
UNIVERSITY OF CALIFORNIA
Santa Barbara

Investigations with Optical Tweezers:
Construction, Identification, and Control

A Dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in Mechanical Engineering

by

Aruna Ranaweera

Committee in Charge:

Professor Bassam Bamieh, Chair
Professor Bradley E. Paden
Professor Carl D. Meinhart

Professor Kimberly L. Turner
Doctor Ratneshwar Lal

September 2004



The dissertation of Aruna Ranaweera is approved.

Bradley E. Paden

Carl D. Meinhart

Kimberly L. Turner

Ratneshwar Lal

Bassam Bamieh, Committee Chair

September 2004



Investigations with Optical Tweezers

Copyright c©2004
by

Aruna Ranaweera

iii



Acknowledgements

I dedicate this dissertation to the memory of my late advisor, Professor Mohammed Dahleh,
whose intelligence, charisma, and vision convinced me to pursue a doctorate at UCSB. I am
grateful to him for entrusting me with this and other projects and for being an inspirational
advisor and teacher. Although many people know Mohammed for his impressive academic and
professional achievements, I will remember him best as an intelligent and witty conversational-
ist; he was full of funny (often hilarious) stories and anecdotes. I miss him very much.

I am grateful to Professor Bassam Bamieh for providing financial support (after Mohammed’s
untimely death), which enabled me to continue my doctoral work and attend several national
conferences. I also thank Bassam for encouraging me to study RLS identification and LQG
control and for providing freedom to explore my academic interests.

I thank the members of my PhD Committee–Professor Brad Paden, Professor Carl Meinhart,
Professor Kim Turner, and Doctor Ratnesh Lal–for their time, encouragement and advice. I
have used their laboratory equipment and consulted with them, their students, and post-docs.
In particular, I thank Carl for purchasing supplies for my project and for providing access to
micro-fluidic parts; I thank Ratnesh for providing both information pertaining to biology and
various supplies from his Neuroscience Research group in the Department of Biology; I thank
Brad for providing access to his laboratory space and equipment; and I thank Kim for providing
access to the equipment and supplies in her MEMS laboratory.
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Abstract

“Investigations with Optical Tweezers: Construction, Identification, and Control”
by Aruna Ranaweera

In this dissertation, I provide an introduction to optical tweezers, including information
about dynamics, construction, identification, and control. The main purpose is to analyze
the properties of an optical tweezer from a control engineering point of view. The optical
tweezer is widely used by biophysicists to study the mechanical properties of individual biological
molecules.

Inertial and noninertial equations of motion are developed for both a linear trapping force
and a cubic trapping force. By representing the noninertial dynamics of a trapped particle as a
stochastic differential equation, probability distributions are discussed and first mean exit times
are computed numerically. Experimentally measured mean passage times for a 9.6-micron diam-
eter polystyrene bead within the linear trapping region show close agreement with theoretical
calculations.

A recursive least squares method is applied to a trapped 9.6-micron diameter bead to study
the possibility of obtaining faster calibrations of characteristic frequency. In spite of the asym-
metry in the lateral optical trapping force, experimental calibration results for a sufficiently
large square wave input are consistent with the average of off-line calibration results, within
7%. However, slight misalignments in the position detection system can significantly degrade
the convergence rate and consistency of the on-line parameter estimates.

I also discuss and compare the application of PI control, LQG control, and nonlinear control
to reduce fluctuations in particle position due to thermal noise. Assuming a cubic trapping force,
I use computer simulations to demonstrate that the nonlinear controller can reduce position
variance by a factor of 65 for a 1-micron diameter polystyrene bead under typical trapping
conditions.

Guidelines for constructing and enhancing a research-grade optical tweezer system are also
included.
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Chapter 1

Introduction

The optical tweezer is a device that uses a focused laser beam to trap and manipulate individual
dielectric particles in an aqueous medium. The laser beam is sent through a high numerical
aperture (highly converging) microscope objective that is used for both trapping and viewing
particles of interest. Known more descriptively as “single-beam gradient force optical traps”,
optical tweezers are also called “laser tweezers” and “single focused laser beam traps”.

Figure 1.1: Basic optical tweezer. A single laser beam is focused to a diffraction-limited spot
using a high numerical aperture microscope objective. Dielectric particles are trapped near the
laser focus.

1.1 History

Although the trapping and manipulation of charged particles has been done with considerable
facility for many years, the same cannot be said of neutral particles. The precursor to the optical
tweezer, the optical levitator, was developed in 1970 [1]. It trapped particles by relying on the
balance between upward radiation pressure and downward gravity. In that same year, Arthur
Ashkin showed that micron-sized latex spheres could be trapped in water using two focused,
counter-propagating laser beams. In 1978, he suggested that a strongly focused, single laser beam
could be used to trap a particle even without gravity. He and his colleagues—Joseph Dziedzic,
John Bjorkholm, and Steven Chu—at AT&T (Bell) Laboratories demonstrated the first working
optical tweezer in 1986. Since then, optical tweezers have been used to trap dielectric particles
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with diameters in the range of tens of nanometers to tens of microns [2, 3]. Ashkin and Dziedzic
were awarded the 1993 Rank prize in optoelectronics for their groundbreaking work [4].

Figure 1.2: Evolution of optical tweezers.

The first commercial optical tweezer, known as “LaserTweezersr”, was brought to market by
Cell Robotics, Inc., of Albuquerque, New Mexico in 1992 [2]. In 2000, the basic LaserTweezers
Workstation was priced at $56,000, not including the cost of a microscope [5]. One of its main
drawbacks is that its motorized stage has a resolution of only ∼ 200 nm, which is insufficient
for experiments that require nonometer-level resolution [6]. Arryx, Inc., of Chicago, uses optical
tweezer technology in its “BioRyxr 200” system. This high-end turn-key product, which was
brought to market in 2002, can be used to trap and independently steer up to 200 microscopic
objects at a time [7]. The 1064 nm trapping system was priced at $377,500 in 2004; the minimum
incremental motion of the traps is ∼ 20 nm [8].

1.2 Biophysical Applications

For small enough displacements from the center of the trap (up to, maximally, 100-300 nm) [9],
the optical tweezer behaves like a Hookeian spring, characterized by a fixed trap-stiffness. Several
milliwatts of laser power at the focus can generate trapping forces on the order of piconewtons,
typically 1-100 pN [10]. While tiny by conventional standards, this level of force is well suited
for biomolecular studies. For example, a force of 10 pN is sufficient to pull a bacterium such as
Escherichia coli through water at ten times the speed at which it can swim [2].

According to Mehta et al., “a general goal in molecular biophysics is to characterize mechanis-
tically the behavior of single molecules” [11]. Before the advent of optical tweezers, biophysicists
did not possess a noninvasive tool capable of manipulating individual molecules. Instead, they
would examine the behavior of a large clump of molecules and use various averaging techniques
to infer the behavior of a single molecule. The optical tweezer has made such inference methods
obsolete by enabling the direct study of individual molecules. Although biological molecules
are too small to be trapped at room temperature, a molecule can be grasped once a trappable
‘handle’ is (biochemically) attached to that molecule as shown in Figure 1.3 [3]. Optical tweez-
ers have been used “to trap and manipulate dielectric spheres, viruses, bacteria, living cells,
organelles, colloidal gold, and even DNA. Such traps . . . have measured elasticity, force, torsion,
position, surface structure, and the interaction between particles” [12]. For trapped particles
with a diameter of 1 µm, the range of forces that can be measured using an optical tweezer is 0.2–
200 pN, which partially overlaps the 2–400 pN range in which a wide variety of cellular processes
occur [13]. For studies that require larger forces, atomic force microscope (AFM) cantilevers
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or glass microneedles are more suitable choices because they are stronger (less compliant) than
optical tweezers [14].

Figure 1.3: Typical biomechanics experiment. The ends of the DNA molecule are attached to
polystyrene beads which are trapped and moved using optical tweezers.

Another reason for the popularity of optical tweezers in the field of cell biology is because they
can be used to trap cells or organelles without damage [15]. By choosing a trapping laser with
a wavelength in the near-infrared range, optical damage to biological specimens can be reduced
by one or two orders of magnitude [16]. The first demonstration of successful (non-destructive)
trapping of living viruses and bacteria was reported by Ashkin and Dziedzic in 1987 [17].

The following passage, excerpted from a 1996 paper by Visscher et al., summarizes why the
biophysical community is excited about the development of optical tweezers:

“Optical tweezers, when combined with . . . position detectors [with nanometer res-
olution], offers two important advances: the ability to manipulate molecular-scale
objects, by means of attached bead ‘handles’, and the ability to measure directly the
forces and displacements on the molecular scale. Multiple traps, in particular, make
possible experimental geometries not readily achieved with alternative technologies,
such as scanning force microscopy (SFM) or glass microneedles. Moreover, the me-
chanical stiffness of an optical trap can be instantly changed, in contrast to these
other approaches. Of particular importance are the noninvasive and nondestructive
character of optically based measurements, as well as the unparalleled spatial and
temporal control afforded by the use of light.” [18]

A digital image of a 10-µm diameter polystyrene bead that was trapped using our optical
tweezers is shown in Figure 1.4. The trapped bead can be seen near the center of the circular
field of view (FOV) and an untrapped bead can be seen near the top of the FOV. Notice that
the trapped bead is in better focus than the untrapped bead. The bright spot at the center of
the trapped bead is a diffraction pattern caused by the trapping laser beam.

1.3 Organization of Dissertation

The main purpose of this dissertation is to analyze the properties of an optical tweezer from a
control engineering point of view. As such, I make no attempt to investigate the fundamental
physics behind optical trapping and I do not elaborate on its many applications in the field of
biophysics. Instead, I have applied techniques from control theory to demonstrate new methods
of analysis and practical tradeoffs in optical tweezer performance. By doing so, I hope to achieve
two objectives:

1. Enhance the arsenal of tools available to users of optical tweezers, especially in biophysics
and microfluidics.
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Figure 1.4: Image of a trapped 10-µm diameter polystyrene bead (center of FOV) and an
untrapped bead (top of FOV).

2. Provide a framework that encourages future contributions from the control engineering
community.

In accordance with the above objectives, I have written this dissertation using language and
terminology that is intended for both engineers and life scientists. For the benefit of readers
outside of the control community, I have occasionally included background material from control
theory.

In Chapter 2, I briefly discuss the nature of optical forces acting on a small, dielectric sphere
in an aqueous medium. An overview of two popular theoretical models for optical trapping–the
ray optics model and the electromagnetic field model–is provided.

In Chapter 3, I describe the dynamics of a trapped particle using standard engineering
terminology. After discussing different mathematical models of the optical trapping force in the
lateral plane, I derive equations of motion for a trapped particle. Descriptions of the system are
developed for both a cubic trapping force model and a linear force model; dynamic models are
derived for both an inertial system and a non-inertial system. Parameters used to characterize
the performance of optical tweezers are defined and practical factors that affect trapping strength
are discussed. A microscopy requirement for consistent steering of trapped particles is also
explained.

In Chapter 4, I analyze the dynamics of a trapped particle using stochastic control theory.
The deterministic descriptions from Chapter 3 are converted into stochastic differential equa-
tions, which can be manipulated using the Fokker-Planck equation. Consequently, the proba-
bility distribution of a trapped particle is discussed and the mean first exit time of a trapped
particle is computed numerically. Experimental results for the mean passage time within the
linear region are included.

In Chapter 5, I describe construction of our research-grade optical tweezer. Practical details
of the trapping system, viewing system, lateral steering system, position detection system, and
computer interface are provided.

In Chapter 6, I describe procedures for calibrating the equipment used in our optical tweezer
system. Information is provided for calibrating the manual micrometers, DC motors, Acousto-
Optic Deflector (AOD), and position detectors.
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In Chapter 7, I describe popular off-line identification methods using terminology from con-
trol theory. The equipartition method, the power spectrum method, and the step response
method are discussed.

In Chapter 8, I propose the use of off-line calibration methods to achieve faster calibrations.
The optical tweezer system is represented as a sampled-data system which allows the use of
discrete time (DT) parameter estimation using Recursive Least Squares (RLS). This method is
analyzed and simulated in some detail, including experimental results. The possibility of closed
loop RLS is discussed, as is the possibility of nonlinear identification. The drawbacks of the
continuous-time (CT) Normalized Gradient (NG) method are also mentioned.

In Chapter 9, I analyze linear feedback control. Theoretical expressions are derived for both
PI control and LQG control. The performance, including limitations, of the linear controllers
are studied using computer simulations.

In Chapter 10, I derive a nonlinear feedback control strategy that achieves Global Asymptotic
Stability (GAS) of the origin. Controller performance is studied using computer simulations.

In Chapter 11, I summarize the conclusions that can be drawn from the material in this
dissertation.

I have also included several appendices that provide relevant supplementary material. Ap-
pendix A describes the LabVIEW Virtual Instruments used for data acquisition; Appendix B
provides comprehensive details of the construction procedure described in Chapter 5; Ap-
pendix C describes a nonlinear controller for stabilization of an inertial system; and Appendix D
discusses future directions. A brief optical glossary is provided in Appendix E.
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Chapter 2

Basic Theory

2.1 Optical Forces

For a dielectric particle trapped using an optical tweezer, the main optical forces can be di-
vided into two categories: nonconservative absorption and scattering forces and conservative
gradient forces. Absorption forces can be minimized by choosing a trapping frequency that
is off-resonance [19]. Hence, only the scattering force and the gradient force are considered
significant for optical tweezers1 [21].

As its name suggests, the scattering force arises due to the direct scattering of photons,
which is an incoherent interaction with light [3]. The scattering force acts in the same direction
as incident light and is proportional to the intensity of incident light. The gradient force arises
as a result of a coherent interaction with light in which “the laser field polarizes the atom, and
the polarized atom experiences a force in the gradient of an electromagnetic field” [3]. Gradient
forces occur whenever a transparent material with a refractive index greater than its surrounding
medium is placed within a light gradient. The gradient force acts in the direction of increasing
light intensity and is proportional to the gradient of light intensity.

If a dielectric particle is placed within the narrow waist of a sharply focused beam of light,
the scattering force will have a tendency to push the particle away, while the gradient force will
have a tendency to hold the particle within the waist (Figure 2.1). Stable trapping occurs when
the gradient force is strong enough to overcome the scattering force. As shown in Section 3.5, a
strong gradient force can be achieved by using a high numerical aperture2 (NA) lens to focus a
laser beam to a diffraction-limited spot.

2.2 Theoretical Models

Although the physics behind optical tweezers is not trivial, its behavior can be explained using
two different theoretical models. For a trapped particle with diameter d much larger than the
wavelength λ of the trapping laser (d� λ), a ray optics model shows good agreement with mea-
sured results, whereas for a particle with diameter much smaller than the trapping wavelength
(d � λ), an electromagnetic field model provides best agreement [15]. In the intermediate size
regime (d ∼ λ), electromagnetic theory has yielded better results than ray optics, but neither
model has been satisfactory [15, 22]. In the absence of an accurate model for the intermediate
regime, the behavior of trapped particles in this regime is determined empirically.

1Another force, known as the optical binding force, can occur between two particles in intense light, but it
will not be discussed here [20].

2To avoid algebraic confusion, when used in an equation, numerical aperture will be denoted as NA instead
of the more common notation, NA.
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Figure 2.1: Optical forces. Gradient force is shown in blue; scattering force is shown in red.

2.2.1 Ray Optics Model

The ray optics model is valid for particles in the Mie regime in which particles are much larger
than the laser wavelength (in practice, d > 10λ). According to this model, “the basic operation
of optical tweezers can be explained by the momentum transfer associated with the redirection
of light at a dielectric interface” [15]. When light hits a dielectric interface, part of the light
will be refracted and part of it will be reflected3. Figure 2.2 shows a light ray with momentum
~pi being incident upon a dielectric sphere with an index of refraction higher than the medium
surrounding it.

Figure 2.2: Qualitative ray optics model.

The light momentum reflected at the first interface is shown by ~pi1, while the light momentum
that exits from the sphere after refraction at the second interface is shown by ~pi2. In reality, a
small fraction of the light ray will be reflected back into the sphere, causing an infinite number
of internal reflections, but this can be ignored during a first approximation. The net change of
momentum of the single ray of light, ∆~pi, can be calculated by subtracting the momentum of
the incident ray, ~pi, from the sum of the momenta of the exiting rays, ~pi1 + ~pi2. By representing
the light beam as a collection of light rays, the total change of light momentum ∆ ~pλ can be

3Absorption effects are ignored.
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calculated by summing the individual ∆~pi components:

∆ ~pλ =
∑

i

∆~pi =
∑

i

( ~pi1 + ~pi2 − ~pi). (2.1)

From Newton’s Second Law, the resulting force ~Fλ acting on the light is given by the rate of
change of light momentum.

~Fλ = lim
∆t→0

∆ ~pλ

∆t
, (2.2)

According to Newton’s Third Law, the dielectric sphere will experience an equal and opposite
trapping force, ~FT :

~FT = − ~Fλ. (2.3)

The above equations ignore internal reflections and polarization effects. The net effect of
internal reflections is to add to the scattering force, making the trap weaker. In practice, the
equilibrium position of the sphere lies slightly beyond the focal point of the beam. In fact, ray
optics theory predicts that the exact equilibrium location of the trap should be approximately 3-
5% of the sphere diameter beyond the laser focus [15]. For rigorous ray optics force calculations
for 1-µm spheres trapped using a Gaussian laser beam, consult [23]. Arthur Ashkin’s diagrams
of the (restoring) trapping force show the trapping force acting on a dielectric sphere (index of
refraction n = 1.57–1.58) as a function of the sphere’s position relative to a laser beam focus
[23]. Polystyrene (C8H8) beads are commonly used for trapping. Polystyrene has a density of
1040-1070 kg/m3, dielectric constant of 2-2.8, electric resistivity of 1013-1015 Ωm, heat capacity
of 1200-2100 J/kg.K, thermal conductivity of 0.12-0.193 W/m.K, and visible transmission of
80-90% [24]. Since water and polystyrene have almost identical densities, the net force due to
gravity can be neglected4.

2.2.2 Electromagnetic Field Model

The electromagnetic field model, also known as the Lorentz force model, is valid for particles in
the Rayleigh regime in which particles are much smaller than the laser wavelength (in practice,
d < 0.4λ). It is based on “the Lorentz force exerted by the trapping light on the atoms in
the trapped object” [12], but its details will not be discussed here. This model shows that
the potential energy of a trapped particle is proportional to the negative of the light intensity,
−I. Hence, the potential energy of the trapped particle will be at its minimum where the light
intensity is at its maximum. Since the maximum intensity of a focused beam of light is at its
focus, the trapped particle will be attracted to the focus. The trapping force is proportional to
the intensity gradient ∇I.

4Most experiments have a short-enough time scale that gravity can be ignored.
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Chapter 3

Trap Dynamics

3.1 Trap Force Model

As mentioned in Section 2.2, in the absence of an accurate theoretical model for trapped par-
ticles that are roughly the same size as the trapping laser wavelength (d ∼ λ), the trapping
characteristics of optical tweezers in this regime are determined empirically. Figure 3.1 shows
the lateral trapping force FT of a trapped 1-µm diameter bead for laser power of approximately
100 mW (at the focus) as obtained by Simmons et al. [10].

Figure 3.1: Optical trapping force model obtained by Simmons et al. for a 1-µm diameter
bead for laser power of approximately 100 mW (at the focus) using a 63×, 1.25 NA microscope
objective [10]. The horizontal axis shows the relative position xr of the bead from the center of
the trap. Re-printed with permission from Jim Spudich.

The relative position xr is defined as

xr := x− xT , (3.1)

in which xT is the trap (laser focus) position, as shown in Figure 3.2.
Figure 3.1 shows that their trap exerts a linear restoring force for relative displacements xr

of up to 200 nm [10]. Furthermore, the restoring force reaches a peak of approximately 2.85 pN
at about 450 nm and then falls off steeply up to about 675 nm [10]. The trap has no effect on
beads that are more than 675 nm from the trap center. The curve confirms Ashkin’s ray-optics
calculations that predict that the maximum trapping force occurs at about one bead radius [23].
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Figure 3.2: Definition of lateral position coordinates: x is particle position, xT is trap position,
and xr is relative position.

Although the magnitude of the force shown in Figure 3.1 will vary depending on parameters such
as laser power and numerical aperture (discussed in Section 3.5), the curve accurately depicts
the qualitative trapping behavior of a well-aligned optical tweezer, as discussed in [23].

For relative displacements within the trapping radius (range of influence) R, the trap behaves
like a third-order nonlinear restoring spring:

FT =

{
α3x

3
r − α1xr for |xr| < R =

√
α1
α3

0 otherwise.
(3.2)

The effective trap stiffness is defined as

αe(xr) := −FT

xr
, (3.3)

which, according to the cubic model (3.2), can be expressed as

αe =

{
α1 − α3x

2
r for |xr| < R =

√
α1
α3

0 otherwise.
(3.4)

Figure 3.3 shows a cubic trapping force model for α3 = 22 pN/µm3, α1 = 10 pN/µm, and
R = 0.675 µm. The maximum restoring force of 2.595 pN occurs at |xr| = RF = 0.3893 µm.
The nonlinear spring constants α1 and α3 were obtained by fitted a cubic polynomial to the
experimental curve shown in Figure 3.1. To emphasize that the trapping force model (3.2) is a
restoring force that acts radially in the lateral plane, Figure 3.3 is shown as a surface plot in
Figure 3.4.

Within the linear region of |xr| ≤ Rl < R (Rl = 0.2 µm in Figure 3.1), the trap stiffness
is approximately constant (α ≈ 10 pN/µm in Figure 3.1), and the trapping force is linear with
respect to relative displacement:

FT = −αxr for |xr| < Rl. (3.5)

The linear force model (3.5) differs from the nonlinear force model (3.2) by a factor of α3x2
r

α1
,

which is equal to 8.8% at xr = Rl, for the stiffness coefficients used in Figure 3.3. We define the
characteristic frequency ωc of the trapped particle as

ωc :=
α

β
, (3.6)
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Figure 3.3: Cubic optical force model for a 1-µm diameter bead. Top figure shows trapping
force; bottom figure shows effective stiffness. Experimental model is from Figure 3.1.
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Figure 3.4: Cubic optical trapping force model in the lateral plane. Top plots show trapping
force; bottom plots show effective stiffness. Restoring force is directed towards origin (i.e.,
towards position of trap)

where frequency is measured in radians per second.
Figure 3.5 compares the different trapping force models. From the leftmost plots, it is

clear that the linear force model overestimates the experimental force model outside of the
linear region. On the other hand, the cubic force model underestimates the experimental force
model everywhere (except at the origin), but has a similar profile throughout the trapping
radius. Hence, we can view the cubic force model as a useful, but conservative estimate of the
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experimental force model. When considering motion that is restricted to the linear region, it
is appropriate to use the simple linear force model, keeping in mind that the cubic model’s
departure from linearity is under 9% within the linear region. For motion outside of the linear
force region, the cubic model can be used as a convenient approximation of the experimental
force model.
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Figure 3.5: Comparison between different trapping force models. Leftmost plots show trapping
force and effective trap stiffness; middle plots show deviations from the linear model; rightmost
plots show deviations from the experimental model.
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Figure 3.7 shows the difference between the cubic and linear step responses. For a step of
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100 nm, the cubic step response lags the linear step response by, at most, about 2.3%. For a
step of 200 nm, the lag is under 9%.
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Figure 3.7: Difference between step responses for linear and cubic trapping force models. Left
plots show differences; right plots show the differences as a percentage of the linear response.

3.2 Equation of Motion along a Lateral Axis

The equation of motion along the x-axis for a trapped bead of mass m and lateral
position x is given by

mẍ = FT (xr) + FD(ẋ) + FL(t) + FE(t), (3.7)

where FT (·) is the optical trapping force, FD(·) is the viscous drag, FL(·) is a Langevin
(random thermal) force, and FE(·) is an external force. The drag force can be expressed as

FD = −βẋ, (3.8)

where β > 0 is the viscous damping factor from Stoke’s equation,

β = 6πηfrb, (3.9)

in which rb is the bead radius and ηf is the fluid viscosity. For a 1-µm diameter polystyrene
bead in water at 20◦C (68◦F),

m = ρ× 4
3
πr3

= 1050
kg
m3

× 4
3
π(0.5× 10−6 m)3

= 5.50× 10−16 kg
= 5.50× 10−10 mg
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and

β = (6π × 10−3 Ns
m2

)× (0.5× 10−6 m)

= 3π × 10−9 Ns
m

= 9.42× 10−3 pNs
µm

≈ 0.01
pNs
µm

.

It should be noted that the viscosity of a liquid decreases dramatically with temperature [25].
For example, at 40◦C (104◦F), the viscosity of water is approximately 0.6× 10−3 Ns

m2 [25]. The
Langevin force FL(t) has an average value of zero,

E{FL(t)} = 0,

and constant, single-sided power spectrum S+
L (f) (i.e., ideal white noise force) given by [26]

S+
L (f) = 4βkBT, (3.10)

in which kB is Boltzmann’s constant and T is the absolute temperature [18]. At biological
temperatures, kBT is approximately 4×10−3 pNµm [26]. Hence, for a 1-µm diameter polystyrene
bead,

S+
L (f) ≈ 4× 0.01

pNs
µm

× (4× 10−3 pNµm)

= 1.6× 10−4 pN2

Hz
.

The nature of the external force FE(t) will depend on experimental conditions. For example,
in biological experiments, the external force may arise due to the interaction between biological
particles.

3.2.1 Nonlinear Trapping Region

Equations (3.2) and (3.8) can be substituted into (3.7) to obtain the equation of motion for a
trapped particle in the nonlinear trapping region:

mẍ = ψ(xr)(α3x
3
r − α1xr)− βẋ+ FL(t) + FE(t), (3.11)

in which the mask function

ψ(xr) :=
{

1 for |xr| < R
0 otherwise. (3.12)

Nonlinear Inertial Representation

Defining the control input u as the trap position xT ,

u := xT , (3.13)

we can express (3.11) in state space form as

ẋ1 = x2

ẋ2 = − β

m
x2 +

ψ(x1 − u)
m

[
α3(x1 − u)3 − α1(x1 − u)

]
+

1
m
FL +

1
m
FE (3.14)

y = x1,

where x1 := x and x2 := ẋ.
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Nonlinear Noninertial Representation

As trapped particle size is scaled down towards the nano-scale, surface forces tend to dominate
bulk properties and forces due to a property known as the scaling effect [27]. For example,
for a sphere, surface to volume ratio is inversely proportional to radius. As a consequence
of the scaling effect, for a microscopic particle bound in a harmonic potential at low Reynolds’
number (i.e., “small particles moving not too fast in a viscous medium”), viscous drag dominates
inertia [26]. In other words, the mass m of the trapped particle is small enough that it can
be ignored in practice. For example, according to (3.6) and (3.4), the effective characteristic
frequency of the trap shown in Figure 3.3 is given by (ωc)e = αe

β ≤ α1
β ≈ 1 krad/s. Therefore,

mωc ≤ 5.5 × 10−7 pNs
µm , which is negligible compared to β ≈ 0.01 pNs

µm . Hence, (3.11) can be
simplified to obtain the noninertial equation of motion for a trapped particle in the nonlinear
trapping region:

0 = ψ(xr)(α3x
3
r − α1xr)− βẋ+ FL(t) + FE(t). (3.15)

For contemporary optical tweezer systems (in which trapped particles have negligible mass), the
above nonlinear noninertial representation is accurate for all practical purposes. Equation (3.15)
can be expressed in state space form as:

ẋ =
ψ(x− u)

β

[
α3(x− u)3 − α1(x− u)

]
+

1
β

(FL + FE)

y = x. (3.16)

Both inertial and noninertial open loop systems can be represented by the block diagram
shown in Figure 3.8, in which output measurement noise n is included for completeness. The
Langevin force and the external force can be interpreted as disturbances.

Figure 3.8: Open loop block diagram. Here u := xT , dL := FL, dE := FE , and n is measurement
noise.

3.2.2 Linear Trapping Region

From (3.5), (3.8), and (3.7), the equation of motion for a trapped particle in the linear trapping
region is given by

mẍ = −αxr − βẋ+ FL(t) + FE(t) , for |xr| ≤ Rl. (3.17)

Linear Inertial Representation

We can express (3.17) in state space form as
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[
ẋ1

ẋ2

]
=

[
0 1
− α

m − β
m

] [
x1

x2

]
+

[
0
α
m

]
u +

[
0
1
m

]
(FL + FE)

y =
[

1 0
] [ x1

x2

]
,

(3.18)

where u := xT , x1 := x, and x2 := ẋ as before. For zero initial conditions, (3.18) can also be
expressed using Laplace transforms as:

X(s) = Gyu(s)U(s) +Gyd(s) [FL(s) + FE(s)] , (3.19)

where the second order transfer function from control to output is given by

Gyu(s) =
α
m

s2 + β
ms+ α

m

, (3.20)

and the second order transfer function from disturbance to output is given by

Gyd(s) =
1
m

s2 + β
ms+ α

m

. (3.21)

Linear Noninertial Representation

Assuming the particle mass is negligible compared to the viscous drag, we can express (3.17) as

0 = −αxr − βẋ+ FL(t) + FE(t) , for |xr| ≤ Rl, (3.22)

which can be written in state space form as

ẋ = −α
β
x+

α

β
u+

1
β

(FL + FE)

y = x. (3.23)

Clearly, as before, the Langevin force and the external force can be interpreted as disturbances.
For zero initial conditions, (3.23) can be expressed using Laplace transforms as:

X(s) = Gyu(s)U(s) +Gyd(s) [FL(s) + FE(s)] . (3.24)

For the noninertial case, the first order transfer function from control to output is given by

Gyu(s) =
α
β

s+ α
β

, (3.25)

while the first order transfer function from disturbance to output is given by

Gyd(s) =
1
β

s+ α
β

. (3.26)

For the linear case, we can specify interconnections within the plant P as shown in Figure 3.9.
Clearly, Figure 3.8 is also valid for the linear case.

The Bode plot of the transfer functions (3.25) and (3.26) are shown in Figure 3.10 for
α = 10 pN/µm, β = 0.01 pNs/µm. The step responses are shown in Figure 3.11. The open loop
90% rise time tr90 = 2.3 ms and the 5% settling time ts5 = 3.0 ms. The figures clearly illustrate
that the only difference between Gyu and Gyd is a gain factor of α, which is equal to 10 (20 dB)
for these plots.

Substituting the characteristic frequency of the trap from (3.6), the transfer function from
control to output can be re-expressed as

Gyu(s) =
ωc

s+ ωc
. (3.27)
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Figure 3.9: Linear plant block diagram. Here u := xT , dL := FL, and dE := FE .
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3.3 Equations of Motion in the Lateral Plane

In Section 3.2, we described the equations of motion along a single lateral axis that goes through
the origin. In practice, ofcourse, we are interested in motion in the entire lateral plane. To
obtain an expression for two-dimensional motion, we use the fact that the trapping force FT is
symmetric about the vertical z direction, as shown in Figure 3.4. The one-dimensional optical
trapping force along any radial axis through the relative origin (trap position) is given by
Figure 3.3. Accordingly, we can use plane polar coordinates r and θ to describe the two-
dimensional equation of motion of a trapped bead. For the purposes of this chapter, we will
assume the usual relation between polar and Cartesian coordinates given by

r =
√
x2 + y2 (3.28)

θ = tan−1
(y
x

)
(3.29)

with unit vectors denoted by r̂ and θ̂ [28]. We define the relative radial position rr and the
relative angle θr according to Figure 3.12.

Figure 3.12: Diagram for derivation of planar equations of motion.

Note that, in general,

rr 6= r − rT

θr 6= θ − θT .

Comparing with (3.16), the planar noninertial equations of motion can be written in Carte-
sian coordinates as

ẋ =
ψ(rr)
β

[
α3r

3
r − α1rr

]
cos θr +

1
β

(FLx + FEx) (3.30)

ẏ =
ψ(rr)
β

[
α3r

3
r − α1rr

]
sin θr +

1
β

(FLy + FEy), (3.31)

where the additional x and y subscripts on the Langevin and external forces indicate the direction
of those forces. Furthermore, the planar noninertial equations of motion can be written in polar
coordinates as

ṙ =
ψ(rr)
β

[
α3r

3
r − α1rr

]
cos(θr − θ) +

1
β

(FLr + FEr) (3.32)

θ̇ =
ψ(rr)
rβ

[
α3r

3
r − α1rr

]
sin(θr − θ) +

1
rβ

(FLθ + FEθ), (3.33)
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which can be derived by considering the velocity of the particle in the r̂ and θ̂ directions 1. Note
that, in the special case when the trap position is at the origin (rT = 0 ⇒ θr = θ), we can
simplify the planar equations of motion to obtain

ẋ =
ψ(r)
β

[
α3r

3 − α1r
]
cos θ +

1
β

(FLx + FEx) (3.34)

ẏ =
ψ(r)
β

[
α3r

3 − α1r
]
sin θ +

1
β

(FLy + FEy), (3.35)

and

ṙ =
ψ(r)
β

[
α3r

3 − α1r
]
+

1
β

(FLr + FEr) (3.36)

θ̇ =
1
rβ

(FLθ + FEθ). (3.37)

Note that (3.36) is precisely the state equation given in (3.16). Clearly, the angular velocity
expressions (3.33) and (3.37) are not well-defined for particles at the origin (r = 0), which
severely limits the usefulness of the angular state equations. In practice, we often consider only
radial position.

3.4 Trap Characterization Parameters

In experiments in which the optical tweezer is used purely as a holding device, accurate cali-
bration of the trapping forces is not important. However, in experiments that investigate the
forces that arise due to various (usually biophysical) interactions, the trapping forces must be
accurately quantified. If well aligned, the optical tweezer should exert a cylindrically symmetric
force about the z-axis. While theoretical prediction of trapping forces is not easy, the forces can
be calibrated empirically. A complete characterization of the trap requires calibration of both
the axial as well as lateral trapping forces, but one is interested mostly in the lateral trapping
capabilities (in the horizontal plane of the specimen) because it provides greater operating range
[18]. Figure 3.13 shows a qualitative profile of the lateral force FT of an optical trap as a function
of bead displacement from the center of the trap [10].

3.4.1 Range of Influence

The range of influence R of the trap is the maximum distance that a stationary sphere can be
placed away from the trap center and still be attracted towards the trap. The lateral range of
influence can be found by placing a particle at a known lateral distance from the center of the
trap with the trap turned off. Once the trap is turned on, if the particle is attracted towards the
trap, it is within the range of influence. This procedure can be repeated for increasing lateral
distances until the trap no longer influences the particle. In addition to the range of influence
R, the linear force range Rl (Section 3.4.3) and the maximum force range RF (Section 3.4.2)
are also important parameters [29].

3.4.2 Strength (Maximum Force)

The strength of the trap is the maximum restoring force (FT )max that it can exert on a trapped
particle. For large beads, the maximum force should be reached when the bead is roughly one
bead radius rb away from the trap center [10]. The maximum force range RF is defined as the
radius at which the maximum restoring force occurs. The circular locus of maximum force radii
can be clearly seen in Figure 3.4.

1The velocity of the particle at polar coordinates (r, θ) is given by ~v = ṙr̂ + rθθ̂ [28].

19



Figure 3.13: Qualitative lateral force profile of an optical trap.

3.4.3 Trap Stiffness

From (3.3), the effective trap stiffness αe is defined such that

FT = −αexr. (3.38)

As shown in Figure 3.4, for small |xr|, that is, within the linear force range Rl, αe ≈ α is
constant. Outside of Rl, α > αe(xr) > 0, which corresponds to the nonlinear force regime and
for large |xr|, αe = 0, which implies that the particle is outside of the range of influence R.
According to Visscher and Block, “The stiffness of a trap, and the region over which it remains
invariant, depend, in nontrivial ways on the optical wavelength and power, as well as the size,
shape, and refractive index of the particle, and the refractive index of the surrounding medium”
[30].

3.4.4 Capture Range Velocity

The capture range velocity vR is the maximum velocity of moving particles at which the optical
tweezers can slow down and trap the particles [31]. To account for statistical variations, Grego
et al. defined the capture range velocity, vR, as the velocity at which more than 50% of the
tested particles passing through a focused volume around the laser waist are captured by the
trap [31].

3.5 Trap Strength Factors

The strength of the trap is given by the expression

(FT )max = Q

(
nfPT

c0

)
, (3.39)

where Q is a dimensionless efficiency factor “that depends on the numerical aperture, laser wave-
length, light polarization state, laser mode structure, relative index of refraction, and geometry
of the [trapped] particle”2 [20]. The quantity nf PT

co
is the incident momentum per second for

2A maximum efficiency of max(Q) = 2 corresponds to the limiting case of reflection due to a plane mirror.

20



a laser beam of power PT (at the focus) in a fluid medium of index of refraction nf , where co
is the velocity of light in vacuum. Using up to 1 W of laser power, typical trap strengths are
on the order of tens of piconewtons [26]. The laser power PT at the focus can be estimated by
measuring the laser power just before the beam enters the microscope and then accounting for
the fractional throughput of the microscope objective. Typical objectives absorb half or more
of the laser light that enters the OEA [9]. Svoboda and Block measured a transmittance value
of 59± 2% for the same objective as ours when trapping at λ = 1064 nm [20].

3.5.1 Laser

Laser Power

The strength of the trap is directly proportional to the laser power at the trap [12]. This follows
from (3.39) in which Q is independent of PT . Therefore, for a given trap configuration,

(FT )max ∝ PT .

Although nonlinear optical force effects can occur at extremely high power densities, these effects
are negligible for power densities on the order of 1011 W/m2 or less [19].

Laser Focus

The strength of the trap will increase as the size of the focused spot is decreased. This occurs
because, for a fixed laser power, the intensity gradient is highest when the focus spot is smallest.
For a collimated laser beam of diameter dλ and wavelength λ incident upon an ideal lens with
focal length fµ, the trap spot size wT is diffraction-limited according to

wT ≥
1.22fµλ

2dλ
=

1.22λ
nf

√(
nf

NA

)2

− 1, (3.40)

where nf is the index of refraction of the fluid medium and NA is the numerical aperture of the
lens [12]. In practice, to achieve sufficiently strong trapping, the microscope objective should be
chosen such that NA ≥ 1 [20].

Laser Polarization

Lateral trapping forces depend on the state of polarization of the light. For equal laser power
levels, “the lateral forces parallel to the polarization are about 10% greater than the lateral
forces perpendicular to it” [32]. However, polarization has negligible effect on axial trapping
forces [32].

3.5.2 Trapped Particles

Particle Size

Strongest trapping is expected for particles that are roughly the same size as the laser wavelength
[14]. In particular, for the commonly used laser wavelength of approximately 1 µm, Gittes and
Schmidt claim that trapped particles should be roughly matched in size to the laser focus, which
is approximately 0.5 µm [26]. For large particles (in the Mie regime), the trapping force should
be independent of particle radius rb, whereas for small particles (in the Rayleigh regime), the
trapping force should be proportional to r3b [23]. Felgner et al. found that the trapping efficiency
Q increased with bead diameter [15].
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Particle Displacement Direction

The restoring force is weakest when the trapped particle is displaced from the trap center in the
axial direction of light propagation (away from the lens) and the restoring force is strongest when
the particle is displaced in the opposite axial direction [12]. The restoring force has intermediate
strength when the particle is displaced in the transverse (lateral) plane.

3.6 Steering Consistency Requirements

To construct a movable trap that is consistent (i.e., constant trapping power, regardless of beam
movement), the laser beam must satisfy two requirements (Figure 3.14):

1. The beam should pivot around the microscope objective entrance aperture (OEA), and

2. The beam should (slightly) overfill the OEA by the same amount even when the beam is
moved [21].

Figure 3.14: Steering consistency requirements.

Since commercial microscope objectives are not designed for use with lasers, the thin back
cover surrounding the OEA may become deformed due to heat damage. Therefore, in many laser
applications, the back cover of the microscope objective is removed. Once the back cover has
been removed, the steering consistency requirements mentioned above are not as crucial as they
would be if the back cover were in place. Even then, the steering system should be designed to
conform with the steering consistency requirements because the microscope objective has been
designed specifically for light that enters through the OEA.
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Chapter 4

Stochastic Analysis

As described in Section 3.2, a trapped particle experiences random position fluctuations due to
the Langevin force. As a result, the optical tweezer is an inherently stochastic system. In this
chapter, we will recast the deterministic equations of motion from Section 3.2 in a form that is
more suitable for stochastic analysis1.

As mentioned in Section 3.5, the trapping force of an optical tweezer is proportional to the
laser power. In this chapter, we will denote the laser power by the factor ρ > 0, which is
defined relative to the power level used in [10]. For example, ρ = 1 corresponds to the same
laser power level used to obtain Figures 3.1 and 3.3, which is approximately 100 mW (at the
focus) [10]. The trapping force also increases with numerical aperture, so the force model (3.2),
and therefore, the material in this section, are quantitatively accurate for a 1.25 NA (numerical
aperture) microscope objective, which was used in [10]. However, as shown in [23], the trapping
force for a spherical particle always has a profile that qualitatively matches (3.2). Therefore, our
results can be extended qualitatively to higher numerical apertures (for example, NA = 1.30 or
1.40), if necessary.

As shown in Figure 3.4, an optical tweezer traps particles in not only one, but three dimen-
sions. For a well-aligned trap, the trapping profile is cylindrically symmetric about the axial z
direction in which laser light propagates. As a result, ignoring polarization effects, the optical
trapping force along the y axis is almost identical to that along the x axis. Because of the lack
of planar symmetry, however, the trapping force in the x direction is not invariant with respect
to motion along the y axis. Therefore, when considering motion in a lateral plane, since the
trapping force profile (3.2) is symmetric about the z-axis, it is convenient to use polar coor-
dinates instead of Cartesian coordinates, as discussed in Section 3.3. In the remainder of this
chapter, we will interpret the spatial coordinate x as representing radial position in the lateral
plane from the center of the trap.

4.1 Spectra, Power, and Variance Conventions

Although power spectra and covariance functions are standard quantities used to analyze
stochastic systems, their exact definitions vary in the literature. Therefore, to avoid ambi-
guity, we will clearly specify the relations between these quantities in accordance with [34]. The
autocovariance function r(t) of the second order, weakly stationary, scalar process x(t) is defined
as

r(t) = Cov[x(t− τ), x(τ)] := E[x(t− τ)− Ex(t− τ)][x(τ)− Ex(τ)]. (4.1)

1Some of the material in this chapter will appear in [33].
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[34]. For continuous time, the double-sided spectral density is given by the integral

φ(ω) =
1
2π

∫ ∞

−∞
e−iωtr(t)dt, (4.2)

in which frequency ω is measured in radians per second [34]. It follows that the covariance
function is given by the integral

r(t) =
∫ ∞

−∞
eiωtφ(ω)dω, (4.3)

and we obtain the variance of x as

Var(x) = r(0) =
∫ ∞

−∞
φ(ω)dω, (4.4)

which shows that the variance is given by the area under the spectral density function, which is
a desired result of the definitions given by (4.1), (4.2), and (4.3) [34]. For this property of the
variance to hold even when frequency f is measured in Hertz, we require that

φ(ω)dω = S(f)df, (4.5)

where S(f) is the double-sided power spectrum and ω = 2πf . The correspondence between
φ(ω) and S(f) is given by

φ(ω) =
1
2π
S(f), (4.6)

which implies that the relation between the double-sided spectral density φ(ω) and the single-
sided (positively indexed) power spectrum S+(f) = 2S(f) (for positive frequencies) is

φ(ω) =
1
4π
S+(f). (4.7)

Combining (4.2) and (4.7), we obtain the relation

S+(f) = 2
∫ ∞

−∞
e−iωtr(t)dt. (4.8)

White Noise

Denoting the Dirac delta function by δ(t), the covariance of a continuous time white noise
process e(t) is given by

re(t) = Reδ(t), (4.9)

where Re is a constant [34]. Clearly, the variance re(0) of CT white noise is infinite [34]. We
can combine (4.9) and (4.8) to obtain the relation

Re =
1
2
S+

e (f) = 2πφe(ω), (4.10)

in which (4.7) was used to demonstrate consistency with [34]. Combining (4.10) and (3.10), the
covariance rL(t) of the Langevin force is given by

rL(t) = RLδ(t) = 2βkBTδ(t), (4.11)
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which shows that for a 1-µm bead trapped in water at room temperature,

RL ≈ 2× 0.01
pNs
µm

× (4× 10−3 pNµm)

= 8× 10−5 µm2.

For band-limited white noise, the spectral density φe(ω) and power spectrum S+
e (f) are

nonzero constants with finite frequency bands of −Ω < ω < Ω (rad/s) and 0 ≤ F (Hz), respec-
tively, where F = Ω

2π . Therefore, the variance takes on a finite value

re(0) = 2φeΩ = S+
e F, (4.12)

in which Ω = π implies 1 rad/s, or equivalently, F = 0.5 Hz. The spectral density and power
spectrum conventions described in (4.12) are shown graphically in Figure 4.1.

Figure 4.1: Spectral density and power spectrum for band-limited white noise. Listed Ampli-
tudes correspond to the Langevin force.

4.2 Stochastic Differential Equation

Ignoring the external force FE , the nonlinear noninertial state model (3.16) is given by

ẋ = ρ
ψ(x− u)

β

[
α3(x− u)3 − α1(x− u)

]
+
FL

β

y = x. (4.13)

Therefore, the open loop state model is given by

ẋ = ρ
ψ(x)
β

[
α3x

3 − α1x
]
+
FL

β

y = x. (4.14)

Because it does not account for angular position θ, the state form (4.13) is not a complete state
space description. For the purposes of this chapter, however, we are not concerned with angular
position. Comparing with the standard state form

ẋ = f(x, t) + σ(x, t)e(t), (4.15)
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in which e(t) is white noise with covariance re(τ) = δ(τ), and using (4.11), we see that f(x, t) =
f(x) and σ(x, t) = σ are given by

f(x) = ρ
ψ(x)
β

[
α3x

3 − α1x
]

(4.16)

σ2 =
2kBT

β
. (4.17)

For a 1-µm bead trapped in water at room temperature, σ2 = 0.8 µm2. We can also express
(4.13) as a stochastic differential equation:

dx = ρ
ψ(x− u)

β

[
α3(x− u)3 − α1(x− u)

]
dt+

FL

β
dt

dy = dx. (4.18)

Therefore, the open loop stochastic differential equation is given by

dx = ρ
ψ(x)
β

[
α3x

3 − α1x
]
dt+

FL

β
dt, (4.19)

and comparing with the standard state form

dx = f(x, t)dt+ σ(x, t)dw, (4.20)

in which w is a Wiener process with incremental covariance dt, we see that f(x) and σ are given
by (4.16) and (4.17).

4.3 Probability Distribution

Defining p = p(x, t;x0, t0) as the probability of being in state x at time t given that the particle
is (initially) in state x0 at time t0, the conditional distribution p satisfies the Fokker-Planck
equation (also known as the Kolmogorov forward equation) given by

∂p

∂t
= − ∂

∂x
(pf) +

1
2
∂2

∂x2
(σ2p), (4.21)

where f and σ are defined according to the stochastic differential equation (4.20) [34]. The
initial condition is specified as p(x, t0;x0, t0) = δ(x− x0).

4.3.1 Transient Analysis

The time-dependent Fokker-Planck equation (4.21) can be solved numerically, but we have not
included the solution in this paper.

4.3.2 Steady State Analysis

By analyzing the probability distribution in steady-state, we can classify the nature of boundaries
for a trapped particle. Substituting ∂p

∂t = 0 into (4.21), we obtain:

∂

∂x
(pf) =

1
2
∂2

∂x2
(σ2p). (4.22)

This can be integrated twice to obtain

ln
(
p(x)
p(0)

)
=

2
σ2

∫ x

0

f(x)dx, (4.23)
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assuming f(0) = 0 and dp
dx (x = 0) = 0. The first assumption is satisfied according to (3.2), and

we will subsequently see that the second assumption also holds. Denoting the integral in (4.23)
as I(x), we can use the expression for f(x) from (4.17) to show that

I(x) =

 ρ x2

4β (α3x
2 − 2α1) for |x| < R =

√
α1
α3

−ρ α2
1

4βα3
for |x| ≥ R,

(4.24)

which is shown graphically in the top plot of Figure 4.2 for ρ = 1. From (4.23), we see that

p(x) = p(0)e
2

σ2 I(x), (4.25)

which, combined with (4.24) and (4.17) gives

p(x) =

 p(0) exp
[
ρ x2

4kBT (α3x
2 − 2α1)

]
for |x| < R =

√
α1
α3

p(0) exp
[
−ρ α2

1
4kBTα3

]
for |x| ≥ R,

(4.26)

which is shown graphically in the bottom plot of Figure 4.2. Because the integral I(x) is not
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Figure 4.2: Normalized steady state probability distribution for ρ = 1, assuming finite absorbing
boundaries at x = ±50 µm. In the bottom plot, the nonzero tails of the probability distributions
are too small to be seen.

negatively unbounded outside of the trapping radius R, the probability density p(x) has a small,
but nonzero value for all positions outside of the trapping radius. In Figure 4.2, this nonzero
tail is given by p(x) ≈ 8.3× 10−123. If we attempt to normalize p(x) by imposing the condition∫ ∞

−∞
p(x)dx = 1, (4.27)

we find that p(x) is zero for all x. In other words, in the absence of finite absorbing boundaries,
the particle has a finite probability of being anywhere on the x-axis, which implies that, given
enough time, particles will escape confinement by the trap and move in a Brownian fashion. In
terms of classification of boundary conditions, this implies that a trapped particle has accessible
boundaries at all locations in the lateral plane [35]. The normalized probability distribution

27



−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−1.5

−1

−0.5

0

I(
x)

 (
µm

2 /s
)

ρ = 0.01

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

0.05

0.1

0.15

0.2

x (µm)

p(
x)

Figure 4.3: Normalized steady state probability distribution for ρ = 0.01, assuming finite ab-
sorbing boundaries at x = ±50 µm. The nonzero tails of the probability distributions are
visible.

calculations are shown in Figure 4.3 for ρ = 0.01. At this reduced power level, the nonzero tails
of the probability density are more pronounced, as seen in the bottom plot.

In practice, the fluid cell which contains trapped particles has lateral dimension of approx-
imately 20 mm and the field of view is typically about 100 µm. Therefore, we can impose
absorbing boundaries at x = ±50 µm, which has been done for the distributions shown in
Figures 4.2 and 4.3.

4.4 First Exit Time

The performance of an optical trap can be characterized in several ways. Within the linear
trapping regime, parameters such as trap stiffness and characteristic frequency are commonly
used, whereas within the nonlinear (entire) trapping region, the maximum trapping force is
often used [18, 26, 36]. In this section, we will investigate first exit times, which tell us how
long a particle will remain within the optical trap. For a given optical tweezer configuration,
the first exit time is an extremely useful measure of trapping capability because it quantifies
the time horizon during which experiments can be conducted before trapped particles are lost.
Although high-quality microscope objectives are capable of handling laser power levels of up
to approximately 500 mW at the focus, typical optical tweezer experiments use much lower
power levels [20]. It is especially important to use lower power levels when studying biological
samples to avoid damaging them with heat, which is known as ‘opticution’ [20]. Furthermore,
in applications in which the power from a single laser beam is shared by many traps, the power
available for each trap can be very small; in this situation, it is useful to understand and quantify
the lowest power levels that are capable of providing sufficiently strong traps.

In Section 4.3.2, we showed that, in theory, given enough time, a trapped particle will travel
beyond the trapping radius R and escape the confinement of the trap. [35]. Therefore, we can
define the first passage time T as the random variable

T = T (x0, r1, r2) := sup{t|X(τ) ∈ (r1, r2), 0 ≤ τ ≤ t}, (4.28)

where X(τ) is the random variable corresponding to particle position x with initial condition
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X(0) = x0. According to (3.2), if we set r1 = −R and r2 = R in (4.28), we can define the first
exit time T1 as

T1 := T (x0,−R,R) = sup{t|X(τ) ∈ (−R,R), 0 ≤ τ ≤ t}. (4.29)

In theory, it is possible for a particle to escape from the trap and wander back into it as a result
of Brownian motion. Therefore, the ‘exit times’ described in this section are not synonymous
with ‘escape times’; according to our model, a particle never truly escapes from the trap unless
it hits an absorbing boundary.

4.4.1 Exit Time Distribution

If we define g = g(t;x0,−R,R) as the probability density function of the first exit
time T (x0,−R,R), we can use results from [35] to show that the Laplace transform
G = G(s;x0,−R,R) is given by the expression

G(s;x0,−R,R) =
ε2(x0)[ε1(R)− ε2(−R)]− ε1(x0)[ε2(R)− ε2(−R)]

ε1(R)ε2(−R)− ε1(−R)ε2(R)
, (4.30)

where ε1(x) and ε2(x) are any two linearly independent solutions of the ordinary differential
equation

kBT

β

d2ε

dx2
+ ρ

(α3x
3 − α1x)
β

dε

dx
− sε = 0. (4.31)

Obtaining the above density function g of the first exit time requires tedious calculations that
are unnecessary for the purposes of this section. To simplify our analysis, we will investigate
the mean first exit time, which can be obtained using much simpler calculations.

4.4.2 Mean Exit Time

For our system, the mean exit time m1 := E{T1} is given by the homogeneous linear second
order ordinary differential equation

1
2
σ2 d

2m1

dx2
0

+ f(x0)
dm1

dx0
= −1, (4.32)

with two-point boundary conditions, m1(−R) = m1(R) = 0 [37]. Substituting σ and f from
(4.17), we obtain

kBT

β

d2m1

dx2
0

+ ρ
(α3x

3
0 − α1x0)
β

dm1

dx0
+ 1 = 0, (4.33)

which can be solved numerically. The mean exit time for ρ = 1 (100 mW) is bounded, but
extremely large, with a maximum in the vicinity of over 10100 trillion years, for x0 = 0. This
length of time is unbounded for all practical purposes! As shown in Figure 4.4, reducing the
power to ρ = 0.01 (1 mW) drastically reduces the mean exit time such that its maximum is
approximately 2.51 s at x0 = 0. For comparison, the mean exit time for ρ = 0 is 0.57 s, which
corresponds to free diffusion of an untrapped particle due to Brownian motion.

Figure 4.5 shows the maximum mean exit time m1(0) as a function of the laser power factor
ρ for ρ ≤ 0.1 (10 mW). The solid line pertains to a 1-µm diameter polystyrene bead in water
at biological temperature (σ2 = 0.8 µm2; β = 0.01 pNs/µm). For comparison, three other
combinations of σ2 and β have also been plotted. The maximum mean exit time (solid line) for
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Figure 4.4: Mean exit time for ρ = 0.01. Maximum is m1(0) = 2.51 s.
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Figure 4.5: Maximum mean exit time as a function of laser power factor. The mean exit time
increases exponentially with laser power.

ρ = 0.05 (5 mW) is 3.63 × 104 s, or about 10 hours, which is more than sufficient for present-
day optical tweezer experiments. (Due to factors such as drift and cross-contamination, many
biological experiments are conducted for not more than a few minutes at a stretch [26, 11]).

According to Figure 4.5, the maximum mean exit time for ρ = 0 appears to be directly
proportional to σ2. That is, with reference to (7.21),

[m1(0)]ρ=0 ∝ σ2 ∝ kBT

β
. (4.34)

Furthermore, for a given value of ρ, the rate of change of the logarithm of the maximum mean
exit time (with respect to ρ) appears to be inversely proportional to σ2β. That is, with reference
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to (7.21),[
d logm1(0)

dρ

]
ρ const.

∝ 1
σ2β

∝ 1
kBT

. (4.35)

Figure 4.6 shows the maximum mean exit time m1(0) from the linear region Rl = 0.2 µm
as a function of the laser power factor.
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Figure 4.6: Maximum mean exit time from the linear region (±200 nm) as a function of laser
power factor.

4.4.3 Experimental Results

Verifying the theoretical mean exit time results from Section 4.4.2 is difficult for a number of
reasons:

1. Typical position detection systems, such as a photodetector circuit, are ineffective or in-
accurate beyond the linear trapping region. As a result, real-time position detection at
the outskirts of the trapping radius usually requires a real-time imaging system with very
high spatial and temporal resolution. Such a system is not available in our laboratory.

2. Once a particle escapes the trap, it will often drift away. To obtain enough measurements
of the exit time to make statistically meaningful statements, we would require a system
that automatically captures particles and measures their exit times. The alternative would
be to manually trap and measure mean exit times, but his is inaccurate and labor intensive.

3. The lateral mean exit time calculations do not account for the fact that the particle might
escape in the axial direction. A thorough experimental verification of exit times would
require an accurate model of the axial trapping force, which is not currently available.

However, we can compute the mean passage time for particles within the linear region quite
easily by detecting zero crossings and subsequent excursions outside of the radius r of interest.
Figure 4.7 shows how the mean exit time can be calculated for a 9.61-µm bead starting at the
origin. The position data shown is the same data used in Figure 7.1.

31



0 0.02 0.04 0.06 0.08 0.1
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

t (s)

x 
=

 x
r (

µm
)

Zero crossing 
Pertinent exit
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Figure 4.8 shows the calculated mean exit times for a 9.6-µm diameter bead in a Phosphate-
Buffered Saline (PBS) solution, which is used to prevent beads from clumping together. For
comparison, theoretical values for α1 = 1.81 pN/µm and β = 0.015 pNs/µm are also shown. (We
assume α3 = 0 within the linear trapping region.) These stiffness and drag values were obtained
from the power spectrum calibration in Section 7.2. Clearly, the theoretical and experimental
values are in close agreement. The slight discrepancies for low and high values of r are most likely
due to unmodeled nonlinearities in the position detector response; furthermore, experimental
mean passage times for low r are artificially inflated due to quantization errors.

Although the experimental results in this section pertain to a bead that is much larger than
the 1-µm bead studied in the previous sections, the results apply to beads of any size, as long
as they remain within the linear region. If we considered the entire nonlinear trapping region,
the cubic model (3.2) would have to be re-scaled; it is unclear how the nonlinear force model
should be modified to accurately account for larger beads.

4.5 Discussion

In this section, we applied the Fokker-Planck equation to analyze the stochastic behavior of a
spherical particle trapped in an optical tweezer. In theory, given enough time, a trapped particle
will escape confinement from the trap. In general, we observe that the calculated maximum mean
exit time with no trapping force (ρ = 0) is directly proportional to T

β . Furthermore, the rate of
change of the logarithm of the (calculated) maximum mean exit time for a particular value of ρ
is inversely proportional to absolute temperature T .

We obtained specific results for a 1-µm diameter polystyrene bead trapped in water at
biological temperature. In particular, for laser powers of greater than approximately 5 mW
at the focus, the mean first escape time is extremely large, and unbounded for all practical
purposes. In effect, a trapped particle will not escape. With no laser power (i.e., in the absence
of an optical trap), the particle moves in a Brownian manner, which has a maximum mean
escape time in the radial x direction of just under 0.6 s. We show that the maximum mean
exit time increases exponentially with laser power. In particular, for laser power greater than
20 mW, the mean exit time in the radial x direction increases by approximately 1.2 orders of
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Figure 4.8: Maximum mean exit time within the linear region for a 9.6-µm polystyrene bead.
Top plot shows measured mean exit time, including measured standard deviation bounds (dashed
lines); bottom plot shows number of pertinent crossings outside of the radius of interest. Theo-
retical values assume α = 1.81 pN/µm and β = 0.015 pNs/µm; experimental data was sampled
at 10 kHz for a total of 30 seconds.

magnitude for each additional milliwatt of laser power.
We also measure the mean exit (passage) time and standard deviations of a 9.6-µm bead

within the linear trapping region. Experimental results are in close agreement with theoretical
results. Because the mean exit time is very sensitive to the values of α and β, the measured
mean exit times can be used to experimentally verify the accuracy of calibration results obtained
from other calibration methods, such as the power spectrum. This will be discussed in greater
detail in Chapter 7.

As mentioned in Section 3.2, an optical tweezer traps particles in three dimensions. The axial
trapping force directed towards the microscope objective (in the z direction), will be weaker
than the lateral trapping force. Consequently, in a three-dimensional optical trap, a trapped
particle is more likely to escape in the axial direction away from the microscope objective (in
the direction of laser light propagation) than in any other direction. Therefore, if we consider all
three spatial dimensions, the actual mean escape times will likely be less than that for just the
lateral plane considered in this chapter. In the absence of an experimentally verified trapping
force model for the axial z direction, we will not attempt to calculate 3-dimensional exit times in
this chapter. Instead, we will assume trapped particles have been sufficiently2 stabilized in the
axial z direction that they do not escape. In practice, axial stabilization (within measurement
error) can be achieved using feedback with appropriate sensors and actuators [10, 18].

By casting our system as a stochastic differential equation and using a lateral nonlinear trap-
ping force model of an optical trap, we have developed a framework for studying the stochastic
behavior of trapped particles in the lateral plane. This has enabled us to study the mean first

2The feedback gain should be high enough to restrict the particle within the trapping radius, but not so high
that instability is induced.
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exit time, which is a useful measure of the trapping capability of an optical tweezer. Although
our results apply specifically to (commonly used) 1-µm diameter polystyrene beads trapped in
water using a 1.25 NA microscope objective, the methods used in this chapter are applicable
to a wide variety of optical tweezer systems, once appropriate adjustments have been made
to account for different trapping force profiles (F ), particle sizes (r), fluid properties (β), and
temperature (T ).
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Chapter 5

Construction of Optical Tweezers

This section describes construction of our optical tweezers. The structure is loosely based on
the optical tweezers constructed by Stephen Quake and Chris Meiners at Caltech1. Instead of
directing a laser into an existing microscope, a home-made inverted microscope was built. This
provides greater flexibility with the positioning of various optical components that are mounted
on a 3′ × 4′ optical table. A general view of the optical components in our system is shown in
Figure 5.1.

Figure 5.1: General view of optical components from left and front.

Appendix B contains detailed information about construction of the optical tweezers. Proce-
dures for the systematic alignment of the various optical components can be found in [12, 9, 38].
Sterba and Sheetz describe how optical tweezers can be incorporated into an existing inverted
microscope (if necessary) [9].

5.1 Trapping System

A horizontal two-axis platform translation stage (Model 406, Newport) is used to hold and
translate trapped specimens. The stage can be moved independently in both the x and y
directions using manual micrometers (Model SM-13, Newport) that have a range of 13 mm
and a vernier resolution of 1 µm. The traps are created using a 100×/1.3 NA oil immersion

1Patricia Swift and I visited Quake’s laboratory at Caltech in December 1999.

35



microscope objective (Plan Neofluar, Zeiss) that has a conjugate plane at infinity and a working
distance of 200 µm. The microscope objective is inserted through the circular aperture of the
translation stage. Two views of our sample translation stage are shown in Figure 5.2.

Figure 5.2: View of sample translation stage from left and right.

As shown in Figure 5.3, specimens for trapping are contained within a fluid cell that consists
of a square cover glass (thickness ∼ 170µm) stuck to a standard microscope cover slip using
double-stick tape spacers (thickness ∼ 75µm).

Figure 5.3: Schematic diagram of Trapping cell. Left figure shows the configuration used to
achieve trapping; right figure shows top view of a typical trapping cell (rotated 90◦).

The trapping laser shown in Figure 5.4 is a horizontally polarized continuous wave (CW)
diode-pumped infrared Nd:YAG laser (Model IRCL-700-1064, Crystalaser) with a wavelength
of λ = 1.064 µm. It has a manually adjustable power range of Pλ = 370–760 mW and an output
beam diameter of dλ = 1.2 mm.

For a given laser, the trap will be strongest when the diameter of the incoming laser beam
at the objective dλµ, is slightly larger than the diameter of the microscope objective entrance
aperture, dµ [12]. The diameter of the objective entrance aperture dµ is given by the formula2

2Unless indicated otherwise, all formulas are in SI units.
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Figure 5.4: View of laser, waveplate, and polarizing beam-splitting cube.

dµ = 2NAfµ = 2NA

(
0.164
Mµ

)
, (5.1)

where fµ is the effective focal length of the microscope objective and Mµ is the magnification
of the objective [39]. For our trapping objective, NA = 1.30 and Mµ = 100, which implies that

fµ = 1.64 mm

and

dµ = 4.264 mm.

As shown in Section 5.3, plano-convex lenses are used to expand the laser beam from 1.2
mm to slightly larger than dµ.

The microscope objective can be moved vertically using a manual micrometer and translation
stage (Model 423, Newport). For a trap arising due to a normally incident, collimated laser
beam, if the microscope objective is moved axially (vertically) by some distance ∆zµ, the vertical
distance that the laser focus (the trap) is moved within the fluid cell is given by

∆zT =
(
nf

no

)
∆zµ, (5.2)

where nf

no
is the ratio of the refractive index of the fluid suspension medium (nf ∼ 1.33 for

water) to the refraction index of the immersion oil (no ∼ 1.158) [15]. Therefore, for our system,

∆zT = 1.15∆zµ. (5.3)

For instances in which the trapping laser beam does not enter the objective perpendicu-
larly (i.e., when the trap has been moved laterally), moving the microscope objective is not a
recommended method for achieving axial trap movement because the steering consistency re-
quirements will be violated and the trap may become weak and ineffective. This problem can
be avoided by employing the steering scheme described in Section D.1.1 for axial steering.
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5.2 Viewing System

The same microscope objective used to create the trap is also used to view particles within the
trap. The disadvantage of building ones own microscope is the need to construct an imaging
system, but this was done without too much difficulty. Since room lighting is barely adequate
for clear viewing of trapped particles, additional illumination is provided by a portable light
source (Nikon). Because the illuminating light is not focused, it has a negligible effect on trap
performance. Images of particles within the trapping plane are viewed by focusing the viewing
light onto an analog CCD camera array. Signals from the CCD color video camera (Model XC-
999, Sony) are sent to a videocassette recorder for recording (if necessary) and to a 13”-color
video monitor for viewing.

Figure 5.5: Video viewing system.

Figure 5.6: Digital viewing system. Left figure shows schematic diagram of the digital viewing
system and right figure shows both video and digital cameras. Digital camera controller and
PC are shown in Figure 5.16.

For calibration and recording purposes, it is very convenient to view and save particle images
using a digital camera. As shown in Figure 5.6, a broad-band cube beamsplitter (Model 44-
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3663, Coherent) is used to split the the imaging light such that 45% of the light is transmitted
towards the analog CCD camera described above and 45% of the light is reflected to a digital
CCD camera (MicroMAX:1300YHS, Princeton Instruments). Images collected by this digital
camera are sent to a PC (Pentium II processor) via a digital camera controller (MicroMAX
5MHz, Princeton Instruments). The digital images are viewed on a large 17” computer monitor.
The PC is equipped with sophisticated image processing software (Imaging Workbench 2.2,
Axon Instruments) for real-time data collection and mostly off-line data analysis. Even if image-
processing software is used, however, the resolving power of an optical imaging system is limited
by diffraction to 200–300 nm [40].

A digital image of a 10 µm polystyrene bead that was trapped using our optical tweezers is
shown in Figure 1.4. For that particular image, the laser output was set at approximately half
power, all of which was used to create a horizontally polarized trap.

5.3 Lateral Steering System

The steering system for our dual-trap optical tweezer is based on a design suggested by Fallman
and Axner [21]. The arrangement of optical components is shown in Figure 5.7.

Figure 5.7: Lateral steering using mirrors.

Dual traps are created by splitting the incoming laser beam into two separate components
according to polarization. This is done using a polarizing beam-splitting cube PBSC1 which
splits the beam into two orthogonally polarized components that are later recombined using
another cube PBSC2. The cubes are designed to transmit horizontally polarized (p-plane)
light and reflect vertically polarized (s-plane) light (both at λ = 1064 nm). For the split to
occur (i.e., for the creation of two traps), the laser beam needs to be polarized in both the
horizontal (parallel to optical table) and vertical (perpendicular to optical table) directions.
Since our laser has an output that is horizontally polarized, vertical polarization was induced by
inserting a waveplate just after the laser output aperture. By manually rotating the waveplate,
the direction of polarization can be rotated (continuously) as desired. This allows the laser
power to be divided between each separate path according to a manually adjustable ratio. Two
gimbal-mounted mirrors, GMMH and GMMV , can be used to independently deflect each beam
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component about two orthogonal axes. Therefore, each trap can be steered independently in the
x and y directions. Since the two traps are formed by beams with orthogonal polarization, “there
is little interference when they are brought into close proximity, although residual interference
can occur, due to depolarizing effects arising from the use of high-numerical aperture optics”3

[18].
For both beam paths, lens L1 (with focal length f1) and lens L2 are chosen and positioned to

guarantee that the steering consistency requirements from Section 3.6 are met. Lenses L1 and L2

are placed at a distance f1+f2 apart such that they form a telescope that expands the laser beam
by the ratio f1

f2
. Lens L1 is placed at a distance f1 from the objective entrance aperture, while

L2 is placed at a distance f2 from the gimbal-mounted mirror. According to geometric optics,
the relationship between the diameter of the laser beam at the objective entrance aperture, dλµ,
and the diameter of the incoming laser beam, dλ, is

dλµ =
f1
f2
dλ. (5.4)

The lateral (horizontal) motion of the trap in the x direction, ∆xT , is related to the angular
deflection of the gimbal-mounted mirror, ∆θG according to

∆xT = −2fµ
f2
f1

∆θG, (5.5)

where fµ is the effective focal length of the microscope objective. For our system, dλ = 1.2
mm, f1 = 300 mm, f2 = 75.6 mm, and fE = 1.64 mm. Therefore, dλµ = 4.762 mm and

∆xT︸︷︷︸
µm

= −0.8265 ∆θG︸︷︷︸
mrad

, (5.6)

where ∆xT is in microns and ∆θG is in milliradians. The motion of the trap in the y direction
is analogous.

5.3.1 Motorization

For many experiments, at least one of the optical traps must be moved in a very specific,
controlled manner. To this end, the gimbal-mounted mirrors can be equipped with motorized
actuators. Of the two gimbal-mounted mirrors shown in Figure 5.7, only the mirror GMMH

(Model U100-G, Newport) that steers the horizontally polarized laser component is designed to
be equipped with motors. Motors can be conveniently manipulated using a joystick, computer
keyboard, or mouse. Motors are also needed for the smooth, controlled lateral movement of the
sample translation stage. Two closed-loop DC motor actuators with non-rotating spindles were
purchased from Polytec PI. They can be used as a direct substitute for the manual microme-
ters on both the gimbal-mounted mirror GMMH and the sample translation stage. Selected
specifications for each motor are listed in Table 5.1.

The motors are driven by a 2-channel DC motor controller board (Model C-842.20, Polytec
PI) with an ISA bus interface. The controller board provides PID control of the DC motors
through a Windows NT-based LabVIEW software interface.

5.3.2 Acousto-Optic Deflection

For experiments in which the laser beam needs to be moved very quickly, motorized actuators are
too slow because of their limited mechanical bandwidth. Instead, extremely fast beam deflections

3To reduce polarization cross talk and interference effects, Meiners and Quake chopped the two orthogonally
polarized trapping beams alternately at a frequency of 100 kHz [41].
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DC Motor Parameter Model M-230.10 Model M-222.50
Travel Range 10 mm 10 mm
Design Resolution 4.6 nm/count 8.4 nm/count
Min. Incremental Motion 50 nm 50 nm
Unidirectional Repeatability 0.1 µm 0.1 µm
Backlash 2 µm 2 µm
Max. Velocity 1.5 mm/s 1.5 mm/s
Optical Encoder Resolution 2048 counts/rev 2000 counts/rev
Transmission Ratio 219.7504 counts/µm 118.5679 counts/µm

Table 5.1: DC motor specifications [42].

can be achieved by passing the laser beam through an acousto-optic deflector (AOD). In an AOD,
beam deflection is achieved by sending the laser through a density grating in a crystal created
by a traveling acoustic wave at ultrasound frequencies as shown in Figure 5.8.

Figure 5.8: Beam deflection using an acousto-optic deflector. Incoming beam has been angled
to achieve maximum first order deflection efficiency at center frequency.

The deflection angle θ1 for first-order4 light is given by

θ1 =
λfa

va
, (5.7)

where λ is the laser wavelength, fa is the acoustic wave frequency and va is the velocity of the
sound wave [18]. Since the sound wave is constant for a given crystal, the deflection angle for
monochromatic light is proportional to the acoustic frequency:

θ1 ∝ fa

From (5.7), for an AOD with a maximum and minimum acoustic frequency of (fa)max and

4Technically, the 1st order deflection shown in Figure 5.8 is the -1st order deflection, but this detail will be
ignored.
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(fa)min respectively, the maximum scan angle θscan is given by

θscan =
λ [(fa)max − (fa)min]

va
. (5.8)

For a given acoustic frequency fa, first order deflection efficiency η1(fa) is theoretically
maximized when the incident angle θi of the laser beam is equal to the Bragg angle θB(fa),

lim
η1(fa)→(η1(fa))max

θi = θB(fa) =
λfa

2va
, (5.9)

which implies that, for any given incident angle θi, the first order efficiency will be maximized at
a specific frequency [43]. Therefore, for fixed θi, deflection efficiency will change as the frequency
is varied. The maximum possible first order efficiency (η1)max is achieved at the center frequency
fac of the acoustic range:

lim
η1→(η1)max

θi = θB =
λfac

2va
, (5.10)

where θB := θB(fac). The separation angle θsep is defined as the angle between the incident laser
beam from (5.10) and the first order deflection beam from (5.7) when efficiency is maximized:

θsep = 2θB =
λfac

va
. (5.11)

Our optical tweezers system is equipped with one single-axis AOD (Model N45035-3-6.5DEG-
1.06, NEOS Technologies) that uses TeO2 as its crystal interaction material. The (slow) shear
axis TeO2 has an acoustic velocity of va = 660 m/s [44]. Selected AOD specifications are listed
in Table 5.2. According to (5.6), the scan angle specified in Table 5.2 suggests that the AOD
can be used to deflect the trap by a maximum lateral distance of 26.45 µm.

AOD Parameter Specification
Center Frequency fac 35 MHz
Acoustic Frequency Range, (fa)min to (fa)max 25–45 MHz
Intensity Variation < 2 dB
Maximum 1st Order Diffraction Efficiency, max(η1) 65%
Scan Angle θscan 32 mrad ≈ 1.8o

Separation Angle θsep 56 mrad ≈ 3.2o

Input Light Polarization linear, ‖ ~va

Output Light Polarization linear, ⊥ ~va

0th Order Transmission Efficiency η0 at fa = 0 95%

Table 5.2: Acousto-optic deflector specifications [44].

The acoustic frequency is generated using a 32-bit digital frequency synthesizer driver (Model
64020-200-2ASDFS, NEOS Technologies) which is capable of generating a frequency range of
20-200 MHz with a resolution (minimum step size) of < 1 Hz. The intensity of the deflected
beam can be modulated if necessary using a 0–1 V analog voltage signal. The acoustic frequency
can be specified manually or using computer input. Although the response time of an AOD is
intrinsically limited by the ratio of the acoustic velocity to the incident laser beam diameter:
τa = dλ/va, the actual bandwidth will be considerably less due to delays in the computer
interface [18].

42



Unlike the gimbal-mounted mirrors from Figure 5.7 which deflect the laser beam by ∼ 90o,
the AOD deflects the beam by ∼ θsep = 3.2o. Furthermore, Table 5.2 indicates that the AOD
causes the polarization state of the laser beam to rotate by 90o. Therefore, the AOD cannot
be used as a direct substitute for a mirror. Instead, the AOD can be positioned as shown in
Figure 5.9 and Figure 5.10. In Figure 5.9, GMMV is replaced by the AOD, while a λ/2 waveplate
is inserted prior to PBSC2 to convert the AOD output beam polarization from horizontal to
vertical. In this configuration, the AOD can be used to steer the vertically polarized trap in one
direction, while GMMH can be independently used to steer the horizontally polarized trap in the
lateral plane as before. In Figure 5.10, only one trap exists because the AOD output polarization
is not changed by a waveplate and therefore, GMMH cannot be used simultaneously.

Figure 5.9: Lateral steering using an AOD with polarization correction. This arrangement
provides two independent trapping beams, but requires an extra waveplate.

AOD Calibration details can be found in Section 6.3.

5.4 Position Detection System

Sensitive position detectors can be used to make quantitative measurements of nanometer dis-
placements and piconewton forces with millisecond resolution [10]. The most common method
of detecting a trapped particle’s position is to image the particle onto a quadrant photodiode,
after magnification by a microscope objective. The particle can be imaged using a light source
independent of the trapping laser, or the particle can be imaged using the trapping laser itself.
Although the former method is better suited for feedback-enhanced or time-shared schemes, its
bandwidth is noise-limited to less than 1 kHz [18]. For larger temporal bandwidths (up to 100
kHz), the trapping laser itself should be used to image the particle [45].

The trap position detectors are mounted on a 12′′ × 12′′ aluminum breadboard located
above the specimen stage. A rectangular aperture was machined through the center of the
breadboard such that imaging light can pass through. A compact three-axis stage (Model 460-
XYZ, Newport) is used to manually position a 20×/0.4 NA microscope objective (LD Achroplan,
Zeiss) through the breadboard and directly above the specimen. Since this low-NA microscope
objective collects the laser beam after it has passed through the trapping region, it is known
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Figure 5.10: Lateral steering using an AOD without polarization correction. This arrangement
provides only one trapping beam.

as the “collecting objective”. The laser beams collected by the collecting objective are used for
position detection. Above the specimen plane, a third polarizing beam-splitting cube (PBSC3)
is used to deflect the two orthogonally polarized detection beams into separate paths so that
the position of particles in the two traps can be measured independently (Figure 5.11).

Figure 5.11: Bead position detectors.

Photographs of our position detection system are shown in Figure 5.12.
The photodetector circuit was designed by Patricia Swift according to manufacturer recom-

mendations [46, 47]. Incoming laser light is detected using four-element segmented photodiodes.
When light hits each segment, a current proportional to the incident light power is generated.
The current output from each segment of the photodiode is converted to a voltage using low-noise
precision operation amplifiers. As shown in Figure 5.13, these voltages are then appropriately
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Figure 5.12: View of position detection system and circuit. Left figure shows one detector,
which is shielded within an aluminum chassis. Right figure shows the circuit contained within
the chassis.

summed using dual high-speed precision difference amplifiers to obtain three separate voltage
channels that indicate the x position, y position, and total power of the incident beam. The x
and y position voltages are normalized by the total power level using analog multipliers. Al-
though normalization of the position signals could have been done using software, hardware was
used to reduce computation time. To reduce signal noise due to stray capacitances, the circuit
was built using a custom-built printed circuit board. The prototype was constructed by Verne
Parmenter and two similar circuit boards were constructed based on the prototype. Since the
displacement rise time for a typical optical tweezer is on the millisecond time scale5 [10], it is
recommended that position detectors have a temporal bandwidth of greater than 10 kHz [18].
The detector bandwidth can be adjusted by an appropriate choice of capacitors and resistors.
Construction details can be found in Appendix B. All three photodetector circuits are powered
using a single DC power supply (HP E3631A, Hewlett Packard). The circuits are protected
from power fluctuations using ±15 V voltage regulators. To reduce electromagnetic noise, the
photodetector circuits are shielded (enclosed) in an aluminum chassis.

For high sensitivity and ease of construction, we have chosen to operate the photodetector
in the “photovoltaic” mode. This is preferred when the photodiode is used in low frequency
applications (up to 350 kHz) [47]. The operating bandwidth in Hertz, fOP , is given by [47]

fOP =
1

2πRFCF
. (5.12)

For the circuit shown in Figure 5.13, RF = 100kΩ and CF = 330 pF, implying a bandwidth of
fOP = 4.8 kHz. For fastest response and greatest bandwidth, the photodiode can be used in
the “photoconductive” mode, which is more complicated [48]. Figure 5.14 shows the measured
position of a trapped bead to a square wave trap displacement that has a peak-to-peak amplitude
of 0.4 µm and frequency 2 Hz. Trap position xT is actuated using an AOD.

The prototype photodetector circuit can be used to measure the position and power of the
trapping laser beam after deflection by the gimbal-mounted mirrors. As shown in Figure 5.15,

5This is for a 300-nm step displacement at laser powers from 3–150 mW. Less power and greater step size will
increase the lag time [10].
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Figure 5.13: Position detector circuit diagram for using a quadrant photodiode in photovoltaic
mode with a bandwidth of 4.8 kHz [46].
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Figure 5.14: Step response of a trapped 10-µm diameter bead to a square wave trap displacement.
Trap position xT (dotted line), bead position x (dashed line) and the average bead position (solid
line) for 30 traces of data are shown.

a small fraction (∼ 4%) of the incoming beam can be deflected onto the photodetector using a
beam sampler (Model 44-2434, Coherent). The drawback of this particular beam sampler is its
large thickness, which causes a slight lateral shift in the incoming laser beam.

Figure 5.15: Optional Laser position detector. Detector measures trap position (xT , yT ) and
total power.
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5.5 Computer Interface

For data acquisition and control, a computer interface has been established between the various
sensors and actuators in the optical tweezer system. This was done using a 16-bit multifunction
I/O board (Model PCI-6052E, National Instruments) and a high-speed 32-bit digital pattern I/O
board (Model PCI-6534, National Instruments). The multifunction I/O board is mainly used to
acquire signals from the photodetectors, while the digital I/O board is mainly used to generate
the binary drive commands for the AOD driver. Selected specifications for the two boards are
shown in Table 5.3 [49]. Laboratory signals are interfaced to each data acquisition board using
shielded connector blocks (Model SCB-68, National Instruments) and shielded cables. A RTSI
(“Real-Time System Integration”) cable is used to synchronize the two data acquisition boards.

Board Parameter Model PCI-6052E Model PCI-6534
Analog Inputs 16 SE/8 DI 0
Resolution 16 bits -
Sampling Rate 333 kS/s -
Input Range ±0.05 to ±10 V -
Analog Outputs 2 0
Resolution 16 bits -
Output Rate 333 kS/s -
Output Range ± 10 V -
Digital I/O 8 32
Maximum Rate 80 MBytes/s
Counter/Timers 2, 24-bit

Table 5.3: Computer data acquisition board specifications [49]. (SE = Single Ended, DI =
Differential, kS/s = kilosamples per second.)

Figure 5.16 shows the PC interface used for data acquisition and digital image processing.
The data acquisition PC uses a Pentium III processor that runs Windows NT, while the image
processing PC uses a Pentium II processor that runs Windows 98.
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Figure 5.16: View of data acquisition PC (left) and digital image processing PC (right), including
camera controller.
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Chapter 6

Equipment Calibration

6.1 Manual Micrometers

The manual micrometers used in our system have a minimum incremental motion of 1 µm.
According to the Newport catalog, the ULTIMA gimbal mirror-mount has a position resolution
of 0.0011◦ when equipped with a 100 TPI (threads per inch) linear actuator [50]. This means
that a 1◦ turn by a 100 TPI actuator will turn the ULTIMA gimbal-mirror mount by an angle
of 0.0011◦. A 1◦ turn by a 100 TPI actuator corresponds to linear motion of

0.01 in.
turn

× 1 turn
360◦

× 25.4× 103 µm
1 in.

= 0.7056 µm.

Therefore, the correspondenece between gimbal-mirror mount deflection ∆θG and linear actuator
translation ∆xla is

∆θG

∆xla
=

0.0011
0.7056 µm

× π rad
180◦

= 2.721× 10−5 rad/µm.

Therefore, when used with an ULTIMA gimbal-mirror mount, the linear translation of the
micrometer head is converted to angular motion of the mirror according to

∆θG︸︷︷︸
mrad

= 0.02721 ∆xla︸ ︷︷ ︸
µm

. (6.1)

Equation (6.1) can be combined with (5.6) to obtain the (expected) correspondence between
linear actuator motion and trap position:

∆xT︸︷︷︸
µm

= −0.02249 ∆xla︸ ︷︷ ︸
µm

, (6.2)

where both ∆xT and ∆xla are in microns. In other words, linear actuator motion is reduced
by a factor of 44.5 at the trap. Since the manual micrometers have a minimum incremental
motion of 1 µm, (6.2) implies that the minimum incremental motion of the trap using a manual
micrometer is 22.5 nm.

6.2 DC Motors

As listed in Table 5.1, the closed-loop DC motors are equipped with optical encoders that sense
shaft position with an accuracy of either 4.6 nm or 8.4 nm (depending on which motor is being

49



used), while the minimum incremental motion for both motors in 50 nm. Therefore, according
to (6.2), for an ULTIMA gimbal-mounted mirror equipped with these motors, the minimum
incremental motion of the trap is 1.1 nm, while the optical encoders can sense trap position
with an accuracy of either 0.10 nm or 0.19 nm.

6.3 Acousto-Optic Deflector

The AOD digital frequency synthesizer has an internal oscillator that generates a clock signal
that is used to produce an RF (radio frequency) output. The output acoustic frequency fa is a
function of the internal clock rate fCK and the decimal drive command K10 which is provided
either manually or by computer interface:

fa =
fCKK10

2n
. (6.3)

For our synthesizer, fCK = 1000 MHz and n= 31. Therefore, a desired output acoustic frequency
fa can be generated by providing the decimal drive command

K10 =
fa2n

fCK
=

fa231

1000× 106
. (6.4)

The decimal command K10 is converted to either hexadecimal (HEX) for manual interface or
to binary for computer interface. The correspondence between a change in acoustic frequency
∆fa and the resulting change in lateral trap position ∆xT is obtained by combining (5.7) and
(5.6):

∆xT︸︷︷︸
µm

= −1.332 ∆fa︸︷︷︸
MHz

, (6.5)

where ∆xT is in microns and ∆fa is in MHz. Setting K10 = 1 in (6.3), the minimum frequency
step size is

(∆fa)min =
fCK

2n
, (6.6)

which is equal to 0.4657 Hz for our AOD driver. This value, when substituted into (6.5), shows
that the minimum incremental motion of our trap using the AOD is 6.20 × 10−4 nm. This
is significantly better than the corresponding values for the mechanical actuators discussed in
previous sections.

Movement of trap position by the AOD can be calibrated using digital CCD images. The
digital viewing system is first calibrated using a precision grid carrying a line pattern with 10-
µm spacing (Part 11-7796, Coherent). Once the correspondence between pixels and nanometers
has been obtained, the AOD is calibrated by capturing digital video images of a trapped bead.
The bead is moved to different lateral positions along a straight line by driving the AOD at
different frequencies. At each frequency, a digital image of the trapped bead is captured and
saved. These saved images are later analyzed off-line using centroid-tracking algorithms, which
can calculate the exact position of the trapped bead. Since the drive frequency for each image
is known, the relation between drive frequency and trap position can be obtained.

As mentioned in Section 5.3.2, the first order deflection efficiency η1 of the AOD varies
across the acoustic frequency range. The manufacturer-calibrated efficiency profile for our AOD
is shown in Figure 6.1 [44]. Although a local maximum of η1 = 80% exists at the center frequency
fac = 35 MHz, the global maximum of 97% occurs at fa = 41.5 MHz.
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Figure 6.1: AOD first order deflection efficiency profile, re-printed from [44].

6.4 Position Detectors

As mentioned in Section 5.4, the most common method of detecting a trapped particle’s position
is to image the particle onto a quadrant photodiode, after magnification by a collecting objective.
The collecting objective is used to collect the trapping laser light after it has passed through
the trap. The trapped particle behaves like a lens, since after the laser light passes through
the particle, the light is deflected before it goes through the collecting objective. The light that
passes through the collecting objective is imaged on to a quadrant photodiode.

We used the method described by Visscher et al. in which the quadrant photodiode is placed
specifically “on the optical axis in a position that is optically conjugate to the back focal plane
of the microscope” [18]. Their method can be used to detect nanometer-scale displacements in
the lateral direction, but it is “nearly insensitive to axial movements” [18]. The main advantage
of this method is that “its response is rendered insensitive to the xy position of the optical trap
itself within the specimen plane: instead, it responds mainly to a relative displacement between
an object and the center of the trap, wherever the trap is located (in practice, within an area
∼ 5 µm or so in diameter)” [18].

Once the AOD has been calibrated, the photodetector response can be calibrated using
another trapped bead. As above, the bead is moved to different lateral positions along a straight
line by driving the AOD at different frequencies. At each trap position (uniquely specified by
each drive frequency), the detector response is recorded. Thus, the relation between trap position
and detector output can be obtained. Since the AOD has high reproducibility, detector output
can be averaged for many runs, which reduces the effects of Brownian noise in the trap [18].
Figure 6.2 shows the average detector step response of a trapped 9.61-µm bead for steps within
the linear region. Recall that the detector has been aligned to measure relative position xr. The
detector response is almost linear, but the linear constant (slope) is sign dependent. For low
data (negative steps), the detector response is approximately 0.79 V/µm, whereas for high data
(positive steps), the detector response is approximately 1.18 V/µm. This disparity is due to
combination of slight mismatches in resistor values in the high-impedance photodetector circuit
and slight misalignments in the optical trap.

Visscher et al. claim that detector response is linear for trap displacements within∼ ±100 nm,
but the detector range can be extended to ∼ ±200 nm by fitting the detector output to a cubic
or higher order polynomial [18]. For our system, the detector response is approximately linear
within the entire linear range ∼ ±200 nm, which corresponds to ∆xr ± 400 nm. Furthermore,
Allersma et al. showed that for small beads with diameter d, the position detector response, in
volts per nanometer, should be proportional to d3; after passing through a maximum, however,
the detector response should decrease according to 1/d as the bead size becomes large [45].
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Figure 6.2: Average detector step response for a 9.61-µm diameter bead. Detector step responses
are the average of 300 steps, each sampled at 1 kHz with a low-pass filter at 10 kHz.

Figure 6.3 shows the measured position of a trapped bead to a square wave trap displacement
that has a peak-to-peak amplitude 0.4 µm and frequency 2 Hz. The characteristic frequency of
the shown system is approximately 75 rad/s [36]. Trap position xT is actuated using an AOD
and bead relative position xr is measured directly by the detector. Bead position x is calculated
according to (3.1).
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Figure 6.3: Step response of a trapped 10-µm bead for ωc ≈ 75 rad/s. Top figure shows raw
data and bottom figure shows the average of 30 cycles of data. Trap position xT (dotted line),
bead relative position xr (dashed line), and bead position x (solid line) are shown.
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Chapter 7

Off-Line Identification Methods

In this chapter, we discuss several off-line calibration methods that have been performed for
our optical tweezer system. Most optical tweezer users, such as physicists and biophysicists,
have been using off-line methods for empirical calibration of the trapping parameters described
in Section 3.4. Each method has its own advantages and disadvantages, as summarized in
Table 7.1.

ID Trap ID Position β Motion
Method Regime Parameter Detector Req.
Equipartition Linear α Cal.PD (BW) No None
Power Linear ωc PD (BW) No None
Spectrum α, β Cal.PD (BW) No None
Step Linear ωc Cal.PD (BW) No Step
Response Nonlinear FT , αe Cal.PD (BW) Yes Step
Drag Linear α Cal.PD Yes Wave
Force Nonlinear αe Cal.PD Yes Wave
Lateral Nonlinear vesc, RF VCR No Rough
Escape Force (FT )max, αe VCR Yes Rough
Lateral Capture Nonlinear vR VCR No Rough

Table 7.1: Overview of off-line identification methods. Cal. = Calibrated, PD = Photodetector,
BW = with high analog bandwidth, β = Drag knowledge required.

Strongest trapping is expected for particles that are roughly the same size as the laser
wavelength [14], which is λ = 1.064 µm, for our system. For testing and calibration of the
optical tweezer, we trapped polystyrene spheres of diameters 10.06 µm, 9.61 µm and 1.05 µm.

7.1 Equipartition Method

In the equipartition method, the trap stiffness α is obtained by measuring the thermal fluctu-
ations of trapped particle position x. According to the Equipartition theorem, for a particle
bound in a harmonic potential,

kBT = ασ2
x (7.1)
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where σ2
x is the variance [18, 26]. As mentioned in Section 3.2, at biological temperatures, kBT

is approximately 4× 10−3 pNµm [26]. The variance is defined as

σ2
x = E{x2} − {Ex}2, (7.2)

which can be estimated directly from position data according to

σ̂2
x =

1
N − 1

N∑
i=1

(xi − x)2, (7.3)

in which N is the total number of position data samples and x is the mean of the position data.
Although knowledge of the viscous drag coefficient is not needed, this method requires both a

well-calibrated position detector with a high analog bandwidth and an environment with minimal
noise [18]. The analog bandwidth of the detection system must be large because any lowpass
filtering will underestimate σ2

x and hence, inflate α, while noise must be minimized because
any sources of noise will artificially inflate σ2

x and therefore, underestimate α [18]. Note that,
although the analog bandwidth needs to be high, the digital bandwidth (sampling rate) need
not be correspondingly high because the position signal has random phase [30]. The top plot of
Figure 7.1 shows the position fluctuations of a trapped 9.61-µm diameter polystyrene bead. A
direct calculation of position variance according to (7.3) yielded σ2

x = 0.0026 µm2 forN = 300000
data samples. By substituting this variance value in (7.1), the trap stiffness is calculated as
α = 1.5 pN/µm. As shown in Section 7.2, the direct measurement of position variance
overestimates the variance due to thermal motion alone. Therefore, the stiffness calculated in
this section using (7.3) is an underestimate.

7.2 Power Spectrum Method

Much information can be obtained from the power spectrum of a trapped particle 1. From
(3.22), the equation of motion of particle position x in a stationary fluid with trap position xT

set to zero can be approximated by a Langevin equation [18],

αx(t) + βẋ(t) = FL(t), (7.4)

which, for zero initial conditions, can be written as

X(s) = Gyd(s)FL(s), (7.5)

in which

Gyd(s) =
1
β

s+ ωc
, (7.6)

according to (3.26). For a linear time-invariant (LTI) system such as (7.5), the input and output
spectra are related according to

φx(ω) = Gyd(iω)Gyd(−iω)φL(ω), (7.7)

where the input signal is assumed to have finite variance [34]. As mentioned in Section 3.2,
FL(t) is a Langevin (random thermal) force with an average value of zero, E{FL(t)} = 0, and
constant single-sided power spectrum S+

L (f) given by

S+
L (f) = 2FL(f)F ∗L(f) = 4βkBT, (7.8)

1Some of the formulas in this section are borrowed from [26], but their derivation has been modified to conform
with the stochastic normalization conventions from [34], which were explained in Chapter 4.
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in which the Fourier transforms are double-sided [26]. Using (4.6), we can express (7.8) in terms
of a single-sided spectral density as

φ+
L(ω) =

2βkBT

π
. (7.9)

Substituting (7.9) and (7.6) into (7.7), we obtain

φ+
x (ω) =

2kBT

πβ(ω2
c + ω2)

. (7.10)

In practice, it is convenient to express frequency in Hertz. In that case, we can re-express (7.7)
using ω = 2πf and then substitute (7.8) directly to obtain

S+
x (f) =

kBT

βπ2(f2
c + f2)

. (7.11)

From (7.11), if one fits the power spectrum S+
x (f) to a Lorentzian shape, the roll-off frequency

should be equal to the characteristic frequency of the trap fc [26]. Therefore, with prior knowl-
edge of viscous drag β, trap stiffness α can be obtained from the roll-off frequency. Furthermore,
for low frequencies f � fc, the power spectrum is approximately constant, S+

x (f) ≈ S0, given
by

S0 =
kBT

βπ2f2
c

(7.12)

[26]. Equation (7.12) shows that β can be calculated once fc and S0 have been measured:

β =
kBT

S0π2f2
c

(7.13)

[26]. This is useful in experiments in which the drag coefficient is not known. Furthermore, trap
stiffness α can be calculated as

α =
2kBT

πS0fc
(7.14)

[26]. At higher frequencies, f � fc, the power spectrum is inversely proportional to the square
of the frequency, S+

x (f) ∝ 1
f2 , which is characteristic of free diffusion [26]. In effect, the particle

does not feel the confinement of the trap during very short time intervals [26].
Since the power spectrum is estimated using discrete position data, we will explain how this

is done. To avoid aliasing of the power spectrum, it is important to low-pass filter the signal
before sampling it, with a cutoff frequency equal to the Nyquist frequency fNy given by

fNy =
fs

2
, (7.15)

where fs is the sampling frequency of the position data. For some applications, it is also
necessary to multiply the data by a normalized window to remove oscillations in the power
spectrum [26], but we did not apply windowing to our data. For N discrete data points xn

separated by sampling time δt, the N independent Fourier components X(fm) are obtained
according to

X(fm) =
N∑

n=1

xne
2πinm/N , (7.16)
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where the discrete frequencies fm are defined as

fm = mδf , for−N/2 ≤ m ≤ N/2, (7.17)

in which δf is the frequency resolution given by

δf =
1
Nδt

(7.18)

[26]. To deal with only positive frequencies, the single-sided power spectrum is calculated as

S+
x (fm) =


2

N2δf |X(fm)|2 for 0 < m < N/2

1
N2δf |X(fm)|2 for m = 0, N/2

(7.19)

[26]. Note that the highest frequency index in (7.19) is N/2, which means that the maximum
frequency considered is equal to the Nyquist frequency fNy. Gittes and Schmidt show that the
sum of all the discrete components of S+(fm) for nonzero frequencies should be equal to the
calculated variance σ2

x of the position data:

N/2∑
m=1

S+(fm)δf = σ2
x (7.20)

[26]. They also show that the trap position variance σ2
x due to thermal noise alone is given by

σ2
x =

1
2
πS0fc (7.21)

[26]. As mentioned in Section 7.1, although one might be tempted to calculate (estimate) σ2
x

directly from position data using (7.3), such a variance would be artificially inflated due to very
low-frequency noise from drift and mechanical vibrations [26]. Therefore, (7.21) provides a more
accurate estimate of σ2

x, according to our system model.
Note that the summation in (7.19) is the discrete equivalent of the continuous time definition

of the single-sided position power spectrum,

S+
x (f) := 2X(f)X∗(f), (7.22)

in which X(f) is the double-sided Fourier transform of x(t) and X∗(f) is its complex conjugate
[20, 34, 18]. In continuous time, the Fourier transform pairs are defined as:

X(f) :=
∫ ∞

−∞
x(t)e−i2πftdt (7.23)

x(t) =
∫ ∞

−∞
X(f)ei2πftdf. (7.24)

[51]. Furthermore, the variance in continuous time can be expressed as:

σ2
x =

∫ ∞

0

S+
x (f)df, (7.25)

whose discrete equivalent is (7.20). Note that (7.25) is consistent with (4.4).
Formally, with some abuse of notation, we can denote the calculated power spectrum in

(7.19) as Ŝ+
x (fm), to indicate that it is an estimate (realization) of the actual power spectrum.

The second order properties of the realization and actual spectrum are given by:

EŜ+(fm) = S+(fm) +
C1

N
(7.26)

E{
[
Ŝ+(fm)− S+(fm)

]2
} =

[
S+(fm)

]2 +
C2

N
, (7.27)
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where the constants C1 and C2 must satisfy the condition

∞∑
τ=−∞

|τRx(τ)| ≤ C1, C2, (7.28)

in which Rx(τ) is the covariance of x [52]. In other words, although the calculated power
spectrum Ŝ+(fm) is asymptotically unbiased, it is an extremely erratic function: the standard
deviation of each point is typically equal to its mean [26]. Fortunately, if we calculate the power
spectra for many different data sets, the values of Ŝ+(fm) for a chosen frequency fm will be
uncorrelated. Therefore, to obtain a smooth curve, we can calculate power spectra for many
data sets and then average them. The true spectral characteristics of the system can be ob-
tained from the smooth, average power spectrum of an infinite number of data sets [26, 52].
Although smoother power spectra can be calculated from a single data set by applying a fre-
quency windowing function to exploit the correlation between adjacent points on the spectrum,
such methods may introduce an expected bias in the calculated power spectrum because the
assumed correlation may not be symmetric [52].

Figure 7.1 shows both the position fluctuations of a trapped 9.61 µm bead due to Brownian
(random thermal) motion and the computed average of 30 power spectra. According to the
average power spectrum, fc ≈ 19 Hz, implying ωc = 2πfc ≈ 119 rad/s. Furthermore, S0 =
7.4× 10−5 µm2/Hz, which implies that β = 0.015 pNs/µm using (7.13), α = 1.8 pN/µm using
(7.14), and σ2

x = 0.0022 µm2 using (7.21). Recall from Section 7.1 that a direct calculation of
position variance yielded σ2

x = 0.0026 µm2, which results in an underestimate of trap stiffness.
The calculated drag coefficient β is much lower than expected for a bead of this size at room
temperature, which suggests that the viscosity of the PBS solution is less than water at room
temperature. The viscosity may have decreased due to local heating near the laser focus; errors in
detector calibration may also underestimate the viscosity. The small peak in the power spectrum
near 200 Hz is likely due to noise in the laboratory environment and slight misalignments.

According to Visscher et al.,

“The use of power spectra to calibrate trap stiffness can be particularly helpful
in exposing potential problems with optical tweezers. If the tweezers are misaligned,
the beam is corrupted, or something is awry with the position detection system,
then the power spectrum rapidly becomes non-Lorentzian and/or displays peaks at
specific noise frequencies. These details can be readily missed with other methods.
Because only the roll-off frequency needs to be determined, the power spectrum may
have arbitrary amplitude scaling, so that absolute calibration of the position sensor
is unnecessary. When an absolute calibration is available, the value of the power
spectrum at zero frequency also provides identical information to the Equipartition
method” [18].

7.3 Step Response Method

The step response of a trapped particle can be used to calibrate characteristic frequency; appli-
cation of a single step is known as a “bump test”. From (3.22), particle position x in a stationary
fluid is given by

αx(t) + βẋ(t) = αxT (t) + FL(t). (7.29)

Since the Langevin force FL(t) has an average value of zero, for a small trap step size xT (0+)
(i.e., within the linear force region Rl), the average step response is given by

x(t) = xT (0+)
[
1− e−ωct

]
(7.30)

58



0 0.2 0.4 0.6 0.8 1
−0.2

−0.1

0

0.1

0.2

t (s)
x 

(µ
m

)

10
0

10
1

10
2

10
3

10
−10

f (Hz)

S x(f
) 

(µ
m

2 /H
z)

Figure 7.1: Top figure shows position fluctuations of a trapped 9.61-µm bead. Bottom figure
shows the average of 30 power spectra and its Lorentzian fit (dashed line). Data was sampled
at 10 kHz. The steep roll-off beyond 2 kHz is due to the limited analog bandwidth (4.8 kHz) of
the position detectors, which act as a lowpass filter near the Nyquist frequency.

which shows that the characteristic frequency ωc can be obtained from the step response data.
Furthermore, trap stiffness α can be obtained from knowledge of the viscous damping factor β
[18]. A calibrated detector is not required, but the time constant for trap movement must be
faster than the characteristic damping time of the particle, τc := 1/ωc = β

α [18].
A more robust method for obtaining ωc is to re-arrange (7.30) and take the natural logarithm,

to obtain

ln
[
1− x(t)

xT (0+)

]
= −ωct. (7.31)

If we define the left-hand side as Z, we obtain a linear expression

−Z = ωct, (7.32)

which shows that the characteristic frequency is equal to the slope of −Z versus t [53].
The initial velocity of the particle ẋ(0) can be obtained by taking the slope of the step

response or by differentiating (7.30):

ẋ(t) = xT (0+)ωce
−ωct

and substituting t = 0:

ẋ(0) = xT (0+)ωc. (7.33)

Knowledge of ẋ(0) can be combined with (3.9) to calculate the trapping force FT (xr) as a
function of trap position:

FT (xr) = 6πηfrbxT (0+)ωc. (7.34)
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In fact, initial particle velocity data can be used to calculate (model) the entire nonlinear
trapping profile of an optical trap, as demonstrated in [10]. Simmons et al. used velocity data
to compute the experimental model shown in Figure 3.1.

Figure 6.2 shows the average step response of a trapped 9.61-µm bead to steps within the
linear region. Figure 7.2 shows step response calibration results, according to a least squares
fit to the linear relation (7.32). Note that early data (for very small t) is very sensitive to
measurement noise and should not be used for calibrations. Clearly, the step response for
A = 0.05 µm is very sensitive to Langevin noise (because of the small signal to noise ratio)
and is not a good choice for calibration. According to the A = 0.10 µm step response, ωc ≈
134.6 rad/s for high data (positive steps) and ωc ≈ 107.3 rad/s for low data (negative steps);
according to the A = 0.15 µm step response, ωc ≈ 136.5 rad/s for high data (positive steps) and
ωc ≈ 104.1 rad/s for low data (negative steps). The trap is stiffer for positive displacements than
it is for negative displacements. This is indicative of a system that is not perfectly aligned; even
a slight misalignment will cause a component of the axial restoring force to increase the lateral
trapping force in one direction and reduce it in the opposite lateral direction. An important
feature of the step response method is that it is capable of revealing and quantifying such
asymmetries in trap stiffness.
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Figure 7.2: Calibration of characteristic frequency using step responses. Top plots show −Z
versus time; bottom plots show calibrated values of ωc. Dashed lines in bottom plots show ωc

calibration for A = 0.10 µm steps. Clearly, the trap is stiffer for high data (positive steps) than
it is for low data (negative steps).
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Chapter 8

On-Line Identification Methods

During the 2004 American Control Conference, Metin Sitti of Carnegie Mellon University made
the following observation during an invited tutorial session titled “Introduction to Micro-and
Nano-Scale Sensors, Actuators and Robots”:

“Designing robust and stable controllers for nano-scale systems to achieve a specific
task becomes very challenging. There are many constraints exerted on the controller
design and performance by the time-varying nonlinear system dynamics, system
parameter uncertainties and changes, short dynamic time-scales, disturbances from
the environment, sensitivity to the changes in system parameters, limited sensor
information, limited actuator motion precision and range, and limited power issues.
Here, on-line system identification methods and adaptive and self-tuning controllers
specific to the nano-scale systems become very attractive for a high performance and
autonomous control.” [27]

In practice, the characteristic frequency of an optical trap can vary due to laser fluctuations,
local heating, and cross-contamination. Methods that depend on purely off-line (batch) data
analysis do not account for these effects and may suggest an erroneous value for the characteristic
frequency. Therefore, in a laboratory environment in which experimental conditions are not
entirely constant, on-line (recursive) parameter estimation methods could potentially provide a
more reliable (up-to-date) measure of characteristic frequency than the off-line methods from
Section 7. This is especially true for experiments in which the effective trap stiffness changes
due to a force interaction between a trapped bead and an external entity such as a biological
molecule.

From (3.23), the noninertial equation of motion in the linear regime can be written in state
space form as

ẋ = −ωcx+ ωcu+
1
β

(FL + FE)

y = x+ n, (8.1)

where we have included measurement noise n. Assuming zero initial conditions, (8.1) can be
expressed using Laplace transforms as:

Y (s) = Gyu(s)U(s) +Gyd(s) [DL(s) +DE(s)] +N(s), (8.2)

in which the first order transfer functions are given by

Gyu(s) =
ωc

s+ ωc
(8.3)
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and

Gyd(s) =
1
β

s+ ωc
. (8.4)

A schematic block diagram of the linear plant P is reproduced in Figure 8.1.

Figure 8.1: Linear plant block diagram, in which u := xT , dL := FL, dE := FE , and n is
measurement noise.

8.1 Discrete Time Parameter Estimation

In this section we describe how the continuous time system (8.2) can be converted to a discrete
time model, which can be used for parameter estimation using a computer. The estimated
discrete time parameters can be converted back to continuous time parameters using straight-
forward formulas. Much of the estimation techniques described in this section are from [52, 54].

8.1.1 Zero-Order-Hold Model

A continuous-time (CT) SISO model of the form

Y (s) = G(s)U(s) (8.5)

with first order transfer function

G(s) =
b

s+ a
(8.6)

can be zero-order hold sampled with sampling time h to obtain the discrete-time (DT) difference
equation

y(kh) = H(q)u(kh), (8.7)

where k is a positive integer and H(q) is the first order pulse transfer operator given by

H(q) =
b1

q + a1
, (8.8)
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in which q is the forward shift operator and

a1 = −e−ah

b1 =
b

a

(
1− e−ah

)
(8.9)

[55]. From (8.9) and (8.8), for a = b = ωc, we have

a1 = −e−ωch

b1 = 1− e−ωch (8.10)

and the causal, zero-order hold representation of Gyu(s) in (8.3) is given by

Hyu(q) =
(1− e−ωch)q−1

1− e−ωchq−1
, (8.11)

which is equivalent to a causal difference equation of the form y(kh)+a1y(kh−h) = b1u(kh−h).
Note that, according to (8.10):

b1 = 1 + a1. (8.12)

Furthermore, from (8.8) and (8.11), we obtain

da1

dωc
=
db1
dωc

= he−ωch. (8.13)

The discrete output coefficient a1 for different values of ωc and h are shown in Figure 8.2.
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Figure 8.2: Discrete output coefficient a1 as a function of characteristic frequency ωc and sam-
pling time h. Bottom plots show enlarged details of the top plots. As ωc and h are decreased,
a1 tends to -1.
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From (8.9), if we use a DT identification algorithm to obtain DT parameter estimates â1

and b̂1, the corresponding CT parameter estimates â and b̂ are given by

â = − 1
h

ln(−â1) (8.14)

b̂ = −

(
b̂1

1 + â1

)
1
h

ln(−â1). (8.15)

The causal, zero-order hold equivalent of Gyd(s) in (8.4) is given by

[Hyd(q)]causal =
1
α (1− e−ωch)q−1

1− e−ωchq−1
, (8.16)

which is equivalent to a causal difference equation of the form y(kh)+a1y(kh−h) = b1
α d(kh−h).

Although a causal filter such as (8.16) is a natural choice from a physical point of view, we would
like to model the fact that the white noise disturbance has a direct term through the filter Hyd.
In other words, the white noise is assumed to go through the denominator dynamics of the system
before being added to the output [52]. To impose this noncausal condition while retaining the
dynamic behavior of the causal disturbance model, we can shift the causal pulse transfer function
in (8.16) by one time unit to obtain

Hyd(q) =
1
α (1− e−ωch)
1− e−ωchq−1

, (8.17)

which is equivalent to a causal difference equation of the form y(kh) + a1y(kh− h) = b1
α d(kh).

Therefore, the combined difference equation corresponding to the models (8.11) and (8.17) is
given by

y(kh) + a1y(kh− h) = b1u(kh− h) +
b1
α
d(kh), (8.18)

in which d(kh) is white noise with variance σ2
d. Since the white noise contribution {d(kh)}

enters as a direct error term in the difference equation, the discrete model (8.18) is known as an
“equation error model” [52]. If we normalize the white noise such that its coefficient in (8.18) is
1, we can express our discrete linear system in the standard ARX (Auto-Regression with eXtra
inputs) form,

y(kh) + a1y(kh− h) = b1u(kh− h) + e(kh), (8.19)

in which {e(kh)} is white noise with variance σ2
e = ( b1

α )2σ2
d. Clearly, the output and input orders

are na = nb = 1. The ARX model structure is shown schematically in Figure 8.3.
In case the input u to the system is, in fact, piece-wise constant (i.e., zero-order held) between

samples, the discrete representation (8.8) accurately describes the dynamics of the system (at
the sampling instances), even in the continuous case [55]. If, on the other hand, the input is not
piecewise continuous, our imposition of the ZOH on the input has a net effect of delaying the
input by half of a sample [56]. The effect of this delay becomes negligible as the sampling time
is decreased.

Normalizing the sampling time to 1, for ease of notation, we can re-write the ARX model
(8.19) as the first order linear difference equation

y(t) + a1y(t− 1) = b1u(t− 1) + e(t). (8.20)

Defining the parameter vector θ and the time-dependent regression vector φ(t) as

θ = [a1 b1]
T (8.21)

φ(t) = [−y(t− 1) u(t− 1)]T , (8.22)
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Figure 8.3: Standard ARX model structure [52]. A(q) = 1 + a1q
−1, B(q) = b1q

−1, and {e[k]} is
white noise.

we can express the actual output as

y(t) = φT (t)θ + e(t), (8.23)

and the (linearly) calculated output value as

ŷ(t|θ) = φT (t)θ. (8.24)

Because of the linear relationship between φ and θ, the predictor (8.24) is known as a linear
regression, even though φ and θ themselves can be nonlinear constructs.

8.1.2 General Estimation Framework

For a general discrete system described by the model

y(t) = G(q, θ)u(t) +H(q, θ)e(t), (8.25)

in which θ ∈ DM ⊂ Rd is the parameter vector, the general linear predictor is of the form

ŷ(t|θ) = Wy(q, θ)y(t) +Wu(q, θ)u(t), (8.26)

where DM is the set of values that θ ranges over within the chosen model structure and d is the
dimension of θ, that is, the number of (unknown) parameters being estimated [52]. For one-step
ahead prediction,

Wy(q, θ) = 1−H−1(q, θ)
Wu(q, θ) = H−1(q, θ)G(q, θ) (8.27)

[52]. Assuming we have collected a set ZN of discrete input output data from the system for N
sampling instances:

ZN = {y(1), u(1), y(2), u(2), ..., y(N), u(N)}, (8.28)

a general parameter estimation method can be formally expressed as a mapping that uses the
data set ZN to select the best value (estimate) of the parameter vector θ̂N :

ZN → θ̂N ∈ DM ⊂ Rd. (8.29)

For our purposes, it is imperative that the system is identifiable. That is, the parameter estimates
must be consistent:

lim
N→∞

θ̂N = θ∗, (8.30)
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in which we use θ∗ to denote the actual (true) parameter vector [54]. In other words, we require
that the parameter estimates are unbiased:

Eθ̂ = θ∗ (8.31)

[54].
The question remains how we should define what the “best” estimate is. Defining the pre-

diction error or innovation for a given estimator as

ε(t, θ) = y(t)− ŷ(t|θ), (8.32)

we can define a general criterion function

VN (θ, ZN ) =
N∑

t=1

β(N, t)l (ε(t, θ)) , (8.33)

in which β(N, t) is a weighting function and l(·) is a scalar norm that is typically positive. We
can then define prediction error identification methods (PEM’s) as methods in which we select
the estimate θ̂N according to the minimization

θ̂N = θ̂N (ZN ) = arg min
θ∈DM

VN (θ, ZN ) (8.34)

[52]. The Least Squares (LS) method is a special case of PEM in which we use the quadratic
norm

l(ε) =
1
2
ε2, (8.35)

which, according to (8.33), (8.32) and (8.24), gives the weighted Least Squares criterion function

V LS
N (θ, ZN ) =

N∑
t=1

β(N, t)
1
2
(y(t)− φT (t)θ︸ ︷︷ ︸

ε(t,θ)

)2, (8.36)

which can be minimized analytically to obtain the weighted LS estimate (LSE),

θ̂LS
N =

[
1
N

N∑
t=1

β(N, t)φ(t)φT (t)

]−1

1
N

N∑
t=1

β(N, t)φ(t)y(t), (8.37)

[52]. Prediction error methods are sometimes referred to as generalized least squares (GLS)
methods [54]. In general, (8.37) should not be used directly because it is sensitive to numerical
rounding errors [54]. Defining the symmetric, deterministic matrix R(N) and the column vector
fy(N) as:

R(N) =
1
N

N∑
t=1

φ(t)φT (t) (8.38)

fy(N) =
1
N

N∑
t=1

φ(t)y(t), (8.39)

we can re-write the unweighted LSE as

θ̂LS
N = R−1(N)fy(N). (8.40)
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Furthermore, defining the parameter estimation error at time N as

θ̃N := θ̂N − θ∗, (8.41)

it can be shown that

E{θ̃N} = 0 (8.42)
E{θ̃N θ̃

T
N} = σ2

e [R∗(N)]−1, (8.43)

where σ2
e is the variance of e(t) and

R∗(N) := lim
N→∞

R(N) (8.44)

= lim
N→∞

1
N

N∑
t=1

φ(t)φT (t)

:= E{φ(t)φT (t)} (8.45)

and

f∗e (N) := lim
N→∞

fe(N) (8.46)

= lim
N→∞

1
N

N∑
t=1

φ(t)e(t)

:= E{φ(t)e(t)}, (8.47)

in which the symbol E denotes an asymptotic ensemble average:

E := lim
N→∞

1
N

N∑
t=1

(8.48)

[52]. The above definition for E allows us to consider both stochastic and deterministic systems.
For (8.43) to hold, we require that:

1. R∗ is nonsingular

2. f∗ = 0

[52]. The invertibility of R∗ can be guaranteed by a wise choice of input properties; this issue
will be discussed further in Section 8.1.3 1. The condition f∗ = 0 holds if either (a) e is white
noise, or (b) u is independent of the zero mean sequence e and na = 0 in the ARX model [52].
For our system, the first condition is satisfied because e is, indeed, white noise. Therefore, the
asymptotic properties (8.43) hold for our system. In other words, the LSE is asymptotically
unbiased and its covariance can be interpreted as being proportional to the system noise to
signal ratio.

In general, the Mean Square Error (MSE) matrix in (8.43) is difficult to calculate for finite
N [52]. However, based on the Cramer-Rao inequality, it can be shown that, for all unbiased
parameter estimation methods and any N ,

Covθ̂N ≥ κ0

[
N∑

t=1

Eψ(t, θ0)ψT (t, θ0)

]−1

, (8.49)

1R∗ is usually singular if the input u(t) is generated by a linear low-order feedback from the output [54].
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where ψ(t, θ) is defined as the sensitivity (gradient) of ŷ(t|θ):

ψ(t, θ) :=
d

dθ
ŷ(t|θ) = − d

dθ
ε(t, θ) (8.50)

[52]. Furthermore, κ0 = σ2
e for Gaussian innovations [52]:

ε(t, θ∗) = e(t) = N(m,σ2
e), (8.51)

which holds for our ARX model. The lowerbound of the covariance matrix in (8.49) is achieved
by the well-known Maximum Likelihood Estimator (MLE) [57, 52]. Furthermore, for the special
case when the likelihood function is Gaussian, it can be shown that maximization of the like-
lihood function is equivalent to minimization of the least squares criterion [57]. That is, under
this condition,

θ̂ML
N ≡ θ̂LS

N . (8.52)

Although the ML method has this optimal convergence property, it is primarily an off-line
method, and therefore, not useful for on-line calibrations2 [55]. However, it can be shown that
the LSE asymptotically achieves the Cramer-Rao bound for normal innovations as in (8.51).
That is, as N tends to infinity,

lim
N→∞

Covθ̂LS
N =

σ2
e

N

[
Eψ(t, θ∗)ψT (t, θ∗)

]−1
(8.53)

[52]. Since the above expression is valid for very large N , the question remains how accurate it
is for small N . Ljung states that (8.53) is “valid within 10% for N ≥ 300” [52]. Also, for ARX
models, ψ(t, θ) = φ(t, θ), which allows us to express (8.53) in terms of the regression vector:

lim
N→∞

Covθ̂LS
N =

σ2
e

N

[
Eφ(t, θ∗)φT (t, θ∗)

]−1
(8.54)

[52]. For example, for the two-parameter ARX model,

y(t) + a1y(t− 1) = b1u(t− 1) + e(t), (8.55)

we can use (8.22) to express (8.54) as:

lim
N→∞

Covθ̂LS
N =

σ2
e

N

[
Ey2(k) −Ey(k)u(k)

−Eu(k)y(k) Eu2(k)

]−1

(8.56)

If we assume signals are ergodic, we can use (8.56) to evaluate approximate expressions for the
covariance of unbiased estimates 3. For example, with e(t) = N(0, σ2

e) and u(t) = N(0, σ2
u), we

can show that

Cov(â1)N ≈ 1
N

σ2
e(1− a2

1)
σ2

e + σ2
u(1 + a1)2

(8.57)

Cov(b̂1)N ≈ 1
N

σ2
e

σ2
e

, (8.58)

2A recursive version of the ML method, the RML, is recommended for ARMAX model structures [52].
3A stationary stochastic process x(t) is considered ergodic with respect to its first and second moments if

1

N

N∑
t=1

x(t) → Ex(t)

1

N

N∑
t=1

x(t + τ)x(t) → Ex(t + τ)x(t)

with probability 1 as N →∞ [54].
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for large N . Similarly, for the single-parameter ARX model

y(t) + a1y(t− 1) = (1 + a1)u(t− 1) + e(t), (8.59)

we can show that

Cov(â1)N ≈ 1
N

σ2
e(1− a2

1)
σ2

e + 2σ2
u(1 + a1)

, (8.60)

for large N . The asymptotic covariance expressions (8.57), (8.58) and (8.60) are plotted in
Figure 8.4 for σ2

e = 8× 10−4, σ2
u = 10σ2

e , β = 0.1, and h = 1 ms. Clearly, the single parameter
estimate converges faster than the 2 parameter estimate. In light of this fact and the relation
(8.12), it may seem pointless to estimate both a1 and b1 instead of estimating just a1. The
reason that like to estimate both parameters, is that estimating two parameters serves as a
check to verify that the algorithm converges to the same value (in CT) for both estimates.
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d is the number of parameters being estimated. Simulations are for σ2
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e ,
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Another issue of concern is whether the criterion function has local minima. Fortunately,
for an LS method with a linear regression, the criterion function has no nonglobal (i.e., false)
minima regardless of the data properties [52]. However, to distinguish between different models
within a set, the data needs to be informative enough [52]. This issue will be discussed in the
next subsection.

8.1.3 Choice of Input

When considering the choice of input, we are concerned with four issues:

1. Second-order properties (spectrum) of u
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2. Shape of u

3. Sampling time h

4. Number of data points N .

Input Signal Spectrum

It is well-known that an open loop experiment is informative if the input is persistently exciting
(PE), that is, if all modes of the system are excited during the experiment [52, 54]. A quasi-
stationary signal u(t) with spectrum φu(ω) is considered PE if φu(ω) > 0 for almost all ω [52].
Similarly, u(t) is PE of order n if φu(ω) > 0 on at least n points in the interval −π < ω ≤ π
[52]. For our ARX system, nb + na = 2, which implies that, in the open loop case, an input
signal with PE of order 2 or greater will be informative [52]. That is, a single sinusoidal input
will be sufficient since it is PE of order 2. In fact, for our ARX system, even a single step input,
which is only PE of order 1, will give consistent estimates as long as noise is present, that is
σ2

e > 0 [54]. In this case, even though the input signal is not sufficiently PE, the noise excites
the system in a constructive manner 4. Although, in theory, it is quite easy to find an input
signal that is PE for our ARX system, in practice, we prefer using more complicated signals
with higher order of PE to obtain faster convergence properties.

Combining (8.50) and (8.53), we can express the covariance as

lim
N→∞

Covθ̂LS
N =

σ2
e

N

[
E

(
d

dθ
ŷ(t|θ)

)(
d

dθ
ŷ(t|θ)

)T
]−1

. (8.61)

Accordingly, a small variance in θ̂N can be achieved by choosing a predictor that has a high
sensitivity to θ [52]. Hence, it is logical to choose the inputs so that the predicted output is
very sensitive to variations in θ. In the frequency domain, this requirement can be expressed as
follows: spend the input power at frequencies in which the Bode plot is sensitive to parameter
variations [52]. For a first order low pass filter, this implies that the input power should be
concentrated at frequencies near the characteristic (cutoff) frequency (ω ≈ ωc), as shown in
Figure 8.5.

In fact, in the frequency domain, PEM’s can be interpreted as methods that fit the estimate
of the model transfer function to the actual model transfer function according to a weighted
norm equal to the signal to noise ratio for each frequency [52]. With some notational abuse, this
statement can be expressed as

VN (θ, ZN ) ≈ 1
4π

∫ π

−π

∣∣∣ĜN (eiω)−G(eiω, θ)
∣∣∣2 φ̂uN (ω)

φ̂vN (ω, θ)
dω. (8.62)

Therefore, in addition to choosing the inputs so that the predicted output is very sensitive to
variations in ωc, we would also like to maximize the signal to noise ratio. Graphically, this
condition is expressed in the lower plot of Figure 8.5, in which |G(iω)|n × d|G(iω)|

dωc
is plotted as

a function of input frequency ω, for different values of n. As the signal to noise ratio becomes
more important (i.e., as n is increased), the input frequency band of interest shifts towards the
left.

Ljung states that: “In practice, it is suitable to decide upon an important and interesting
frequency band to identify the system in question, and then select a signal with more or less flat
spectrum over this band.” [52]. One way to do this is to let the input signal be a realization of
Gaussian white noise, filtered through a linear band-pass filter, as described in the next section.

4An impulse input, which is PE of no order, is not useful because it will give a consistent estimate only if
e(2) = 0, which is not true in general [54].
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Figure 8.5: Bode plot sensitivity for ωc = 100 rad/s. Top plot shows magnitude frequency
response; middle plot shows sensitivity of the magnitude with respect to ωc; bottom plot shows
combination of magnitude sensitivity and magnitude.

Input Signal Shape

The PE criterion is determined by the input spectrum and makes no reference to the input
shape. Therefore, if we choose an input signal with the necessary order of PE, we must use
other criteria to select the shape of the input signal.

From (8.56), we see that, for our first-order system, the covariance matrix is typically pro-
portional to the input power [52]. Therefore we would like to maximize the input power within
practical limits. This property can be expressed in terms of the crest factor Cr, which should
be minimized to maximize the input power and thereby reduce the covariance of the parameter
estimates [52]. For a discrete input sequence u(k) with zero mean, the crest factor is given by

C2
r =

max
k

u2(k)

lim
N→∞

1
N

N∑
k=1

u2(k)

, (8.63)

which is clearly at its theoretical lower bound, (Cr)min = 1, for binary, symmetric signals such
as a square wave [52].

Ljung states that: “for linear system identification, achieve a desired input spectrum for a
signal with as small a crest factor as possible. Unfortunately, these properties are somewhat in
conflict: if it is easy to manipulate a signal’s spectrum, it tends to have a high crest factor and
vice versa” [52]. An optimal crest factor of 1 is achieved by a random binary signal. Such a
signal can be obtained by taking a realization of white, zero mean Gaussian noise that has been
band-pass filtered and then setting the amplitude equal to one of two levels depending on its sign
[52]. Taking the sign is a nonlinear operation that will distort the signal spectrum, but as long as
the distortion is not too pronounced, we can still use the input signal. In fact, we can verify the
signal spectrum properties off-line prior to using it. Figure 8.6 compares the calculated spectra
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of white noise, filtered white noise, and random binary noise obtained by taking the sign of the
filtered white noise. Taking the sign distorts the filtered spectrum by generating more power
at frequencies outside of the filter pass-band. However, the pass-band is still clearly visible. A
comparison between a square wave and sine wave is also provided in the figure. Although both
waveforms have a frequency of 10 Hz, the square wave has a higher discrete power spectrum
peak (0.3202 µm2/Hz) than the sine wave 0.2 µm2/Hz). The square wave also has power at
several harmonic frequencies, whereas the sine wave has a clean spectrum with a single peak.
Clearly, the square wave is a superior choice of input compared to the sign wave5.
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Figure 8.6: Comparison of different input signal spectra. Top plots show signals; bottom plots
show their discrete power spectra. Left plots correspond to white noise (sampling time 10 ms;
unit variance), white noise filtered through a 5th order Butterworth filter with passband 60-
100 rad/s, and random binary noise obtained by taking the sign of the filtered white noise.
Right plots correspond to the deterministic waveforms.

Another input signal with an (almost) optimal crest factor is the so-called pseudo-random
binary signal (PRBS), which is a periodic, deterministic signal with white-noise like properties
for large periods M 6. In practice, we choose M ≥ N because, by definition, white noise is PE of
all orders, while a PRBS signal is PE of order at most M [54]. The PRBS signal does not have
exactly zero mean and its spectrum consists of a fixed number of equally spaced frequency peaks
[52]. As M is increased, the first and second order properties of a PRBS approaches white-noise
properties. If necessary, the PRBS can be given a low-frequency character by sampling at a
clock frequency that is slower than the sampling frequency that generates the PRBS [52, 54].
In effect, the clock period acts like a lowpass filter. Ljung recommends a clock frequency that is
2.5 times the bandwidth of interest [52]. Therefore, for a system with characteristic frequency
ωc = 100 rad/s, the clock frequency fPRBS should be chosen as 250 rad/s, or about 40 Hz.

5Although the high frequency peaks in the square wave can cause some undesirable nonlinear effects, such
effects can be ignored since the peaks rapidly diminish in magnitude. In practice, effects of the high frequency
peaks can be minimized by sampling at a high rate and including an anti-alias filter.

6By white noise properties we mean first and second moment properties. The distribution functions can be
very different because the PRBS takes on only two distinct values [54].
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Sampling Time

When approximating a CT system by a DT model, there may be some modeling inaccuracies
due to intersample behavior. The discrepancy between the CT model and the DT model can
be made insignificant by sampling much faster than the bandwidth of the system [52]. An
added benefit is that the high-frequency components in the output that originate from the input
become insignificant [52]. In effect, we are ensuring that the process is well-damped above the
Nyquist frequency.

However, “very fast sampling can lead to numerical problems, models fit in high frequency
bands, and poor returns for extra work” [52]. This is clearly demonstrated in Figure 8.2, in
which very high sampling times result in a DT output coefficient a1 closer to the unit circle.
Furthermore, for very fast sampling, the numerical value of a1 becomes very sensitive with
respect to the CT characteristic frequency ωc, which opens the possibility of significant errors
due to numerical roundoff and limited resolution of position detectors. Ljung suggests that, in
most cases, the sampling frequency should be chosen “about ten times the bandwidth of the
system” [52].

Number of Samples

According to the asymptotic expression (8.53), as the number N of data points increases, the
covariance decreases: with an infinite number of (uncorrupted) data, the covariance should be
zero. In practice, ofcourse, we collect a finite number of data points. The improvements in
covariance with increased N are shown clearly in Figure 8.4.

8.2 Recursive Least Squares Method

This section describes the (discrete-time) Recursive Least Squares (RLS) method, as described
in [52, 54].

8.2.1 RLS Algorithm

Some of the RLS results in this section are from [58]. In this section, we will use the sampling
time h as the unit of time. We would like to compute the DT parameter estimate θ̂(k) := [â1 b̂1]T

at sample k that minimizes the weighted least-squares criterion:

θ̂(t) = arg min
θ

t∑
k=1

β(t, k)[y(k)− φT (k)θ]2, (8.64)

where φ(t) := [−y(t− 1) u(t− 1)]T is the regression vector that contains the input and output
data, and β(t, k) is a weighting sequence with the property,

β(t, k) = λ(t)β(t− 1, k), 0 ≤ k ≤ t− 1
β(t, t) = 1, (8.65)

in which λ(t) is the forgetting factor [52]. For a forgetting factor λ that tends to 1 as t→∞, the
on-line and off-line LS methods have the same asymptotic properties [54]. The RLS algorithm
is given by

θ̂(t) = θ̂(t− 1) + L(t)
[
y(t)− φT (t)θ̂(t− 1)

]
(8.66)

L(t) =
P (t− 1)φ(t)

λ(t) + φT (t)P (t− 1)φ(t)
(8.67)

P (t) =
1
λ(t)

[
P (t− 1)− P (t− 1)φ(t)φT (t)P (t− 1)

λ(t) + φT (t)P (t− 1)φ(t)

]
, (8.68)
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where

P (t) :=

[
t∑

k=1

β(t, k)φ(k)φT (k)

]−1

(8.69)

is the scaled covariance matrix of the parameters at sample t [52]. The initial parameter vector
is denoted as θ̂(0) = θ0 and the initial covariance matrix is denoted as P (0) = P0. In other
words, θ0 is what we guess the parameter vector to be before seeing the data, and P0 reflects our
confidence in this guess [52]. Another interpretation of such an initial covariance matrix is that
it corresponds to the parameters having a prior covariance proportional to P0 [55]. Without a
priori information, common choices are θ̂(0) = 0 and P (0) = pI, where p > 0 is a large scalar
[54]. With initial conditions, the parameter estimates are given by

θ̂LS
N =

[
β(N, 0)P−1

0 +
N∑

t=1

β(N, t)φ(t)φT (t)

]−1

×

[
β(N, 0)P−1

0 θ0 +
N∑

t=1

β(N, t)φ(t)y(t)

]
(8.70)

[52]. Clearly, for large P0, the inverse matrix P−1
0 is small, and the difference between (8.70)

and (8.37) becomes negligible. In fact, with time, the on-line estimate approaches the off-line
estimate,

θ̂RLS(t) ≈ θ̂offline (8.71)

[54]. In fact, if we denote the time at which (8.71) first holds as t0, it can be shown that, for
λ = 1, a good choice of p is given by

p� 1
t0σ2

φ

, (8.72)

in which σ2
φ is the minimum variance of the elements of φ(t) [54]. A typical practical choice of

t0 is 10-25 [54].
The initial regression vector is specified as φ(0) = [0 0]T . The forgetting factor λ is constant

for a slowly changing system and can be chosen according to

λ = 1− 1
K
, (8.73)

where K is the memory time constant. Data older than K samples are weighted by a factor
e−1 ≈ 36% compared to the most recent data [52]. For an LTI system, it is natural to require
that all data be given equal weight, which implies that no data is discounted. By setting K →∞
in (8.73), we obtain λ = 1.

8.2.2 Computer Simulations

In general is always advisable to test an identification experiment using computer simulations
before implementing it on an actual experiment [52].

The CT system described by (3.24) was simulated using Simulink with a simulation sampling
time of ts = 0.1 ms, corresponding to 10 kilosamples per second (kS/s). The Langevin distur-
bance was modeled as band-limited white noise with bandwidth 10 kHz and constant power
S+

L (f) = 1.6 × 10−3 pN2

Hz . As mentioned in Section 3.2, this represents the Langevin force that
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acts on a 10-µm diameter polystyrene bead at biological temperatures. To facilitate comparison
with experimental results in Section 8.2.4, the actual characteristic frequency of the simulated
system is chosen as ωc = 100 rad/s. According to Section 8.1.1, for RLS sampling time h = 1 ms,
the actual parameters are given by

a = b = 100 (8.74)

and

θ∗ =
[
a1

b1

]
=
[
−0.9048
0.09516

]
. (8.75)

We assume an initial characteristic frequency guess of ω̂c(0) = 80 rad/s, which corresponds
to an error of 20% (20 rad/s). According to Section 8.1.1, the initial parameter conditions are
given by

â(0) = b̂(0) = 80 (8.76)

and

θ0 =
[
â1(0)
b̂1(0)

]
=
[
−0.9231
0.0769

]
. (8.77)

For invertibility, we assume the initial covariance matrix is of the form

P0 =
[
p 0
0 p

]
,

in which p > 0. In the simulations that follow, we will denote the input signal amplitude by A
and input frequency by f .

Figure 8.7 shows results for an input square wave with A = 0.2 µm and f = 10 Hz. The top
left plot shows the input and output (I/O) signals; the top right plot shows the power spectrum
of the input signal; the bottom left plot shows the DT parameter estimates, and the bottom
right plot shows the CT parameter estimates. For comparison, the DT estimates are plotted as
1 + â1 and b̂1, since, according to (8.12), we would like these two quantities to converge to the
same value. After fluctuating wildly at the onset, both the DT and CT parameter estimates
eventually converge close to the correct values of b1 and ωc, respectively. The ωc ± 5% and
ωc ± 2% limits are included in the bottom right plot as a reference.

The parameter estimates display fluctuations that diminish with time. In particular, the CT
parameter estimates settle to within 5% of ωc in under 0.6 s and to within 2% in under 1 s. The
direct correspondence between the DT and CT estimates can be seen from the similar shape of
their plots. As shown in (8.13), fluctuations in the DT estimates will amplify the CT estimates
by a factor of over 1000. The reason for the paramater fluctuations is the Langevin disturbance.
This is demonstrated by Figure 8.8, which is a simulation for zero Langevin disturbance (a
hypothetical situation). In this case, no oscillations are observed and the CT parameter estimates
settle to within 5% of ωc in under 3 ms (3 iterations) and to within 2% in under 4 ms (4
iterations).

8.2.3 Effect of Identification Parameters

Input Frequency and Amplitude

We found that both f = 2 Hz and f = 20 Hz resulted in slower parameter convergence. The
value of f = 10 Hz was used because it gave the fastest convergence for the chosen value of ωc.
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Figure 8.7: Simulation of RLS for h = 1 ms, λ = 1, p = 104; square wave input, A = 0.2 µm
and f = 10 Hz. Dash-dotted lines on the bottom right plot show ωc ± 5% and ωc ± 2% limits.

This is consistent with the practical recommendation that input power be selected at frequency
bands in which a “good model is particularly important”, or more formally, frequencies at which
the “Bode plot is sensitive to parameter variations” [52]. Figure 8.9 shows the covariances
of the CT parameter estimates for different input frequencies and different input amplitudes
for ωc = 100 rad/s. Clearly, the covariances of the DT coefficients improve (decrease) with
increased amplitude (greater input signal to noise ratio). The covariance of the input coefficient
b1 decreases with frequency because it depends directly on the PE criterion [55]. The output
coefficient a1 is more sensitive to noise and its covariance is lowest for input frequencies near
the characteristic frequency.

Input Shape

We found that a square wave provides much faster convergence than a sinusoidal input (f =
10 Hz). The superiority of the square wave can be explained using the crest factor Cr, as
described in Section 8.1.3. Figure 8.10 shows results for an input PRBS with A = 0.2 µm and
cutoff at fPRBS = 40 Hz. The CT parameter estimates settle to within 5% of ωc in under 0.5 s
and to within 2% in under 1 s. The results are comparable to a square wave with f = 10 Hz.

Simulation results for binary filtered white noise was not promising. Parameter convergence
was slow compared to the square wave and the PRBS.

Forgetting Factor

According to (8.73), a forgetting factor of λ = 0.9999 corresponds to a memory time constant of
K = 10000 samples, which is equivalent to t = 10 s for h = 1 ms. Figure 8.11 shows simulation
results for λ = 0.9999. The CT parameter estimates settle to within 5% of ωc in under 0.6 s,
and they settle within the 2% limit within 1 s. However, the parameter estimates fluctuate more
for the λ = 0.9999 case than for the λ = 1 case shown in Figure 8.7. Intuitively, since the past
data is exponentially discounted with time, there is less smoothing of the past data.
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Figure 8.8: Hypothetical FL = 0 simulation of RLS for h = 1 ms, λ = 1, p = 104; square wave
input, A = 0.2 µm and f = 10 Hz.

It is known that, as λ is decreased, the RLS algorithm becomes more sensitive, which results
in quicker convergence [54]. However, the RLS also becomes more sensitive to noise, which causes
the parameter estimates to oscillate about its actual value [54]. To exploit these convergence
effects of the forgetting factor, it is sometimes customary to choose the forgetting factor as

λ(t) = 1− νt[1− λ(0)], (8.78)

where typical values are ν = 0.99 and λ(0) = 0.95 [54].

Lowpass Filter Bandwidth

In general, filtering will not distort the input-output relationships provided both the input and
output are subject to exactly the same filters [52]. Effects if filtering can also be neglected by
sampling fast enough that the Nyquist frequency is significantly greater than the bandwidth.
Computer simulations show that an analog RC lowpass filter with a 1 kHz bandwidth will reduce
the parameter estimates by about 5%, while a bandwidth of 5 kHz will reduce the estimates by
about 1%.

8.2.4 Experimental Results

Since the RLS algorithm does not require real-time feedback control, we were able to investigate
its performance by collecting input and output data from our system using LabVIEW data
acquisition software and hardware and then processing the data using MATLAB [36]. Data was
sampled at a rate of 1 kS/s with an analog lowpass filter at 10 kHz. The lowpass filter has a
higher cutoff than the Nyquist frequency to a avoid undesirable distortion of the output signal;
the price we pay is the signal contains some measurement noise, but this is negligible. Also,
small offsets in the position detection system’s alignment can distort the estimation data. In
the case of a square wave, such offsets can be removed by averaging.

77



5 10 15 20 25
90

95

100

105

110

C
T

 E
st

im
at

es
 a

(r
ad

/s
)

RLS for input square wave (T
f
 = 10 s)

A=0.1
A=0.2
A=0.3

5 10 15 20 25
0

0.01

0.02

0.03

0.04

0.05

C
ov

(a
1)

Covariance of DT Estimates

5 10 15 20 25
0

0.01

0.02

0.03

0.04

C
ov

(b
1)

f (Hz)
5 10 15 20 25

90

95

100

105

110

C
T

 E
st

im
at

es
 b

(r
ad

/s
)

f (Hz)

A=0.1
A=0.2
A=0.3

Figure 8.9: Comparison of RLS simulations for different square wave input frequencies and
amplitudes; ωc = 100 rad/s, h = 1 ms, λ = 1, p = 104; square wave input for 10 seconds. Top
plots correspond to output coefficients a and a1; right plots correspond to input coefficients b
and b1.

Figure 8.12 shows results for an input square wave with A = 0.15 µm and f = 10 Hz.
After initial fluctuations, the parameter estimates appear to reach steady values within 9

seconds. The values of the CT estimates after 30 s are â = 112 rad/s and b̂ = 113 rad/s.
Figure 8.13 shows results for an input square wave with A = 0.05 µm and f = 10 Hz. The
parameter estimates appear to reach steady values within 19 seconds. The values of the CT
estimates after 30 s are â = 105 rad/s and b̂ = 114 rad/s.

Experimental results for a PRBS were not encouraging. In theory, the PRBS should provide
fast convergence, comparable to a square wave input. As mentioned above, offsets or misalign-
ments in the position detection system can severely distort the estimation. In the case of square
wave, we were able use averaging to calculate and remove the offset from our data prior to
identification. For the PRBS, this is much more difficult to do because the signal has large pe-
riods. In practice, ofcourse, we should not have to adjust offsets when implementing an on-line
calibration because that would defeat the purpose of on-line calibrations. The solution is to
implement an automatic tracking system that can automatically align the laser beam onto the
detector. The tracking criterion can be implemented in an RLS manner. Alternatively, a second
(diffuse) laser beam can be used purely for position detection [18].

8.2.5 Closed Loop Recursive Least Squares

In Chapter 9, we discuss the implementation of CT feedback control. In this section, we will
jump ahead and consider whether identifying the system in closed loop has the potential of
providing significant benefits in identification speed. Substituting (9.9) and (9.8) into (9.4), the
output transfer function for proportional control with pure error feedback and no measurement
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Figure 8.10: Simulation of RLS for h = 1 ms, λ = 1, p = 104; PRBS input, A = 0.2 µm and
fPRBS = 40 Hz. α = 10, β = 0.1: ωc = 100.

noise is given by:

Y (s) =
ωc

s+ (1 + kp)ωc
R(s) +

1
β

s+ (1 + kp)ωc
D(s), (8.79)

in which we require kp > −1 for closed loop stability. The DC gain from reference to output
is 1

kp+1 , which implies that choosing positive kp will reduce output amplitude, when compared
to open loop operation. The signal to noise ratio (between reference input and Langevin dis-
turbance) is not affected, however. Choosing negative kp will increase the output amplitude.
Consequently, when using kp < 0, the reference input r should be chosen sufficiently small that
the output does not move beyond the linear trapping region. From the results of Section 8.1.1,
it is clear that the ZOH parameter estimates are given by the expressions:

a1 = −e−(kp+1)ωch

b1 =
1

kp + 1

[
1− e−(kp+1)ωch

]
, (8.80)

and the corresponding CT estimates are given by (8.14) and (8.15), which are reproduced below:

â = − 1
h

ln(−â1) (8.81)

b̂ = −

(
b̂1

1 + â1

)
1
h

ln(−â1). (8.82)

From the transfer function from reference to output in (8.79), we see that the estimates of the
characteristic frequency are given by:

(ω̂c)a =
â

kp + 1
(8.83)

(ω̂c)b = b̂. (8.84)
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Figure 8.11: Simulation of RLS for h = 1 ms, λ = 0.9999, p = 104; square wave input,
A = 0.2 µm and f = 10 Hz.

Figure 8.14 shows a (hypothetical) closed loop RLS simulation for kp = 9 for an input square
wave with A = 2 µm and f = 10 Hz. The parameter estimates converge very quickly and show
less initial overshoot than the open loop case. However, the usefulness of this type of closed
loop calibration depends on bead size, which determines the trapping radius. For example, the
input amplitude of A = 2 µm used in this simulation cannot be implemented for a smaller, 1-µm
diameter bead.

8.2.6 Identification of Cubic Spring Constants

As mentioned in Section 7.3, the nonlinear trapping force can be computed using initial velocity
data for step responses within the trapping region [10]. In this section, we will reformulate the
RLS algorithm from Section 8.2 to compute the nonlinear trap parameters. From 3.16, in the
absence of external forces, our noninertial system can be represented in state space form as:

ẋ =
ψ(x− u)

β

[
α3(x− u)3 − α1(x− u)

]
+

1
β
FL

y = x. (8.85)

Defining

w := (x− u)3, (8.86)

we can express (8.85) within the trapping radius as:

ẋ =
1
β

[α3w − α1(x− u)] +
1
β
FL

y = x, (8.87)

This can be expressed using Laplace transforms as:

Y (s) =
bw
s+ a

W (s) +
bu
s+ a

U(s) +
1
β

s+ a
D(s), (8.88)
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Figure 8.12: Implementation of RLS for experimental data with h = 1 ms, λ = 1, p = 104;
square wave input, A = 0.15 µm and f = 10 Hz.

in which a = bu = α1
β , bw = α3

β , and D(s) = FL(s). Comparing with the results from Sec-
tion 8.1.1, the difference equation corresponding to (8.88) is given by

y(kh) + a1y(kh− h) = bw1w(kh− h) + bu1u(kh− h) + e(kh), (8.89)

where a1 = −e
α1
β h, bu1 = 1− e

α1
β h, bu1 = α3

α1
(1− e

α3
β h). By defining the regression vector (for

normalized time) as

φ(t) = [−y(t− 1) {y(t− 1)− u(t− 1)}3 u(t− 1)]T , (8.90)

the parameter vector θ = [a1 bw1 bu1]T can be estimated using the RLS method described in
previous sections. This enables us to calculate the CT quantities α1

β and α3
β .

8.3 Continuous Time Parameter Estimation

In case a real-time computer interface is not available, parameters can be estimated on-line
using continuous-time (CT) identification methods. This section considers one such CT adaptive
identification method.

8.3.1 Normalized Gradient Approach 7

Reference [59] describes a normalized gradient (NG) algorithm for adaptive parameter estimation
of linear time-invariant systems. This section describes the application of that NG approach for
calibrating the characteristic frequency of an optical tweezer. The NG algorithm is designed for
on-line CT system identification. For implementation of on-line CT parameter estimation, the
optical tweezer system is parametrized according to the equation

P (s)y(t) = Z(s)u(t),
7Most of this section is excerpted from [36].
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Figure 8.13: Implementation of RLS for experimental data with h = 1 ms, λ = 1, p = 104;
square wave input, A = 0.05 µm and f = 10 Hz.

where u(t) ∈ R is the measured system input and y(t) ∈ R is the measured system output and
initial conditions are assumed to be zero. According to (3.27), for a noninertial system, Z(s) is
a constant z = ωc (order nZ = 0), while P (s) is a first order (nP = 1) polynomial of the form

P (s) = s+ p,

in which p = ωc is a constant. As in the (DT) RLS case, although both p and z are identical for
our system, we will estimate both parameters, instead of just one. Estimating two parameters
serves as a check to verify that the algorithm converges to the same value for both. Choosing a
Hurwitz polynomial Λ(s) = s+ λ, of the same degree as P (s), the unknown (actual) parameter
vector θ∗ is given by

θ∗ := [z λ− p]T ∈ R2,

and the known (measured) regressor vector φ(t) is given by

φ(t) =
1

Λ(s)
[u(t) y(t)]T

=
[
u(t)
s+ λ

y(t)
s+ λ

]T

∈ R2.

Letting θ(t) be the estimate of θ∗, to be obtained using an adaptive NG algorithm, the estimation
error ε(t) is defined as

ε(t) := θT (t)φ(t)− y(t) = θ̃T (t)φ(t),

where the parameter error θ̃(t) := θ(t) − θ∗. The quantity θT (t)φ(t) is the estimate of system
output based on the parameter estimates.

82



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−2

−1

0

1

2

 I
/O

 (
µ 

m
)

t (s)

u
y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

80

90

100

110

t (s)

 C
T

 (
ra

d/
s)

a∧ /(k
p
+1)

b∧

ω
c

Figure 8.14: Simulation of closed loop RLS for kp = 9 (proportional control), h = 1 ms, λ = 1,
p = 104; square wave input, A = 2 µm and f = 10 Hz.

Algorithm

The NG algorithm is based on tuning the parameter vector θ(t) in the steepest descent direction
to minimize a normalized instantaneous cost function

J(θ) =
ε2

2M2
=

(θ − θ∗)TφφT (θ − θ∗)
2M2

, (8.91)

where M(t) is a normalizing signal given by

M(t) =
√

1 + κφT (t)φ(t), (8.92)

in which κ > 0 is a design parameter. For the chosen J(θ), the adaptive parameter update law
is given by:

θ̇(t) = −Γφ(t)ε(t)
M2(t)

, θ(t0) = θ0, t ≥ t0. (8.93)

where Γ = ΓT > 0 and θ0 is an initial estimate of θ∗. The NG algorithm described by Equa-
tion (8.93) guarantees that

1. θ(t), θ̇(t), ε(t)
M(t) ∈ L

∞, and

2. ε(t)
M(t) , θ̇(t) ∈ L

2.

Furthermore, the parameter estimate θ(t) will converge to the actual parameter value θ∗ expo-
nentially fast if the regressor signal φ(t) is persistently exciting (PE), which is true if the system
input u(t) contains at least nP + nZ + 1 = 2 frequencies [59]. For example, this condition can
be met by choosing u(t) as a single sinusoid. The above convergence properties hold true even
for nonzero initial conditions [59].

83



Computer Simulations

According to a previous step response calibration, ωc = 78.5 rad/s and according to a previous
power spectrum calibration, ωc ≈ 75 rad/s [36]. For simulation purposes, we assumed that the
actual characteristic frequency is ωc = 78 rad/s, but that a previous (off-line) calibration has
given us the impression that it is 65 rad/s. The NG algorithm described by Equations (8.91),

(8.92), and (8.93) was simulated using λ = 10, Γ =
[

10000 0
0 10000

]
, κ = 1, and an initial

characteristic frequency estimate of 65 rad/s, which corresponds to θ0 = [65 − 55]T . The
input signal u(t) is a square wave with amplitude 0.2 µm and frequency 2 Hz. For reasons that
will become clear in the next section, the initial position of the trapped particle is chosen as
x(0) = −0.2 µm. Since the NG algorithm is implemented using position voltages, the position
amplitudes can be scaled (within practical limits) to improve convergence times. For this section,
the NG algorithm has been implemented for position signals that have been scaled by a gain of
5 V/µm. Computer simulation results are shown in Figure 8.15. Due to the heavily damped
nature of the system, the input and output signals remain bounded and both parameter estimates
converge to within 1% of the actual ωc in under 9 s, but the pole parameter estimate p converges
faster than the zero parameter estimate z.
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Figure 8.15: Simulation of NG Algorithm for ωc = 78 rad/s with 2 Hz input signal and no
input disturbance. The estimate of system output, based on the parameter estimates, is shown
as a dotted line in the top left plot. Parameter p converges to within 5% error in 4.0 s and z
converges in 4.3 s.

Experimental Results

Since the NG algorithm does not require real-time feedback control, we were able to investigate
its performance by collecting input and output data from our system using data acquisition
hardware and then processing the data using MATLAB. Figure 8.16 shows the results of applying
the NG algorithm using raw experimental data for a trapped 10 µm bead using the same NG
algorithm parameters used in Section 8.3.1. The initial estimate was chosen as 65 rad/s. Clearly,
the large position fluctuations caused by Brownian motion overwhelm the NG algorithm and
the parameter estimates oscillate wildly. This is indicative of a system dominated by noise.

As used in the step response method from Section 7.3, the effects of the stochastic position
disturbance can be greatly reduced by averaging a sufficiently large amount of position data.
The disturbance-free computer simulations from Section 8.3.1 represent the limiting case for an
infinitely large amount of data. Figure 8.17 shows the results of applying the NG algorithm for
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Figure 8.16: Implementation of NG Algorithm for raw data. Parameters oscillate wildly.

experimental data that has been averaged after 30 seconds (60 cycles). Parameter p converges
to a final value of 79 rad/s ± 2% and z converges to 77.5 rad/s ± 1.5%. The slight difference
between the final values for z and p are almost certainly due to residual position fluctuations in
the computed average. Such fluctuations can be reduced by averaging a larger quantity of data.
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Figure 8.17: Implementation of NG Algorithm for the average of 30 s of data. Parameter p
converges to within 5% ot its final value in 3.5 s and z converges in 5.4 s.

Rather than waiting to collect 30 cycles of data, computing its average, and then implement-
ing the NG algorithm, we suggest implementing the algorithm online by computing a running
average of the data once per second. Figure 8.18 shows the results of applying the NG algo-
rithm for the running average of experimental data. Parameter p converges to a final value of
78 rad/s ± 2% and z converges to 75.5 rad/s ± 2%, but there is a large initial estimation error
(towards 0 rad/s) due to the large disturbance present in the first few cycles of the running av-
erage. If necessary, this initial offshoot can be reduced by implementing the algorithm starting
with the average of a few cycles.

In practice, the NG algorithm can be implemented using both analog circuitry and using
real-time data processing software. Since our experimental results suggest that some form of
averaging is necessary to reduce the position disturbance to a manageable level, software control
is the logical choice for online implementation of the NG algorithm described in this section.
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Figure 8.18: Implementation of NG Algorithm for data averaged once per second. Parameter p
converges to within 5% of its final value in 17.6 s and z converges in 18.9 s.
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Chapter 9

Linear Feedback Control

A well-tuned position feedback system can be used to convert the optical tweezer into either an
isometric position clamp (used to keep the position of trapped particles constant) or an isotonic
force clamp (used to keep the force acting on trapped particles constant) [18].

Figure 9.1: Force balance between external force and optical restoring force.

When the optical tweezer is used as a position clamp, the feedback signal that is applied by
the controller provides a measure of the forces that the trapped particles undergo. According
to (3.22), once the position of the trap xT and the position of a bead x are known (from
photodetector measurements), the external force FE acting on a trapped bead in the x direction
can be calculated as [10]:

FE(t) = αxr + βẋ− FL(t) = α(x− xT ) + βẋ− FL(t) (9.1)

Analogous calculations can be done in the y and z directions as well. In (9.1), the Langevin
force FL(t) is not known, so it acts as a statistical uncertainty of the force calculation. In the
case of a repeatable experiment (which is not always the case), the Langevin force contribution
can be reduced by averaging.

The position of a trapped bead can be controlled using feedback as shown in Figure 9.2.
The regulator problem is to design u to counteract the effects of the disturbances d, whereas the
servo problem is to design u to make the output y track some reference signal r [60]. In both
cases, we want the actual position (tracking) error,

e∗ := x− r, (9.2)
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to be small. Note that, since y is the measured output, not the actual state x (position), we
distinguish between the actual position error e∗ := x − r and the the measured position error
e := y − r.

Figure 9.2: Two degrees-of-freedom feedback loop for position control of plant P using controller
C. Measured output y is bead position x plus measurement noise n; control signal u is trap
position xT ; r is the reference input; dL is the Langevin disturbance; and dE is the external
disturbance.

Although LabVIEW software has built-in routines for PID control, it is also compatible with
C-based compilers and MATLAB, so more sophisticated control techniques can be implemented
if necessary. Due to delays in the Windows NT operating system, standard LabVIEW -based
feedback control algorithms will have a bandwidth of less than 1 kHz, but for applications
which require control at a rate greater than 1 kHz, analog circuitry (operational amplifiers)
can be used to achieve faster control. For fast, deterministic control using a PC, LabVIEW
Real-Time (RT) software, d-space software, or a programmable Digital Signal Processing (DSP)
board could be used, but these are not currently available in our laboratory. Therefore, the
control algorithms presented in this chapter have been studied using computer simulations. A
comprehensive experimental verification of controller performance would require sophisticated
real-time image processing and video feedback, which is currently unavailable in our laboratory.

Furthermore, single-axis feedback can cause instability [10]. This can be understood by
referring to Figure 3.4. For feedback along a single (fixed) axis, large gains will drive the
trapped particle to regions with reduced stiffness in the orthogonal direction. As a result, the
particle will escape the trap. Hence, for feedback with high gains, feedback control must be
implemented using two AOD’s. However, this does not change our analysis method, which
assumes the position coordinate x denotes radial displacement. In practice, identical controllers
should be used in both lateral directions.

As an example of performance improvements due to feedback control, Molloy et al. were
able to clamp a bead into position within 1 nm or so, a significant reduction from the 40-50 nm
peak-to-peak deflections associated with Brownian motion [61]. Simmons et al. used feedback
control to increase the effective stiffness of their optical traps by a factor of ∼ 400 [10].

9.1 PI Control

For a first order plant, PI control is one of the most straightforward and commonly used control
strategies. In this section, we will describe the design of PI control with pure error feedback,
which is the simplest configuration. We use the one degree-of-freedom control configuration with
pure error feedback (i.e., without feedforward gain), shown in Figure 9.3, in which measured
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error e := r − y.

Figure 9.3: One degree-of-freedom feedback loop for position control of plant P using controller
C.

According to the linear analysis from Section 3.2.2, if we denote the Laplace transforms of
x, y, u, d, n, r by X,Y, U,D,N,R, respectively, we can use simple algebraic relations to express
the transfer functions between inputs ond outputs as follows:

X =
P

1 + PC

1
α
D − PC

1 + PC
N +

PC

1 + PC
R (9.3)

Y =
P

1 + PC

1
α
D +

1
1 + PC

N +
PC

1 + PC
R (9.4)

U = − PC

1 + PC

1
α
D − C

1 + PC
N +

C

1 + PC
R, (9.5)

in which P denotes the plant transfer function from u to y and C denotes the controller transfer
function from e to u. For convenience, we have omitted the Laplace frequency index s in the
above expressions.

The system is completely characterized by four transfer functions, known as the “Gang of
Four” [62]. The Gang of Four is comprised of the complementary sensitivity function T = PC

1+PC ,
the sensitivity function S = 1

1+PC , the load disturbance (input) sensitivity function P
1+PC , and

the noise (output) sensitivity function C
1+PC [62]. Since we are interested in regulating the

position to zero, we set r = 0, and we can ignore the sensitivity function. For PI control of a
first order plant (noninertial plant), we can write the plant and controller transfer functions as:

P =
α
β

s+ α
β

(9.6)

C = kp +
ki

s
, (9.7)

which yield the following expressions for the transfer functions of interest:

PC

1 + PC
=

α
β s+ α

β ki

s2 + α
β (kp + 1)s+ α

β ki
(9.8)

P

1 + PC
=

α
β s

s2 + α
β (kp + 1)s+ α

β ki
(9.9)

C

1 + PC
=

kps
2 + (α

β kp + ki)s+ α
β ki

s2 + α
β (kp + 1)s+ α

β ki
. (9.10)
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If we ignore external forces and assume the fluid is stationary, both the Langevin disturbance
d = dL and the measurement noise n can be modeled as white noise. In particular, we can denote
d = N(0, σ2

d) and n = N(0, σ2
n). In this case, the expected value of the output signals can be

computed from the transfer function coefficients using a contour integration technique described
in [34]. The only requirement for this method is that the corresponding transfer function of the
form

G(s) =
B(s)
A(s)

=
b1s+ b2

a0s2 + a1s+ a2
(9.11)

is strictly stable. That is, the poles must all be in the open left-half plane and the numerator
polynomial B(s) must be at least one degree less than the denominator polynomial A(s) [34].
Substituting (9.9) and (9.8) into (9.3) for r = 0, we can write

X =
1
βσds

s2 + α
β (kp + 1)s+ α

β ki
Ed −

α
βσns+ α

β kiσn

s2 + α
β (kp + 1)s+ α

β ki
En. (9.12)

For our second order (n = 2) closed loop transfer function (9.11), we use the prescription from
[34] to form the following array:

a
(2)
0 a

(2)
1 a

(2)
2 b

(2)
1 b

(2)
2

a
(2)
1 0 0 a

(2)
1 0

a
(1)
0 a

(1)
1 b

(1)
1

a
(1)
1 0

a
(0)
0

(9.13)

in which the values of the entries1 are given by

a
(2)
0 = 1 b

(2)
1 = b1

a
(2)
1 = a1 b

(2)
2 = b2

a
(2)
2 = a2 b

(1)
1 = b2

a
(1)
0 = a1

a
(1)
1 = a2

a
(0)
0 = a2

(9.14)

and the recursive pivot values are given by

α2 = 1
a1

β2 = b1
a1

α1 = a1
a2

β1 = b2
a2
.

(9.15)

For a given transfer function, the output variance for input white noise with unit variance is
given by the integral:

I =
2∑

k=1

β2
k

2αk
=

1
2a1a2

(b22 + b21a2), (9.16)

[34]. Comparing coefficients in (9.12) and (9.11) and substituting into (9.16), we can show that

Ex2 = Ix =
σ2

d + α(αk2
p + βki)σ2

n

2αβ(1 + kp)
, (9.17)

1The formula for calculating b
(k−1)
i in [34] contains a typographical error on page 138: the formulas for i odd

and i even should be interchanged.
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in which we require kp > −1 and ki ≥ 0 for stability. The partial derivatives with respect to the
controller gains are:

∂I

∂ki
=

σ2
n

2(1 + kp)
> 0 (9.18)

∂I

∂kp
=

α2σ2
nk

2
p + 2α2σ2

nkp − (σ2
d + αβkiσ

2
n)

2αβ
. (9.19)

The partial derivative (9.18) is always positive, so position variance is minimized with respect
to integral gain by choosing ki = 0, which implies pure proportional control. Setting the partial
derivative (9.19) equal to zero, we can show that Ix has a minimum at

(kp)opt := arg min
kp

Ix =

√
1 +

σ2
d

α2σ2
n

+
β

α
ki − 1. (9.20)

Similarly, Substituting (9.9) and (9.8) into (9.3) for r = 0, we can write

U =
1
βkpσds− 1

βkiσn

s2 + α
β (kp + 1)s+ α

β ki
Ed +

[
−kpσn +

(k2
p

α
β − ki)s+ (kp − 1)ki

α
β

s2 + α
β (kp + 1)s+ α

β ki

]
En. (9.21)

Comparing coefficients in (9.21) and (9.11) and substituting into (9.16), we can show that

Eu2 = Iu =
(ki + k2

p
α
β )σ2

d +
[
(kp − 1)2kiα

2 + (k2
p

α
β − ki)αβ

]
σ2

n

2α2(1 + kp)
+ k2

pσ
2
n. (9.22)

Figure 9.4 shows the theoretical position and control variance using PI Control for a linear
trapping force assuming α = 10 pN/µm and β = 0.01 pNs/µm. Assuming the Langevin force
and measurement noise are modeled as band-limited white noise with power spectra S+

L =
1.6× 10−4 pN2/Hz and S+

n = 2× 10−10µm2/Hz, respectively, we obtain σ2
d = 8× 10−5 pN2 and

σ2
n = 1× 10−10 µm2, according to (4.11). According to (9.20), the optimal proportional gain is
kp = 88.4, which results in a variance of σ2

x = 8.84×10−6 µm2, which corresponds to a standard
deviation of σx = 0.003 µm. The (open loop) variance of 4× 10−4 µm2 has been decreased by a
factor of 45.2. However, the standard deviation of the control is just under σu = 0.3 µm, which
is outside of the linear trapping region. The right plots show that both position and control
variances increase with ki, which confirms that integral control is counter-productive for the
white noise inputs under consideration. However, the top right figure shows that σx is relatively
insensitive to ki, whereas the bottom right figure shows that σu increases considerably with ki

for small kp.
Substituting σ2

d = 2βkBT from (4.11), we can express (9.17), (9.22), and (9.20) in terms of
α, β, T and σ2

n:

Ex2 =
2βkBT + α(αk2

p + βki)σ2
n

2αβ(1 + kp)
(9.23)

Eu2 =
(kiβ + k2

pα)2kBT +
[
(kp − 1)2kiα

2 + (k2
p

α
β − ki)αβ

]
σ2

n

2α2(1 + kp)

+k2
pσ

2
n (9.24)

(kp)opt =

√
1 +

β

α

(
2kBT

ασ2
n

+ ki

)
− 1. (9.25)
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Figure 9.4: Theoretical variance using PI Control for linear trapping force assuming
α = 10 pN/µm, β = 0.01 pNs/µm (σ2

d = 8 × 10−5 pN2), and σ2
n = 1 × 10−10 µm2. Top plots

correspond to position x; bottom plots correspond to control u := xT . Left plots show variance;
right plots show standard deviation.

The practical tradeoffs that can be expected for different proportional control gains are shown
in Figure 9.5 2. The left figure shows position standard deviation and the right figure shows
maximum absolute position (infinite norm). Results are shown for both the linear force and for
the cubic force. In the nonlinear case, position variance decreases until about kp = 35, gradually
increases between 35 < kp < 40, and dramatically increases for kp ≥ 40. Up to kp ≈ 40, the net
effect of the controller is to increase the effective stiffness of the trap. For kp = 35, the variance
is 1.36× 10−5 µm2, which is approximately 29 times smaller than the open loop variance of
4× 10−4 µm2. For the minimum variance near kp = 35, the particle has a maximum excursion
that is slightly beyond the trapping radius, according to the right figure. For values of kp greater
than approximately 30, the particle has excursions outside of the trapping radius of 0.675 µm,
which results in an occasional absence of trapping force and a corresponding increase in variance.
As kp is further increased, the relative position develops larger excursions outside of the trapping
radius until it eventually escapes from the trap, resulting in very large position variance. Such
excursions are a result of the proportional controller being too aggressive because it is not
designed to handle the nonlinear trapping force. For the linear trapping force, both variance
and maximum absolute position display minima near kp ≈ 100, which agrees with our theoretical
analysis. The drop in variance and absolute position for very high gains is due to the limited
bandwidth of the nonlinear system. As the gain is increased, the controller attempts to move
the particle at very high velocities (frequencies), which are beyond the system’s capabilities.
The system behaves like a lowpass filter for high gains.

Figure 9.6 shows the performance of the proportional controller for only a linear force model.
Clearly, both variance and position have minima near kp = 100. Due to the measurement
noise, both variance and position increase for very large gains. For kp = 100, the variance
is 7.61× 10−6 µm2, which is approximately 49 times smaller than the open loop variance of

2All variance values from the simulations have been normalized to conform with the Equipartition theorem.
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Figure 9.5: Comparison of proportional controller performance using computer simulations.
Left figure shows position standard deviation; right figure shows maximum absolute position.
Solid lines correspond to cubic trapping force; dashed lines correspond to linear trapping force.
Simulations assume α1 = 10 pN/µm; α3 = 22 pN/µm3 (nonlinear case) and α3 = 0 (linear case);
β = 0.01 pNs/µm; and sampling time 0.01 ms. For the cubic trapping force, variance has a
minimum near kp = 35, at which the particle has a maximum excursion that is slightly beyond
the trapping radius.

4× 10−4 µm2. The maximum position tends toward |x|∞ = 0.011 µm, which is about 7.5 times
smaller than the corresponding open loop value of |x|∞ = 0.082 µm.

We can use the stochastic analysis of Chapter 3 to quantify the first mean exit time of a
trapped particle within the linear region. From the equipartition theorem, in the absence of
feedback control, , for α = 10 pN/µm, particle position has a standard deviation of 20 nm. By
setting u = −kpx in (4.13), and neglecting measurement noise, we can re-write the equation of
motion as a stochastic differential equation in which

f(x) = ρ
ψ(x)
β

[
− αx(1 + kp)

]
(9.26)

σ2 =
2kBT

β
. (9.27)

Using the same procedure from Section 4.4.2, we can use (9.26) and (9.27) to solve for the
mean first exit times from the ± 20 nm region. The results are shown in Figure 9.7. Clearly,
increasing proportional gain increases the exit times, but it should be remembered that these
results do not account for measurement noise.

9.2 LQG Control

Defining ωd and ωn as disturbance noise and measurement noise respectively, we can re-express
(3.23) in state space form as

ẋ = Ax+Bu+ ωd

y = Cx+ ωn, (9.28)
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Figure 9.7: Maximum mean exit time from ± 20 nm as a function of proportional gain kp.
Trapping force is linear; laser power factor is ρ = 1 (100 mW at the focus).

where A := −α
β = −ωc, B := α

β = ωc, C := 1, and input disturbance noise ωd := FL

β .
As shown in Figure 9.8, this system is suitable for the implementa

E{ωd(t)ωd(τ)} = Wδ(t− τ)
E{ωn(t)ωn(τ)} = V δ(t− τ)
E{ωd(t)ωn(τ)} = 0
E{ωn(t)ωd(τ)} = 0.

The LQG control problem is to find the optimal control u(t) which minimizes the integral cost
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Figure 9.8: Feedback loop for LQG control. For stabilization about the origin, we set r = 0.

function

J = E

{
lim

T→∞

1
T

∫ T

0

[xTQx+ uTRu]dt,

}
(9.29)

in which Q = QT ≥ 0 and R = RT > 0 are design parameters [60]. According to the Sep-
aration Theorem, the solution to the LQG problem is given by first solving the deterministic
linear quadratic regulator (LQR) problem and then using a Kalman filter to obtain the optimal
estimate x̂ of the state x such that E{[x− x̂]T [x− x̂]} is minimized [60]. The LQR problem is
equivalent to solving the above LQG problem with no noise (ωd = ωn = 0). The LQR problem
has a simple solution given by

u(t) = −Krx(t), (9.30)

where

Kr = R−1BTX, (9.31)

in which X = XT ≥ 0 is the unique positive-semidefinite solution of the algebraic Riccati
equation

ATX +XA−XBR−1BTX +Q = 0. (9.32)

The optimal estimate x̂ is obtained using a Kalman filter that is independent of Q and R. The
solution to the LQG problem is then obtained by replacing x with x̂. The Kalman filter has the
structure of an ordinary state-observer:

˙̂x = Ax̂+Bu+Kf (y − Cx̂)
y = x̂,

where the optimal choice of Kf is given by

Kf = Y CTV −1, (9.33)

in which Y = Y T ≥ 0 is the unique positive-semidefinite solution of the algebraic Riccati
equation

Y AT +AY − Y CTV −1CY +W = 0. (9.34)

By solving (9.31) and (9.32) for a first-order system and substituting the system parameters
from (9.28), we can show that

Kr =
A

B

[
1−

√
1 +

B2Q

A2R

]

=

√
1 +

Q

R
− 1. (9.35)
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Similarly, by solving (9.33) and (9.34) for a first-order system, we can show that

Kf =
A

C

[
1−

√
1 +

C2W

A2V

]

=

√
ω2

c +
W

V
− ωc. (9.36)

From (4.11) and (4.17), W = 2kBT
β , which, for a 1-µm bead is equal to W = 0.8 µm2.

According to Simmons et al., typical measurement noise is 3 nm peak-to-peak, or under 1 nm
RMS for 5 kHz detector bandwidth [10]. This corresponds to S+

n < 2 × 10−10 µm2/Hz, or
V < 1× 10−10 µm2/Hz.

Figure 9.9 shows the results of applying LQG control for α1 = 10 pN/µm, α3 = 22 pN/µm3

and β = 0.01 pNs/µm, where the nonlinear spring constants are from (3.2). Simulation sampling
time is 0.01 ms and initial position is x(0) = 0. For the computer simulation, the Langevin force
and measurement noise are modeled as band-limited white noise with power spectra S+

L =
4βkBT = 1.6 × 10−4 pN2/Hz and S+

n = 2 × 10−10 µm2/Hz, respectively. Correspondingly, by
setting V = 1 × 10−10 and W = 0.8 in (9.36), we obtain Kalman filter gain Kf = 8.84 × 104.
By setting Q = 3000 and R = 1 in (9.35), we obtain LQR gain Kr = 53.8.
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Figure 9.9: Simulation of LQG control for system parameters α1 = 10 pN/µm, α3 = 22 pN/µm3,
β = 0.01 pNs/µm and LQG weights Q = 3000 and R = 1, and sampling time 0.01 ms. The
controller reduces position variance by a factor of ∼ 27.

Clearly, the LQG controller significantly reduces position fluctuations due to thermal noise.
The (open loop) variance of 4×10−4 µm2 is decreased by a factor of approximately 27. Note that
the optimal LQR gain Kr ≈ 54 is greater than the optimal proportional control gain kp ≈ 35
because the Kalman filter is an optimal estimator. Figure 9.10 shows the results of applying
LQG control for the same parameters used in Figure 9.9, but with a higher weight of Q = 10000,
which increases the LQR gain to Kr = 99. The controller is too aggressive because it assumes
a linear trap model. As a result, the particle is driven outside the trapping radius.

The tradeoffs associated with different cost function weights are shown in Figure 9.11 3. The
left figure shows the position standard deviation and the right figure shows maximum absolute

3All variance values from the simulations have been normalized to conform with the Equipartition theorem.
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Figure 9.10: Simulation of LQG control for system parameters α1 = 10 pN/µm,
α3 = 22 pN/µm3, β = 0.01 pNs/µm and LQG weights Q = 10000 and R = 1, and sampling
time 0.01 ms. The controller is too aggressive and drives the particle outside the trapping
radius.

position (infinite norm). Results are shown for both the linear force model and for the cubic
force model. In the nonlinear case, position variance decreases until about Q

R = 3000, gradually
increases between 3000 < Q

R < 5000, and dramatically increases for Q
R > 5000. The minimum

variance near Q
R = 3000 is no coincidence as |xr|∞ = 0.679 µm, according to the right figure. For

values of Q
R greater than approximately 3000, the particle has significant excursions outside of the

trapping radius of 0.675 µm, which results in frequent loss of trapping force and a corresponding
increase in variance. As Q

R is further increased, the relative position develops larger excursions
outside of the trapping radius until it eventually escapes from the trap, resulting in very large
position variance. Such excursions are a result of the LQG controller being too aggressive
because it is not designed to handle the nonlinear trapping force. For the linear trapping force,
both variance and maximum position decrease with Q

R , as expected.
Figure 9.12 shows the performance of the LQG controller for only a linear force model.

Clearly, both variance and position decrease with Q
R towards nonzero asymptotic values. Due to

the non-zero measurement noise, neither the variance nor position tends to zero, even with very
large gains. For Q

R = 107, the variance is 6.71× 10−6 µm2, which is approximately 60 times
smaller than the open loop variance. The maximum position tends towards |x|∞ = 0.0114 µm,
which is about 7 times smaller than the corresponding open loop value of |x|∞ = 0.082 µm.
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Chapter 10

Nonlinear Feedback Control

For small displacements from the center of the trap, a linear trapping force model is widely used
to quantify forces acting on a trapped particle. As shown in Figure 3.3, the nonlinear trapping
region of an optical tweezer is much larger than the linear trapping region. In this chapter, we
develop nonlinear control algorithms that recognize and utilize our knowledge that the trapping
force is, in fact, nonlinear for large relative displacements.

10.1 Stabilization using Hyperbolic Tangent1

In this section, we describe both linear control laws for asymptotic stabilization (AS) of the
origin and nonlinear control laws for global asymptotic stabilization (GAS) of the origin. In
Section 3.2.1, we showed that by defining the trap position as the control input, u := xT , we
can express our noninertial system in state space form as (3.16), which is reproduced below:

ẋ =
ψ(x− u)

β

[
α3(x− u)3 − α1(x− u)

]
+

1
β

(FL + FE)

y = x. (10.1)

In the remainder of this section, we will derive feedback control laws to stabilize the origin of
the first order system described by (10.1) under the assumption of zero disturbance, FL(t) =
FE(t) = 0. We will later include the Langevin disturbance and interpret it as a varying initial
condition that requires asymptotic stabilization.

Asymptotic Stability

From (10.1), as long as the particle is not outside of the trapping radius R, the scalar system
ẋ = 1

βFT (xr) will be stabilized by the trapping force FT (xr). We will exploit the nature of this
trapping force to stabilize the particle, even when it is initially outside of the trapping radius
R. As shown in Figure 10.1, for an appropriate choice of µ > 0 and λ > 0, the cubic trapping
force, FT (xr) = α3x

3
r − α1xr (from Figure 3.3), can be approximated by a hyperbolic tangent

function ft(·):

FT (xr) ≈ ft(xr) = µ tanh(−λxr).

Although FT (xr) behaves “like” ft(xr) only within the maximum trapping force region,
|xr| < RF < R, what is important for our derivation is that both functions exert a restoring

1Most of this section is excerpted from [63].
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Figure 10.1: Approximation of cubic trapping force FT (xr) (solid line) from Figure 3.3 using a
hyperbolic tangent function ft(xr) (dashed line) for µ = 2.595 pN and λ = 5.

force within the trapping radius R. Therefore, we can apply a simplified version of the saturation
analysis from [64]. Specifically, for any p > 0, we can choose a Lyapunov function V (x) = px2

and set

−λxr = −bpx,

xr =
1
λ
bpx, (10.2)

in which the control gain b := 1
β > 0, according to (10.1). Then,

V̇ (x) =
dV

dx

dx

dt
= 2µbpx tanh(−bpx)
= −2µy tanh(y) ≤ 0,

which shows that the origin of the x system is asymptotically stable in the domain |xr| < R
[65]. Note that the proof only requires that µ be positive, so it is not necessary for the tanh
function ft(xr) to exactly match the force profile FT (xr). What matters is that the restoring
force for both functions is of the same sign, which is true within the trapping radius R. From
(3.1) and (10.2), the asymptotically stabilizing linear feedback control law is given by

u =
(

1− p

λβ

)
x. (10.3)

The linear control algorithm given by (10.3) was simulated for system parameters β = 0.01
pNs/µm, α3 = 22 pN/µm3, α1 = 10 pN/µm, λ = 5, and control parameter p = 0.1, as shown
in the left columns of Figures 10.2, 10.3, and 10.4. According to (10.2), when |x(0)| ≥ λβ

p R,
|xr| ≥ R = 0.675 µm. The particle remains motionless (ẋ = 0), but away from the origin (x 6= 0)
and out of the controller’s reach (Figures 10.3 and 10.4). It follows that, for the chosen value of
p = 0.1, the AS controller is asymptotically stable for |x(0)| < λβ

p R = 0.3375 µm. The basin of
attraction can be increased by decreasing p, but this will result in a slower rate of convergence.
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Figure 10.2: Simulation of non-inertial controllers with initial position within the linear region,
x(0) = 0.1 µm. For comparison, the open loop position is shown as a dotted line. Left plots show
linear AS controller; right plots show nonlinear GAS controller. The GAS controller (p = 10)
achieves faster settling time than both the AS controller (p = 0.1) and the open loop system.
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Figure 10.3: Simulation of non-inertial controllers with initial position within the nonlinear
trapping region, x(0) = 0.4 µm. The AS controller (p = 0.1) does not achieve asymptotic
stability because the control law drives the relative position outside of the trapping radius. The
GAS controller (p = 10) achieves faster settling time than the open loop system.

Global Asymptotic Stability

To achieve global asymptotic stability (GAS), we suggest setting the relative position equal to
a hyperbolic tangent function:

xr = ω tanh
(

1
λ
bpx

)
, (10.4)
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Figure 10.4: Simulation of non-inertial controllers with initial position outside of the trapping
radius, x(0) = 0.8 µm. Only the GAS controller (p = 10) achieves asymptotic stability.

in which, 0 < ω < R = 0.675 µm. By choosing ω within this range, GAS is guaranteed because
xr will always exist within the region in which the nonlinear restoring force FT (xr) is not zero
(except at the origin). Furthermore, by picking ω = RF = 0.3893 µm, in addition to achieving
GAS, the particle will also be driven into (restricted to) the region in which the nonlinear restor-
ing force FT (xr) is maximized. From (3.1) and (10.4), the globally asymptotically stabilizing
nonlinear feedback control law u is given by

u = x− ω tanh
(
p

λβ
x

)
. (10.5)

Using the same system parameters as in Section 10.1, the nonlinear control algorithm given
by (10.5) was simulated for control parameters p = 10 and ω = 0.389 µm, as shown in the
right columns of Figures 10.2, 10.3, and 10.4. (In all three figures, the nonlinear control signal
is denoted by uN .) The figures show that the GAS controller achieves a faster settling time
than both the open loop system and the AS controller. In each figure, it is clear that when
the particle is far from the origin, the GAS controller drives the initial relative position to
|xr| = RF , which we specified by our choice of ω. This results in the maximum possible
restoring force and therefore, minimum settling time (for a given p). Once the particle has been
brought closer to the origin, the relative position is driven towards zero according to the tanh
function in (10.4).

As mentioned in Section 6.3, the trap position xT is actuated using an AOD that has position
resolution of better than 0.001 nm, a useful range of approximately 10 µm, and bandwidth on
the order of several tens of kilohertz [36, 18]. Therefore, the control values shown in the figures
lie well within the range of practically achievable trap dynamics.

The nonlinear control algorithms developed in this section can also be extended to inertial
systems [63]. Details are included in Appendix C.

Effects of Disturbances and Noise

As mentioned in Section 3.2, in practice, a particle trapped in an optical tweezer is subject to an
external Langevin force FL(t) with an average value of zero and a constant power spectrum given
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by S+
L (f) = 4βkBT , which, for a 1-µm bead trapped at room temperature, is approximately

1.6 × 10−4 µm2. Figure 10.5 shows a simulation of the performance of the non-inertial GAS
controller (10.5) subject to external thermal noise. The simulation bandwidth of 100 kHz is
sufficiently large that the band-limited white noise approximation approaches the behavior of
ideal white noise. Clearly, the controller is very effective in reducing random position fluctuations
(Brownian motion) due to thermal (Langevin) noise. The net effect of the controller is to increase
the effective stiffness of the trap.
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Figure 10.5: Simulation of non-inertial GAS controller subject to external thermal noise for
x(0) = 0, p = 104, ω = 0.389 and 100 kHz bandwidth. For comparison, open loop position is
shown as a dotted line.

The non-inertial GAS controller is designed to provide global asymptotic stability to the
origin assuming the external disturbance has an expected value of zero, as in the case of thermal
noise. According to (3.15), a small constant external disturbance FE will result in stabilization
to some constant steady state value xr ≈ 1

α1
FE . Therefore, according to (10.4), the steady state

position xss is given by

xss ≈
λβ

p
tanh−1

(
1
ωα1

FE

)
, (10.6)

which can be greatly reduced by increasing p. For example, Figure 10.6 shows the performance of
the non-inertial GAS controller (10.5) subject to external thermal noise and a constant external
disturbance of 1 pN. Clearly, the GAS controller is very effective in stabilizing the origin, even
with the constant disturbance. According to (10.6), the steady state position error is 0.0013 nm.
In theory, the maximum constant disturbance that the controller can reject is slightly less than
the maximum restoring force, which is 2.595 pN for this system, according to Figure 3.3. A
more thorough treatment of constant disturbance rejection would require integral feedback, but
we will not investigate that in this dissertation.

In practice, position sensors have measurement noise, which imposes a finite upper limit
on the gain p. As mentioned in the previous chapter, a typical noise value is S+

n = 2 ×
10−10 µm2/Hz. The tradeoffs associated with different nonlinear control gains p are shown in
Figure 10.7 2. The left figure shows position standard deviation and the right figure shows
maximum absolute position (infinite norm). Results are shown for both the linear force and for
the cubic force. For the cubic trapping force, position variance decreases until about p = 105

2All variance values from the simulations have been normalized to conform with the Equipartition theorem.
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Figure 10.6: Simulation of non-inertial GAS controller subject to external thermal noise and a
constant disturbance of 1 pN for x(0) = 0, p = 104, ω = 0.389 and 100 kHz bandwidth.

and gradually increases for larger p. For p = 105, the variance is 6.18× 10−6 µm2, which is
over 64 times smaller than the open loop variance of 4× 10−4 µm2. It is clear from Figure 10.7
that the hyperbolic tangent controller has superior performance for the linear trapping force
(compared to the cubic trapping force) up to about p = 104. This is because the magnitude of
the linear restoring force is always greater than the cubic force (except at the origin, where they
are equal), as shown in Figure 3.5. After p ≈ 104, the maximum relative position for the linear
trapping force hits the maximum force radius of RF = 0.3893 µm. Thereafter, the marginal
benefits of increasing p begin to diminish because the particle is prevented from moving beyond
RF .

10.2 Discussion

In this chapter, we described the global asymptotic stabilization of a spherical particle trapped
in an optical tweezer. For the non-inertial system model, which is well-suited for practical
implementation, we have obtained a nonlinear control law that achieves not only GAS, but also
a faster settling time than the open loop system. Global asymptotic stabilization is important
in biological or micro-mixing experiments in which a located particle needs to be moved to a
very specific location. We have also shown that the non-inertial GAS controller is very effective
in reducing random position fluctuations due to thermal noise.

We have not implemented the control algorithms described in this chapter. Since the pho-
todetectors used to detect particle position in our experimental setup cannot efficiently detect
relative displacements of greater than approximately 1 µm, we will not be able to investigate
global stability of the controllers. However, the local asymptotic stabilization properties of the
controllers can be investigated within a range of ±0.5 µm of the origin. A comprehensive exper-
imental verification of GAS would require sophisticated real-time image processing and video
feedback, which is currently unavailable in our laboratory.

For a practical optical tweezer system, the inertial controllers derived in Appendix C are
unnecessarily complicated because the trappable mass is tiny. However, these controllers will
prove useful in the future when the laser technology behind optical tweezers evolves such that
larger masses can be trapped. The inertial analysis outlines a general method to obtain a GAS
controller for any system that has the inertial equation of motion given by (3.11). We have
also derived asymptotically stabilizing linear controllers for both the inertial system model and
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Figure 10.7: Comparison of nonlinear hyperbolic tangent controller performance according to
computer simulations. Left figure shows position standard deviation; right figure shows maxi-
mum absolute position. Solid lines correspond to cubic trapping force; dashed lines correspond
to linear trapping force. Simulations assume α1 = 10 pN/µm, α3 = 22 pN/µm3 (nonlinear case)
and α3 = 0 (linear case), β = 0.01 pNs/µm, and sampling time 0.01 ms. For the nonlinear trap-
ping force, variance has a minimum near p = 105.

the noninertial system model. Although these linear AS controllers have a limited basin of
attraction, they are easier to implement than the nonlinear GAS controllers.

Although our system can also be controlled by feedback linearization, such a feedback method
would not be effective beyond the maximum trapping force region [65]. Furthermore, the feed-
back control would require an extremely accurate model of the trapping force, which implies
that it would not be robust with respect to parameter variations or changes in the trapping
force. Therefore, feedback linearization is not a useful control option for this system.

For almost a decade, the linear trapping behavior of optical tweezers has been used to
quantify forces acting on a trapped particle for small displacements from the center of the trap.
For the most part, the nonlinear trapping region has not been used quantitatively, except to
obtain a rough estimate of the maximum trapping force [18]. The control laws presented in
this chapter represent an attempt to quantitatively exploit the entire nonlinear profile of the
restoring force of an optical tweezer. As shown in Figure 3.3, the nonlinear trapping region for
a 1-µm polystyrene bead is approximately three times as large as the linear region. Therefore,
it is our hope that the algorithms described in this chapter will be of value to the many users
of optical tweezers.
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Chapter 11

Conclusion

As mentioned in the Introduction, the main purpose of this dissertation is to analyze the prop-
erties of an optical tweezer from a control engineering point of view. In this final chapter, I
summarize my main results and contributions.

Modeling

In Chapters 2 and 3, I provided a basic introduction to the dynamic behavior of optical traps.
By characterizing their properties using terminology from control engineering, I have provided
mathematical descriptions that should be accessible to anyone interested in studying optical
traps in greater depth. In particular, the use of a cubic trapping force model enables the
derivation of analytic expressions.

Stochastic Analysis

In Chapter 4, I developed stochastic differential equations that enable computation of probability
density functions and exit times. For a given optical tweezer configuration, the first exit time
is an extremely useful measure of trapping capability because it quantifies the time horizon
during which experiments can be conducted before trapped particles are lost. It is especially
important to use lower power levels when studying biological samples to avoid damaging them
with heat; furthermore, in applications in which a single laser beam is time-shared to trap many
particles, it is important to quantify low power trapping capabilities. Published information
about minimum power levels are based on experimental observations; for example, Smith et al.
observes that “polystyrene spheres could be trapped with powers at the back of the objective
as small as 5 mW” [12]. The theoretical framework I have developed can be used to verify such
statements and also quantify the trapping capabilities for various power levels.

We show that the first mean exit time for a given trapping force model can be computed
numerically. We calculated values for a 1-µm diameter polystyrene bead trapped in water at
biological temperature; in particular, for laser powers of greater than approximately 5 mW at
the focus, the mean first escape time is extremely large, and unbounded for most practical
purposes. We show that the maximum mean exit time increases exponentially with laser power.
Using experimental data for a trapped, 9.61-µm bead, we calculated the mean first passage time
and its standard deviation within the linear trapping region. The experimental value shows
close agreement with theoretical calculations. Since the mean passage time is very sensitive to
parameter values, it can (potentially) be used to verify the results of other calibration methods.
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Construction

In Chapters 5 and 6, I described construction of the research-grade optical tweezer system in
our laboratory. The system consists of a home-built microscope that is equipped with both
video imaging and digital imaging. Incoming laser light is focused to a diffraction-limited spot
using a 100×, 1.3 NA microscope objective. By splitting a single continuous-wave Nd:YAG laser
beam according to polarization, I have created two independently steerable optical traps. One
trap can be steered using a gimbal-mounted mirror with micrometers or DC motors and the
other trap can be steered using an AOD driven by a 32-bit digital frequency synthesizer. The
system is equipped with photodetectors that have been aligned to measure the lateral position
of trapped beads relative to the laser focus (trap location). The optical tweezer system can be
used for any number of scientific purposes. Additional modifications needed to customize or
improve its capabilities are described in Appendix B and D.1.

Identification

In Chapter 7, I described off-line (batch) calibration methods that are in wide use in the bio-
physics community. In Chapter 8, I propose the use of on-line calibration to achieve faster and
more up-to-date calibrations. By describing the sampled-data system using an ARX model,
I was able to implement recursive least squares (RLS) estimation to calibrate the characteris-
tic frequency of an optical tweezer. The parameter convergence values for different calibration
methods are summarized in Table 11.1. All calibration results are for 30 seconds of data. The
average of the estimates for the RLS method and step response method can be compared with
the single estimate for the power spectrum. The off-line calibration methods suggest a value of
ωc = 120± 1 rad/s, while the RLS method suggests a value of 112.5 rad/s for the larger input
amplitude. Clearly, the RLS estimation converges to a value that is between the low and high
calibration values from the step response method. The average value of the RLS calibration
underestimates the (average) off-line calibrations by almost 7%. Intuitively, this discrepancy
between the average value of the estimates should not be surprising because we have not proved
that each method will average the two (actual) characteristic frequency values in the same
manner. All we can expect is that the average value is between the two actual values.

Calibration Input â b̂ ω̂c Time to
Method Steady-state
RLS Square (A = 0.15 µm) 112 113 112.5 9 s
RLS Square (A = 0.05 µm) 105 114 110 19 s
Power Spectrum None N/A N/A 119 N/A
Step Response Square (A = 0.15 µm) 104 136 120 N/A
Step Response Square (A = 0.10 µm) 107 135 121 N/A

Table 11.1: Comparison of estimates of characteristic frequency ωc (rad/s) for experimental data
for a trapped 9.61-µm polystyrene bead. Square wave inputs have frequency f = 10 Hz. For
the step response method, parameter estimates â and b̂ correspond to low data and high data
respectively.

Calibration inconsistencies can arise due to other factors. Even slight misalignments in the
position detection system and fluctuations in the dynamic laser pointing system (the AOD) can
cause systematic errors that distort the RLS calibration results. The power spectrum method,
in particular, is robust with respect to such factors [26, 18]. Additional sources of measurement
noise, such as low-frequency drift and other types of electronic bias, high frequency amplifier
noise, mechanical vibrations, and extraneous background light can also contribute to erroneous
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estimates. Such problems are inherent in any practical position detection system. Soderstrom
and Stoica make the following statement regarding system identification in practice:

“It is sometimes claimed that system identification is more art than science. There
are no foolproof methods that always and directly lead to a correct result. Instead,
there are a number of theoretical results which are useful from a practical point of
view. Even so, the user must combine the application of such a theory with common
sense and intuition to get the most appropriate result.” [54]

There are obvious tradeoffs associated with each calibration method. The power spectrum
method is easiest to apply because it does not require an accurately calibrated position detector
or input signal. Also, this method can reveal the existence of extraneous sources of noise within
the laboratory environment. The step response method requires a calibrated position detector
and an accurate square wave input. Furthermore, as demonstrated in Chapter 7, this method can
be used to quantify both the high and low stiffnesses of an asymmetric trap. The step response
method, is however, very sensitive to noise and measurement errors. The recursive least squares
method has the potential to obtain much faster calibrations than the off-line methods. Computer
simulation show that a well-aligned system can be calibrated within 2% in under 1 second using
an RLS approach. Computer simulations shows that further improvements can be achieved
by identification in closed loop. However, in practice, the RLS method requires a very well-
calibrated position detector and an input signal. Slight offsets in the position detection system
can cause significant calibration errors. For this reason, calibration using a PRBS was not
successful for our system; for a square wave input, the alignment offset can be subtracted quite
accurately. For practical implementation of the RLS method, an automatic tracking system
is suggested for the position detector. This will minimize laser misalignments due to human
error. Alternatively, a second laser beam can be used purely for position detection [18]. Like the
power spectrum method, the RLS method cannot be used to obtain the different stiffnesses of
an asymmetric trap. It should be mentioned that this dissertation mainly considers calibration
of the characteristic frequency of an optical tweezer. If specific information about stiffness and
drag are sought, the power spectrum method is unrivalled in many aspects [26]. As future work,
we will investigate the possibility of using mean passage time data to roughly calibrate α and β
and also verify the accuracy of position detector calibration.

Control

In Chapter 9 and 10, I discussed the performance of feedback controllers. In Chapter 9, I
obtained analytic expressions for both PI controllers and LQG controllers that are designed to
achieve linear position regulation. In Chapter 10, I derived a nonlinear controller that uses
a hyperbolic tangent function to achieve global asymptotic stabilization (GAS) of the origin.
The linear controllers are designed for a linear trapping force and the nonlinear controller is
designed for a cubic trapping force. Computer simulations show that the linear controllers are
effective for low gains because the particle does not leave the trapping radius. However, for
high gains, the linear controllers are counter-productive because they drive the particle beyond
the trapping radius. The nonlinear controller is effective for all gains because it is specifically
designed to prevent the particle from leaving the trapping radius. In fact, we can choose the
nonlinear controller parameters in such a way as to maximize the restoring force at all times.
The performance of each controller is summarized in Table 11.2

For the cubic trapping model, the best performance of different controllers is illustrated and
compared in Figures 11.1 and 11.2. For comparison, a proportional controller with saturation is
also shown. The saturation function limits the over-reaction of the linear controllers; for analog
control, saturation can be implemented quite easily using a Ziener diode. In the figure, the
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Controller Variance Maximum position
reduction factor reduction factor

Open loop 1 1
Proportional 29 (52) 4.3 (7.5)
LQG 27 (60) 4.2 (7.2)
Hyperbolic tangent 65 (67) 4.8 (6.3)

Table 11.2: Summary of controller performance according to computer simulations, assuming a
cubic trapping force. Values in parenthesis correspond to a linear trapping force model. Listed
properties are best performance values.

saturation level is set to u = xT = 0.389 µm, which roughly limits the relative position to the
maximum force radius RF .
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Figure 11.1: Comparison of controller performance according to computer simulations. Left
figure shows position variance reduction compared to open loop; right figure shows max-
imum absolute relative position. Simulations assume α1 = 10 pN/µm, α3 = 22 pN/µm3,
β = 0.01 pNs/µm, and sampling time 0.01 ms.

All three controllers are capable of reducing the position variance significantly. The nonlin-
ear hyperbolic tangent controller is superior to both the proportional controller and the LQG
controller. For a linear trapping force, we expect the LQG controller to provide position variance
properties that are superior to the proportional controller because the former uses a Kalman
filter to obtain position estimates that are optimal according to a variance criterion; however,
for the cubic trapping force model, the Kalman filter is no longer optimal and the controller
performance is degraded. Although the nonlinear controller provides exceptional performance,
the proportional controller with saturation provides equally effective, if not better, performance.
In practice, if PI control works well-enough, there is usually no need to replace it because it is
easiest to implement. At the 2004 American Control Conference, Peter Schmidt of Rockwell Au-
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Figure 11.2: Plot of particle position for different controllers according to computer simulations.
Position fluctuations correspond to the optimal gain for each controller. Simulations assume
α1 = 10 pN/µm, α3 = 22 pN/µm3, β = 0.01 pNs/µm, and sampling time 0.01 ms.

tomation made the following statement during an invited tutorial session titled “Theory versus
Practice Forum”:

“Industry is slow to replace a solution that works 90-95% of the time. In general,
there has to be an order of magnitude improvement in some area before it is consid-
ered for replacement.” [66]

Although the variance reduction factor for the nonlinear controller is impressive (factor of ∼ 65)
compared to the open loop case, the variance reduction factor is only about ∼ 2.2 compared to
the optimal proportional controller. In practice, the most likely control option is proportional
control with a saturation. However, implementation of the saturation block requires knowledge
of the maximum force radius RF .

This dissertation provides an introduction to optical tweezers, including information about
dynamics, construction, identification, and control. Within that framework, a wide range of
topics have been covered. In fact, there are many other topics related to optical tweezers that
have not been discussed. For example, the fast detection of external force discontinuities is an
issue that deserved more attention. I hope the material in this dissertation will enhance the
arsenal of tools available to users of optical tweezers (especially in biophysics and microfluidics)
and also encourage future contributions from the control engineering community.
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Appendix A

LabVIEW Virtual Instruments

The following Virtual Instruments (VI’s) were used for data acquisition using LabVIEW software
version 6.0.

A.1 Power Spectrum Data Acquisition

Figures A.1 and A.2 show the VI used to collect Brownian motion data for power spectrum
(and mean passage time) computations. This is a de-bugged and modified (improved) version of
synchaiwithdio(ai is master).vi from the National Instruments webpage (www.ni.com). In this
example, 30.0 seconds of data is collected at a sampling rate of 211 = 2048 kS/s. Three analog
voltage channels are sampled, corresponding to x-position, y-position and total laser power.
Data is saved to a text file.

Figure A.1: Front panel for power spectrum data acquisition

111



Figure A.2: Block diagram for power spectrum data acquisition

A.2 Square Wave Data Acquisition

Figures A.3 and A.4 show the VI used to generate a square wave using the AOD and measure
relative bead position using the position sensing detectors. In this example, a buffer of size
216 = 65536 samples is used and data acquisition is done at a clock frequency of 2 kHz, the
output digital square waveform has a frequency of 1 Hz. Three analog voltage channels are
sampled, corresponding to x-position, y-position and total laser power. Input and output data
is saved to text files.

A.3 PRBS Data Acquisition

Figures A.5 and A.6 show the VI used to generate any specified input signal, such as a PRBS,
using the AOD and measure relative bead position using the position sensing detectors. In this
example, a buffer of size 217 = 32768 samples is used and data acquisition is done at a clock
frequency of 1 kHz. The output digital waveform is loaded from a text file generated using
MATLAB. Three analog voltage channels are sampled, corresponding to x-position, y-position
and total laser power. Input and output data is saved to text files.

A.4 AOD Calibration

Figures A.7 and A.8 show the VI used to calibrate the AOD. In this example, the AOD drive
frequency is set to the center frequency of 35 MHz, which is converted to a 32-bit binary signal
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Figure A.3: Front panel for square wave data acquisition

Figure A.4: Block diagram for square wave data acquisition

for the digital frequency synthesizer.
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Figure A.5: Front panel for PRBS data acquisition

Figure A.6: Block diagram for PRBS data acquisition
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Figure A.7: Front panel for AOD Calibration.

Figure A.8: Block diagram for AOD Calibration.

A.5 PSD Calibration

Figures A.9 and A.10 and sow the VI used to center the laser beam on the position sensing
detector (PSD). In this example, three analog voltage signals from the PSD circuit are continu-
ously sampled and displayed. The plots correspond to x position, y position, and total incident
laser power. The mean of each signal can also be calculated and displayed.
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Figure A.9: Front panel for PSD alignment.

Figure A.10: Block diagram for PSD alignment.
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Appendix B

Construction Details

B.1 Trapping System

B.1.1 Laser

Four main characteristics were considered when choosing the trapping laser: output beam shape,
beam astigmatism, laser wavelength, and power [12].

For stable trapping, the laser should be a continuous-wave (CW) beam with low noise.
For symmetric trapping, the beam itself must have a symmetric cross-section. If the beam is
asymmetric, it can be corrected using cylindrical lenses, but this requires additional effort and
will result in unnecessary power losses. To focus the laser beam to a diffraction limited spot,
the laser should have a single Gaussian peak with minimal side bands, known as single mode or
TEM00 [9].

Since the optical tweezers are intended to be used for biophysical studies, the trapping laser
had to be carefully chosen. A trapping wavelength of λ = 1064 nm was chosen primarily because
biological specimens absorb light most weakly for wavelengths in the range of 800-1100nm [18].
Furthermore, a wide selection of commercial optical components is designed for operation at
λ = 1064 nm.

Laser power was chosen based on discussions with Steven Quake and Chris Meiners at Cal-
tech. Although “polystyrene spheres could be trapped with powers at the back of the objective
as small as 5 mW” [12], the actual output power of the laser must be much higher than this
because, by the time the laser beam reaches the specimen plane, it will have lost a large fraction
of its original power. Smith et al. state that a “laser power of between 20 and 100 mW at the
microscope is sufficient for many basic trapping experiments” [12].

The laser power and diameter should be matched such that the power density of the laser
does not exceed the laser damage threshold of the optics used. Of the optical components that
form the optical tweezer, the lenses had the lowest laser damage threshold, 100 W/cm2.

We purchased a horizontally polarized continuous wave (CW) diode-pumped infrared
Nd:YAG laser (Model IRCL-700-1064, CrystaLaser) that satisfies all of the criteria discussed
above. It has a manually adjustable power rage of approximately 370–760 mW, as measured
using a laser power meter. The manufacturer specified an output beam diameter of 1.2 mm,
according to the standard 1/e2 definition of Gaussian beam diameter. (See Appendix E).

B.1.2 Microscope Objective

A 100×/1.3 NA oil immersion microscope objective (Plan Neofluar, Zeiss) was used to create the
trap. The immersion oil (Immersol 518F, Zeiss) is designed for fluorescence microscopy. A Zeiss
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objective was chosen to ensure compatibility between the tweezer optics and an existing Zeiss
microscope (that is used in our laboratory for atomic force experiments). This particular lens was
chosen because it has an infinite conjugate and because it has a relatively large working distance
of 0.2 mm. Microscope objectives with higher numerical apertures (1.4 NA) are available, but
their lower working distances make them difficult to use. Although the damage threshold of these
objectives with respect to IR light is not specified, Sterba and Sheetz mention that objectives
have been damaged at laser powers exceeding 1 W [9], but it is unclear whether this is at the
source or at the OEA.

As shown in (5.2), for a trap arising due to a normally incident, collimated laser beam, if
the microscope objective is moved axially (vertically) by some distance, the the laser focus (trap
location) is moved by a factor of nf

no
within the fluid cell, where nf

no
is the ratio of the refractive

index of the suspension medium (water) to the refraction index of the immersion oil. Ghislain
et al. suggest using a water immersion microscope objective to eliminate the depth dependence
[67], but such objectives have numerical apertures of less than 1, which is insufficient for most
practical trapping applications.

The microscope objective is attached to a microscope objective kinematic mount (Model
KM-RMS, Thorlabs) using SM -series lens tubes and adapters (Thorlabs). The lens tubes were
required to raise the microscope objective within the specimen stage aperture. The kinematic
mount was attached to a low profile precision ball bearing translation stage (Model 423, New-
port) that was mounted vertically to a mounting post (Model C8, Thorlabs). The translation
stage, and hence the microscope objective, are moved vertically using a manual vernier mi-
crometer (Model SM-13, Newport). This translation stage can be locked in position and it is
compatible with many types of motorized actuators.

B.1.3 Fluid Cell

The fluid cell used to hold the specimens consists of a square cover glass stuck to a standard
microscope cover slip using double stick tape. The cover glass is of thickness #1 (0.13–0.17 mm)
and dimensions of 22 mm×22 mm. The microscope slide is approximately 1.3 mm thick and
has dimensions of 3”×1”. The double stick tape has a thickness of 3 milli-inches (∼ 75 µm).

If the immersion oil (no = 1.518 at 23◦C) is optically matched with the cover glass (i.e., if
they both have roughly the same index of refraction), there will be no refraction at the oil-glass
interface. The cover glass is usually assumed to have a refraction index of ng = 1.51. “For
immersion objectives, the object is expected to be focused under immersion oil of a specified
refraction index and a coverslip of 170-mm thickness . . . For nonstandard coverslips and increas-
ing layers of embedding medium between the coverslip and the object, spherical aberration is
induced” [15]. Cover glasses of thickness #0 (0.08–0.13mm) were also purchased, but their
performance was not investigated.

Although double stick tape provides a very convenient spacer between the microscope slide
and the glass cover slip, other spacers can also be used. Kuo and Sheetz used high-vacuum
silicon grease [29], while Quake et al. used epoxy [68].

The axial trapping force decreases with increased trap distance from the cover glass [15]. In
fact, particles tend to escape from the trap when the trap is more than 20 µm from the surface
of the cover glass [9]. This is due to spherical aberrations caused by the high NA objectives
not being designed for IR wavelengths. In fact, Felgner et al. found multiple trapping positions
(three for polystyrene and five for glass) along the trapping axis, but they blame this anomaly
on spherical aberration [15].
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B.1.4 Trapped Particles

D’Helon et al. state that “the size range of the particles that can be trapped is determined
by the power of the trapping beam. At a given trapping power, as the particle size decreases,
thermal forces [e.g., Brownian motion] become comparable to the optical force, rendering the
trap inefficient. Conversely, as the particle size increases, the particle weight becomes comparable
to the optical force, causing the particle to fall out of the trap [19]. Hence, at lower trapping
powers, the use of particles of specific gravity close to one (i.e., same as water) is necessary.

For initial testing and calibration of the optical tweezer, polystyrene spheres of diameters
10.06 µm (PS04N/001013, Bangs Laboratories) and 1.05 µm (PS07N/001394, Bangs Laborato-
ries) were used. Since polystyrene balls suspended in distilled water have a tendency to clump
together, they need to be suspended in a phosphate-buffered saline (PBS) solution. A 0.01M
PBS solution (Number P-3813, Sigma) added to the aqueous polystyrene beads. In case a PBS
solution is not available, Smith et al. provide instructions for preparing a PBS solution, including
guidelines for the addition of antistick additives such as polyethylene glycol and bovine serum
albumin (BSA) [12]. By increasing the viscosity of the fluid, the effective time resolution of the
experiment can be increased. Quake et al. increased the viscosity “from 0.01 to 0.2 poise with
the addition of 71% glycerol (w/v) [68], whereas Felgner et al. used water and 60% glycerol (n
= 1.41) as their solution [15]. Arai et al. used sucrose to suppress Brownian motion [69].

B.2 Viewing System

The specimens were imaged using a CCD color video camera module (Model XC-999, Sony). To
magnify and focus the images onto the CCD array, a video zoom lens (manufacturer unknown)
was attached to the front of the camera. For rapid positioning and repositioning, a standard
magnetic base (Model 07 BMS 001, Melles Griot) was used to mount the CCD camera. The
CCD camera must have this repositioning capability because the position of the optical focus
(and hence the z-position of the trap) can change with adjustment of the microscope objective
[10]. The signals from the CCD camera were sent to a videocassette recorder (Model HR-VP48U,
JVC) for recording and to a 13-inch color video monitor (Model PVM-1390 Trinitron, Sony)
for viewing. The various adapters needed to connect the video equipment were purchased from
RadioShack.

The digital CCD camera was borrowed from the bioscope (AFM) system in our laboratory.
Viewing light is focused on to the CCD array using a telecentric lens (Model KS2271, Edmund
Industrial Optics).

B.3 Lateral Steering System

B.3.1 Optics and Optical Mounts

The laser beam was deflected vertically towards the OEA using a broadband silver mirror
(Model 20D20ER.2, Newport) mounted on a 45o mirror holder (Model H45-3, Thorlabs). A
1-mm thick, 36 mm × 26 mm dichroic mirror (Model 850 dcsp, Chroma) was used to deflect
the laser beam towards the silver mirror because it provides high reflection at λ = 1064 nm and
high transmission of visible light. The dichroic mirror was mounted on a kinematic mount.

Laser line dielectric mirrors (Model 10Z40DM.10, Newport) were used to deflect the beam
because of their high surface quality and moderate cost. These mirrors are mounted on compact
gimbal mirror mounts (Model GM-1B, Newport), that have a manual adjustment range of 12o

and an adjustment sensitivity of 10 arcseconds. One of these mounts was later replaced by an
ULTIMA gimbal mount (Model U100-G, Newport) because ULTIMA mounts are compatible
with motorized actuators.
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For our microscope objective, dµ = 4.264 mm. Hence, the laser beam must be expanded
from 1.2 mm to slightly larger than 4.264 mm. As stated in Section 5.3, the beam was ex-
panded to 4.76 mm by an appropriate choice of lenses L1 (50.8 mm dia., 300 mm EFL1, Model
SPX055AR.33, Newport) and L2 (25.4 mm dia., 75.6 mm EFL, Model SPX019AR.33, Newport).
To minimize aberrations, Smith et al. suggest that lenses with focal lengths in the range 5 cm
≤ f ≤ 40 cm should be used [12], but the lens manufacturer (Newport) does not mention such
a strict criterion. UV fused silica precision plano-convex lenses were used because they have
a high damage threshold (100 W/cm2) and moderate cost. The lenses were purchased with
an antireflection coating that has a maximum reflectance of less than 0.25% at 1064 nm. As
stated in the Newport catalog, “the asymmetry of these lenses minimizes spherical aberration
in situations where the object and image are at unequal distances from the lens. The optimum
case is where the object is placed at infinity (parallel rays entering the lens) and the image is
the final focused point” [50].

Laser line polarizing beamsplitter cubes (Model 10BC16PC.9, Newport) with an extinction
ratio of greater than 1000:1 were used to split (and later recombine) the laser beam into two
orthogonally polarized components. The PBSC’s were mounted on kinematic platform mounts
(Model KM1-B, Thorlabs). A multiple order quartz waveplate (Model 05RP12-34, Newport)
was inserted just after the laser output aperture. By rotating the waveplate, the direction of
laser polarization could be rotated (continuously) as desired. The waveplate was mounted on
a polarizer mount (Model LM-1R, Newport) that allowed the rotation of the waveplate to be
read in 2o increments.

B.3.2 Alignment Tools

At a wavelength of λ = 1064 nm, the laser beam is in the near-infrared regime; it is invisible.
To detect its position, infrared sensor cards (Model F-IRC1, Newport) with a wavelength range
of 750-1350 nm were used, but these provide only a rough indication of the beam position. For
more accurate centering tasks, an infrared viewer (Model NOCX3, Night Owl) with a focusing
range of 5 feet to infinity was used. Mounted iris diaphragms (Model ID12, Thorlabs) were used
to facilitate the alignment procedure, while 0o hot mirrors (Model 35-6865, Coherent) were used
as both beam reflectors and power attenuators. A hand-held laser power meter (LaserCheck,
Coherent) with a built-in attenuator was used to measure the laser power at various locations
on the beam path. This power meter could be used to measure powers in the range 10 mW–1
W with an accuracy of ±5%.

The trapping laser is of class IV, the most hazardous class. Appropriate precautions had
to be taken to avoid eye injuries. DVO (diffuse viewing only) laser protective goggles (Model
LPG-YAG, Uvex Safety) with an optical density (OD) of 7 were worn whenever the laser was
in use.

B.4 Position Detectors

A four-element segmented photodiode (Model SPOT-9DMI, UDT) is used as a Position Sensing
Detector (PSD) to detect the laser beam with a specified position resolution of better than
0.1 µm [70]. The photodiode has a spectral range of 350–1100 nm and a rise time of 3 ns.
Each segment of the photodiode has an active area of 19.6 mm2, with a gap of 10 µm between
each segment. The total diameter of the photodiode (all four quadrants) is 10 mm. For the
photodiode to function correctly, the incident beam must overlap all four quadrants (i.e., the
beam must be larger than the spacing between the segments). When light hits each segment, a
current proportional to the incident light power is generated. The maximum recommended power

1Effective focal length.
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density is 10 mW/cm2 and the typical uniformity of response for a 1-mm diameter spot is ±2%
[71]. The current output from each segment of the photodiode is converted to a voltage using four
low-noise precision operation amplifiers (Model OPA124P-ND, Burr-Brown). These voltages are
then appropriately summed using two dual high-speed precision difference amplifiers2 (Model
INA2133U-ND, Burr-Brown) and one high speed difference amplifier (Model AMP03) to obtain
three separate voltage channels that indicate the x position, y position, and total power of the
incident beam. The x and y position voltages are normalized by the total power level using
precision analog multipliers (Model MPY534KD-ND, Burr-Brown). Since the responsivity (0.4
A/W) of the photodiode to light at λ = 1064 nm is less than the responsivity (0.4–0.65 A/W)
of the photodiode for light at λ = 650–1000 nm, a narrow bandpass interference filter (model
43153, Edmund Industrial Optics) was inserted to reduce noise from ambient light. For a further
overview of circuit construction, consult [14]. Practical information about shielding can be found
in [72].

Figure B.1 shows the detector response for a trapped 10-µm bead and a fixed 10-µm bead.
The trapped bead has a measured variance of Var(x) = 0.0021 µm2 and the fixed bead has
Var(x) = 4.52 × 10−5 µm2. The variance for the fixed bead is assumed to be the result of
measurement noise, while the variance of the trapped bead is due to both measurement noise
and Langevin disturbance.
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Figure B.1: Comparison between thermal and measurement noise for a 10-µm bead.

Figure B.2 shows both the position fluctuations of a trapped 10-µm bead due to Brownian
(random thermal) motion and the computed average of 30 power spectra. A direct calculation
of position variance yielded σ2

x = 0.0021 µm2 and small noise peaks can be seen at just under
200 Hz. The slight slope in the power spectrum at low frequencies is caused by mechanical
vibrations and drift in the position detection circuitry [26].

Figure B.3 shows both the position fluctuations of a 10 µm bead that has been fixed to
the coverglass and the computed average of 30 power spectra. A direct calculation of position
variance yielded Var(x) = 4.52 × 10−5 µm2 and several noise peaks can be seen at various
frequencies. This indicates the existence of several sources of noise within the laboratory envi-
ronment. Clearly, the measurement noise is not white, but its power spectrum can be roughly
approximated by the constant value of S+

n = 4.52 × 10−8 µm2/Hz for a bandwidth of 1 kHz.
The vertical scales in Figure B.3 require verification since the detector calibration may have
been altered by the fixed bead position.

2Later versions of this circuit use two audio differential line receivers (Model INA2134PA-ND, Digi-Key) and
a high speed difference amplifier (Model INA105KP, Sager Electronics).
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Figure B.2: Top figure shows position fluctuations of a trapped 10-µm bead. Bottom figure
shows the average of 30 power spectra and its Lorentzian fit (dashed line). Data was sampled
at 2.048 kHz with a lowpass filter at the Nyquist frequency.
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Figure B.3: Top figure shows position fluctuations of a fixed 10-µm bead. Bottom figure shows
the power spectrum. Data was sampled at 2.048 kHz with a lowpass filter at the Nyquist
frequency.

B.5 Acousto-Optic Deflector

Visscher et al.state that “analog voltage-controlled oscillators typically used to drive the AOD’s
are not usually stable enough to achieve the desired beam-pointing stability: for applications
requiring nanometer-level stability and repeatability, 24- or 32-b digital frequency synthesizers
are needed” [18]. Although the response time τa of an AOD is intrinsically limited such that
typically, τa ∼ 1.6 ms/mm of laser beam diameter, this limit cannot be achieved in practice
because of speed limitations in the computer interface [18]. Despite these limitations, the AOD
is a superior choice to other time-sharing devices. The EOD is more efficient than the AOD,
but it provides an insufficient full-angle of deflection (∼ 2 mrad); scanning galvanometer mirror
cost much less than an AOD, but they have insufficient bandwidth (∼ 200− 300 Hz) [18].
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Appendix C

Nonlinear Feedback Control for
Inertial System

In Section 10.1, we derived feedback control laws to stabilize the origin of the noninertial system
described by (3.15). In this section, we derive stabilizing control laws assuming the mass is
large enough that it cannot be ignored, in which case the inertial equation of motion (3.11)
must be used. Our hope is that these derivations will prove useful in the future when the
technology behind optical tweezers evolves such that larger masses can be trapped. As shown in
Section 3.2.1, by setting u := xT and x1 := x, we can express the inertial system in state space
form as (3.15), which is reproduced below:

ẋ1 = x2

ẋ2 =
ψ(x1 − u)

m

[
α3(x1 − u)3 − α1(x1 − u)

]
− β

m
x2 +

1
m

(FL + FE)

y = x1. (C.1)

As in the noninertial case, we will derive control laws under the assumption of zero distur-
bance, FL(t) = FE(t) = 0.

Asymptotic Stability

As before, we can use the restoring force FT (xr) to stabilize the system, η̇ = Aη +BFT (xr), in
which η := [x1 x2]T , and

A =

[
0 1

0
−β
m

]
, B =

[
0
1
m

]
. (C.2)

Notice that A is stable, but not Hurwitz and (A,B) is reachable, and therefore stabilizable.
Therefore, we can apply the saturation analysis from [64]. Specifically, if we can find P = PT >
0, such that

ATP + PA = −Q ≤ 0, (C.3)

we can choose a Lyapunov function V (η) = ηTPη and set:

−λxr = −BTPη

xr =
1
λ
BTPη. (C.4)
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Then,

V̇ (η) = −ηTQη + 2µBTPη tanh(−BTPη)
= −ηTQη − 2µy tanh(y) ≤ 0, (C.5)

which shows that the origin of the η system is asymptotically stable in the domain |xr| < R [65].
The general version of the proof of stability given in [64] uses further analysis (employing tools
such as LaSalle’s invariance principle) to prove AS, but the simple structure of the matrix Q in
(C.5) makes such analysis unnecessary in this case. In particular, substituting (C.2) into (C.3),

it can be shown that the positive semidefinite matrix Q must take the form Q =
[

0 0
0 q

]
,

in which q > 0. This implies that the positive definite matrix P must take the form P =[ β
mp p
p m

β ( 1
2q + p)

]
, in which p > 0. Therefore, from (C.2),

1
λ
BTPη =

1
λ

[
p

m
x1 +

1
β

(
1
2
q + p

)
x2

]
. (C.6)

The expression given by (C.6) is difficult to apply in practice because m is typically many
orders of magnitude smaller than β. However, by choosing p = k1m and q = 2(βk2− p), we can
re-parametrize (C.6) in a more convenient form as:

1
λ
BTPη =

1
λ

(k1x1 + k2x2), (C.7)

in which,

k1 > 0

k2 >
m

β
k1,

to preserve p, q > 0. From (3.1), (C.4), and (C.7), the asymptotically stabilizing linear feedback
control law is given by:

u =
(

1− k1

λ

)
x1 −

k2

λ
x2. (C.8)

According to (C.7), for a particle starting at rest, that is, x2(0) = 0, when absolute position
|x1(0)| ≥ λ

k1
R, we find |xr| ≥ R for all time and therefore the particle will remain motionless

(x2 = 0), but away from the origin (x1 6= 0) and out of the controller’s reach.

Global Asymptotic Stability

As in the noninertial case, to achieve global asymptotic stability (GAS), we suggest setting the
relative position equal to a hyperbolic tangent function:

xr = ω tanh
(

1
λ
BTPη

)
, (C.9)

in which, 0 < ω < R. From (3.1), (C.7), and (C.9), the globally asymptotically stabilizing
nonlinear feedback control law u is given by

u = x1 − ω tanh
(

1
λ
BTPη

)
= x1 − ω tanh

[
1
λ

(k1x1 + k2x2)
]
. (C.10)
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The nonlinear control algorithm given by (C.10) was simulated for system parameters m =
5.5 × 10−10 mg, β = 0.01 pNs/µm, α3 = 22 pN/µm3, α1 = 10 pN/µm, λ = 5, and control
parameters k1 = 1000, k2 = 2m

β k1 ≈ 1.1× 10−4, and ω = 0.3893 µm as shown in Figure C.1.
Since k1 � k2, this corresponds to position feedback. In fact, the control gains chosen here are
roughly equivalent to the GAS control gain (p = 10) that was used in Figure 10.4. It should be
noted that since our system simulation parameters reflect values that we expect to encounter
in an actual experiment, the mass is negligible compared to the drag. Therefore, the inertial
system model and noninertial system model are essentially equivalent, as can be seen by the
similarity between Figures 10.4 and C.1.
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Figure C.1: Simulation of global asymptotic stabilization of the origin of the inertial system
model for x1(0) = 0.8 µm and start from rest x2(0) = 0.
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Appendix D

Future Directions

D.1 Optional Construction Work

This section describes construction options that can be added if necessary to increase the overall
capabilities of our optical tweezers.

D.1.1 Axial Steering System

In addition to being able steer the trap in the lateral (xy) plane, it may prove useful to steer it
in the axial (z) direction as well. The method for doing so is from Fallman and Axner [21]. As
shown in Figure D.1, lens L4 can be used to move the trap in the z direction, with both lens L4

and lens L3 positioned to guarantee that the stability requirements are met. These two lenses
should be placed at a distance of f3 +f4 apart such that they form a telescope that expands the
laser beam by the ratio f3

f4
, which for compatibility with the steering arrangement from Section

5.3, can be chosen to be equal to one. The distance between L3 and the gimbal-mounted mirror
should be f3.

Figure D.1: Vertical steering system.

With these additions, (5.4) should be updated as follows:

dλµ =
f1f3
f2f4

dλ (D.1)
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Furthermore, the axial (vertical) motion of the trap in the z direction, ∆zT , will be related to
the axial displacement of lens L4, ∆z4, as follows:

∆zT =
(
fµ

f1

)2(
f2
f3

)2

∆z4. (D.2)

D.1.2 Time Sharing System

Although two independently steerable traps can be obtained using polarizing beam-splitting
cubes, creating more than two traps (without increasing the number of laser sources) requires
the use of a time-sharing device. Although a scanning galvanometer mirror or an electro-optic
deflector (EOD) could be used for time-sharing, the most practical device is the acousto-optic
deflector (AOD). Since AOD’s are computer-controlled, the creation of multiple traps can be
specified with great flexibility [18]. Extensive details for the implementation of a PC-based time-
sharing system that uses an AOD can be found in [18, 73, 10], whereas information regarding
the spot resolution of an AOD can be found in [43].

D.1.3 Fluorescence Microscopy

For the study of some types of biological interactions, fluorescence-imaging techniques provide
richer information than regular viewing. If necessary, fluorescence imaging capabilities can be
added to our optical tweezer system with minor modifications.

D.1.4 Combined Axial and Lateral Position Detectors

For detecting both axial and lateral displacements, Ghislain and Webb have suggested a scheme
in which the photodiode is positioned such that “roughly half the optical power in the diverging
cone of light illuminating it is intercepted” [67, 18]. Lateral displacements are registered by the
normalized x and y outputs from the photodiode, while axial displacement are detected by the
amount of total power intercepted by the photodiode.

D.2 Alternate Equipment Calibration Methods

In the main text, the AOD was calibrated before the photodetectors. In this section, we describe
an alternate calibration method in which the photodetector is calibrated before the AOD.

D.2.1 Position Detector Calibration

Visscher et al. suggested the following three-step process for calibration of the position detectors
[18]:

1. “The pixel size of the video system is first determined by imaging a precision, diamond-
ruled grid carrying a line pattern with 10-µm spacing on the CCD camera.

2. A piezo stage is then calibrated by driving it with a triangle-wave voltage and recording
on video the movement of a bead fixed to the coverglass. Due to piezo hysteresis and
nonlinearity, this produces a nonlinear displacement waveform.

3. After calibration and linearization of the piezo stage, a bead fixed to the coverglass is
moved through the trap with a periodic voltage computed to generate a true triangle-wave
of displacement, while the detector response to this calibrated displacement is recorded.
[18]”
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We did not attempt this method because a suitable piezo stage is not available in our labo-
ratory.

D.2.2 AOD Calibration

Instead of using digital images to calibrate the AOD as in Section 6.3, Simmons et al. measured
trap movement by recording the movement of stage micrometers [10]. A position detector is
adjusted so that its output is zero for a trapped bead. As before, the bead is moved to different
lateral positions along a straight line by driving the AOD at different frequencies. The output
from the photodetector will become nonzero because of the detector beam deflection. At each
frequency, the micrometers that translate the sample stage are adjusted until the output from
the photodetector is nulled. The lateral displacement that was made using the micrometers
provides the change in trap position. Therefore, the relation between drive frequency and trap
position can be obtained.

D.3 Additional Off-Line Trap Calibration Methods

This section describes off-line trap calibration methods that have not been completed for our
optical tweezer system.

Lateral Escape Force Method

The lateral escape force method is the most common method used to calibrate the trap strength
(FT )max in the lateral plane. Once a particle of known diameter is trapped, the fluid cell is
moved laterally at an ever-increasing velocity until the particle shoots out of the trap. The
process is recorded on standard VHS videotape and the velocity of the sphere relative to the
fluid can be obtained by studying the video frames just prior to the sphere’s escape. The drag
force FD acting on the sphere can be obtained using Stoke’s equation

FD = 6πηfrbvfb, (D.3)

where ηf is the fluid viscosity, rb is the radius of the sphere, and vfb is the velocity of the fluid
medium relative to the sphere. The escape velocity vesc of the sphere (relative to the fluid) is
obtained by observing the position of free (untrapped) spheres that move at the same velocity
as the fluid. Once vesc has been determined, (FT )max can be calculated from the force balance

(FT )max = 6πηfrbvesc. (D.4)

Prior to calibration, free spheres can be positioned (using the optical tweezer itself) so that they
form a convenient linear scale. Although published literature suggest that particles stuck to the
coverslip could be used as position references, particles traveling within the fluid provide a more
accurate measure of actual fluid velocity. This is especially true when one considers that (D.3)
is accurate only when the trapped sphere is at least several ball diameters away from the fluid
cell wall. In fact, when the sphere is closer to the wall (but still not touching it), the corrected
drag force FD′ is given by the Lorentz formula

FD′ = 6πηfrb

(
1 +

9
16

rb
hb

)
vfb (D.5)

where hb is the height from the sphere center to the wall surface [26].
The VCR captures video frames at a rate of 30 Hz, and each frame can be still-advanced for

maximum temporal resolution (1/30 sec) during playback. Higher quality video images can be
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obtained using the s-VHS recording format. Despite its crudeness, the lateral escape method
can be used to calibrate (FT )max to within 10% accuracy [18]. By observing the maximum
escape distance (from the center of the trap), this method can also be used to determine the
maximum force region RF [10]. The main advantage of this method is that it does not require
the use of sensitive position detectors. However, since the maximum escape force occurs in the
nonlinear region of the trap, this method cannot be used to calibrate the linear trap stiffness. If
the method is modified such that with the fluid being moved at a fixed velocity, the laser power
is reduced until the sphere escapes, “somewhat better reproducibility of measurements” can be
obtained [18].

The escape force method was done by moving the specimen stage by hand, but a smoother
acceleration could be obtained using a motorized actuator. For calibration with greater than
10% accuracy, the translation stage must be equipped with high-resolution piezo-electric actu-
ators [18]. Although the xy translation stage in our system is compatible with several brands
of commercially available piezo-electric actuators, the minimum incremental motion of such ac-
tators is unsufficient1. Therefore, the DC motors described in Section 5.3.1 can be used for
this type of calibration even though their minimum incremental motion is larger than desired.
Preliminary calibration results for our optical tweezer are included in [46].

Lateral Capture Method

The lateral capture method is used to calibrate the capture range velocity vR in the lateral
plane. This is similar to the lateral escape method from Section D.3, except that the particle
starts in motion and is brought to rest, instead of the other way around. The experimental
procedure is similar except that the fluid is moved at a constant velocity and the particle to be
investigated starts from beyond the range of influence R of the trap. The experiment is repeated
at increasing (constant) velocities until the tweezer can no longer trap the moving particle.

Drag Force Method

The drag force method uses the same idea as the escape force method, but it is used to calibrate
the trap stiffness α within the linear Hookeian region Rl. The linear region extends 100-300
nm maximally [9]. The trap stiffness α is obtained by applying a known viscous drag force FD

(according to (D.3)) and measuring the relative displacement xr := x− xT of a trapped sphere
from the trap center.

α =
FD

xr
(D.6)

The drag force can be obtained by moving the fluid cell using a periodic displacement [18]. A
triangular displacement motion (corresponding to square wave of fluid velocity vfb) will produce
a square force, while a sinusoidal displacement motion will produce a cosine force. This method
requires both a well-calibrated motion stage and position detection system and also knowledge
of the viscous drag.

Axial Escape Force Method

Since the trap is weakest in the axial direction opposite the direction of the laser beam, the
maximum restoring force (strength) of the trap in this direction can be used to characterize
the overall performance of the trap [19]. The axial trapping force is obtained by reducing the
laser power until a spherical trapped particle falls out of the trap due to gravity. This method

1Most commercial piezo-electric actuators have excellent specifications under very low load conditions, but
when incorporated with our large platform translation stage, their performance becomes inadequate. An alter-
native would be to purchase a piezo-electric translation stage, but they are expensive.
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requires that the trapping particles are denser than the surrounding medium, but in practice,
they also need to be sufficiently large that they sink if not held in place by the trap. To this
end, Felgner et al. used large glass beads [15]. The axial force (FT )ax is given by

(FT )ax =
1
6
(ρ− ρf )d3g, (D.7)

where ρ and ρf are the densities of the bead and the suspension medium, d is the diameter of
the bead, and g is gravitational acceleration [15]. For smaller glass beads and polystyrene beads
that take a longer time (several minutes) to sink, Felgner et al. used a thermodynamic argument
to obtain the following expression for the axial trapping force on a bead of diameter d:

(FT )ax =
2kBT

d
. (D.8)

For medium sized glass beads, they suggest that the gravitational and thermal contributions to
the axial trapping force should be added [15].

D.4 Future Investigations

Following are several applications of optical tweezers that are of interest to the author. These
may be investigated in the future.

D.4.1 Attempted Work

Micro-mixing

Carl Meinhart has suggested the use of optical tweezers to verify theoretical models for the
mixing of fluids. Although the mixing of two fluids with a vertical interface could be attempted
with our present setup, such mixing may not be feasible for fluids with different indices of
refraction because spherical aberration at the fluid interface will almost certainly destroy the
stability of the trap (Figure D.2). Thus far, our attempts to move a trapped sphere across a
vertical interface from water to a silicon fluid have failed because the particle would not cross the
fluid interface. Whether this is due to spherical aberration, surface forces at the fluid interface,
or high viscosity is not clear. However, the mixing of two fluids with a horizontal interface
should pose fewer aberration problems, even for fluids with different indices of refraction. Such
mixing could be investigated if vertical steering and horizontal viewing capabilities are added
to the optical tweezers.

To avoid spherical aberration issues, Derek Trethaway suggested mixing different colored
water separated by a vertical interface. Unfortunately, the color interface was not clearly visible
under the microscope because of diffusion. As a result, mixing effects could not be noticed within
the microscope viewing diameter of approximately 100 µm. Trethaway suggested using a fluid
micromixing device to pump colored water separated by a vertical interface. If the fluids velocity
is fast enough to overcome the rate of diffusion, the color interface between the two moving fluids
should be roughly visible at the vicinity of their meeting point as shown in Figure D.3.

D.4.2 Unattempted Work

Positioning Tool for Atomic Force Microscopy

Steven Chu mentions how optical tweezers can be used to spot-weld polystyrene beads on to a
microscope slide. This could be used to position samples in various configurations (for example,
in a stretched state) for study using atomic force microscopy and related techniques [3, 74]. Since
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Figure D.2: Micromixing two stationary fluids with different indices of refraction.

Figure D.3: Micromixing colored water in a fluid cell.

Figure D.4: Spot welding samples for AFM scanning.

many biological samples require meticulous chemical preparations before they can be stuck to
a test surface, the use of optical tweezers for spot-welding could save a lot of time and effort.

Ratnesh Lal has suggested using optical tweezers to hold samples for AFM scanning with-
out spot-welding them to the microscope slide. Although it was initially unclear whether this
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approach would be feasible because of the disparity between typical optical trapping forces (∼
piconewtons) and typical AFM probe forces (∼ nanonewtons), researchers have demonstrated
that AFM’s can be used to measure forces even smaller than piconewtons. Lal has suggested
that an additional trap be created using time sharing to allow the three-dimensional clamping
of large cells.

Figure D.5: Holding samples for AFM scanning without spot-welding.

Optical Force Microscopy

The optical tweezer itself can be used to obtain surface images of biological samples, using a
process known as optical force microscopy (OFM) [75, 40]. Once the optical tweezer has been
automated, its conversion into an OFM is straightforward. The advantage of the OFM over
conventional force microscopes (such as the AFM) is that it causes significantly less damage
to imaged samples. This is because the probe used by an OFM (a trapped particle), is more
compliant than the probe used by an AFM (a silicon cantilever). The resolution that can be
obtained using an OFM can be optimized by the use of appropriate probe geometry and by the
use of feedback control.

Hydrodynamic Interactions

Meiners and Quake have demonstrated that optical tweezers can be used to investigate quan-
titatively the nature of hydrodynamic interactions between two colloidal particles suspended in
water [41].

Trap Modeling

As mentioned in Section 2.2, accurate theoretical estimations of the trapping force exist only for
particles with spherical geometry that are trapped in two separate size regimes [15]. According
to Svoboda and Block, however, it is unclear whether the discrepancies between theory and
experiment are due to incompleteness of the models or errors in the measurements (or both) [20].
Once the optical tweezer has been fully automated, it can be used to investigate experimentally
the validity of theoretical models.

Sorting

Morishima et al. showed how optical tweezers, when combined with an electric field, can be
used to transport and separate microbes such as Escherichia coli within a microchannel [76]. In
fact, when the trapping force of optical tweezers is reduced by the use of low numerical aperture
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microscope objectives, the device can be used as a cell sorter. Odde and Renn show how a
similar arrangement can be used to guide and deposit 100 nm–10 µm-diameter particles onto
solid surfaces with micrometer-scale accuracy using a process they called “laser-guided direct-
writing” [77]. They anticipate applications in tissue engineering, hybrid electronic-biological
devices, and biochip array fabrication.

Figure D.6: Laser-guided direct-writing.

Microsurgery

Although extremely high energy densities can be generated by an optical tweezer, this occurs
only in a very small volume near the focus of the laser beam [78] and the generated heat dissipates
into the water within a few nanoseconds [79]. Hence, the tweezer can be used to manipulate the
interior of a transparent object, such as a biological cell, without damaging its walls. Berns et
al. have combined optical tweezers with an older device, laser scissors, such that they can not
only hold, but also cut individual cells and organelles [80].

Micromachining

Gauthier used optical tweezers to trap not just spheres, but also cylinders, rings, and stars with
dimensions in the range 1–10 µm. He suggests that such diverse trapping objects can be used for
the assembly, activation, and possibly repair, of micro-machines [81]. In fact, Padgett and Allen
have demonstrated that optical tweezers can be used not only to trap, but also to rotate trapped
particles [4], but their method requires that the trapping laser have a Laguerre-Gaussian profile.
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Appendix E

Optical Glossary

Numerical Aperture the numerical aperture (NA) of a microscope objective is defined as

NA = no sin(θλ)max (E.1)

where no is the relative refractive index of the immersion medium (oil) and (θλ)max is the
half-angle of the maximum cone of light that can be focused using that objective as shown
in Figure E.1 [82]. The incoming light is assumed to be collimated.

Figure E.1: Numerical aperture.

Gaussian Beam Profile A Gaussian intensity distribution is characterized by the following
equation:

I(r) = Io exp
(
−2r2

w2
T

)
(E.2)

Where r = r(x, y) [50]. The parameter wT , known as the Gaussian beam radius or beam
waist, is the radius at which the intensity of the beam has dropped to 1/e2 of its value
along the axis. The intensity will be half-maximum at r = 0.59wT . The power contained
within a radius r is given by

Pλ(r) = Pλ(∞)
[
1− exp

(
−2r2

w2
T

)]
(E.3)
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[50]. On-axis intensity is related to the total power according to

I(0) = Pλ(∞)
2

πw2
T

(E.4)

[50]. When cutting off the beam with a small aperture, the far-field intensity distribution
can become non-Gaussian. To minimize this effect, the aperture diameter should be at
least three or four wT .

Power Density The power density PD of a continuous wave (CW) laser is its power per unit
area:

PD =
Pλ

πr2λ
, (E.5)

where rλ is the beam radius and Pλ is the laser power [50]. As a safety precaution, the
power density should be multiplied by 2.
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