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Transition & Turbulence as Natural Phenomena

All fluid flows transition (as 0 N oo) from laminar to turbulent flows

@ Bluff bodies dominant phenomenon: separation

Re= 0.16

@ Streamlined bodies dominant phenomenon: friction with walls

=

wall-bounded shear flows
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Boundary Layer Turbulence
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boundary layer turbulence side view top view

@ Transition & Turbulence in Boundary Layer and Channel Flows
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Boundary Layer Turbulence

—

boundary layer turbulence side view

Turbulent bo!

skin-friction drag: laminar vs. turbulent

@ Transition & Turbulence in Boundary Layer and Channel Flows

@ Technologically Important: ~ Skin-Friction Drag
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Control of Boundary Layer Turbulence

active control with
sensor/actuator arrays

in nature: passive control

corrugated skin compliant skin
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Control of Boundary Layer Turbulence

active control with

in nature: passive control
sensor/actuator arrays

flexible membrane

corrugated skin compliant skin

@ Intuition: must have ability to actuate at spatial scale comparable to flow structures
spatial-bandwidth of controller > plant’s bandwidth
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Control of Boundary Layer Turbulence

active control with
sensor/actuator arrays

in nature: passive control

rigid base

corrugated skin compliant skin

@ Intuition: must have ability to actuate at spatial scale comparable to flow structures
spatial-bandwidth of controller > plant’s bandwidth

@ Caveat: Plant's dynamics are not well understood (
obstacles not only device technology
also: dynamical modeling and control design
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Mathematical Modeling of Transition: Hydrodynamic Stability
The Navier-Stokes (NS) equations:

ou = —Vyu-—gradp+ I%Au
0 = divu
@ Hydrodynamic Stability: view NS as a dynamical system

@ /aminar flow ug := a stationary solution of the NS equations  (an equilibrium)
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Mathematical Modeling of Transition: Hydrodynamic Stability
The Navier-Stokes (NS) equations:

ou = —Vyu-—gradp+ I%Au
0 = divu
@ Hydrodynamic Stability: view NS as a dynamical system

@ /aminar flow ug := a stationary solution of the NS equations (an equilibrium)

i.c. u(0) # g,

laminar flow uy stable —> e
u(t) — ug

u(t) u(0)

typically done with dynamics linearized about ug

various methods to track further “non-linear behavior”
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Mathematical Modeling of Transition: Hydrodynamic Stability
The Navier-Stokes (NS) equations:

N
ou = —Vyu-—gradp+ I%Au
0 = divu
@ Hydrodynamic Stability: view NS as a dynamical system

@ A very successful (phenomenologically predictive) approach for many decades

HYDRODYNAMIC
STABILITY
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Mathematical Modeling of Transition: Hydrodynamic Stability
The Navier-Stokes (NS) equations:

1 =

z X

ou = —Vyu-—gradp+ I%Au
0 = divu
@ Hydrodynamic Stability: view NS as a dynamical system

@ however: problematic for wall-bounded shear flows

[| Flow type | Classical linear theory R. | Experimental R. ||
Channel Flow 5772 ~ 1,000-2,000
Plane Couette 00 ~ 350
Pipe Flow 00 ~ 2,200-100,000
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Mathematical Modeling of Transition: Hydrodynamic Stability
The Navier-Stokes (NS) equations:

ou = —Vyu-—gradp+ I%Au
0 = divu
@ Hydrodynamic Stability: view NS as a dynamical system

@ however: problematic for wall-bounded shear flows

[| Flow type | Classical linear theory R. | Experimental R. ||
Channel Flow 5772 ~ 1,000-2,000
Plane Couette 00 ~ 350
Pipe Flow 00 ~ 2,200-100,000

» was widely believed: this theory fails because it is linear
and “nonlinear effects” are important even for infinitesimal i.c.
» however, since 90’s: story is actually more interesting than that
Nonmodal Stability Theory, Schmid, ARFM "07
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Mathematical Modeling of Transition: Linearized Stability

@ Decompose the fields as u = Ug s u
) 0
laminar fluctuations
@ Fluctuation dynamics: In linear hydrodynamic stability, — Vi is ignored
Ju = —Vgu —Vzug — gradp + I%Afl — Vil
0 = diva
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Mathematical Modeling of Transition: Linearized Stability

@ Decompose the fields as u = Ug F u
1) )
laminar fluctuations

@ Fluctuation dynamics: In linear hydrodynamic stability, — V;i is ignored
dm = —Vgu —Vaug — gradp + tAa — Vi

0 = divu
“Evolution Form”

AV U0 — UAG: + £ A? 0 v
2 - —U'a. U8+ 3A | | &

R

@ Linearization in
:= wall-normal velocity

=

:= wall-normal vorticity

il

)

6/18

D 4 44 UCSB, Nov 2013



Mathematical Modeling of Transition: Linearized Stability

@ Decompose the fields as u = Ug F u
1) )
laminar fluctuations

@ Fluctuation dynamics: In linear hydrodynamic stability, — V;i is ignored
dm = —Vgu —Vaug — gradp + tAa — Vi

0 = divu
“Evolution Form”

AV U0 — UAG: + £ A? 0 v
2 - —U'a. U8+ 3A | | &

R

@ Linearization in
= wall-normal velocity

<
|.

= wall-normal vorticity

&
I

)

@ Classical Linear Hydrodynamic Stability:
Instability < A has spectrum in right half plane

Transition +—
The existence of “exponentially growing normal modes” (of ')
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The Eigenvalue Problem

@ For parallel channel flows
A is translation invariantin x, z, = Fourier transform in x and z:

)

& <

_ i ATIU" — ik ATTUA + LATTA? 0
- —ik.U’ —ikeU + A

Qe
L—
& <

@ k., k,: spatial frequencies in x, z directions (wave-numbers).

9 ‘A’(tvk)m-vkz) A {’(takX7-,kz)
ar { Ot ke, k) | Alks k) Wt ky, ., ke)

Essentially: spectrum (A) = | J spectrum (A(kx,kz))

Kk
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Tollmien-Schlichting Instability

. . Typical stability regions in K, R space: (for
Poiseuille flow at R = 6000, ky = 1, k; =0

Poiseuille and Blasius boundary layer flows)

LI . - !

R R
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Tollmien-Schlichting Instability

. . Typical stability regions in K, R space: (for
Poiseuille flow at R = 6000, ky = 1, k; =0

Poiseuille and Blasius boundary layer flows)

R R

Unstable eigenvalue corresponds to a slowly growing traveling wave:
the Tollmien-Schlichting wave

First seen in experiments by
Skramstad & Schubauer, 1940
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A Toy Example
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A Toy Example

MBI

P1(t), 12 (t)
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Mathematical Modeling of Transition: Adding Signal Uncertainty

@ Decompose the fields as u = Ug F u
T t
laminar fluctuations
@ Fluctuation dynamics: In linear hydrodynamic stability, — Vi is ignored
i = -Vl —Valig — gradp + +Ad — Vi + d
0 = diva

» a time-varying exogenous disturbance field d

d NSgr

u
. (spatio-temporal system) .

Input-Output view of the Linearized NS Equations
Jovanovic, BB, 05 JFM
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Input-Output Analysis of the Linearized NS Equations

~ 1 b
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Input-Output Analysis of the Linearized NS Equations

- 1 b
o[ &] Z [Ua-usneiar 0 (18], e, @ie s[4
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— ool system) '—: (9,\11 _ A N/ + B d
u = CvVv

@ eigs (A): determine stability
@ System norm d — u: determines response to disturbances
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Input-Output Analysis of the Linearized NS Equations

- 1 5
O A~v = U8, — UA,ax + EAZ 0 1 v + ~ Oy 6’% + 812 —0y gf
® U0, —Udi+ zA | | @ 2 0 =0 |d

i
v
W

Oy =871 =
R+2 0 } [Y]
2y Ox “

| - @y

B :
e [ OV = AU + Bd
u = Cv

Surprises:
@ Even when A is stable
@ Input-output resonances

the gain d — u can be very large
very different from least-damped modes of A
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Spatio-temporal Impulse and Frequency Responses

Translation invariance in x & z implies

@ Impulse Response
u(t,x,y,z) = /G(I—Tax—&y?y',z—o d(7,€,,¢) drdédy'dg
(05 = [ G- rx— 62— ) A(r,6,..) drdedC
G(t,x,z) : Operator-valued impulse response function

@ Frequency Response

(Wike, k) = Glw, ke, k) d(w, ks, k;)
g (w, ky, kz) :  Operator-valued frequency response. Packs lots of information!

(=1}
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Modal vs. Input-Output Analysis

| . ° (9,\1/ = ./4 \II + B d
] S ) = u = CVU

@ IR:G(t,x,2)

@ FR: G(w, ky, k;)
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Modal vs. Input-Output Analysis

) i oY = AV + Bd

| (< atio-temporal system) [ > u = C \Ij
@ IR:G(t,x,2)
® FR: G(w, ks, k;)

Modal Analysis: Look for unstable eigs of A

|| Flow type | Classical linear theory R. | Experimental R. ||
Channel Flow 5772 ~ 1,000-2,000
Plane Couette S ~ 350
Pipe Flow 00 ~ 2,200-100,000
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Modal vs. Input-Output Analysis

) i oV = AU + Bd

| (< atio-temporal system) [ > u = C \Ij
@ IR:G(t,x,2)
® FR: G(w, ks, k;)

Modal Analysis: Look for unstable eigs of A

@ Channel Flow @ R = 6000, k, = 1, k, = 0:

Flow structure of corresponding eigenfunction:
Tollmein-Schlichting (TS) waves
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Modal vs. Input-Output Analysis

ov = AV + Bd
d NS» u (] ~

i) = u = CVU
o IR: G(t,x,y,—1,2)
@ FR: G(w, ky, k;)

Impulse Response Analysis: Channel Flow @ R = 2000

similar to “turbulent spots”
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Spatio-temporal Frequency Response

G(w, kv, k2) is a large object! one aggregation method: sup , omax (g(w, ky, kz))
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Spatio-temporal Frequency Response

G(w, kv, k2) is a large object! one aggregation method: sup , omax (g(w, ky, kz))

Al

Bhbons

Wlog, el 1k k)

100

T
tog 100k, 10° 1og (k)
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Spatio-temporal Frequency Response

G(w, kv, k2) is a large object! one aggregation method: sup , omax (g(w, ky, kz))

Al

Bhbons

20lg, {1k k)

e

e
o o o8 1o(k)

What do the corresponding flow structures look like?
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Spatio-temporal Frequency Response

G(w, kv, k2) is a large object! one aggregation method: sup , omax (g(w, ky, kz))

100 S
— 1o
lu&.lu(kz)

log lu(kx)

What do the corresponding flow structures look like?
closer (than TS waves) to structures seen in turbulent boundary layers
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Modal vs. Input-Output Response

Correspondence: poles of a transfer function +— frequency response

Typically: underdamped poles «— frequency response peaks

o,

AT
|
I
|
|
|
|

cf. The “rubber sheet analogy”:

—Cn
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Modal vs. Input-Output Response

Correspondence: poles of a transfer function «— frequency response

However: no connection necessary between

pole locations and FR peaks "

Theorem: Letz, ..., z, be any locations in the left half
of the complex plane.
Any stable frequency response function in H* can be gl

arbitrarily closely approximated by a transfer function of N
the following form: \ 5

Re(s)

N Ny
oy Qi
H(s) = ;(S_Zl)i +o ;7(3_&)!.

by choosing any of the Ni’s large enough
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Modal vs. Input-Output Response

Correspondence: poles of a transfer function +— frequency response

However: no connection necessary between

pole locations and FR peaks | "
Theorem: Letz, ..., z, be any locations in the left half
of the complex plane.

Any stable frequency response function in H* can be gl

arbitrarily closely approximated by a transfer function of S
the following form: N 2

Re(s)

N Ny
oy Qi
H(s) = ;(S_Zl)i +o ;7(3_&)!.

by choosing any of the Ni’s large enough

v

For large-scale systems: 10 behavior not predictable from modal behavior
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Implications for Turbulence

For large-scale systems: 10 behavior not predictable from modal behavior

) _ a% = AU + Bd

"
=P (spatio-temporal system) [~ P> u = C \I/

@ IR: G(t,x,2)
@ FR: G(w, ky, k;)
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Implications for Turbulence

For large-scale systems: 10 behavior not predictable from modal behavior

oY = AV + Bd

d NS, u o~

| (i temporal system) [ u = C \I/

@ IR: G(t,x,2)
@ FR: G(w, ky, k;)

@ “modal behavior”: Stability due to i.c. condition uncertainty
@ “IO behavior”: behavior in the presence of ambient uncertainty

» forcing terms from wall roughness and/or vibrations
» Free-stream disturbances in boundary layers

» Thermal (Langevin) forces

» uncertain dynamics
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The Nature of Turbulence

@ Fluid flows are described by deterministic equations
@ OLD QUESTION: why do fluid flows “look random” at high R?
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The Nature of Turbulence

@ A common view of turbulence

NN
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The Nature of Turbulence

@ A common view of turbulence

y 7
stable
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The Nature of Turbulence

@ A common view of turbulence

state space

stable

@ Intuitive reasoning:
Complex, “statistical looking” behavior

chaotic
" dynamics

—

chaotic dynamics
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The Nature of Turbulence

@ A common view of turbulence

chaotic
" dynamics

state space

stable

@ Intuitive reasoning:
Complex, “statistical looking” behavior — chaotic dynamics

@ Assumes NS egs. with perfect BC, no disturbances or uncertainty
(i.e. a a closed system)
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The Nature of Turbulence
An Alternate Possibility

@ A driven (open) system

Noise Fluctuating
Surface Roughness — . Dynamics of the . Flow Field
Thermal Forces NS Equations

Free Stream disturbances (looks statistical)

The NS equations act as an amplifier of ambient uncertainty at high R

@ Qualitatively similar to

Noise . Fluctuating

Dynamics of the )
Surface Roughness . . . . Flow Field
Thermal Forces Linaarizad

Free Stream disturbances WS Eguatians (looks statistical)
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