Myths, Misconceptions and Misuses of Nonlinearity

Bassam Bamieh

Department of Mechanical Engineering University of California, Santa Barbara

The Issues

Observed Phenomena

Mathematical Models

Phenomena: Data, system trajectories, time traces

Models: Differential equations

- Concern: Complexity
 - Complexity of phenomena (scale, patterns, etc.)

somewhat subjective

- Complexity of models (?????)

Linear vs. Nonlinear

Low vs. High order

Outline

- A story of boundary layer turbulence
 - Effective analysis using tools from linear systems theory
 - "but I thought turbulence was a nonlinear phenomenon!!??"

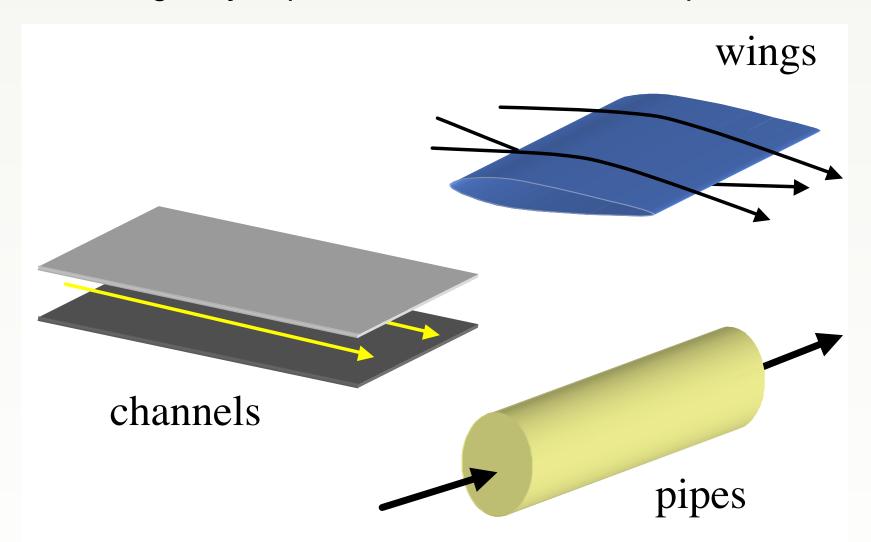
- Are linear and nonlinear models equivalent?
 - Linearization techniques
 - Model order
 - Special structure

- The use of "nonlinearity" in current scientific culture
 - a runaway concept

The phenomenon of turbulence

Technologically important flows:

Flows past streamlined bodies

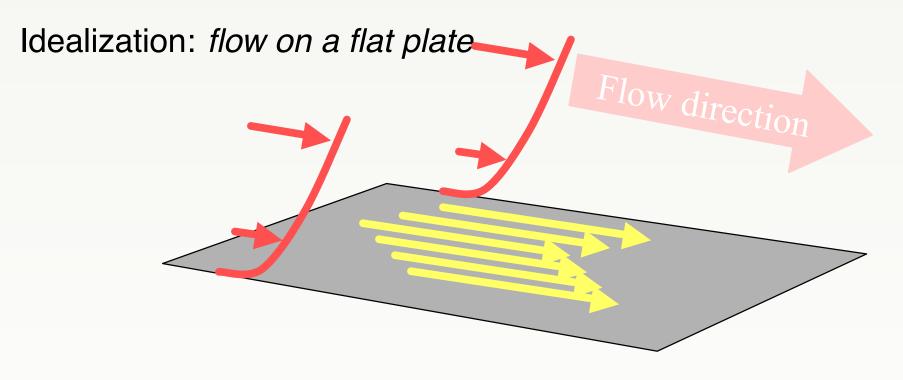


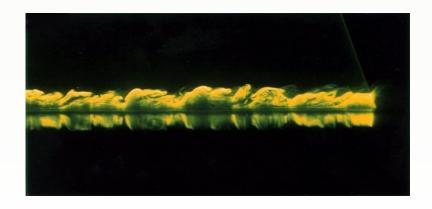
Wall-bounded shear flows

Friction with the walls drives the flows

The phenomenon of turbulence (Cont.)

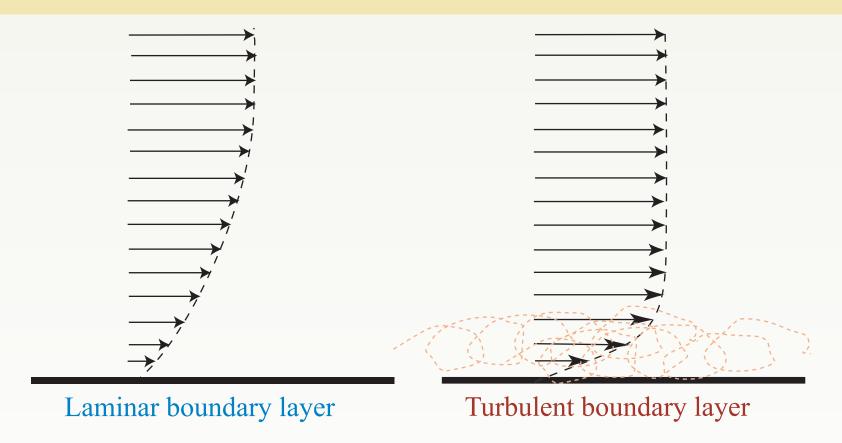
Boundary layers form in flow past any surface





Viewed sideways

Boundary layer turbulence and skin-friction drag

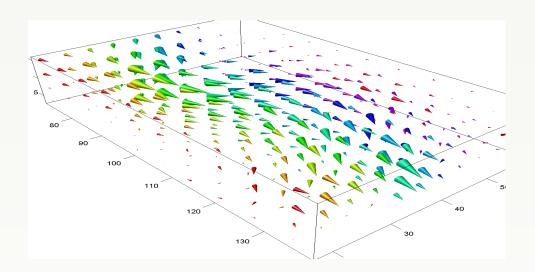


A laminar BL causes less drag than a turbulent BL (for same free-stream velocity)

This *skin-friction drag* is 40-50% of total drag on typical airliner

The "Dynamical Systems" view

The flow field at time time $=: \Psi(t)$



 $\Psi(t)$ is the vector field of flow velocities

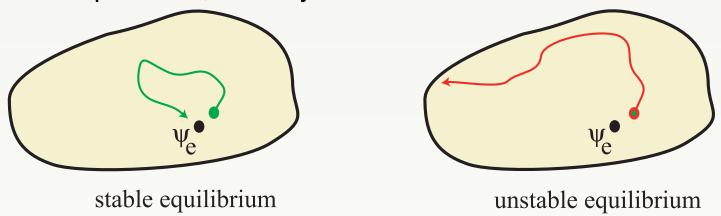
 $\Psi(t)$ is the STATE of the system at time t

Fluid dynamics (e.g. Navier-Stokes equations) can be written as:

$$\begin{array}{lll} \partial_t \Psi(t) & = & \mathcal{F} \left(\Psi(t), R \right) \\ \uparrow & \uparrow \\ \text{change} & \text{function of} \\ \text{in time} & \text{current state} \end{array}$$

Does the system stay near an equilibrium?

If starting "near" equilibrium, does system come back to it??



An unstable equilibrium is not really an "equilibrium"

How to check stability?

Common method: Linearization

$$\partial_t \Psi(t) = \mathcal{F}\left(\Psi(t)\right) = \mathcal{A}\left(\Psi(t)\right) + \mathcal{N}\left(\Psi(t)\right)$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$
Linear part The rest

Stability (instability) of $\mathcal{A} \Leftrightarrow$

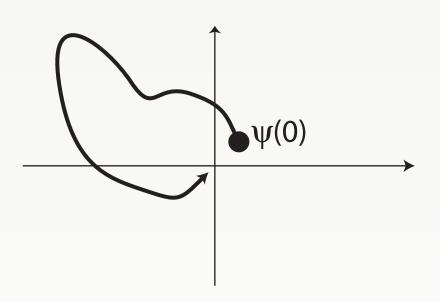
Local stability (instability) of \mathcal{F}

Can be studied using eigenvalue/eigenfunction analysis of A

Uncertainty in a Dynamical System

Lyapunov Stability

deals with **uncertainty** in initial conditions



If $\Psi(0)$ is known to be *precisely* Ψ_e ,

then
$$\Psi(t) = \Psi_e$$
, $t \ge 0$

We introduce the concept of Lyapunov stability because we can never be *infinitely* certain about the initial condition

Shortcomings of Lyapunov stability • Perturbs only initial conditions • Cares only about asymptotic behavior

Uncertainty in a Dynamical System (cont.)

Lyapunov stability

$$\dot{\psi} = f(\psi)$$
 uncertain initial

conditions

investigate $\lim_{t \to \infty} \psi(t)$

Linearized version:

eigenvalue stability

$$\dot{\psi} = A\psi$$

investigate transients

e.g.
$$\sup_{t\geq 0}\|\psi(t)\|$$

dynamical uncertainty

$$\dot{\psi} = F(\psi) + \Delta(\psi)$$

exogenous disturbances

$$\dot{\psi}(t) = F(\psi(t), d(t))$$

$$\Longrightarrow \Longrightarrow \Longrightarrow =$$

transient growth

umodelled dynamics

$$\dot{\psi} = (A + \Delta)\psi$$

Psuedo-spectrum

exogenous disturbances

$$\dot{\psi}(t) = A\psi(t) + Bd(t)$$

input-output analysis

combinations

$$\dot{\psi}(t) = F(\psi(t), d(t)) + \Delta(\psi(t), d(t))$$

 $\implies \implies \implies \implies \implies \implies \mathsf{More}$ uncertainty

combinations

$$\dot{\psi}(t) = (A + B\Delta C)\psi(t) + (F + G\Delta H)d(t)$$

Uncertainty in a Dynamical System (cont.)

Lyapunov stability

$$\dot{\psi} = f(\psi)$$

uncertain initial conditions

investigate $\lim_{t \to \infty} \psi(t)$

Linearized version:

eigenvalue stability $\dot{\psi} = A \psi$

investigate transients

e.g.
$$\sup_{t\geq 0}\|\psi(t)\|$$

dynamical uncertainty

$$\dot{\psi} = F(\psi) + \Delta(\psi)$$

exogenous disturbances

$$\psi(t) = F(\psi(t), d(t)) \\
\Longrightarrow \Longrightarrow \Longrightarrow$$

transient growth

umodelled dynamics

$$\dot{\psi} = (A + \Delta)\psi$$

Psuedo-spectrum

exogenous disturbances

$$\dot{\psi}(t) = A\psi(t) + Bd(t)$$
 input-output analysis

combinations

$$\dot{\psi}(t) = F(\psi(t), d(t)) + \Delta(\psi(t), d(t))$$

 $\implies \implies \implies \mod$ More uncertainty \implies

combinations

$$\dot{\psi}(t) = (A + B\Delta C)\psi(t) + (F + G\Delta H)d(t)$$

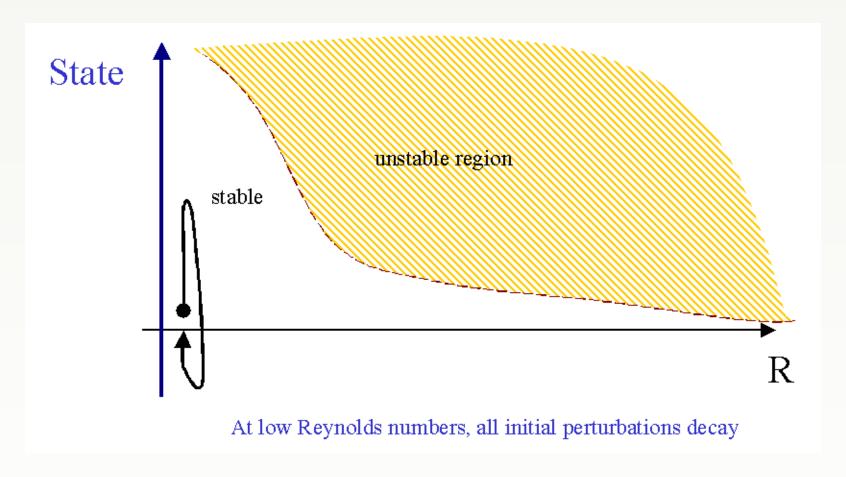
The nature of turbulence

Fluid dynamics are described by deterministic equations

Why does fluid flow "look random" at high Reynolds numbers??

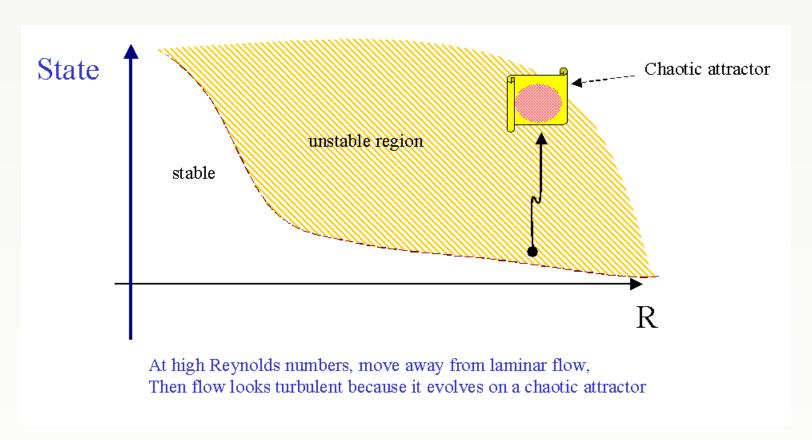
The nature of turbulence

Common view of turbulence



The nature of turbulence (cont.)

Common view of turbulence



Intuitive reasoning

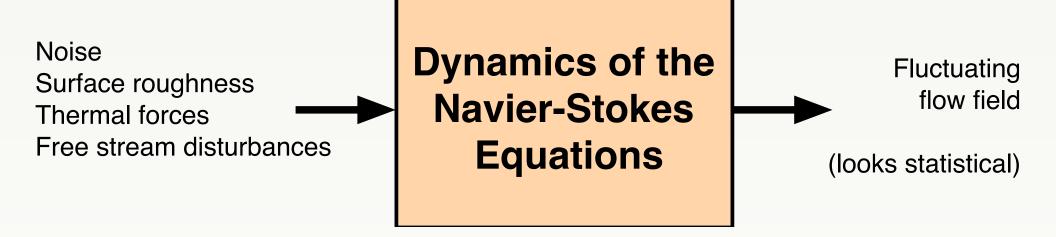
Complex, statistical looking behavior

 \longleftrightarrow

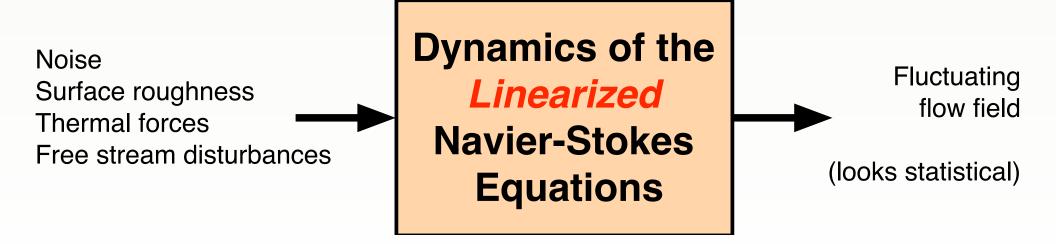
System with chaotic dynamics

The nature of turbulence (cont.)

Alternative view



Qualitatively similar to



So what now?

- A story of boundary layer turbulence
 - Effective analysis using tools from linear systems theory
 - "but I thought turbulence was a nonlinear phenomenon!!??"
- Are linear and nonlinear models equivalent?
 - Linearization techniques
 - Model order
 - Special structure
- The use of "nonlinearity" in current scientific culture
 - a runaway concept

Linearization techniques

The Carleman Linearization

Example: $\frac{d}{dt}x = x^2$

Define: $x_1 := x, \ x_2 := x^2, \ , \cdots, \ x_n := x^n, \ \cdots$

$$\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ \vdots \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 4 & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ \vdots \end{bmatrix}, \quad \text{i.e.} \quad \dot{\mathcal{X}} = \mathcal{A}\mathcal{X}$$

The original system is imbedded in this linear system

General procedure: Given $\dot{x} = F(x, u)$

Define \mathcal{X} with components $x^i u^j$

$$\dot{\mathcal{X}} = \mathcal{A}\mathcal{X} + (\dot{u})\mathcal{B}\mathcal{X}$$

Thus: Bilinear Systems are Universal Models

Linearization techniques (cont.)

- The Lie-Koopman Linearization
- State transformations and feedback linearization
- The Fokker-Planck equation

•

Linearization techniques often do not make a problem more tractable

e.g. computing $e^{t\mathcal{A}}$ can be arbitrarily complex!!

Linear Phenomena

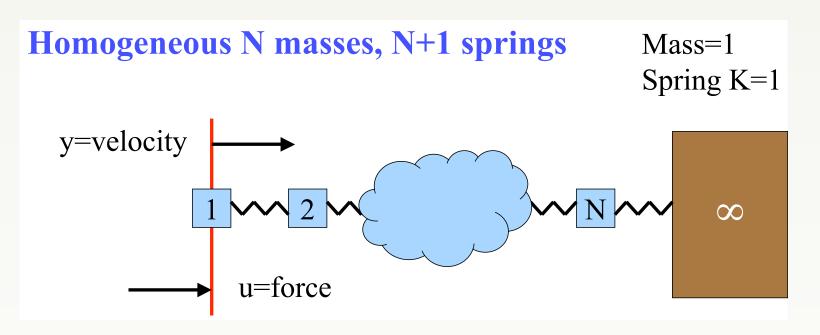
Q: What phenomena can a linear dynamical system explain?

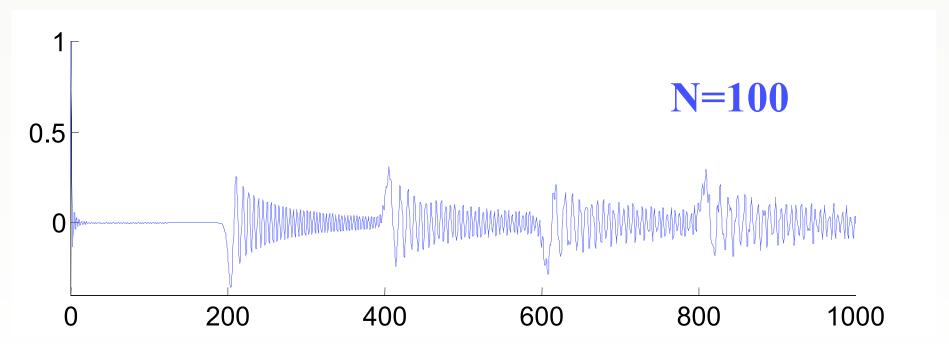
$$\frac{d}{dt}\Psi(t) = \mathcal{A} \Psi(t)$$

A: Any phenomena explainable using a nonlinear dynamical system

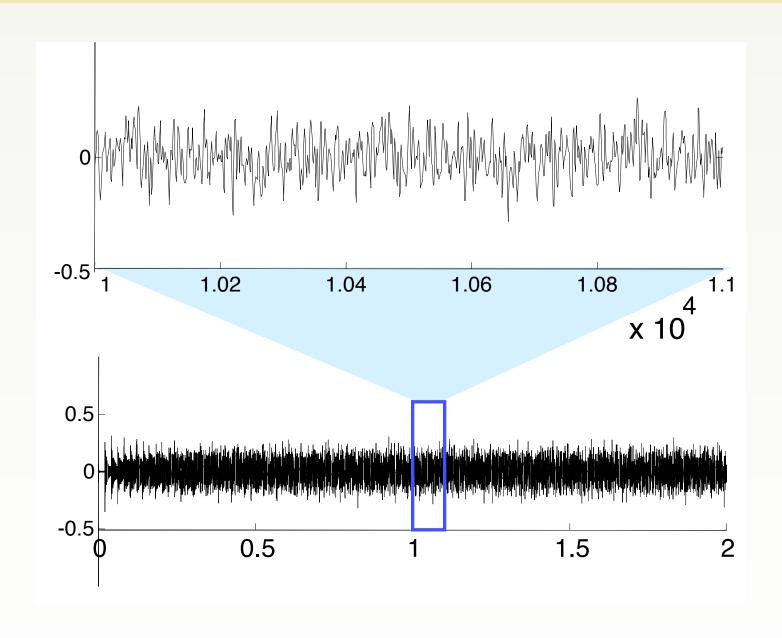
The term "nonlinear phenomenon" has no mathematical meaning!

"Chaos" in Linear Systems





"Chaos" in Linear Systems (cont.)



has continuous spectrum (PSD) over long, but finite times

"Chaos" in Linear Systems (cont.)

• With similar schemes, can generate stochastic processes with any prescribed PSD

Clearly not the most efficient method to generate such processes!

Moral: Sometimes a low dimensional nonlinear model is easier to handle than a high dimensional linear one

Another example: Optimal filtering equations

Phrases to avoid

A well defined mathematical object: **nonlinear mapping**mapping between two vector spaces that does not preserve their linear structure

Avoid:

- Nonlinear phenomenon (Science, Behavior, etc...)
- A linear system can not do this
- This is a nonlinear effect
- Even the term "nonlinear system" is a little ambiguous

To make sure you are on firm ground:

use the term nonlinear only in its original mathematical meaning

The End