.9)

Iθ̈ = FpRpsin(θ − φ)− AdRd∆Psin(θ), (3.10)

xd = −Rdcos(θ), (3.11)

xp = −Rpcos(θ − φ), (3.12)

Vh(t) = Vh0 + Adxd(t), (3.13)

Vc(t) = Vc0 + Apxp(t)− Adxd(t), (3.14)

where I and θ are the moment of inertia and angular position of the flywheel

respectively, Fp is the reaction force between the power piston and the flywheel,

φ is the phase difference between the two pistons, Pex is the exterior pressure, Rp

and Rd are the radial attachment locations of the pistons on the flywheel, ∆P

is the pressure difference across the displacer, Ad and Ap are the cross sectional

areas of the displacer and power piston, and Vh0 and Vc0 are the volumes of the

hot and cold chambers when the displacer and power piston are at their zero

positions. These equations are derived assuming that the pistons and the arms

connecting the pistons to the flywheel are massless. The latter are also assumed

to be sufficiently long so that the forces they exert on the flywheel and pistons

are essentially horizontal.
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The dynamics for the actuated engine design shown in figure 3.2 are obtained

by eliminating the mechanical linkages and defining the displacer velocity to be

an input. The volume equations remain unchanged. The resulting dynamics are

shown below.

mpẍp = Ap [Pc(t)− Pex]− Cpẋp,

ẋd = u(t).

The parameters used for both the mechanical model and the chamber models

are based on the work of [21], where a martini type Stirling engine is modeled.

The engine modeled here is a simplified version of that engine. The choice of wall

temperatures, helium as the working gas, approximate dimensions, and nominal

pressure are all taken from this source.

3.2.3 Model Reduction

Identify the small parameters

It is possible to express both the energy and momentum equations in a more

convenient form by using the ideal gas law and the conservation of mass equation.

63



This process is outlined in the Appendix, and the result is shown here.

∂v

∂t
= −v(x, t)

∂v

∂x
(x, t)− 1

ρ(x, t)

[
∂P

∂x
(x, t) + βv(x, t)

]
(3.15)

∂P

∂t
= −v∂P

∂x
− γP ∂v

∂x
+ γ̄kg(Tm −

P

Rρ
) + βv2 (3.16)

The variables γ and γ̄ are defined as γ = 1 + R
cv

and γ̄ = γ − 1. In order to

determine what terms can be neglected, the regenerator equations must first be

expressed in nondimensional form. This yields the following,

∂r

∂τ

ωb
v̄
L

= − ∂

∂ξ
(rm), (3.17)

r
∂m

∂τ

ωbv̄
c̄2

L

= −v
2

c2
rm

∂m

∂ξ
− 1

γ

∂ψ

∂ξ
− βLv̄

ρ̄c2
m, (3.18)

∂ψ

∂τ

ωb
v̄
L

= −m∂ψ

∂ξ
− γψ∂m

∂ξ
+
γ̄Lkg
Rρ̄v̄

(
Φ− ψ

r

)
+ γ̄

βLv̄

p̄
m2, (3.19)

cpρm
Tp

∂Φ

∂τ
=
km
L2

Φξξ + kg

(
ψ

r
− Φ

)
. (3.20)

where τ = ωbt = t
Tp

is dimensionless time, r,m, ψ,Φ, ξ are dimensionless density,

velocity, pressure, mesh temperature, and the spatial variable respectively, c =√
γ P̄
ρ̄

is the speed of sound in the gas, P̄ , v̄, ρ̄ are the scaling factors for the

various gas states, and Φ is the nondimensional matrix temperature.

There are four different time scales in this problem. Three of these are as-

sociated with the regenerator gas dynamics while the last relates to the matrix

material. The time scales are the frequency of the engine ωb = 1
Tp

, the frequency

of advection ωa = v̄
L

, the acoustic frequency ωs = c
L

, and the matrix material
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time constant cpρm/kg. If these frequencies are very different, their ratios can be

thought of as small parameters. In our case they are :

ε1 =
ωb
ωs
, ε2 =

ωa
ωs
, ε3 =

ωb
ωa
, εm =

Tp
cpρm/kg

. (3.21)

If we make these substitutions the equations become

∂r

∂τ
ε3 = − ∂

∂ξ
(rm), (3.22)

r
∂m

∂τ
ε3ε

2
2 = −ε22rm

∂m

∂ξ
− 1

γ

∂ψ

∂ξ
− βLv̄

ρ̄c2
m, (3.23)

∂ψ

∂τ
ε3 = −m∂ψ

∂ξ
− γψ∂m

∂ξ
+
γ̄Lkg
Rρ̄v̄

(
Φ− ψ

r

)
+ γ̄

βLv̄

p̄
m2, (3.24)

∂Φ

∂τ
= εm

(
km
kgL2

Φξξ +

(
ψ

r
− Φ

))
. (3.25)

Replacing c2 = γ p̄
ρ̄

and defining a new parameter εf = βLv̄
p̄

results in

∂r

∂τ
ε3 = − ∂

∂ξ
(rm), (3.26)

r
∂m

∂τ
ε3ε

2
2 = −ε22rm

∂m

∂ξ
− 1

γ

∂ψ

∂ξ
− 1

γ
εfm, (3.27)

∂ψ

∂τ
ε3 = −m∂ψ

∂ξ
− γψ∂m

∂ξ
+
γ̄Lkg
Rρ̄v̄

(
Φ− ψ

r

)
+ γ̄εfm

2, (3.28)

∂Φ

∂τ
= εm

(
km
kgL2

Φξξ +

(
ψ

r
− Φ

))
. (3.29)

Estimating the small parameters

It is necessary to know which of the ε’s can be assumed to be small and

therefore be replaced with zero. The operating frequency of the engine, ωb (Hz),
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is considered known. The acoustic frequency, ωs, is the speed of sound in the

medium divided by the length of the regenerator. The speed of sound in a gas is

given by

c =

√
γ
P̄

ρ̄
, (3.30)

where P̄ and ρ̄ are the nominal pressure and density, both of which can easily

be estimated for a given engine; The length of the regenerator can also be easily

measured. Therefore, for any given engine ωs can be estimated quickly. The

frequency of advection, ωa, is more difficult to estimate as it requires an estimate

of the flow speed in the regenerator. Conservation of mass for the hot chamber

yields

Ṁh = ρ̇hVh + ρhV̇h = ρhvhrAhr, (3.31)

here Mh is the mass in the hot chamber, ρh is the density, Vh is the volume, vhr

is the velocity of the flow in or out of the chamber, and Ahr is the cross-sectional

area of the regenerator void volume. Differentiating the ideal gas law produces

Ṗh = ρ̇hRTh + ρhRṪh. (3.32)

If the gas is assumed to be in perfect thermal contact with the wall, as is done in

the popular Schmidt analysis of Stirling engines, then Ṫh can be assumed to be

zero. Solving for ρ̇h and substituting it into the mass equation results in

Ṗh
P
Vh + V̇h = vhrAhr. (3.33)
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Assuming that the volume and the pressure in the hot chamber both vary sinu-

soidally and are in phase then they can be expressed as

Ph(t) =Pa sin(ωt) + P0, (3.34)

Vh(t) =AdRd sin(ωt) + Vh0 , (3.35)

where Ad is the cross sectional area of the displacer, and Rd is the amplitude of

the motion of the displacer. Plugging these in and simplifying results in[
sin(ωt) +

Vh0
AdRd

sin(ωt) + P0

Pa

+ 1

]
cos(ωt)

AdRd

Ahr
ω = vhr(t). (3.36)

For most engines, all of these parameters are generally known or easily estimated.

Keeping in mind that ω = 2πωb, it should be simple to get an approximation

for the maximum value of vhr(t) for a given engine. If further simplification is

desired, one can assume that the dead volume in the hot chamber is close to zero

which makes
Vh0
AdRd

close to one. The maximum possible value for Pa is P0 and the

minimum value for Pa is zero, this implies that the maximum possible value for

the velocity at the regenerator and hot chamber boundary can be approximated

as

v̄hr = k
AdRd2πωb

Av
, k ∈ [1, 2]. (3.37)

If the velocity throughout the regenerator is approximately uniform, then this

maximum velocity can be used as an estimate for the maximum velocity in the
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regenerator, v̄ = v̄hr. The small parameters ε2 and ε3 can now be expressed in

terms of engine parameters as

ε2 =
ωa
ωs

=
v̄

c̄
=

2πkAdRdωb

Azr

√
γ P̄
ρ̄

, (3.38)

and

ε3 =
ωb
ωa

=
LAzr

2πkAdRd

=
Vr
πkVs

, (3.39)

where Vr is the void volume in the regenerator, and Vs is the volume displaced by

the displacer during one stroke of the engine.

Unfortunately, εm = Tp
cpρm/kg

is much more difficult to estimate as it involves

heat transfer coefficients, which are not easy to estimate in terms of simpler engine

parameters. Fortunately, it is still possible to intuitively justify the assumption

that εm is small for a well defined engine. The purpose of the mesh in the regen-

erator is to act as a sort of thermal storage for the gas. Acting as a heat source

by allowing the gas to absorb heat as it enters the hot chamber, as well as acting

as a heat sink by allowing the gas to release heat as it enters the cold chamber.

If the temperature of the matrix mesh changed significantly during one cycle of

the engine, then it’s ability to perform as an ideal heat source and sink would be

significantly hampered. As such, a well designed regenerator has a large enough

thermal inertia to ensure that the temperature fluctuations of the mesh during

steady state engine operation or minimized, and thus εm is small.
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The final small parameter is εf = βLv̄
p̄

. It can be shown that for Hagen-

Poiseuille flow β is given by

β =
8

R2
r

µ, (3.40)

where Rr is the channel radius in the regenerator and µ is the dynamics viscosity

of the gas. Since v̄ has already been estimated, εf can be expressed as

εf =
βLv̄

p̄
= k

16πµAdRdLωb
p̄R2

rAzr
. (3.41)

Given these approximations, it is possible to justify the assumption that all

of the epsilons are small. If the flow speed in the regenerator does not become

supersonic, which should be the case for most Stirling engines, then ε2 = v̄
c̄

will

be less than one. If the void volume (Vr) is less than the stroke volume (Vs) then

ε3 = Vr
πkVs

must be less than one. This should also be the case for most Stirling

engines as a well designed Stirling engine minimizes the dead volume (volume that

is not part of the expansion or compression process) throughout the engine, which

the regenerator volume is considered to be. As mentioned, εm can be assumed to

be small because the thermal mass of the mesh needs to be large enough to insure

that the temperature of the mesh does not fluctuate during one engine cycle. The

final small parameter εf = βLv̄
p̄

should also be less than one since βLv̄ = ∆p where

∆p is pressure difference across the regenerator. Most Stirling engine assumptions,

including the common Schmidt assumptions, assume the pressure difference across
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the regenerator is negligible compared to the nominal pressure. Thus, it is safe to

assume that for most Stirling engines these values will all be less than or much

less than one.

Reduced Regenerator Dynamics

In equation 3.27, ε2 only appears as ε22, which must be less than ε2 and will

be the first parameter assumed to be zero. This yields the following

∂r

∂τ
ε3 = − ∂

∂ξ
(rm), (3.42)

0 = −∂ψ
∂ξ
− εfm, (3.43)

∂ψ

∂τ
ε3 = −m∂ψ

∂ξ
− γψ∂m

∂ξ
+
γ̄Lkg
Rρ̄v̄

,

(
Φ− ψ

r

)
+ γ̄εfm

2. (3.44)

By solving for m in the second equation, m can be eliminated from the rest of the

equations.

∂r

∂τ
ε3εf = (rψξ)ξ,

∂ψ

∂τ
ε3εf = γ(ψψξ)ξ + εf

γ̄Lkg
Rρ̄v̄

(
Φ− ψ

r

)
(3.45)

What remains are a set of dynamics where the fast acoustic phenomena have been

removed. To simulate these equations they are rewritten as

∂r

∂τ
ε3εf = rξψξ + rψξξ,

∂ψ

∂τ
ε3εf =

γ

2
(ψ2)ξξ + εf

γ̄Lkg
Rρ̄v̄

(
Φ− ψ

r

)
. (3.46)
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The spatial derivative terms are all approximated using a central difference scheme,

with the exception of rξ where the standard first order upwinding scheme is used

and the direction of upwinding is based on the direction of flow at that location,

which is found using equation 3.43. Two different methods are used to further

reduce the model. The first assumes the density and pressure dynamics are fast

enough to justify a quasi-steady state assumption. The second method uses a

POD based model reduction method that is useful when the quasi-steady state

assumption is not longer appropriate.

Averaging the matrix equation We start with the nondimensionalized mesh

thermal dynamics, Equation (3.29), and substitute T̃ = φ
r

for the gas temperature,

Φτ = εm

(
km
kgL2

Φξξ +
(
T̃ − Φ

))
. (3.47)

Averaging analysis [15] tells us that the difference between the solution to the

T periodic system ẋ = εf(t, x, ε) and the solution to ẋav = εfav(xav) (where

fav = 1
T

∫ T
0
f(t, x, 0)dt ) is of order ε. Our goal is to arrive at a model which

accurately captures the steady state limit cycle of the engine. Assuming that

the engine has reached steady state, averaging Equation (3.47) and the pressure

dynamics in (3.45) over one period of the limit cycle (T̃b) results in

0 = 1
T̃b

∫ T̃b
0

[
km
kgL2 Φξξ +

(
T̃ − Φ

)]
dτ ,

0 = 1
T̃b

∫ T̃b
0

[
γ
2
(φ2)ξξ + εf

γ̄Lkg
Rρ̄v̄

(
Φ− T̃

)]
dτ

. (3.48)
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The gas and mesh temperature during steady state can be decomposed as

T̃ (ξ, τ) = T̃p(ξ, τ) + T̃av(ξ),

Φ(ξ, τ) = Φp(ξ, τ) + Φav(ξ),

(3.49)

where T̃p(ξ, τ) and Φp(ξ, τ) are periodic in τ and have zero mean over one cycle.

Using these substitutions yields

0 = km
kgL2 Φavξξ +

(
T̃av − Φav

)
,

0 = 1
T̃b

∫ T̃b
0

[
γ
2
(φ2)ξξ

]
dτ + εf

γ̄Lkg
Rρ̄v̄

(Φav − Tav)
. (3.50)

Solving for
(
T̃av − Φav

)
in one equation substituting into the other results in the

relation

εfΦavξξ = − c1

T̃b

∫ T̃b

0

[
(φ2)ξξ

]
dτ , (3.51)

where c1 = γRρ̄v̄L
2γ̄km

. Expressing the pressure profile as φ(ξ, τ) = φ0(τ) + εfφ∆(ξ, τ)

equation (3.51) then becomes

Φavξξ = − c1

T̃b

∫ T̃b

0

[
2φ0(τ)φ∆(ξ, τ) + εfφ

2
∆(ξ, τ)

]
ξξ
dτ . (3.52)

Given that φξξ = φ∆ξξ, equation (3.43) can be used to express the integrand as

−2εf
[
φ0(τ)mξ(ξ, τ) + εfφ∆(ξ, τ)mξ(ξ, τ) + ε2fm

2(ξ, τ)
]
. (3.53)

Setting ε2 equal to zero earlier removed the fast acoustic phenomena from the

system, which includes the ability for shocks to form. This implies that m(ξ, τ)

will be relatively smooth and mξ(ξ, τ) will be reasonable in size. Thus, as εf
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becomes very small so does the integrand in equation (3.52) and the average mesh

profile can be assumed to be

Φav(ξ) = Φ0 + Φ1ξ, (3.54)

where Φ0 and Φ1 are constants of integration determined by the boundary condi-

tions. In our case the ends of the mesh are assumed to be in thermal contact with

the chamber walls and as such, the boundary conditions are that the temperature

at the ends of the mesh must be equal to the temperature of the chamber walls.

As was mentioned at the start of this section, the difference between this and the

true limit cycle is of order εm. Therefore, the matrix material will be assumed

to be a fixed linear profile which interpolates between the two wall temperatures.

It should be noted that this result can also be obtained by assuming that the

thermal conductivity of the mesh (km) is much greater than the combined con-

duction and convection coefficient between the gas and the mesh (kg). However,

if km is too large then a large amount of the heat entering the engine will simply

travel through the mesh, and not be absorbed by the gas. Thus, a well designed

regenerator may not have a very large conduction coefficient.
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Quasi-Steady State Assumption Setting the product ε3εf equal to zero in

equation set (3.45) results in,

0 = (rψξ)ξ,

0 = γ(ψψξ)ξ + εf
γ̄Lkg
Rρ̄v̄

(
Φ− ψ

r

)
. (3.55)

The boundary values for this problem are that the pressure on either end must

equal the pressure in the corresponding chamber, and that the density at the

upstream boundary must equal the density in the adjacent chamber. When the

flow switches from one direction to the other, the boundary condition for the

density profile must also switch. This switch will be determined by the sign of

the mean velocity, or equivalently, the sign of the pressure difference across the

regenerator. Formally the boundary conditions are

ψ(0) = ψh(τ), ψ(1) = ψc(τ),
r(0) = rh(τ) : ψh(t)− ψc(t) > 0

r(1) = rc(τ) : ψh(t)− ψc(t) < 0


where ψh, ψc, rh, rc are the nondimensional pressures and densities of the hot and

cold chambers.

The first equation in system 3.55 illustrates that rψξ is constant in ξ, as such

we define α(t) = rψξ. The last equation can then be written as

0 = γ (ψψξ)ξ + εf
γ̄Lkg
Rρ̄v̄

(
Φ− ψψξ

α

)
, (3.56)
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which is a single boundary value problem. Assuming the temperature of the

regenerator matrix can be well approximated as an affine function of the spatial

variable (as was previously justified), then Φ can be replaced with

Φ(ξ, τ) = Φ0 + Φ1ξ, (3.57)

at which point, equation 3.56 is solvable analytically, and the solution is shown

below.

ψ(ξ, τ) =
1

kt

√
c1(τ) + c2(τ)ξ + c3(τ)ξ2 + c4(τ)ec5(τ)ξ

kt = εf
γ̄Lkg
Rρ̄v̄

c1 = 2α(τ)γ
[
α(τ)ktΦ0 + α2(τ)γΦ1 + ktC1(τ)

]
c2 = 2α(τ)

(
k2
tΦ0 + α(τ)γktΦ1

)
c3 = α(τ)k2

tΦ1

c4 = k2
tC2(τ)

c5 =
kt

α(τ)γ
(3.58)

Once the pressure profile is determined, the velocity profile can be found by dif-

ferentiating the above equation and using equation 3.43, the density profile can

be found using the equation α(t) = rψξ , and finally the temperature profile can

be constructed using the ideal gas law. The boundary values are enforced via the

constants of integration α(τ), C1(τ), and C2(τ). Of these, C1(τ) and C2(τ) can
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be solved for as explicit functions of ψh(τ) and ψc(τ); however, it is not possible

to solve for α(τ) as an explicit function of either rh(τ) or rc(τ). Instead, α(τ)

is determined using a root finding scheme with whichever boundary condition is

appropriate. When using this approximation within a simulation, if the α(τ) from

the previous time step is used as the initial guess for the current time step then

the routine should converge quickly.

Before this method can be used within an engine simulation, it is necessary to

address how the approximation will behave when the flow switches directions. As

the engine oscillates, the pressure gradient cycles from positive to negative. Since

α is defined to be the product between the density and the pressure gradient, α

must pass through zero. Equation set 3.58 reveals that α appears in the denomi-

nator of an exponent. Because of this, as α approaches zero this term will become

unbounded. Therefore, an alternate approximation is necessary for the regenera-

tor profiles when the pressure gradient is very small. Once the pressure gradient

is large enough it is then possible to switch back to the previous approximation

technique.

During the times when the pressure gradient is small, the pressure profile is

assumed to be linear and interpolates between the pressures of the two chambers,

while the temperature profile is assumed to be equal to that of the matrix material.

When flow speed is small the gas has more time to exchange heat with the matrix
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material before moving downstream; therefore, this temperature approximation

should be reasonable for small flow speeds. The flow velocity is then determined

from equation 3.43, and the density profile is determined from the ideal gas law.

The temperature, density, and pressure profiles described by this model are

analytic functions of the spatial variable. As such, the outputs of this regenerator

model are assumed to be the values of the various profiles at both ends of the

model, ξ = 0 and ξ = 1. The reduced regenerator model produced by the method

described here is purely a function of the boundary conditions, it involves zero

states. This model shall be referred to as reduced regenerator model 1, or RRM1.

This method should work well for engine designs where the product ε3εf is very

small. For engine designs where the product ε3εf is not sufficiently small it is

necessary to use an alternative method of model reduction to reduced the model

beyond equation set 3.45; proper orthogonal decomposition is used in such cases.

POD Model Reduction POD model reduction begins with defining new

variables r̃ and ψ̃ as

r̃ = r − r0 and ψ̃ = ψ − ψ0 , (3.59)

where r0 and ψ0 are the density and pressure profiles at equilibrium. Equation

set 3.45 is simulated using a finite difference scheme of size n and mt snapshots

of the density and pressure profiles are used to construct time histories for r̃ and
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ψ̃. These snapshots are then collected as the column vectors of the matrices Yr̃

and Yψ̃, which are then scaled as

Ȳr̃ = W
1
2
r̃ Yr̃ and Ȳψ̃ = W

1
2
ψ Yψ̃ , (3.60)

where Wr̃ and Wψ̃ are diagonal weighting matrices. Next, the eigenvectors of the

product Ȳ Ȳ T are found, as seen below

[ΦW , λ] = eig(Ȳ Ȳ T ). (3.61)

Finally, the matrix of POD basis vectors is constructed from the following,

Φ = W− 1
2 ΦW . (3.62)

Model reduction is then performed by approximating the different fields as a

linear combination of the column vectors (φ) of Φ which correspond to the largest

s eigenvalues.

r(ξ, τ) ≈
s∑
i=1

φri(ξ)ari(τ) + r0(ξ) (3.63)

ψ(ξ, τ) ≈
s∑
i=1

φψi(ξ)aψi(τ) + ψ0(ξ) (3.64)

The number of states used to model each field is then s instead of n, and the

resulting regenerator model consists of 2 · s states. The model produced by the

procedure described here shall be referred to as reduced regenerator model 2, or

RRM2.
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It is worth while to note that in normal applications of POD model reduction

the POD modes are used to recreate the same simulation as the one from which

they are gathered. We propose generating the modes from an engine simulation

where the displacer motion is that of chirp signal which sweeps over the expected

engine operational frequency. This should eliminate the need to capture new

modes every time an engine parameter is altered resulting in a new operational

frequency.

Results and Comparison

Quasi-Steady State Assumption The unreduced model of the regenerator

employed a finite difference scheme where the regenerator was cut into 100 seg-

ments. This meant that the total amount of states in the unreduced beta engine

model was 4 · 100 + 6 = 406, while the beta engine with RRM1 consists of only

6 states. This is a very significant reduction in state dimension. To compare the

two models, both beta engine models were given the same initial condition and

were simulated until a steady state limit cycle was reached. The limit cycles of

the chamber states were then compared to one another. Figure 3.4 shows this

comparison.

From this figure it is clear that the two engines behave similarly. However,

ours is just one engine design. Another engine design may result in a better
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Figure 3.4: Time histories of the chamber states for both models. The reduced model is in
red, and unreduced finite difference model is in blue.

match. To illustrate this, the engine parameters were altered so that the product

ε3εf was reduced and the comparison was performed again. Figure 3.5 shows

this comparison. Clearly for engine designs where ε3εf is sufficiently small, this

reduced model performs quite well.

POD Model Reduction When creating RRM2, snapshots of equation set 3.45

must be gathered from a simulation in order to generate the POD basis vectors.

Equation set 3.45 was used in a Stirling engine simulation where the flywheel’s

speed was increased linearly in time from 40 rad
s

to 600 rad
s

. The resulting displacer
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Figure 3.5: Time histories of the chamber states for both models. The reduced model is in
red, and unreduced finite difference model is in blue.

and power piston trajectories were chirp signals which swept through the expected

operational frequency of 80 rad
s

.

To compare the unreduced model to RRM2, both the reduced and unreduced

beta engine models were simulated with the same initial condition until a steady

state limit cycle was reached. The limit cycles of the chamber states were then

compared to one another. Figure 3.6 shows this comparison when the 3 dominant

POD modes were used to construct the density and pressure profiles, resulting in

a reduced engine model of 2 · 3 + 4 + 2 = 12 states. Figure 3.6 shows that the

two engine models produce results which are almost identical. However, further
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reduction is not possible as using less than 3 modes produces simulations with

unrealistic results.

Figure 3.6: Time histories of the chamber states for both models. The reduced model is in
red, and unreduced finite difference model is in blue.

Because the modes were captured from a simulation where the piston motions

were chirp signals, we expect that if a particular engine parameter was altered for

both the reduced and unreduced engine models, the results would still be similar

even if the engine frequency was impacted by the change in engine parameters.

This would make it unnecessary to gather new modes every time engine parameters

are slightly altered. To test this, the conduction/convection coefficient between

the working gas and the chamber walls was doubled, which greatly increased the

82



rate at which heat could flow in and out of the engine. A comparison of the limit

cycles of these two altered beta engine models is shown in Figure 3.7.

Figure 3.7: Time histories of the chamber states for both beta engine models when the wall
conduction/convection coefficient is doubled. The reduced model is in red, and unreduced

finite difference model is in blue.

Generally, when comparing two dynamical models, time histories for a single

simulation may not be very informative, frequency response diagrams may provide

more insight. However, frequency response diagrams require a well defined input

and output relation, which the beta Stirling engine model does not have. In order

to compare frequency response diagrams, the actuated Stirling engine design was

used and the displacer motion was treated as an input signal. With this engine

design it is possible to compare the two models by contrasting their frequency
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response data. The POD modes for the actuated engine design were derived from

a simulation where the displacer motion was that of a chirp signal ranging from

40 rad
s

to 600 rad
s

. The first four of these modes for the density and pressure profiles

are shown in figures 3.8 and 3.9.

Figure 3.8: The first four POD modes for the density profile of the actuated engine model.

Simulations for both the reduced and unreduced actuated models were per-

formed wherein the displacer motion was sinusoidal with amplitude equal to that

of the chirp signal. Several displacer frequencies were used and a simulation was

performed for each frequency. Because these simulation were performed over a

range of frequencies, the number of modes used to construct the pressure and
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Figure 3.9: The first four POD modes for the pressure profile of the actuated engine model.

density profiles was increased to four, rather than three as was used in the beta

model. The Fourier transform of the limit cycles for the chamber states were

taken and the spectral content for each limit cycle was plotted. This was done for

both the reduced and unreduced actuated models. Since the models are nonlinear,

the limit cycles of the chamber states may not be pure sinusoids. Therefore, their

spectral content need not consist of a single harmonic, but rather many harmonics

at integer multiples of the driving frequency. A comparison of the strength of first

four harmonics are shown in Figure 3.10.
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Figure 3.10: Frequency response comparison for model RRM2 with 4 modes. The reduced
model is in red, and unreduced model is in blue. This suggests that any discrepancy in the two

models may be as small as just a few percent.

The first two or three harmonics match up quite well and deviation only begins

once the spectral content has dropped by at least an order of magnitude, which

suggests a good fit. Because both models are nonlinear, changing the amplitude

of the input signal may result in a different frequency response. To test this,

the displacer amplitude was increased by a 50 percent and the experiment was

repeated with the same POD modes used previously. The strength of first four

harmonics are compared in Figure 3.11.
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Figure 3.11: Frequency response comparison for model RRM2 using the same 4 modes, but
with a displacer amplitude increased by a 50 percent. The reduced model is in red, and

unreduced model is in blue. This suggests that any discrepancy in the two models may be as
small as just a few percent.

Conclusion

The results showed that the simplified RRM1 model performed similarly to

that of the finite difference model as long as the product ε3εf was small. A nat-

ural question would be if a higher order perturbation approximation would yield

a better match. This is not the case for this application. Higher order per-

turbation approximations require that the time derivatives of the inputs to the

perturbed model be known, much like a higher order Taylor series approximation

requires higher order derivatives at the initial point. The calculation of the time
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derivatives of the inputs (the chamber states) requires the use of the lower order

approximations of the regenerator profiles. As such these time derivatives will

differ from that of the unreduced system. Via experimentation, it was discov-

ered that the higher order profile approximations are very sensitive to errors in

these time derivatives. As a result, the higher order approximation performed

worse than the lower order approximation. In the case that the inputs to this

regenerator model are not states but instead predetermined time histories whose

time derivatives are known, then a higher order approximation of these profiles

would undoubtable yield better results. However, this was not the case for this

application.

The results of the comparisons between the engine models which utilized

RRM2 and the unreduced regenerator show that the reduced engine model was

able to accurately capture the dynamics of a full fidelity model. Furthermore, it

was shown that if engine parameters are altered slightly there may be no need to

rederive the modes used in the reduced model.

The benefit of these simplified models is the large reduction is state dimen-

sion. The original beta engine model consisted of 406 states while engine model

utilizing RRM1 consisted of only 6 states, and the beta engine model utilizing

RRM2 consisted of only 12 states. The actuated design used an extra mode for

both the density and pressure profiles resulting in an engine design with only 15
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states, compared to 407 states for the unreduced model. These large reductions

in state dimension have many benefits including faster runtime, less memory re-

quirements, and reduction in complexity. Such a reduced model could prove useful

when designing or evaluating the potential performance of various Stirling engine

designs. Specifically, these models could prove to be highly beneficial when used

to simulate a Stirling engine within an optimization routine, wherein some engine

design characteristic is being optimized. These simplified models would be ideal

for such an application as it requires a Stirling engine model which is simple,

computationally inexpensive, and evaluates quickly. The solution of an optimal

design problem using either reduced model could serve as an approximate solution

or as an ideal initial point when optimizing a more complex Stirling engine model.

This is a suggested avenue for future research.
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3.2.4 Appendix:

From Equation 3.3 to Equation 3.15

Equation 3.3 is simplified by using Equation 3.2 as follows

(vρ)t = −
(
v2ρ
)
x
− (P )x − β v,

vtρ + vρt = −2vvxρ− v2ρx − Px − βv,

vtρ + v (−vρx − vxρ) = −2vvxρ− v2ρx − Px − βv,

vtρ = −vvxρ− Px − βv,

vt = −vvx −
1

ρ
(Px + βv) ,

where we have used Equation 3.2 to go from the 2nd line to the 3rd. The rest

follows from the chain rule.

From Equation 3.4 to Equation 3.16

For notational simplicity we will replace the matrix/gas heat exchange term

with the variable q. We start from equation 3.4 and use equation 3.2 and 3.3 (4th

line below) as follows(
ρcvT +

ρv2

2

)
t

= −
(
v

(
ρcvT +

ρv2

2

)
+ Pv

)
x

+ q,

(ρcvT )t +
1

2

(
ρv2
)
t

= − (vρcvT )x −
1

2

(
ρv3
)
x

− (Pv)x + q,
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(ρcvT )t +
1

2

(
ρtv

2 + 2ρvvt
)

= − (vρcvT )x

− 1

2

(
ρxv

3 + 3ρv2vx
)
− (Pxv + Pvx) + q,

1

2

(
(−vxρ− vρx) v2 + 2ρv

(
−vvx −

1

ρ
(Px + βv)

))
+ (ρcvT )t = − (vρcvT )x −

1

2

(
ρxv

3 + 3ρv2vx
)

− (Pxv + Pvx) + q,

(ρcvT )t −
1

2

(
v2vxρ+ v3ρx

)
− v2vxρ− Pxv − βv2

= − (vρcvT )x −
1

2

(
ρxv

3 + 3ρv2vx
)

− (Pxv + Pvx) + q,

(ρcvT )t −
3

2
v2vxρ−

1

2
v3ρx − Pxv − βv2 = − (vρcvT )x

− 1

2
ρxv

3 − 3

2
ρv2vx − (Pxv + Pvx) + q,

(ρcvT )t = − (vρcvT )x − Pvx + q + βv2.

We now use the relation cvρT = cv
R
P , which is derived from the ideal gas law, and

we arrive at

Pt = −γPvx − vPx + γ̄q + βv2,

which is the desired result.
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3.3 Optimization

3.3.1 Optimization Formulation

Unlike in the previous chapter, it was assumed that a rotational alternator was

used rather than a linear one. This change was made because most alternators are

rotational, rather than linear. As such, the damper was removed from the power

piston and a rotational damper was applied to the flywheel. Because of this design

change it is necessary to keep the power piston attached to the flywheel and just

removed the linkage attaching the displacer when designing the actuated engine.

In addition to this change, the physical collision barrier shown in figure 2.1(b) was

removed. This allows for a wider range of piston and displacer motions. However,

this introduces a new variable into the optimization of the Beta design, the center

position of the displacer piston (xd0).

As was the case for the Schmidt design, the once the flywheel inertia (I) is

large enough, it no longer has a significant impact on average power produced.

As such, it is only necessary to select an inertia value large enough and keep it

unchanged between the two models. However, the power piston linkage location

can have nontrivial impact on power produced. As such it too will is included as

a variable to be optimized for the two models.
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Beta Design

The only parameters over which the Beta design can be optimized are the radial

attachment location of the displacer piston (Rd), the radial attachment location

of the power piston (Rp), the length of the displacer linkage (which determines

the point about which the displacer oscillates, xd0), and the phase angle between

the power piston and displacer piston (φ).

The dynamics for the chamber models are those derived in section 3.2.2, the

regenerator dynamics used in the simulation of the Beta design are given by the

results of the POD model reduction method described in section 3.2.3, and the

kinematics are given by the following:

mpẍp = Ap [Pc(t)− Pex]− Fp, (3.65)

Iθ̈ = FpRpsin(θ − φ)− AdRd∆Psin(θ)− cpθ̇, (3.66)

xd = −Rdcos(θ) + xd0, (3.67)

xp = −Rpcos(θ − φ), (3.68)

Vh(t) = Vh0 + Adxd(t), (3.69)

Vc(t) = Vc0 + Apxp(t)− Adxd(t). (3.70)
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Formally the optimization problem is select φ, xd0, Rd , and Rp which maximize

the average power produced over one cycle.

J =
1

T

∫ T

0

cpθ̇
2dt (3.71)

Subject to the chamber dynamics given by,

[Vz(t)ρz(t)]t = (±)zAzrρzr(t)vzr(t),

Ez(t)t = (±)zvzr(t)Azr

[
cvρzr(t)Tzr(t) +

1

2
ρzr(t)vzr(t)

]
(±)zAzrPzr(t)vzr(t)− Pz(t)Vz(t)t +Kw(Twz − Tz(t)),

Ez(t) = Cvρz(t)Vz(t)Tz(t),

Pz(t) = ρz(t)RTz(t). (3.72)

As well as the regenerator gas dynamics given by,

∂r

∂τ
ε3εf = (rψξ)ξ, (3.73)

∂ψ

∂τ
ε3εf = γ(ψψξ)ξ + εf

γ̄Lkg
Rρ̄v̄

(
Φ− ψ

r

)
, (3.74)

where the above have been reduced using the POD model reduction method de-

scribed in section 3.2.3. Plus the reduced matrix dynamics,

Ṫ1(τ) + Ṫ2(τ)ξ =εmkg

[
T̃g − (T1(τ) + T2(τ)ξ)

]
. (3.75)

With the addition of the kinematics shown in equation set 3.70. There are also

the collision constraints given by

Vh(t) > 0, Vc(t) > 0. (3.76)
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Note: for our design the displacer and power piston cross-sectional areas (Ad, Ap)

were the same. Thus, the above volume constraints prevent piston collisions. The

final set of constraints are that all of the states, except for the angle, must be

periodic,

~X(0) = ~X(T ). (3.77)

The constraint on the flywheel angle is

mod (θ(0), 2π) = mod (θ(T ), 2π). (3.78)

Finally, there are the parameter constraints:

−π < φ < π, Rd > 0, Rp > 0. (3.79)

Actuated Design

The optimization problem for the actuated engine is again an optimal periodic

control problem. The objective is to maximize average power out minus the control

effort. The displacer is assumed to be massless, and the control effort is the power

applied to the displacer by the actuator. This is given by the pressure difference

across the displacer times the displacer’s velocity u(t).

Formally the optimization problem for the actuated design is to find the period

T , optimal power piston radial attachment location Rp, displacer velocity u(t),

and the associated state trajectories ~X(t) which maximize the average net power
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produced by the engine over one period,

J =
1

T

∫ T

0

[
cpθ̇

2 − (Ph − Pc)u(t)
]
dt. (3.80)

Subject to the chamber dynamics given by,

[Vz(t)ρz(t)]t = (±)zAzrρzr(t)vzr(t),

Ez(t)t = (±)zvzr(t)Azr

[
cvρzr(t)Tzr(t) +

1

2
ρzr(t)vzr(t)

]
(±)zAzrPzr(t)vzr(t)− Pz(t)Vz(t)t +Kw(Twz − Tz(t)),

Ez(t) = Cvρz(t)Vz(t)Tz(t),

Pz(t) = ρz(t)RTz(t). (3.81)

As well as the regenerator gas dynamics given by,

∂r

∂τ
ε3εf = (rψξ)ξ, (3.82)

∂ψ

∂τ
ε3εf = γ(ψψξ)ξ + εf

γ̄Lkg
Rρ̄v̄

(
Φ− ψ

r

)
, (3.83)

where the above have been reduced using the POD model reduction method de-

scribed in section 3.2.3. Plus the reduced matrix dynamics,

Ṫ1(τ) + Ṫ2(τ)ξ =εmkg

[
T̃g − (T1(τ) + T2(τ)ξ)

]
. (3.84)
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The kinematic dynamical constraints are

mpẍp = Ap [Pc(t)− Pex]− Fp, (3.85)

Iθ̈ = FpRpsin(θ − φ)− cpθ̇, (3.86)

ẋd(t) = u(t), (3.87)

xp = −Rpcos(θ − φ), (3.88)

Vh(t) = Vh0 + Adxd(t), (3.89)

Vc(t) = Vc0 + Apxp(t)− Adxd(t). (3.90)

There are also the collision constraints given by

Vh(t) > 0, Vc(t) > 0. (3.91)

Note: for our design the displacer and power piston cross-sectional areas (Ad, Ap)

were the same. Thus, the above volume constraints prevent piston collisions. The

final set of constraints are that all of the states, except for the angle, must be

periodic,

~X(0) = ~X(T ). (3.92)

The constraint on the flywheel angle is

mod (θ(0), 2π) = mod (θ(T ), 2π). (3.93)

The input must also be periodic,

u(0) = u(T ). (3.94)
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Finally, there are the parameter constraints,

RP > 0, T > 0. (3.95)

3.3.2 Optimization Solution

Beta Design

Before the Beta flywheel design could be optimized it is necessary to determine

what values to use for the flywheel moment of inertia (I), and the power piston

amplitude (Rp). As for the Schmidt model, once the inertia was large enough it

no longer has an impact of the average power produced. As such, the large enough

inertia was selected to be used for both the Beta and actuated models.

The Beta engine optimization problem was solved by using MATLAB’s fmincon

function. Fmincon was directed to search over φ, xd0, and Rd. The constraints

given to fmincon were the collision constraints 3.76 and the parameter constraints

3.79. The function called by textttfmincon took the parameters φ, xd0, and Rd

and simulated the Beta engine with a positive initial flywheel speed and waited

until a steady state limit cycle was reached, at which point the resulting average

power produced over one engine cycle was calculated and returned to fmincon.
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Actuated Design

Unlike the Schmidt model, the optimization problem for this high fidelity

model of the engine was solved using ACADO only. The hill climbing method,

although potentially viable, would have been quite complex, and so it was avoided.

The flatness approach was not used because we were not able to find a flat output.

ACADO is capable of optimizing over parameters while simultaneously solving

the optimal control problem so the period T , and power piston radial attachment

location Rp were listed as design parameters for ACADO to optimize over. The

rest of the problem was given to ACADO is is described in section 3.3.1.

3.3.3 Results and Comparison.

The resulting optimal trajectories for the Beta and actuated models are shown

in Figures 3.12 and 3.13 respectively. The resulting trajectory of the displacer for

the Beta design is that of a sinusoid, this is the result of it being attached to

the flywheel. The optimal displacer trajectory for the actuated model is much

more complex. As with the Schmidt model the displacer move from one side

of the engine to the other in a attempt to minimize and maximize the chamber

volumes. However there are two significant differences. First, when the displacer

is on the side next to power piston, it tracks the power piston, this is a result

of the removal of the collision barrier. Secondly, the percentage of time that the
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Figure 3.12: The optimal displacer motion for the Beta model.

displacer spends transitioning from one side of the engine to the other is not

significantly larger. For the Schmidt model the control effort penalty is was the

primary factor which determined the optimal displacer speed. By adjusting this

penalty it was possible to control the optimal displacer speed. However that is

not the case for the high fidelity model. The control penalty is determined by the

friction parameter in the regenerator, as this is what creates the pressure difference

across the displacer. Reducing the friction parameter in the regenerator allows for

faster displacer speeds up to a point. However, further reduction in the friction

coefficient has little to no affect on the optimal displacer speed. This is because
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Figure 3.13: The optimal displacer motion for the actuated model.

the heat exchange rate between the gas and the engine is now finite. If the gas

travels through the regenerator too quickly it does not have time to exchange

heat with it and the efficiency of the engine suffers. This proves that important

of modeling a finite heat transfer rate, and illustrates the importance of the high

fidelity model.

The end result was that the optimal actuated engine produced roughly 50%

more power than the optimal Beta design. This demonstrates the potential sig-

nificant improvement in engine performance possible with our proposed actuated

engine design. To insure that these results were not skewed by the use of a reduced
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model of the regenerator, the resulting optimal designs were simulated using the

unreduced model of the regenerator. The resulting average powers produced were

compared to what was found using the reduced modes and the difference was less

than one percent, further illustrating the validity of the model reduction method.

A natural question is if a significant amount of power is extracted due to the

lack of an absolute value across the control effort penalty in the objective for the

actuated model? It is possible for power to generated from the actuator if the

velocity of the displacer and the pressure difference across the displacer are in

the same direction. To check this the optimal trajectory for the actuated model

was used in a simulation where the objective contained an absolute value across

the control effort. However, the change in the objective was negligible, indicating

that the optimal trajectory does not rely on the ability to extract power from the

actuator.
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