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Preface

These notes are a summary of topics in linear algebra and functional analysis that are
relevant to problems in Signals, Systems, and Controls. The term Linear Algebra is used in
an expansive sense. The concepts behind vectors and matrices are generalizable to abstract
vector spaces and linear operators on them. This is the subject of Functional Analysis,
an incredibly useful and powerful mathematical tool in Systems and Controls. It is the
study of the algebraic and geometric properties of abstract vector spaces, and mappings
between them. In standard Euclidean space, vectors can be added, scaled, and their lengths
and angles between them quantified with analytic geometry. Matrices can be interpreted
as linear transformations of Euclidean space, and this geometric interpretation of matrix
operations yields helpful intuition. It is this geometric view of linear algebra that generalizes
naturally to abstract vector spaces and provides a powerful tool in Engineering and Science.

In Systems and Controls, the basic objects to study are the signals, and the systems
that operate on signals to produce other signals. Signals can be viewed as “vectors” in
abstract vector spaces, which are generalizations of the well known Euclidean space. Signals
can be added or scaled in a similar manner as standard vectors. The “size” of a signal
can be quantified using norms in a similar manner to lengths of vectors, and notions of
orthogonality and angles between signals are also generalizable from the analogous notions
on ordinary vectors. In this way, the formalism of abstract vector spaces provides a powerful
framework for manipulating signals, and defining an underlying geometry of signals in the
same manner as vectors in analytic geometry. Figure 1a illustrates a particular case where
a (periodic) signal u can be viewed as the sum of two “mutually orthogonal” signals e1
and e2. The reader may already be familiar with this concept in the context of Fourier
series, but the idea of treating signals as vectors in an abstract vector space has much wider
applications.

Systems can be viewed as mappings between signal vector spaces. Systems that preserve
the linear vector space structure as they map signals (i.e. satisfy the superposition property)
are called linear systems. They can be thought of as generalizations of matrices to the
concept of a linear operator on an abstract vector space. Figure 1b illustrates this point
of view. Many concepts in matrix analysis, such as range and null spaces, eigenvalues and
eigenvectors, diagonalization, and singular values can be defined for linear operators on
abstract vector spaces. For example, transform analysis such as Fourier, Laplace or the
z-transform can be thought of as various forms of “diagonalizations” of the input-output
system as a linear operator on properly defined vector spaces.

The emphasis in these notes is primarily on the geometric view of linear algebra discussed
above, and its generalizations to function spaces using the notions of abstract vector spaces.
The approach emphasizes the algebraic aspects of the subject while only dealing with anal-
ysis and convergence issues as needed. The reason for this is twofold. First, the algebraic
aspects are the most easily generalized from the finite to the infinite vector space setting
with a minimal amount of abstraction. The second reason is that the algebraic treatment
is mostly constructive, and thus translates easily to computational algorithms. While these
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(a) u(t) = e1(t) + e2(t) for each t above.
Thus u = e1 + e2 as elements of a signal
vector space V where addition is defined
pointwise. Here, e1 and e2 are depicted as
mutually orthogonal in the geometry of V.
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(b) A system G maps input signals u to output signals
y. Thus G : V −→ W is a mapping between signal vector
spaces V andW. HereG amplifies the magnitude (and alters
direction) of the input signal as measured by the lengths of
the vectors u and y in their respective spaces.

Figure 1: (a) Signals can be viewed as elements of an abstract vector space where the addition of two
signals is defined pointwise (i.e. at each time). (b) Systems map signals to signals, and they can therefore
be viewed as mappings between vector spaces.

notes do not emphasize computational issues, considerations of computational algorithms
often lead to more enlightening ways of thinking about the abstract mathematical concepts.

The first three chapters cover the basic fundamentals of linear algebra and functional
analysis. The style is to emphasize as much as possible the commonalities between the finite
and infinite-dimensional settings. The first chapter deals largely with the purely algebraic
aspects of the theory of vector spaces including the concepts of null and image subspaces as
well as isomorphisms. The second chapter introduces basic geometric notions of norms and
inner products, i.e. measures of distances and angles in vector spaces. The third chapter
covers the basic topological concepts of convergence and completeness, i.e. the analysis
aspects of the subject. It is here that we begin to see differences between the finite and
infinite-dimensional settings, but again an attempt is made to put those differences in a
context where they are not as wide as they might initially seem. Some mathematicians take
the view [1, 4, 2] that at a very basic level, mathematics can be broadly divided into three
branches, namely algebra, geometry and analysis. In this sense the first three chapters are
largely organized around these three loose grouping of concepts and techniques.

Another way to think about the organization of the first three chapters is that of over-
laying new structures on top of existing ones, like a construction project. The vector space
structures of addition, scaling and compatible (i.e. linear) operations is the most basic.
On top of that one lays norms and inner products, these are additional structures, but to
overlay them, one demands a certain compatibility with the vector space structure. The
compatibility is captured by the translation invariance and scaling equivariance of norms.
Finally, the third chapter overlays the topology, or equivalently, notions of convergence using
the norms already defined.

The fourth chapter deals with the concept of duality. Given any vector space, the set of
all linear functionals on it forms a vector space itself, called the dual space. Linear functionals
can be thought of as generalizations of row vectors. A linear operator between vector spaces
induces another linear operator between their dual spaces called the adjoint operator, which
is a generalization of the transpose of a matrix. Many properties of vector spaces and
mappings between them are best studied by going back and forth between the original
and dual spaces, and between the original operator and its adjoint. Linear functionals
have geometric interpretations in terms of hyperplanes, and geometric interpretations of
adjoints can be given as mappings between hyperplanes. Duality also plays a prominent
role in optimization problems. In particular, minimum distance-to-a-subspace problems
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have useful characterizations in terms of their duals.
The fifth chapter cover some aspects of spectral theory emphasizing the role of the

resolvent function and the concept of the pseudo-spectrum, which in the context of Systems
and Controls may be even more important than the spectrum itself. The sixth chapter is
about the kernel representation of linear operators, which is an intuitive and graphical way to
visualize linear operators on function spaces as continuum analogs of matrices. The seventh
chapter introduces matrix and operator partitions, which are useful algebraic tools for block
decompositions of operators. Various block operations of LU, UL, and LDU decompositions
lead to the frequently used Schur complements, as well as insights into Sylvester and Riccati
equations.
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Notation and Terminology

The notation f(x) is often used to refer to a function f . This notation can cause confusion.
When we refer to the function as a whole object, we say the function f , while the notation
f(x) refers to the value of the function f at the point x. This is like saying f(1) or f(3) to
refer to the value of f at the points 1 or 3. Similarly, f(x) means the value of f at the point
x, even though x is a variable whose value is not specified. Some textbooks use the symbols
f(x) to refer to the whole function f . This is a notational convention, which is used to
emphasize that f is not a number or a variable, but rather a function of another variable.
As much as possible, we will try to avoid this confusing notation, and use f by itself to
refer to the whole function as an object. Sometimes however, a slight abuse of notation
may be called for, and we might use for example U(s) to refer to the Laplace transform of
a function of time u(t). When such abuse of notation is used, it is simply to point out that
the letter s is used to denote the frequency variable and that U(s) is a Laplace transform
of some function to distinguish it from u(t) which is a function of the variable t.

Fonts

Sets and spaces Sets are generally denoted by capital sans serif font, e.g. V as
a vector space, P as a cone. Exceptions are for well-known font
choices for sets such as R, C, etc.

Matrices/Operators Matrices and operators are generally denoted by A, B, etc. Ab-
stractly defined operators will sometimes be denoted with cali-
graphic fonts like A, B, etc.

Vectors Vectors are generally denoted by small letters like x, or v. In-
dividual components are denoted with subscripts, i.e. the i’th
component of the vector x is denoted by xi. We avoid the com-
mon space-saving notation

[
x∗
1 · · · x∗

n

]∗
for column vectors

(or block partitioned matrices and operators), and instead use
the n-tuple notation where needed for saving space

(x1, . . . , xn) =



x1

:
xn


 .
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Specific Notation

R (C) The real line (complex plane)
Rn (Cn) n-dimensional real (complex) space
R(s) , I(s) The real and imaginary parts of a complex number s
Z The integers
Zn The n-dimensional integer lattice
N The natural numbers N := {0, 1, 2, . . .}
n The set of numbers n := {1, . . . , n}
Z+ The positive integers {1, 2, . . .}
Z− The negative integers {−1,−2, . . .}
Z̄+ The non-negative integers {0, 1, 2, . . .} (same as N)
Z̄− The non-positive integers {0,−1,−2, . . .}
C− The open left half plane {s ∈ C; R(s) < 0}
C+ The open right half plane {s ∈ C; R(s) > 0}
C̄− The closed left half plane {s ∈ C; R(s) ≤ 0}
C̄+ The closed right half plane {s ∈ C; R(s) ≥ 0}
D The open unit disk of the complex plane {s ∈ C; |s| < 1}
D̄ The closed unit disk of the complex plane {s ∈ C; |s| ≤ 1}
ℓpn(Ω) The ℓp space of n-vector-valued sequences with index in Ω ⊆ Zd (2.11)
ℓpV(Ω) The ℓp space of V-valued sequences (V a Banach space) (2.12)
Lpn(Ω) The Lp space of n-vector-valued functions with domain in Ω ⊆ Rd . It is

sometimes abbreviated simply as Lp when the dimension n is clear from
context, or when n is irrelevant to the argument.

LpV(Ω) The Lp space of V-valued functions (V a Banach space)
A∗ The complex-conjugate (Hermitian) transpose of a matrix A. Also the

adjoint of the operator A
A† The adjoint of a linear operator A. This notation is preferred in cases where

the notation A∗ could cause confusion.
λ(A) The spectrum of a linear operator A. The set of eigenvalues of a matrix A.
σ(A) The singular values of a matrix A. The spectrum of the operator AA∗ (or

A∗A).
Rn×m The set of n×m matrices with real entries
Sn The set of symmetric n× n matrices with real entries
P̄n The set of symmetric positive n× n matrices {A ∈ Sn; A ≥ 0}, where ≥ is

the Loewner order on matrices
Pn The set of symmetric, strictly-positive n× n matrices {A ∈ Sn; A > 0}

Terminology

functional any scalar-valued function, i.e. a function f : Ω → R (C) from
any set Ω to the scalars (either R or C)
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Chapter 1

Vector Spaces and Linear Operators

Abstract vector spaces are generalizations of the familiar notions of addition and scaling of
vectors in two and three dimensional space. A prime example is a function space, which is
a set of functions on a common domain, and those functions can be added and scaled in
an analogous manner to vectors in n-dimensional space. Thus, signals can be viewed and
manipulated in the same way as vectors. Vector spaces can be built up from other vector
spaces by taking direct sums, and can also be decomposed into direct sums of subspaces. Such
decompositions are often useful in understanding operations on a vector space by examining
the operation on subspaces, over which the operations have simpler structures.

Mappings between vector spaces that preserve additions and scalings are said to be “lin-
ear” or satisfy the “superposition principle”. They are generalizations of matrices acting on
vectors via matrix-vector multiplication. A matrix is a “representation” of a linear opera-
tor in a particular basis, and a basis-free approach allows for a more unified view of linear
operators. Many integral and differential operations on functions can be viewed as gen-
eralizations of matrix-vector multiplications. A linear mapping between two vector spaces
that is also one-to-one and onto is called an isomorphism, and the two vector spaces are
said to be isomorphic. Two isomorphic spaces are basically two “copies” of the same space,
and thus many properties can be deduced by establishing isomorphisms between familiar and
unfamiliar vector spaces.

This chapter is concerned primarily with the basic “algebraic” aspects of vector spaces.

Introduction

This chapter presents some of the basic concepts in linear algebra. The presentation is
guided by two principles, (a) whenever possible, a geometric point of view is adopted, and
(b) similarities between finite and infinite-dimensional vector spaces are emphasized. The
first principle is motivated by the belief that geometric intuition always serves as a powerful
reinforcer to the algebraic statements. In this view, linear algebra is fundamentally about
the geometry of vector spaces, their subspaces, and the action of linear operators on them.

The second principle is adopted to make as many connections as possible between linear
algebra (as normally understood to be about finite-dimensional vector spaces) and functional
analysis, a topic normally thought of as dealing with infinite-dimensional vector spaces. We
adopt an expansive view of linear algebra, and treat the algebraic aspects of finite and
infinite-dimensional vector spaces as much as possible in the “same breath”. This serves to
introduce many of the powerful techniques of functional analysis (which are very useful for
Signals and Systems) using familiar concepts from linear algebra. In particular, the purely
“algebraic” aspects of vector spaces lend themselves to this approach. For the “analysis”

9



10 1.1. Rn and Abstract Vector Spaces

aspects, which involve notions of topology and convergence dealt with in later chapters,
differences between finite and infinite-dimensional results are pointed out, although again,
the emphasis will be on the commonalities, rather than the differences, between finite and
infinite-dimensional results.

1.1 Rn and Abstract Vector Spaces

The space Rn is the set of n-tuples (n-vectors) of real numbers of the form

x := (x1, . . . , xn) =



x1

:
xn


 ,

where each xi ∈ R is a real number. It will be useful to switch notation as convenient, and
represent vectors either as an n-tuple (x1, . . . , xn), or as a column vector as shown above.

In analytic geometry, elements of Rn are visualized as directed line segments, or vectors
in n dimensional space. There are two operations on n-tuples that have familiar geometric
interpretations.

• n-tuples can be added component-wise. For x := (x1, . . . , xn) and y := (y1, . . . , yn) we
define x+ y as

x+ y := (x1 + y1, . . . , xn + yn) . (1.1)

This of course has the familiar geometric interpretation as vector addition when inter-
preting x and y as directed line segments.

• An n-tuple x can be multiplied by a scalar α ∈ R by scaling each component by α

α x := (αx1, . . . , αx2) . (1.2)

This has the geometric interpretations of scaling the length of the vector x by α, while
keeping its direction unchanged if α is positive, or reversing its direction if α is negative.
In either case, x and αx lie within the same line passing through the origin.

Note that in contrast to additions and scalings, there is “in general” no useful operation of
vector multiplication, i.e. a product of two vectors that produces another vector1

It is possible to generalize the operations of vector addition and scaling to functions and
more general objects. To start this generalization, we make the simple, yet powerful, obser-
vation that n-vectors are actually real-valued functions on the discrete set n := {1, 2, . . . , n}.
We can think of a vector in Rn as either an n-tuple of real numbers, or equivalently as a
function from n to R

x = (x1, . . . , xn) ←→ x : {1, . . . , n} −→ R.

Thus the i’th component xi of a vector x ∈ Rn can be viewed as the value of the function
x : n −→ R at the index i ∈ n. This point of view is illustrated in Figure 1.1.

1There are very important exceptions, namely complex multiplication on R2, the cross product on R3,
quaternion product on R4 and octonian product on R8. However, these are all special cases that do not gen-
eralize to Rn for all n. If on the other hand we attempt to imitate the definition of point-wise addition (1.1),
and define the product operation as the point-wise multiplication of vectors, we run into the problem that
division is not well defined if we divide by a vector that has at least one component which is zero.
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x2
<latexit sha1_base64="gsNOSijlPbCrJpAYpDbnFXkkebY=">AAACInicbVDLSgMxFL3j2/GtSzfBIrixzHSjS8GNS0WrhbaUTCZtQ5PMkNxRyzCf4FZ/wA9x7U4EQfBfNH1s2nogl8O555J7T5RKYTEIvr25+YXFpeWVVX9tfWNza3tn99YmmWG8yhKZmFpELZdC8yoKlLyWGk5VJPld1Dsf9O/uubEi0TfYT3lT0Y4WbcEoOun6sVVpbZeCcjAEmSXhmJTO5r9+3wDgsrXjrTbihGWKa2SSWlsPgxSbOTUomOSF38gsTynr0Q7PhxsW5NBJMWknxj2NZKhO+Kiytq8i51QUu3a6NxD/69UzbJ82c6HTDLlmo4/amSSYkMG5JBaGM5R9Rygzwm1IWJcaytCF4vsNzR9YohTVcd6w1hauOluK44r94UETLuVMyB8xPy4KF144HdUsua2Uw6AcXrkUAxhhBfbhAI4ghBM4gwu4hCow6MATPMOL9+q9ex/e58g6541n9mAC3s8f4Henhw==</latexit><latexit sha1_base64="zZh0JplApwWcOOSy2guXfD+5pyM=">AAACInicbVDLSgNBEJw1PpL4jOLJy6IIXgy7uegx4MVjRBMFE8LsbG8yZGZ2melVw7Kf4FV/wB/x6k0EQRD8FJ08LlELpimqq5nuChLBDXrehzNXmF9YXCqWyssrq2vrG5XNlolTzaDJYhHrq4AaEFxBEzkKuEo0UBkIuAwGJ6P+5Q1ow2N1gcMEOpL2FI84o2il87turbux51W9Mdy/xJ+SvXrh/ft5+wsa3YpTaocxSyUoZIIac+17CXYyqpEzAXm5nRpIKBvQHmTjDXN330qhG8XaPoXuWJ3xUWnMUAbWKSn2ze/eSPyvd51idNzJuEpSBMUmH0WpcDF2R+e6IdfAUAwtoUxzu6HL+lRThjaUcrmt4JbFUlIVZm1jTG6rtSU4rTgcHzTjktaEcIfZYZ7b8PzfUf0lrVrV96r+mU3RIxMUyQ7ZJQfEJ0ekTk5JgzQJIz1yTx7Io/PkvDivztvEOudMZ7bIDJzPH/ozqOE=</latexit><latexit sha1_base64="zZh0JplApwWcOOSy2guXfD+5pyM=">AAACInicbVDLSgNBEJw1PpL4jOLJy6IIXgy7uegx4MVjRBMFE8LsbG8yZGZ2melVw7Kf4FV/wB/x6k0EQRD8FJ08LlELpimqq5nuChLBDXrehzNXmF9YXCqWyssrq2vrG5XNlolTzaDJYhHrq4AaEFxBEzkKuEo0UBkIuAwGJ6P+5Q1ow2N1gcMEOpL2FI84o2il87turbux51W9Mdy/xJ+SvXrh/ft5+wsa3YpTaocxSyUoZIIac+17CXYyqpEzAXm5nRpIKBvQHmTjDXN330qhG8XaPoXuWJ3xUWnMUAbWKSn2ze/eSPyvd51idNzJuEpSBMUmH0WpcDF2R+e6IdfAUAwtoUxzu6HL+lRThjaUcrmt4JbFUlIVZm1jTG6rtSU4rTgcHzTjktaEcIfZYZ7b8PzfUf0lrVrV96r+mU3RIxMUyQ7ZJQfEJ0ekTk5JgzQJIz1yTx7Io/PkvDivztvEOudMZ7bIDJzPH/ozqOE=</latexit><latexit sha1_base64="flp0peSIiw601FFuiJTnFnDLd8k=">AAACInicbVDLTsMwEHR4tuHVwpFLRIXEhSrpBY6VuHAsgj6kpqocx2mt2k5kb6BVlE/gCj/A13BDnJD4GNw2l7aM5NVodlbenSDhTIPr/lhb2zu7e/ulsn1weHR8UqmednScKkLbJOax6gVYU84kbQMDTnuJolgEnHaDyd28332mSrNYPsEsoQOBR5JFjGAw0uN02BhWam7dXcDZJF5BaqhAa1i1yn4Yk1RQCYRjrfuem8AgwwoY4TS3/VTTBJMJHtFssWHuXBopdKJYmSfBWagrPiy0nonAOAWGsV7vzcX/ev0UottBxmSSApVk+VGUcgdiZ36uEzJFCfCZIZgoZjZ0yBgrTMCEYtu+pC8kFgLLMPO11rmpxpZAUWG2OGjFJYwJ6BSy6zw34XnrUW2STqPuuXXvwa013SLGEjpHF+gKeegGNdE9aqE2ImiEXtEberc+rE/ry/peWresYuYMrcD6/QNrB6Sv</latexit>

xn
<latexit sha1_base64="M4VO/5xAjIjtZVZYzE7bI/lCYQo=">AAACInicbVBNS8NAEJ20frV+69FLsAheLIkXPRa8eKxorWBL2Wy27dLdTdidaEPIT/Cqf8Af4tmbCILgf9Ft2kvVBzs83rxhZ14QC27Q8z6dUnlhcWl5pVJdXVvf2Nza3rk2UaIpa9FIRPomIIYJrlgLOQp2E2tGZCBYOxidTfrtO6YNj9QVpjHrSjJQvM8pQStdjnuqt1Xz6l4B9y/xZ6TWKH98vwBAs7ftVDphRBPJFFJBjLn1vRi7GdHIqWB5tZMYFhM6IgOWFRvm7oGVQrcfafsUuoU65yPSmFQG1ikJDs3v3kT8r3ebYP+0m3EVJ8gUnX7UT4SLkTs51w25ZhRFagmhmtsNXTokmlC0oVSrHcXuaSQlUWHWMcbktlpbjLOKaXHQnEtaE7IxZkd5bsPzf0f1l1wf132v7l/YFD2YYgX2YB8OwYcTaMA5NKEFFAbwAI/w5Dw7r86b8z61lpzZzC7Mwfn6AUiWp8M=</latexit><latexit sha1_base64="BnjIcxendEBYBVaM1lKf6CN+6gw=">AAACInicbVDLSgNBEJw1PuMrUTx5WRTBi2HXix4DXjxGNBpIQpid7SSDM7PLTK9mWfYTvOoP+CNevYkgCIKfopPHJcaCaYrqaqa7glhwg5736cwV5hcWl5ZXiqtr6xubpfLWtYkSzaDOIhHpRkANCK6gjhwFNGINVAYCboLbs2H/5g604ZG6wjSGtqQ9xbucUbTS5aCjOqV9r+KN4M4Sf0L2q4WPn5edb6h1ys5KK4xYIkEhE9SYpu/F2M6oRs4E5MVWYiCm7Jb2IBttmLsHVgrdbqTtU+iO1CkflcakMrBOSbFv/vaG4n+9ZoLd03bGVZwgKDb+qJsIFyN3eK4bcg0MRWoJZZrbDV3Wp5oytKEUiy0F9yySkqowaxljclutLcZJxXR00JRLWhPCALOjPLfh+X+jmiXXxxXfq/gXNkWPjLFMdskeOSQ+OSFVck5qpE4Y6ZEH8kienGfn1Xlz3sfWOWcys02m4Hz9AmJSqR0=</latexit><latexit sha1_base64="BnjIcxendEBYBVaM1lKf6CN+6gw=">AAACInicbVDLSgNBEJw1PuMrUTx5WRTBi2HXix4DXjxGNBpIQpid7SSDM7PLTK9mWfYTvOoP+CNevYkgCIKfopPHJcaCaYrqaqa7glhwg5736cwV5hcWl5ZXiqtr6xubpfLWtYkSzaDOIhHpRkANCK6gjhwFNGINVAYCboLbs2H/5g604ZG6wjSGtqQ9xbucUbTS5aCjOqV9r+KN4M4Sf0L2q4WPn5edb6h1ys5KK4xYIkEhE9SYpu/F2M6oRs4E5MVWYiCm7Jb2IBttmLsHVgrdbqTtU+iO1CkflcakMrBOSbFv/vaG4n+9ZoLd03bGVZwgKDb+qJsIFyN3eK4bcg0MRWoJZZrbDV3Wp5oytKEUiy0F9yySkqowaxljclutLcZJxXR00JRLWhPCALOjPLfh+X+jmiXXxxXfq/gXNkWPjLFMdskeOSQ+OSFVck5qpE4Y6ZEH8kienGfn1Xlz3sfWOWcys02m4Hz9AmJSqR0=</latexit><latexit sha1_base64="0BEJL/IgHXziQHmd3ZYuetlaS+Y=">AAACInicbVDLTsMwEHTKqw2vFo5cIiokLlQJFzhW4sKxCPqQ2qpyHLe1ajuRvYFGUT6BK/wAX8MNcULiY3DTXNoyklej2Vl5d/yIMw2u+2OVtrZ3dvfKFXv/4PDouFo76egwVoS2SchD1fOxppxJ2gYGnPYiRbHwOe36s7tFv/tMlWahfIIkokOBJ5KNGcFgpMf5SI6qdbfh5nA2iVeQOirQGtWsyiAISSyoBMKx1n3PjWCYYgWMcJrZg1jTCJMZntA03zBzLowUOONQmSfBydUVHxZaJ8I3ToFhqtd7C/G/Xj+G8e0wZTKKgUqy/GgccwdCZ3GuEzBFCfDEEEwUMxs6ZIoVJmBCse2BpC8kFALLIB1orTNTjS2CokKSH7TiEsYEdA7pVZaZ8Lz1qDZJ57rhuQ3vwa033SLGMjpD5+gSeegGNdE9aqE2ImiCXtEberc+rE/ry/peWktWMXOKVmD9/gHTF6Tr</latexit>

(a) An n-tuple of real numbers x := (x1, . . . , xn)
is viewed as a a vector in n-dimensional space, with
each scalar xi being its component along the i’th
axis in a Cartesian coordinate system.
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<latexit sha1_base64="yKIL0woZfyCGmentBpOU/ItbnCU=">AAACIHicbVC7TgMxENzjGcIbSpoTERIN0R0NdESioUwkEiIlUeRzNsHC9p3sPSCc7gto4Qf4Bj6CDlFCx5/gPJoAI3k1mp2VdydKpLAUBJ/e3PzC4tJyYaW4ura+sbm1vdOwcWo41nksY9OMmEUpNNZJkMRmYpCpSOJVdHM+6l/dorEi1pc0TLCj2ECLvuCMnFQLu1uloByM4f8l4ZSUzl4fvisAUO1ueyvtXsxThZq4ZNa2wiChTsYMCS4xL7ZTiwnjN2yA2Xi/3D9wUs/vx8Y9Tf5YnfExZe1QRc6pGF3b372R+F+vlVL/tJMJnaSEmk8+6qfSp9gfHev3hEFOcugI40a4DX1+zQzj5CIpFtsa73isFNO9rG2tzV11toSmlYbjg2ZcypkI7yk7ynMXXvg7qr+kcVwOg3JYC0qVACYowB7swyGEcAIVuIAq1IEDwiM8wbP34r15797HxDrnTWd2YQbe1w+ryaZR</latexit><latexit sha1_base64="j1eRtTzA3JISNkDf8DDh9595+Ao=">AAACIHicbVC7TgMxEPSFVxKeATqaExESDdEdDXQgUUAJEglISRT5fBuwYvtO9h5wnO4LaOEH+AAqPoIOUULHn+A8miSM5NVodlbenSAW3KDnfTuFmdm5+YViqby4tLyyulZZb5go0QzqLBKRvg6oAcEV1JGjgOtYA5WBgKugd9LvX92BNjxSl5jG0Jb0RvEuZxStdOF31qpezRvAnSb+iFSP3h9/T982s/NOxSm1woglEhQyQY1p+l6M7Yxq5ExAXm4lBmLKevQGssF+ubtjpdDtRto+he5AHfNRaUwqA+uUFG/NZK8v/tdrJtg9bGdcxQmCYsOPuolwMXL7x7oh18BQpJZQprnd0GW3VFOGNpJyuaXgnkVSUhVmLWNMbqu1xTiqmA4OGnNJa0J4wGwvz214/mRU06SxX/O9mn/hVY89MkSRbJFtskt8ckCOyRk5J3XCCJAn8kxenFfnw/l0vobWgjOa2SBjcH7+AKPgp5U=</latexit><latexit sha1_base64="j1eRtTzA3JISNkDf8DDh9595+Ao=">AAACIHicbVC7TgMxEPSFVxKeATqaExESDdEdDXQgUUAJEglISRT5fBuwYvtO9h5wnO4LaOEH+AAqPoIOUULHn+A8miSM5NVodlbenSAW3KDnfTuFmdm5+YViqby4tLyyulZZb5go0QzqLBKRvg6oAcEV1JGjgOtYA5WBgKugd9LvX92BNjxSl5jG0Jb0RvEuZxStdOF31qpezRvAnSb+iFSP3h9/T982s/NOxSm1woglEhQyQY1p+l6M7Yxq5ExAXm4lBmLKevQGssF+ubtjpdDtRto+he5AHfNRaUwqA+uUFG/NZK8v/tdrJtg9bGdcxQmCYsOPuolwMXL7x7oh18BQpJZQprnd0GW3VFOGNpJyuaXgnkVSUhVmLWNMbqu1xTiqmA4OGnNJa0J4wGwvz214/mRU06SxX/O9mn/hVY89MkSRbJFtskt8ckCOyRk5J3XCCJAn8kxenFfnw/l0vobWgjOa2SBjcH7+AKPgp5U=</latexit><latexit sha1_base64="xUn1d4FiaxRtjY1uJeiOaWSCoL0=">AAACIHicbVDLTgJBEJz1CfgCPXrZSEy8SHa96JHEi0dI5JEAIbNDAxNmZjczvepms1/gVX/Ar/FmPOrXOMBeACuZTqW6OtNdQSS4Qc/7cba2d3b39gvF0sHh0fFJuXLaNmGsGbRYKELdDagBwRW0kKOAbqSBykBAJ5jdz/udJ9CGh+oRkwgGkk4UH3NG0UpNf1iuejVvAXeT+DmpkhyNYcUp9kchiyUoZIIa0/O9CAcp1ciZgKzUjw1ElM3oBNLFfpl7aaWROw61fQrdhbrio9KYRAbWKSlOzXpvLv7X68U4vhukXEUxgmLLj8axcDF058e6I66BoUgsoUxzu6HLplRThjaSUqmv4JmFUlI1SvvGmMxWa4swr5gsDlpxSWtCeMH0OstseP56VJukfVPzvZrf9Kp1L4+xQM7JBbkiPrkldfJAGqRFGAHySt7Iu/PhfDpfzvfSuuXkM2dkBc7vH6jAo8M=</latexit>
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n
<latexit sha1_base64="ZTh5QHrPZ/HhqR+YVakx85+n6Lo=">AAACIHicbVC7TgMxENzjGcIbSpoTERIN0R0NdESioUwkEiIlUeRzNsHC9p3sPSCc7gto4Qf4Bj6CDlFCx5/gPJoAI3k1mp2VdydKpLAUBJ/e3PzC4tJyYaW4ura+sbm1vdOwcWo41nksY9OMmEUpNNZJkMRmYpCpSOJVdHM+6l/dorEi1pc0TLCj2ECLvuCMnFTT3a1SUA7G8P+ScEpKZ68P3xUAqHa3vZV2L+apQk1cMmtbYZBQJ2OGBJeYF9upxYTxGzbAbLxf7h84qef3Y+OeJn+szviYsnaoIudUjK7t795I/K/XSql/2smETlJCzScf9VPpU+yPjvV7wiAnOXSEcSPchj6/ZoZxcpEUi22NdzxWiule1rbW5q46W0LTSsPxQTMu5UyE95Qd5bkLL/wd1V/SOC6HQTmsBaVKABMUYA/24RBCOIEKXEAV6sAB4RGe4Nl78d68d+9jYp3zpjO7MAPv6wcVpKaO</latexit><latexit sha1_base64="34cZmM2XMgGMmnuK6b4q0MSVKH0=">AAACIHicbVC7TgMxEPTxTMIrATqaExESDdEdDXREooAykchDSiLkczaJhe072XtAON0X0MIP8AFUfAQdooSOP8F5NCGM5NVodlbenSAS3KDnfTkLi0vLK6uZbG5tfWNzK1/Yrpsw1gxqLBShbgbUgOAKashRQDPSQGUgoBHcnI/6jVvQhofqCocRdCTtK97jjKKVquo6X/RK3hjuPPGnpHj29vBz8bqbVK4LTrbdDVksQSET1JiW70XYSahGzgSkuXZsIKLshvYhGe+XugdW6rq9UNun0B2rMz4qjRnKwDolxYH52xuJ//VaMfZOOwlXUYyg2OSjXixcDN3RsW6Xa2AohpZQprnd0GUDqilDG0ku11Zwx0IpqeombWNMaqu1RTitOBwfNOOS1oRwj8lRmtrw/L9RzZP6ccn3Sn7VK5Y9MkGG7JF9ckh8ckLK5JJUSI0wAuSRPJFn58V5dz6cz4l1wZnO7JAZON+/Dbun0g==</latexit><latexit sha1_base64="34cZmM2XMgGMmnuK6b4q0MSVKH0=">AAACIHicbVC7TgMxEPTxTMIrATqaExESDdEdDXREooAykchDSiLkczaJhe072XtAON0X0MIP8AFUfAQdooSOP8F5NCGM5NVodlbenSAS3KDnfTkLi0vLK6uZbG5tfWNzK1/Yrpsw1gxqLBShbgbUgOAKashRQDPSQGUgoBHcnI/6jVvQhofqCocRdCTtK97jjKKVquo6X/RK3hjuPPGnpHj29vBz8bqbVK4LTrbdDVksQSET1JiW70XYSahGzgSkuXZsIKLshvYhGe+XugdW6rq9UNun0B2rMz4qjRnKwDolxYH52xuJ//VaMfZOOwlXUYyg2OSjXixcDN3RsW6Xa2AohpZQprnd0GUDqilDG0ku11Zwx0IpqeombWNMaqu1RTitOBwfNOOS1oRwj8lRmtrw/L9RzZP6ccn3Sn7VK5Y9MkGG7JF9ckh8ckLK5JJUSI0wAuSRPJFn58V5dz6cz4l1wZnO7JAZON+/Dbun0g==</latexit><latexit sha1_base64="V827fwoEpn+s3YInBWDr+9cabBg=">AAACIHicbVDLTgJBEJz1CfgCPXrZSEy8SHa96JHEi0dI5JEAIbNDAxNmZjczvepms1/gVX/Ar/FmPOrXOMBeACuZTqW6OtNdQSS4Qc/7cba2d3b39gvF0sHh0fFJuXLaNmGsGbRYKELdDagBwRW0kKOAbqSBykBAJ5jdz/udJ9CGh+oRkwgGkk4UH3NG0UpNNSxXvZq3gLtJ/JxUSY7GsOIU+6OQxRIUMkGN6flehIOUauRMQFbqxwYiymZ0Auliv8y9tNLIHYfaPoXuQl3xUWlMIgPrlBSnZr03F//r9WIc3w1SrqIYQbHlR+NYuBi682PdEdfAUCSWUKa53dBlU6opQxtJqdRX8MxCKakapX1jTGartUWYV0wWB624pDUhvGB6nWU2PH89qk3Svqn5Xs1vetW6l8dYIOfkglwRn9ySOnkgDdIijAB5JW/k3flwPp0v53tp3XLymTOyAuf3DxKbpAA=</latexit>

n-1
<latexit sha1_base64="PFElb81QROIiDBvLpbTLfCKVU0I=">AAACKXicbVA9T8MwEL2U7/JZGFkiKiQWqoQFNpBYGEGitKKpKsdxwKrtRPYFqKL8C9byB/g1bMDKf2DGabu05Uk+Pb17J9+9MBXcoOd9OZWFxaXlldW16vrG5tb2Tm33ziSZpqxJE5HodkgME1yxJnIUrJ1qRmQoWCvsX5b91hPThifqFgcp60ryoHjMKUEr3asA2Qvmx4Xf26l7DW8Ed574E1I//x1CietezVkLooRmkimkghjT8b0UuznRyKlgRTXIDEsJ7ZMHlo8WLdxDK0VunGj7FLojdcpHpDEDGVqnJPhoZnul+F+vk2F81s25SjNkio4/ijPhYuKWV7sR14yiGFhCqOZ2Q5c+Ek0o2myq1UCxZ5pISVSUB8aYwlZrS3FScTA6aMolrWkSXmHD82ejmid3Jw3fa/g3Xv3CgzFWYR8O4Ah8OIULuIJraAIFBa8whDfn3flwPp3vsbXiTGb2YArOzx9Tyamj</latexit><latexit sha1_base64="l2cbE9aBTwf81BwCUt/MI/2RMFI=">AAACKXicbVC7TsMwFHV49cGrhZElokJioUpYYKMSC2IqEn2Ipqoc122t2k5k31CiKH/BCPwAX8MGrIzsrOA+lrYcyVdH554r33v8kDMNjvNhrayurW9ksrn85tb2zm6huFfXQaQIrZGAB6rpY005k7QGDDhthopi4XPa8IeX437jnirNAnkLcUjbAvcl6zGCwUh30gP6AMlJ6nYKJafsTGAvE3dGShc/T7/fmetRtVO0cl43IJGgEgjHWrdcJ4R2ghUwwmma9yJNQ0yGuE+TyaKpfWSkrt0LlHkS7Ik658NC61j4xikwDPRibyz+12tF0DtvJ0yGEVBJph/1Im5DYI+vtrtMUQI8NgQTxcyGNhlghQmYbPJ5T9IRCYTAspt4WuvUVGMLYVYhnhw05xLGNAsvNeG5i1Etk/pp2XXK7o1Tqjhoiiw6QIfoGLnoDFXQFaqiGiJIokf0jF6sV+vNerc+p9YVazazj+Zgff0Bh5KsVA==</latexit><latexit sha1_base64="l2cbE9aBTwf81BwCUt/MI/2RMFI=">AAACKXicbVC7TsMwFHV49cGrhZElokJioUpYYKMSC2IqEn2Ipqoc122t2k5k31CiKH/BCPwAX8MGrIzsrOA+lrYcyVdH554r33v8kDMNjvNhrayurW9ksrn85tb2zm6huFfXQaQIrZGAB6rpY005k7QGDDhthopi4XPa8IeX437jnirNAnkLcUjbAvcl6zGCwUh30gP6AMlJ6nYKJafsTGAvE3dGShc/T7/fmetRtVO0cl43IJGgEgjHWrdcJ4R2ghUwwmma9yJNQ0yGuE+TyaKpfWSkrt0LlHkS7Ik658NC61j4xikwDPRibyz+12tF0DtvJ0yGEVBJph/1Im5DYI+vtrtMUQI8NgQTxcyGNhlghQmYbPJ5T9IRCYTAspt4WuvUVGMLYVYhnhw05xLGNAsvNeG5i1Etk/pp2XXK7o1Tqjhoiiw6QIfoGLnoDFXQFaqiGiJIokf0jF6sV+vNerc+p9YVazazj+Zgff0Bh5KsVA==</latexit><latexit sha1_base64="yhoGkvne4UV4HC5ERLhvi6ydo7M=">AAACKXicbVDLTsMwEHR4tuHVwpFLRIXEhSrhAsdKXDgWiT5EU1WO47RWbSeyN0AU5S+4wg/wNdyAKz+C2+bSlpG8Gs3OyrsTJJxpcN1va2Nza3tnt1K19/YPDo9q9eOujlNFaIfEPFb9AGvKmaQdYMBpP1EUi4DTXjC9nfV7T1RpFssHyBI6FHgsWcQIBiM9Sh/oC+SXhTeqNdymO4ezTrySNFCJ9qhuVf0wJqmgEgjHWg88N4FhjhUwwmlh+6mmCSZTPKb5fNHCOTdS6ESxMk+CM1eXfFhonYnAOAWGiV7tzcT/eoMUopthzmSSApVk8VGUcgdiZ3a1EzJFCfDMEEwUMxs6ZIIVJmCysW1f0mcSC4FlmPta68JUY0ugrJDND1pyCWMqwytMeN5qVOuke9X03KZ37zZabhljBZ2iM3SBPHSNWugOtVEHESTRK3pD79aH9Wl9WT8L64ZVzpygJVi/f3Zkp9E=</latexit>

4
<latexit sha1_base64="0Qldw11CBBGdZVU5iDhXqQwOvc8=">AAACIHicbVDLSgNBEOz1GeMr0aOXxSB4MeyKoDcDXjwmYFRIgsxOOjo4M7vM9Kpx2S/wqj/gN/gR3sSj3vwTJ49LogXTFNXVTHdFiRSWguDLm5mdm19YLCwVl1dW19ZL5Y1zG6eGY5PHMjaXEbMohcYmCZJ4mRhkKpJ4Ed2eDPoXd2isiPUZ9RPsKHatRU9wRk5qHFyVKkE1GML/S8IxqRy/Pf7UAKB+VfaW2t2Ypwo1ccmsbYVBQp2MGRJcYl5spxYTxm/ZNWbD/XJ/x0ldvxcb9zT5Q3XCx5S1fRU5p2J0Y6d7A/G/Xiul3lEnEzpJCTUffdRLpU+xPzjW7wqDnGTfEcaNcBv6/IYZxslFUiy2Nd7zWCmmu1nbWpu76mwJjSv1hwdNuJQzET5QtpfnLrxwOqq/5Hy/GgbVsBFUagGMUIAt2IZdCOEQanAKdWgCB4QneIYX79V79z68z5F1xhvPbMIEvO9fsP2mVA==</latexit><latexit sha1_base64="/I9PT+0P5Bl0Qm0eaEwdLeSCCn4=">AAACIHicbVDLSgNBEJz1mcRXot68LAbBi2FXBL0Z8KDHBMwDkiCzk04cnJldZnrVuOwXeNUf8AM8+RHexKPe/BMnj0uiBdMU1dVMdwWR4AY978uZm19YXFrOZHMrq2vrG/nCZt2EsWZQY6EIdTOgBgRXUEOOApqRBioDAY3g5mzYb9yCNjxUlziIoCNpX/EeZxStVD26yhe9kjeC+5f4E1I8fXv4OX/dTipXBSfb7oYslqCQCWpMy/ci7CRUI2cC0lw7NhBRdkP7kIz2S909K3XdXqjtU+iO1CkflcYMZGCdkuK1me0Nxf96rRh7J52EqyhGUGz8US8WLobu8Fi3yzUwFANLKNPcbuiya6opQxtJLtdWcMdCKanqJm1jTGqrtUU4qTgYHTTlktaEcI/JQZra8PzZqP6S+mHJ90p+1SuWPTJGhuyQXbJPfHJMyuSCVEiNMALkkTyRZ+fFeXc+nM+xdc6ZzGyRKTjfv6kUp5g=</latexit><latexit sha1_base64="/I9PT+0P5Bl0Qm0eaEwdLeSCCn4=">AAACIHicbVDLSgNBEJz1mcRXot68LAbBi2FXBL0Z8KDHBMwDkiCzk04cnJldZnrVuOwXeNUf8AM8+RHexKPe/BMnj0uiBdMU1dVMdwWR4AY978uZm19YXFrOZHMrq2vrG/nCZt2EsWZQY6EIdTOgBgRXUEOOApqRBioDAY3g5mzYb9yCNjxUlziIoCNpX/EeZxStVD26yhe9kjeC+5f4E1I8fXv4OX/dTipXBSfb7oYslqCQCWpMy/ci7CRUI2cC0lw7NhBRdkP7kIz2S909K3XdXqjtU+iO1CkflcYMZGCdkuK1me0Nxf96rRh7J52EqyhGUGz8US8WLobu8Fi3yzUwFANLKNPcbuiya6opQxtJLtdWcMdCKanqJm1jTGqrtUU4qTgYHTTlktaEcI/JQZra8PzZqP6S+mHJ90p+1SuWPTJGhuyQXbJPfHJMyuSCVEiNMALkkTyRZ+fFeXc+nM+xdc6ZzGyRKTjfv6kUp5g=</latexit><latexit sha1_base64="i1g42cD4hy44I4kyejHTJ/7X/20=">AAACIHicbVDLTgJBEJzFF+AL9OhlIzHxItk1Jnok8eIREnkkQMjs0MCEmdnNTK9KNvsFXvUH/BpvxqN+jQPsBbCS6VSqqzPdFUSCG/S8Hye3tb2zu5cvFPcPDo+OS+WTlgljzaDJQhHqTkANCK6giRwFdCINVAYC2sH0ft5vP4E2PFSPOIugL+lY8RFnFK3UuBmUKl7VW8DdJH5GKiRDfVB2Cr1hyGIJCpmgxnR9L8J+QjVyJiAt9mIDEWVTOoZksV/qXlhp6I5CbZ9Cd6Gu+Kg0ZiYD65QUJ2a9Nxf/63VjHN31E66iGEGx5UejWLgYuvNj3SHXwFDMLKFMc7uhyyZUU4Y2kmKxp+CZhVJSNUx6xpjUVmuLMKs4Wxy04pLWhPCCyVWa2vD89ag2Seu66ntVv+FVal4WY56ckXNySXxyS2rkgdRJkzAC5JW8kXfnw/l0vpzvpTXnZDOnZAXO7x+t9KPG</latexit>

x1
<latexit sha1_base64="aupoPPLWuZiayVA7G1HEQ2ocYJY="></latexit><latexit sha1_base64="Q8WE+vyYWOwbDhvHcfcqGnExb98="></latexit><latexit sha1_base64="Q8WE+vyYWOwbDhvHcfcqGnExb98="></latexit><latexit sha1_base64="a4nWVH29ACP9ZF+0HuRszp1NXkY=">AAACInicdVDLSgMxFM34bOuzunQTLIIbS+KitruCG5cVrQq2lEya1mCSGZI72jLMJ7jVH/Br3IkrwY8x09ZFRS/kcjjnXHLvCWMlHRDyGSwsLi2vrBaKpbX1jc2t7fLOlYsSy0WbRyqyNyFzQkkj2iBBiZvYCqZDJa7D+9Ncv34Q1snIXMI4Fl3NhkYOJGfgqYtRj/a2K6RKCKGU4hzQkxrxoNGoH9M6prnkq4Jm1eqVg2KnH/FECwNcMeduKYmhmzILkiuRlTqJEzHj92wo0smGGT7wVB8PIuufATxh53xMOzfWoXdqBnfut5aTf2m3CQzq3VSaOAFh+PSjQaIwRDg/F/elFRzU2APGrfQbYn7HLOPgQymVOkY88khrZvppxzmX+e5tMcw6jCcHzbm0N4EYQXqUZT68n4Tw/+DquEpJlZ6TSrM2i7GA9tA+OkQUnaAmOkMt1EYcDdETekYvwWvwFrwHH1PrQjCb2UVzFXx9A8PfpOo=</latexit>

x2
<latexit sha1_base64="ONEtrlR1Jc02Uc7J9/3y9nYP+1U="></latexit><latexit sha1_base64="gRGg2B1/JeeLJwKjNPHnpw3xLGI="></latexit><latexit sha1_base64="gRGg2B1/JeeLJwKjNPHnpw3xLGI="></latexit><latexit sha1_base64="sT1ULw6BEhwkJ2nbiOvjcYrC80A=">AAACInicdVDLSgMxFM34bOuzunQTLIIbS9KF1l3BjcuKtgq2lEya1mCSGZI72jLMJ7jVH/Br3IkrwY8x09ZFRS/kcjjnXHLvCWMlHRDyGSwsLi2vrBaKpbX1jc2t7fJO20WJ5aLFIxXZm5A5oaQRLZCgxE1sBdOhEtfh/VmuXz8I62RkrmAci65mQyMHkjPw1OWoV+ttV0iVEEIpxTmgJ8fEg9PTeo3WMc0lXxU0q2avHBQ7/YgnWhjgijl3S0kM3ZRZkFyJrNRJnIgZv2dDkU42zPCBp/p4EFn/DOAJO+dj2rmxDr1TM7hzv7Wc/Eu7TWBQ76bSxAkIw6cfDRKFIcL5ubgvreCgxh4wbqXfEPM7ZhkHH0qp1DHikUdaM9NPO865zHdvi2HWYTw5aM6lvQnECNKjLPPh/SSE/wftWpWSKr0glcbxLMYC2kP76BBRdIIa6Bw1UQtxNERP6Bm9BK/BW/AefEytC8FsZhfNVfD1DcWbpOs=</latexit>

x3
<latexit sha1_base64="SRIQmv2VTBw6xxAtkVrCH1RqFx4="></latexit><latexit sha1_base64="a+/3dI2XWW/HZpbTnASApHDapd8="></latexit><latexit sha1_base64="a+/3dI2XWW/HZpbTnASApHDapd8="></latexit><latexit sha1_base64="saLjjbU+5dMBXy+laQYv6uHstLg=">AAACInicdVDLSgMxFM34rPVVdekmWAQ3lkShrTvBjcuKVgVbSiZN29AkMyR3tGWYT3CrP+DXuBNXgh9jptZFRS/kcjjnXHLvCWMlHRDyEczNLywuLRdWiqtr6xubpa3taxcllosmj1Rkb0PmhJJGNEGCErexFUyHStyEw7Ncv7kX1snIXME4Fm3N+kb2JGfgqctR57hTKpMKIYRSinNAa1XiwclJ/YjWMc0lX2U0rUZnK1hpdSOeaGGAK+bcHSUxtFNmQXIlsmIrcSJmfMj6Ip1smOF9T3VxL7L+GcATdsbHtHNjHXqnZjBwv7Wc/Eu7S6BXb6fSxAkIw78/6iUKQ4Tzc3FXWsFBjT1g3Eq/IeYDZhkHH0qx2DLigUdaM9NNW865zHdvi2HaYTw5aMalvQnECNLDLPPh/SSE/wfXRxVKKvSClE+r0xgLaBftoQNEUQ2donPUQE3EUR89oif0HLwEr8Fb8P5tnQumMztopoLPL8dXpOw=</latexit>

x4
<latexit sha1_base64="QKYnNuG4t7oAz8Z4fMRR2dxyXEg=">AAACInicdVBNTxsxFHwbKCWB8tVjL1YRUi+NbIRCuEXqAY6gEkDKRpHXcYKF7V3Zb9tEq/0JvRZx76/preJUqT8Gb5IegmAkW6OZsfzeJJlWHin9G9VWVt+svV2vNzY2321t7+zuXfk0d0J2RapTd5NwL7WysosKtbzJnOQm0fI6uftS+dffpPMqtZc4zWTf8LFVIyU4BunrZHA02NmnTUopY4xUhB23aCAnJ+1D1iassgL2OxunDxBwPtiN6vEwFbmRFoXm3vcYzbBfcIdKaFk24tzLjIs7PpbFbMKSHARpSEapC8cimalLOW68n5okJA3HW//cq8SXvF6Oo3a/UDbLUVox/2iUa4IpqdYlQ+WkQD0NhAunwoRE3HLHBYZSGo3Yyu8iNYbbYRF778twh1iGixuns4WWUiaEUE6w+FyWobz/DZHXydVhk9EmuwgttmCOdfgAH+ETMDiGDpzBOXRBwBh+wE+4j35Fv6M/0eM8WosWb97DEqJ/T56pphg=</latexit><latexit sha1_base64="6x98cjnaRCpbDSh9Ff33zzidJf4="></latexit><latexit sha1_base64="6x98cjnaRCpbDSh9Ff33zzidJf4="></latexit><latexit sha1_base64="C5NwgwSy8X3YHg6n8zR6QlVY0Tk=">AAACInicdVDLSgMxFM34rPVVdekmWAQ3lkSkrTvBjcuKVgVbSiZN29AkMyR3tGWYT3CrP+DXuBNXgh9jptZFRS/kcjjnXHLvCWMlHRDyEczNLywuLRdWiqtr6xubpa3taxcllosmj1Rkb0PmhJJGNEGCErexFUyHStyEw7Ncv7kX1snIXME4Fm3N+kb2JGfgqctR57hTKpMKIYRSinNAa1XiwclJ/YjWMc0lX2U0rUZnK1hpdSOeaGGAK+bcHSUxtFNmQXIlsmIrcSJmfMj6Ip1smOF9T3VxL7L+GcATdsbHtHNjHXqnZjBwv7Wc/Eu7S6BXb6fSxAkIw78/6iUKQ4Tzc3FXWsFBjT1g3Eq/IeYDZhkHH0qx2DLigUdaM9NNW865zHdvi2HaYTw5aMalvQnECNLDLPPh/SSE/wfXRxVKKvSClE+r0xgLaBftoQNEUQ2donPUQE3EUR89oif0HLwEr8Fb8P5tnQumMztopoLPL8kTpO0=</latexit>

xn-1
<latexit sha1_base64="ZbWHvzIo//96NwCSyG9bQSeLZe8="></latexit><latexit sha1_base64="mtye6oTonuCeXHW6A/fjTce4xyE="></latexit><latexit sha1_base64="mtye6oTonuCeXHW6A/fjTce4xyE="></latexit><latexit sha1_base64="WgwXWmO8sKwvdSUAE6FnmjP7L+I="></latexit>

xn
<latexit sha1_base64="N45yQ1YmZ/6osSBHQOLF+NrfYu4="></latexit><latexit sha1_base64="IaH83aWxf0CbEJuyUWlhbQ9I2/g="></latexit><latexit sha1_base64="IaH83aWxf0CbEJuyUWlhbQ9I2/g="></latexit><latexit sha1_base64="RDgRILTJjNe66d/z8mzIFyfB9f4=">AAACJHicdVDLSgMxFM34bn1Wl26CRXBjSVz0sSu4calgH9CWkklTDSaZIbmjlmG+wa3+gF/jTly48VvMtHVR0Qu5HM45l9x7wlhJB4R8BkvLK6tr6xuF4ubW9s7uXmm/7aLEctHikYpsN2ROKGlECyQo0Y2tYDpUohPened6515YJyNzDZNYDDS7MXIsOQNPtR6HqcmGe2VSIYRQSnEOaK1KPGg06me0jmku+SqjeV0OS0GhP4p4ooUBrphzPUpiGKTMguRKZMV+4kTM+B27Eel0xwwfe2qEx5H1zwCesgs+pp2b6NA7NYNb91vLyb+0XgLj+iCVJk5AGD77aJwoDBHOD8YjaQUHNfGAcSv9hpjfMss4+FiKxb4RDzzSmplR2nfOZb57WwzzDpPpQQsu7U0gHiE9zfLwfhLC/4P2WYWSCr0i5WZ1HuMGOkRH6ARRVENNdIEuUQtxJNETekYvwWvwFrwHHzPrUjCfOUALFXx9AylMpjM=</latexit>

(b) An n-tuple of real numbers x := (x1, . . . , xn)
is viewed as a real-valued function x : n → R on the
discrete index set n := {1, . . . , n}.

xi
<latexit sha1_base64="2VgYT2IvqlPRa+IJGtWBMjbPgek="></latexit><latexit sha1_base64="MvSft2wHRc6UbnuzFOgjpznJexw="></latexit><latexit sha1_base64="MvSft2wHRc6UbnuzFOgjpznJexw="></latexit><latexit sha1_base64="M0w+cnHhEwHWSvvbTYVpmolJFGk=">AAACInicdVDLSgMxFM34bOuzunQTLIIbS+KitruCG5cVrQq2lEya1mCSGZI72jLMJ7jVH/Br3IkrwY8x09ZFRS/kcjjnXHLvCWMlHRDyGSwsLi2vrBaKpbX1jc2t7fLOlYsSy0WbRyqyNyFzQkkj2iBBiZvYCqZDJa7D+9Ncv34Q1snIXMI4Fl3NhkYOJGfgqYtRT/a2K6RKCKGU4hzQkxrxoNGoH9M6prnkq4Jm1eqVg2KnH/FECwNcMeduKYmhmzILkiuRlTqJEzHj92wo0smGGT7wVB8PIuufATxh53xMOzfWoXdqBnfut5aTf2m3CQzq3VSaOAFh+PSjQaIwRDg/F/elFRzU2APGrfQbYn7HLOPgQymVOkY88khrZvppxzmX+e5tMcw6jCcHzbm0N4EYQXqUZT68n4Tw/+DquEpJlZ6TSrM2i7GA9tA+OkQUnaAmOkMt1EYcDdETekYvwWvwFrwHH1PrQjCb2UVzFXx9AyUOpSI=</latexit>

yi
<latexit sha1_base64="30xSE6Rye57XSwEFm9XKm/EETrQ="></latexit><latexit sha1_base64="Ez+B3qbt6q1HmMnDlTs/JkCNd/4="></latexit><latexit sha1_base64="Ez+B3qbt6q1HmMnDlTs/JkCNd/4="></latexit><latexit sha1_base64="1GarKP/2wdskx5eX1fyzt64zBjM="></latexit>

zi
<latexit sha1_base64="VXx787Xyh+77psJ5BWyskFi+Zbo="></latexit><latexit sha1_base64="cYEA/o07xffsUb6Rzo1VIn7mPzU="></latexit><latexit sha1_base64="cYEA/o07xffsUb6Rzo1VIn7mPzU="></latexit><latexit sha1_base64="BNvw/fg/5ClWX/SG/oRXltTu2/0="></latexit>x

<latexit sha1_base64="gGDkPwhJ6Pyq4Jg/Y6Xb2NCZSL4="></latexit><latexit sha1_base64="68rNbxQ2xbBlLhEVlx56rB3UwHA="></latexit><latexit sha1_base64="68rNbxQ2xbBlLhEVlx56rB3UwHA="></latexit><latexit sha1_base64="tPtcB1Sbj3JOhRia0Ldd5BDqVTA=">AAACIHicdVBNSwMxEM36bf3Wo5dgEbxYEg+23opePCpYFWyRbDrVYJJdklltWfYXeNU/4K/xJh7115it9VDRgQyP996QmRenWnlk7COamJyanpmdm68sLC4tr6yurZ/7JHMSWjLRibuMhQetLLRQoYbL1IEwsYaL+O6o1C/uwXmV2DMcpNAx4saqnpICA3Xav16tshpjjHNOS8Dr+yyAg4PGHm9QXkqhqmRUJ9dr0Xy7m8jMgEWphfdXnKXYyYVDJTUUlXbmIRXyTtxAPtyvoNuB6tJe4sKzSIfsmE8Y7wcmDk4j8Nb/1kryL+0qw16jkyubZghWfn/UyzTFhJbH0q5yIFEPAhDSqbAhlbfCCYkhkkqlbeFBJsYI283b3vsi9GBLcdRxMDxozGWCCaGP+W5RhPB+EqL/g/O9Gmc1fsqqzcNRjHNkk2yRHcJJnTTJMTkhLSIJkEfyRJ6jl+g1eovev60T0Whmg4xV9PkFgiOkUg==</latexit>

y
<latexit sha1_base64="44VsXVqFTOMhRYHKo6Kex8HYNg4="></latexit><latexit sha1_base64="8F+69tqfrgyeSnkHgX7xcmhS5Cs="></latexit><latexit sha1_base64="8F+69tqfrgyeSnkHgX7xcmhS5Cs="></latexit><latexit sha1_base64="xShYfugabwvEkfQ/5rG9tk5nSCc=">AAACIHicdVDLSgMxFM34tj6rSzfBIrhxyPhq3YluXCpYFWyRTHqrwSQzJHfUYZgvcKs/4Ne4E5f6Naa1Lip6IJfDueeSe0+cKumQsY9gZHRsfGJyaroyMzs3v7BYXTpzSWYFNEWiEnsRcwdKGmiiRAUXqQWuYwXn8e1hr39+B9bJxJxinkJb82sju1Jw9NJJfrVYYyFrbDciRlm4vbvL6juesJ1NtrVHo5D1USMDHF9Vg+lWJxGZBoNCcecuI5Ziu+AWpVBQVlqZg5SLW34NRX+/kq55qUO7ifXPIO2rQz6unct17J2a44373euJf/UuM+w22oU0aYZgxPdH3UxRTGjvWNqRFgSq3BMurPQbUnHDLRfoI6lUWgbuRaI1N52i5ZwrffW2FAcV8/5BQy7tTQgPWGyUpQ/vJyH6PznbDCMWRiestn8wiHGKrJBVsk4iUif75IgckyYRBMgjeSLPwUvwGrwF79/WkWAws0yGEHx+AZxqpGE=</latexit>

z
<latexit sha1_base64="K5D+/nyA+vYNfz6SLpFfXT09ndA="></latexit><latexit sha1_base64="qCH0atwr7LyAv9pDLtbwHnfAl8A="></latexit><latexit sha1_base64="qCH0atwr7LyAv9pDLtbwHnfAl8A="></latexit><latexit sha1_base64="8PnqpCaJg167+v6x+SR8M+MYix8=">AAACIHicdVBNSwMxEM36Weu3Hr0Ei+DFkq3F6q3oxaOCVcEWyaZTDSbZJZlV67K/wKv+AX+NN/Gov8ZsrYeKPsjwePOGzLwoUdIhYx/B2PjE5NR0aaY8Oze/sLi0vHLq4tQKaIlYxfY84g6UNNBCiQrOEwtcRwrOopuDon92C9bJ2JxgP4GO5ldG9qTg6KXjh8ulCqvu7e7U6juUVRlrhLWwILVGfbtOQ68UqJAhji6Xg5l2NxapBoNCcecuQpZgJ+MWpVCQl9upg4SLG34F2WC/nG54qUt7sfXPIB2oIz6unevryDs1x2v3u1eIf/UuUuztdjJpkhTBiO+PeqmiGNPiWNqVFgSqvidcWOk3pOKaWy7QR1Iutw3ciVhrbrpZ2zmX++ptCQ4r9gcHjbi0NyHcY7aV5z68n4To/+S0Vg1ZNTxmleb+MMYSWSPrZJOEpEGa5JAckRYRBMgjeSLPwUvwGrwF79/WsWA4s0pGEHx+AZtUpGA=</latexit> =<latexit sha1_base64="h3uYBWzmcFtXdVEllLtOnwrzfEQ=">AAACIHicbVDLSgNBEOz1Gde3Hr0sBsGLYdeLXkTRi8cI5gEmyOyko4Mzs8tMrxqWBe9e9Qf8Gb2JR/0aJ49LogXTFNXVTHfFqRSWwvDbm5qemZ2bLy34i0vLK6tr6xt1m2SGY40nMjHNmFmUQmONBElspgaZiiU24ruzfr9xj8aKRF9SL8W2YjdadAVn5KSLo+u1clgJBwj+kmhEysfv/tETAFSv172FVifhmUJNXDJrr6IwpXbODAkusfBbmcWU8Tt2g/lgvyLYcVIn6CbGPU3BQB3zMWVtT8XOqRjd2sleX/yvd5VR97CdC51mhJoPP+pmMqAk6B8bdIRBTrLnCONGuA0DfssM4+Qi8f2WxgeeKMV0J29ZawtXnS2lUaXe4KAxl3ImwkfK94rChRdNRvWX1PcrUViJLsLyySkMUYIt2IZdiOAATuAcqlADDgjP8AKv3pv34X16X0PrlDea2YQxeD+/lxmlrg==</latexit><latexit sha1_base64="mkOcjiSzuBQRN43xUFVaHNChiEY=">AAACIHicbVDLTsMwEHTKs+ENRy4RFRIXqoQLXCoQXDiCRB9SW1WOuwWrthPZG6CK8gVc4QfgY+CGOCH4Gty0l7aM5NVodlbenTAW3KDv/ziFufmFxaXloruyura+sbm1XTNRohlUWSQi3QipAcEVVJGjgEasgcpQQD3sXwz79XvQhkfqBgcxtCW9VbzHGUUrXVc6myW/7OfwZkkwJqXTd7cSv327V50tp9jqRiyRoJAJakwz8GNsp1QjZwIyt5UYiCnr01tI8/0yb99KXa8XafsUerk64aPSmIEMrVNSvDPTvaH4X6+ZYO+knXIVJwiKjT7qJcLDyBse63W5BoZiYAllmtsNPXZHNWVoI3HdloIHFklJVTdtGWMyW60txnHFQX7QhEtaE8IjpodZZsMLpqOaJbWjcuCXg2u/dHZORlgmu2SPHJCAHJMzckmuSJUwAuSJPJMX59X5cD6dr5G14IxndsgEnN8/2ginIg==</latexit><latexit sha1_base64="mkOcjiSzuBQRN43xUFVaHNChiEY=">AAACIHicbVDLTsMwEHTKs+ENRy4RFRIXqoQLXCoQXDiCRB9SW1WOuwWrthPZG6CK8gVc4QfgY+CGOCH4Gty0l7aM5NVodlbenTAW3KDv/ziFufmFxaXloruyura+sbm1XTNRohlUWSQi3QipAcEVVJGjgEasgcpQQD3sXwz79XvQhkfqBgcxtCW9VbzHGUUrXVc6myW/7OfwZkkwJqXTd7cSv327V50tp9jqRiyRoJAJakwz8GNsp1QjZwIyt5UYiCnr01tI8/0yb99KXa8XafsUerk64aPSmIEMrVNSvDPTvaH4X6+ZYO+knXIVJwiKjT7qJcLDyBse63W5BoZiYAllmtsNPXZHNWVoI3HdloIHFklJVTdtGWMyW60txnHFQX7QhEtaE8IjpodZZsMLpqOaJbWjcuCXg2u/dHZORlgmu2SPHJCAHJMzckmuSJUwAuSJPJMX59X5cD6dr5G14IxndsgEnN8/2ginIg==</latexit><latexit sha1_base64="0pOTAiPvA3R7xs3addHm+J9aGrs=">AAACIHicbVDLTgJBEJz1CfgCPXrZSEy8SHa96MWE6MUjJPJIgJDZoYEJM7ObmV6VbPYLvOoP+DXejEf9GgfYC2Al06lUV2e6K4gEN+h5P87G5tb2zm4uX9jbPzg8KpaOmyaMNYMGC0Wo2wE1ILiCBnIU0I40UBkIaAWT+1m/9QTa8FA94jSCnqQjxYecUbRS/bZfLHsVbw53nfgZKZMMtX7JyXcHIYslKGSCGtPxvQh7CdXImYC00I0NRJRN6AiS+X6pe26lgTsMtX0K3bm65KPSmKkMrFNSHJvV3kz8r9eJcXjTS7iKYgTFFh8NY+Fi6M6OdQdcA0MxtYQyze2GLhtTTRnaSAqFroJnFkpJ1SDpGmNSW60twqzidH7QkktaE8ILJpdpasPzV6NaJ82riu9V/LpXrt5lMebIKTkjF8Qn16RKHkiNNAgjQF7JG3l3PpxP58v5Xlg3nGzmhCzB+f0Dwvqj4Q==</latexit> +

<latexit sha1_base64="pIIjMoq3yu1pjF5wGaiXkX2IhvQ=">AAACIHicbVA9SwNBEJ3zO/EramlzGARBDHc2Woo2lgpGhSTEvc0kWbK7d+zOqeG4X2Crha2/xk4s9de4+WiS+GCHx5s37MyLEiksBcGPNze/sLi0vFIorq6tb2yWtrZvbZwajlUey9jcR8yiFBqrJEjifWKQqUjiXdS7GPTvHtFYEesb6ifYUKyjRVtwRk66PmyWykElGMKfJeGYlM8KyfsDAFw1t7xCvRXzVKEmLpm1tTBIqJExQ4JLzIv11GLCeI91MBvul/v7Tmr57di4p8kfqhM+pqztq8g5FaOune4NxP96tZTap41M6CQl1Hz0UTuVPsX+4Fi/JQxykn1HGDfCbejzLjOMk4ukWKxrfOKxUky3srq1NnfV2RIaV+oPD5pwKWcifKbsKM9deOF0VLPk9rgSBpXw2qV4DiOswC7swQGEcAJncAlXUAUOCC/wCm/eh/fpfXnfI+ucN57ZgQl4v39Mo6WB</latexit><latexit sha1_base64="0csP0gw2IukR+UvlbgG3TcObLWs=">AAACIHicbVC7TgMxEPTxTMIrgZLmRISEhIjuaKCMoKFMJPIQSYR8ziaxsH0new8Sne4LaKGg5Qf4DTpECT8DzqNJYCSvRrOz8u4EkeAGPe/LWVpeWV1bz2RzG5tb2zv5wm7dhLFmUGOhCHUzoAYEV1BDjgKakQYqAwGN4O5y3G/cgzY8VNc4iqAjaV/xHmcUrVQ9vs0XvZI3gfuX+DNSLGejl5u34U/ltuBk292QxRIUMkGNaflehJ2EauRMQJprxwYiyu5oH5LJfql7aKWu2wu1fQrdiTrno9KYkQysU1IcmMXeWPyv14qxd95JuIpiBMWmH/Vi4WLojo91u1wDQzGyhDLN7YYuG1BNGdpIcrm2ggcWSklVN2kbY1JbrS3CWcXR5KA5l7QmhCEmJ2lqw/MXo/pL6qcl3yv5VZviBZkiQ/bJATkiPjkjZXJFKqRGGAHySJ7Is/PqvDsfzufUuuTMZvbIHJzvX5o0p6E=</latexit><latexit sha1_base64="0csP0gw2IukR+UvlbgG3TcObLWs=">AAACIHicbVC7TgMxEPTxTMIrgZLmRISEhIjuaKCMoKFMJPIQSYR8ziaxsH0new8Sne4LaKGg5Qf4DTpECT8DzqNJYCSvRrOz8u4EkeAGPe/LWVpeWV1bz2RzG5tb2zv5wm7dhLFmUGOhCHUzoAYEV1BDjgKakQYqAwGN4O5y3G/cgzY8VNc4iqAjaV/xHmcUrVQ9vs0XvZI3gfuX+DNSLGejl5u34U/ltuBk292QxRIUMkGNaflehJ2EauRMQJprxwYiyu5oH5LJfql7aKWu2wu1fQrdiTrno9KYkQysU1IcmMXeWPyv14qxd95JuIpiBMWmH/Vi4WLojo91u1wDQzGyhDLN7YYuG1BNGdpIcrm2ggcWSklVN2kbY1JbrS3CWcXR5KA5l7QmhCEmJ2lqw/MXo/pL6qcl3yv5VZviBZkiQ/bJATkiPjkjZXJFKqRGGAHySJ7Is/PqvDsfzufUuuTMZvbIHJzvX5o0p6E=</latexit><latexit sha1_base64="HAh4hnY0qvwhFCc5biVmSDVud8Y=">AAACIHicbVDLTgJBEJz1CfgCPXrZSExMjGTXix6JXjxCIo8ECJkdGpgwM7uZ6VXJZr/Aq/6AX+PNeNSvcYC9AFYynUp1daa7gkhwg57342xsbm3v7Obyhb39g8OjYum4acJYM2iwUIS6HVADgitoIEcB7UgDlYGAVjC5n/VbT6AND9UjTiPoSTpSfMgZRSvVL/vFslfx5nDXiZ+RMslQ65ecfHcQsliCQiaoMR3fi7CXUI2cCUgL3dhARNmEjiCZ75e651YauMNQ26fQnatLPiqNmcrAOiXFsVntzcT/ep0Yh7e9hKsoRlBs8dEwFi6G7uxYd8A1MBRTSyjT3G7osjHVlKGNpFDoKnhmoZRUDZKuMSa11doizCpO5wctuaQ1IbxgcpWmNjx/Nap10ryu+F7Fr3vl6l0WY46ckjNyQXxyQ6rkgdRIgzAC5JW8kXfnw/l0vpzvhXXDyWZOyBKc3z+jwqPP</latexit>

y
<latexit sha1_base64="44VsXVqFTOMhRYHKo6Kex8HYNg4="></latexit><latexit sha1_base64="8F+69tqfrgyeSnkHgX7xcmhS5Cs="></latexit><latexit sha1_base64="8F+69tqfrgyeSnkHgX7xcmhS5Cs="></latexit><latexit sha1_base64="xShYfugabwvEkfQ/5rG9tk5nSCc=">AAACIHicdVDLSgMxFM34tj6rSzfBIrhxyPhq3YluXCpYFWyRTHqrwSQzJHfUYZgvcKs/4Ne4E5f6Naa1Lip6IJfDueeSe0+cKumQsY9gZHRsfGJyaroyMzs3v7BYXTpzSWYFNEWiEnsRcwdKGmiiRAUXqQWuYwXn8e1hr39+B9bJxJxinkJb82sju1Jw9NJJfrVYYyFrbDciRlm4vbvL6juesJ1NtrVHo5D1USMDHF9Vg+lWJxGZBoNCcecuI5Ziu+AWpVBQVlqZg5SLW34NRX+/kq55qUO7ifXPIO2rQz6unct17J2a44373euJf/UuM+w22oU0aYZgxPdH3UxRTGjvWNqRFgSq3BMurPQbUnHDLRfoI6lUWgbuRaI1N52i5ZwrffW2FAcV8/5BQy7tTQgPWGyUpQ/vJyH6PznbDCMWRiestn8wiHGKrJBVsk4iUif75IgckyYRBMgjeSLPwUvwGrwF79/WkWAws0yGEHx+AZxqpGE=</latexit>

x
<latexit sha1_base64="gGDkPwhJ6Pyq4Jg/Y6Xb2NCZSL4="></latexit><latexit sha1_base64="68rNbxQ2xbBlLhEVlx56rB3UwHA="></latexit><latexit sha1_base64="68rNbxQ2xbBlLhEVlx56rB3UwHA="></latexit><latexit sha1_base64="tPtcB1Sbj3JOhRia0Ldd5BDqVTA=">AAACIHicdVBNSwMxEM36bf3Wo5dgEbxYEg+23opePCpYFWyRbDrVYJJdklltWfYXeNU/4K/xJh7115it9VDRgQyP996QmRenWnlk7COamJyanpmdm68sLC4tr6yurZ/7JHMSWjLRibuMhQetLLRQoYbL1IEwsYaL+O6o1C/uwXmV2DMcpNAx4saqnpICA3Xav16tshpjjHNOS8Dr+yyAg4PGHm9QXkqhqmRUJ9dr0Xy7m8jMgEWphfdXnKXYyYVDJTUUlXbmIRXyTtxAPtyvoNuB6tJe4sKzSIfsmE8Y7wcmDk4j8Nb/1kryL+0qw16jkyubZghWfn/UyzTFhJbH0q5yIFEPAhDSqbAhlbfCCYkhkkqlbeFBJsYI283b3vsi9GBLcdRxMDxozGWCCaGP+W5RhPB+EqL/g/O9Gmc1fsqqzcNRjHNkk2yRHcJJnTTJMTkhLSIJkEfyRJ6jl+g1eovev60T0Whmg4xV9PkFgiOkUg==</latexit>

i
<latexit sha1_base64="FHUmKwgVc9g2A4ARyVP4E6ZtmhU=">AAACIHicbVA9SwNBEJ3z2/gVtbQ5DEIaw52F2hmwsVQwKpgge5tJsmR379idU8Nxv8BW/4C/w8LSTiz1f9i7uaSJ+mCHx5s37MyLEiksBcGnNzU9Mzs3v7BYWlpeWV0rr29c2Dg1HBs8lrG5iphFKTQ2SJDEq8QgU5HEy6h/POxf3qKxItbnNEiwpVhXi47gjJx0Jm7KlaAWFPD/knBMKkcv1e9XADi9WfcWm+2Ypwo1ccmsvQ6DhFoZMyS4xLzUTC0mjPdZF7Niv9zfcVLb78TGPU1+oU74mLJ2oCLnVIx69ndvKP7Xu06pc9jKhE5SQs1HH3VS6VPsD4/128IgJzlwhHEj3IY+7zHDOLlISqWmxjseK8V0O2taa3NXnS2hcaVBcdCESzkT4T1lu3nuwgt/R/WXXOzVwqAWngWV+j6MsABbsA1VCOEA6nACp9AADggP8AhP3rP35r17HyPrlDee2YQJeF8/ge6m2Q==</latexit><latexit sha1_base64="T8DOFH3zG6h1TBIVxoTD6i1f2Mg=">AAACIHicbVC7TgMxEPTxDOGVQElzIkKCguiOAuiIREOZSASQuCjyORtixfad7D3gdLovoKCBH+A7qKjoECX8Bz3Oo0lgJK9Gs7Py7oSx4AY978uZmZ2bX1gsLBWXV1bX1kvljQsTJZpBk0Ui0lchNSC4giZyFHAVa6AyFHAZ9k8H/ctb0IZH6hzTGFqS3ije5YyilRq8Xap4VW8I9y/xx6Ry8rr78/YY7NXbZWcp6EQskaCQCWrMte/F2MqoRs4E5MUgMRBT1qc3kA33y90dK3XcbqTtU+gO1QkflcakMrROSbFnpnsD8b/edYLd41bGVZwgKDb6qJsIFyN3cKzb4RoYitQSyjS3G7qsRzVlaCMpFgMFdyySkqpOFhhjclutLcZxxXR40IRLWhPCPWb7eW7D86ej+ksuDqq+V/UbXqV2SEYokC2yTXaJT45IjZyROmkSRoA8kCfy7Lw4786H8zmyzjjjmU0yAef7FzKqp+8=</latexit><latexit sha1_base64="T8DOFH3zG6h1TBIVxoTD6i1f2Mg=">AAACIHicbVC7TgMxEPTxDOGVQElzIkKCguiOAuiIREOZSASQuCjyORtixfad7D3gdLovoKCBH+A7qKjoECX8Bz3Oo0lgJK9Gs7Py7oSx4AY978uZmZ2bX1gsLBWXV1bX1kvljQsTJZpBk0Ui0lchNSC4giZyFHAVa6AyFHAZ9k8H/ctb0IZH6hzTGFqS3ije5YyilRq8Xap4VW8I9y/xx6Ry8rr78/YY7NXbZWcp6EQskaCQCWrMte/F2MqoRs4E5MUgMRBT1qc3kA33y90dK3XcbqTtU+gO1QkflcakMrROSbFnpnsD8b/edYLd41bGVZwgKDb6qJsIFyN3cKzb4RoYitQSyjS3G7qsRzVlaCMpFgMFdyySkqpOFhhjclutLcZxxXR40IRLWhPCPWb7eW7D86ej+ksuDqq+V/UbXqV2SEYokC2yTXaJT45IjZyROmkSRoA8kCfy7Lw4786H8zmyzjjjmU0yAef7FzKqp+8=</latexit><latexit sha1_base64="hnudfUOQN1uVRNrguy3qJoS3Z6Y=">AAACIHicbVDLTgJBEJzFF+AL9OhlIzHxItn1oB5JvHiERB4JEDI7NDBhZnYz06uSzX6BV/0Bv8ab8ahf4wB7AaxkOpXq6kx3BZHgBj3vx8ltbe/s7uULxf2Dw6PjUvmkZcJYM2iyUIS6E1ADgitoIkcBnUgDlYGAdjC9n/fbT6AND9UjziLoSzpWfMQZRSs1+KBU8areAu4m8TNSIRnqg7JT6A1DFktQyAQ1put7EfYTqpEzAWmxFxuIKJvSMSSL/VL3wkpDdxRq+xS6C3XFR6UxMxlYp6Q4Meu9ufhfrxvj6K6fcBXFCIotPxrFwsXQnR/rDrkGhmJmCWWa2w1dNqGaMrSRFIs9Bc8slJKqYdIzxqS2WluEWcXZ4qAVl7QmhBdMrtLUhuevR7VJWtdV36v6Da9Su8lizJMzck4uiU9uSY08kDppEkaAvJI38u58OJ/Ol/O9tOacbOaUrMD5/QMLvaQB</latexit>
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(c) Vector addition is defined component-wise, and function addition is defined point-wise. Thus
when vectors are viewed as functions, vector addition and function addition are equivalent.

Figure 1.1: Two alternative views of an n-tuple of real numbers x = (x1, . . . , xn). (a) As a directed line
segment, i.e. a vector in n-dimensional space, and (b) as a function on the index set n := {1, . . . , n}. Vector
addition corresponds exactly to function addition as depicted in (c).

A function space is simply a set of functions that have a common domain and range set.
We will use the following compact notation to denote such spaces of functions

XΩ := {u : Ω −→ X} ,

i.e. the set of all mappings from Ω to X. For example if we view the function x as a signal,
then x has Ω as its index set, and at each i ∈ Ω, the function takes values in the set X,
i.e. for each i, xi ∈ X. At first this notation might seem a little counter-intuitive since
the domain is in the superscript in XΩ, but it should become natural after examining a few
examples.

For the vector example shown above, the set of n-vectors as real-valued functions on n
would be denoted by

R{1,...,n} = Rn = Rn.

Note that by conventional abuse of notation we abbreviate Rn as Rn. If the index set is
countable, i.e. Ω = {0, 1, 2, . . .} = N, then X{0,1,2,...} can be thought of as a countably-
infinite number of ordered copies of X, and thus any element x ∈ XN looks like

XN :=
{
x = (x0, x1, x2, . . .) , xi ∈ X

}
= X× X× X× · · ·

i.e. a sequence with each element in X, or equivalently a function x : N → X. When Ω
is uncountable (e.g. R) then we can not think of a function like x : R → X as a sequence
because the index is in a continuum, but we can still use this notation as in

XR :=
{
x : R→ X

}
.

Figure 1.2 shows a few examples of this notation as applied to various signal spaces.
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12 1.1. Rn and Abstract Vector Spaces

t

x(t)

(a) A bilateral, scalar, discrete-
time signal takes values in R for
each value of t ∈ Z. Thus x :
Z → R, and it is in the function
space RZ.
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(b) A bilateral, scalar,
continuous-time signal takes
values in R for each value of t
that runs from −∞ to ∞. Thus
x : R → R, and it is in the
function space RR.
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0
<latexit sha1_base64="Stg9iKZWVZ2apTAhcD68VEaYdRc="></latexit><latexit sha1_base64="KDNAHokziExWD51DBP5tdpqGBlM=">AAACIHicdVBNSwMxEM36Weu3Hr0Ei+DFkq1FPWnBi0cFq4Itkk2nGkyySzKrlmV/gVf9A/4VL97Eo/4a0209VPRBhsebN2TmRYmSDhn7DMbGJyanpksz5dm5+YXFpeWVMxenVkBTxCq2FxF3oKSBJkpUcJFY4DpScB7dHvb753dgnYzNKfYSaGt+bWRXCo5eOmFXSxVWrdfqO7U6LcguG5IdT8IqK1A5eN0ucHy1HMy0OrFINRgUijt3GbIE2xm3KIWCvNxKHSRc3PJryIr9crrhpQ7txtY/g7RQR3xcO9fTkXdqjjfud68v/tW7TLG7186kSVIEIwYfdVNFMab9Y2lHWhCoep5wYaXfkIobbrlAH0m53DJwL2KtuelkLedc7qu3JTis2CsOGnFpb0J4wGwrz314PwnR/8lZrRqyanjCKo19MkCJrJF1sklCsksa5IgckyYRBMgjeSLPwUvwFrwHHwPrWDCcWSUjCL6+AYhspkM=</latexit><latexit sha1_base64="KDNAHokziExWD51DBP5tdpqGBlM=">AAACIHicdVBNSwMxEM36Weu3Hr0Ei+DFkq1FPWnBi0cFq4Itkk2nGkyySzKrlmV/gVf9A/4VL97Eo/4a0209VPRBhsebN2TmRYmSDhn7DMbGJyanpksz5dm5+YXFpeWVMxenVkBTxCq2FxF3oKSBJkpUcJFY4DpScB7dHvb753dgnYzNKfYSaGt+bWRXCo5eOmFXSxVWrdfqO7U6LcguG5IdT8IqK1A5eN0ucHy1HMy0OrFINRgUijt3GbIE2xm3KIWCvNxKHSRc3PJryIr9crrhpQ7txtY/g7RQR3xcO9fTkXdqjjfud68v/tW7TLG7186kSVIEIwYfdVNFMab9Y2lHWhCoep5wYaXfkIobbrlAH0m53DJwL2KtuelkLedc7qu3JTis2CsOGnFpb0J4wGwrz314PwnR/8lZrRqyanjCKo19MkCJrJF1sklCsksa5IgckyYRBMgjeSLPwUvwFrwHHwPrWDCcWSUjCL6+AYhspkM=</latexit><latexit sha1_base64="3qBCjDdKJMD5kTeq1cfURZL8FRM=">AAACIHicdVBNSwMxEM36bf3Wo5dgEbxYsqWoJxG8eGzBtoItkk2nGkyySzKrlmV/gVf9A/4ab+JRf43puh4q+iDD480bMvOiREmHjH0EU9Mzs3PzC4uVpeWV1bX1jc2Oi1MroC1iFduLiDtQ0kAbJSq4SCxwHSnoRren4373DqyTsTnHUQJ9za+NHErB0UstdrVeZbVGvXFQb9CCHLKSHHgS1liBKinRvNoIFnuDWKQaDArFnbsMWYL9jFuUQkFe6aUOEi5u+TVkxX453fXSgA5j659BWqgTPq6dG+nIOzXHG/e7Nxb/6l2mODzqZ9IkKYIR3x8NU0UxpuNj6UBaEKhGnnBhpd+QihtuuUAfSaXSM3AvYq25GWQ951zuq7clWFYcFQdNuLQ3ITxgtp/nPryfhOj/pFOvhawWtlj15LiMcYFskx2yR0JySE7IGWmSNhEEyCN5Is/BS/AavAXv39apoJzZIhMIPr8AFFOkDw==</latexit>-1<latexit sha1_base64="+ujoBKvnFJ8+ajqfb4irgoxxejw=">AAACKHicdVDLSgMxFL3js61vXboJiuDGMlOLupKCG5cK9iFOkUyaajDJDMkdtQzzFW71B/wKP8GduPVLTKd1UdEDuRzOPZfce6JECou+/+lNTc/Mzs2XypWFxaXlldW19ZaNU8N4k8UyNp2IWi6F5k0UKHknMZyqSPJ2dHcy7LfvubEi1hc4SHhX0Rst+oJRdNJliPwRs708uF7d9qv1Wv2gVicFOfTH5MCRoOoX2G7M7u++AcDZ9ZpXDnsxSxXXyCS19irwE+xm1KBgkueVMLU8oeyO3vCs2DMnO07qkX5s3NNICnXCR5W1AxU5p6J4a3/3huJfvasU+0fdTOgkRa7Z6KN+KgnGZHg06QnDGcqBI5QZ4TYk7JYaytBFU6mEmj+wWCmqe1lorc1ddbYExxUHxUETLuVM4/ByF95PQuR/0qpVA78anLsUj2GEEmzCFuxCAIfQgFM4gyYwUPAEz/DivXrv3of3ObJOeeOZDZiA9/UNI42pBg==</latexit><latexit sha1_base64="aCaSjmR/lzhJLZx29Sv7JSLO5ek="></latexit><latexit sha1_base64="aCaSjmR/lzhJLZx29Sv7JSLO5ek="></latexit><latexit sha1_base64="2VnELujuzjrRDb4tmCSk6BiskOs=">AAACKHicdVDLTgIxFO34BHyBLt00EhM3khlC1JUhceMSEwENQ0inFGloO5P2jkom8xVu9Qf8GneGrV9iGcYFRk/Sm5Nzz03vPUEkuAHXnTkrq2vrG5uFYmlre2d3r1zZ75gw1pS1aShCfRcQwwRXrA0cBLuLNCMyEKwbTK7m/e4j04aH6hamEetL8qD4iFMCVrr3gT1Dcpp6g3LVrTXqjbN6A2fk3M3JmSVezc1QRTlag4pT9IchjSVTQAUxpue5EfQTooFTwdKSHxsWETohDyzJ9kzxsZWGeBRq+xTgTF3yEWnMVAbWKQmMze/eXPyr14thdNFPuIpiYIouPhrFAkOI50fjIdeMgphaQqjmdkNMx0QTCjaaUslX7ImGUhI1THxjTGqrtUWQV5hmBy25pDXl4aU2vJ+E8P+kU695bs27cavNyzzGAjpER+gEeegcNdE1aqE2okiiF/SK3px358P5dGYL64qTzxygJThf3/vDp6Y=</latexit> 2<latexit sha1_base64="jQ+ePLVPbMnhC/seyrvSxU9aHMU="></latexit><latexit sha1_base64="gevfEfwA9+h1McLqpf7p7ju2W38=">AAACIHicdVBNSwMxEM36Weu3Hr0Ei+DFsluLetKCF48WbCu0RbLpVINJdklm1bLsL/Cqf8C/4sWbeNRfY7qth4o+yPB484bMvDCWwqLvf3pT0zOzc/OFheLi0vLK6tr6RtNGieHQ4JGMzGXILEihoYECJVzGBpgKJbTC29Nhv3UHxopIX+Aghq5i11r0BWfopHrlaq3kl6uV6kGlSnNy6I/JgSNB2c9ROnndz3F+te4tdHoRTxRo5JJZ2w78GLspMyi4hKzYSSzEjN+ya0jz/TK646Qe7UfGPY00Vyd8TFk7UKFzKoY39ndvKP7VayfYP+qmQscJguajj/qJpBjR4bG0JwxwlANHGDfCbUj5DTOMo4ukWOxouOeRUkz30o61NnPV2WIcVxzkB024lDMhPGC6l2UuvJ+E6P+kWSkHfjmo+6XaMRmhQLbINtklATkkNXJGzkmDcALkkTyRZ+/Fe/PevY+Rdcobz2ySCXhf34vkpkU=</latexit><latexit sha1_base64="gevfEfwA9+h1McLqpf7p7ju2W38=">AAACIHicdVBNSwMxEM36Weu3Hr0Ei+DFsluLetKCF48WbCu0RbLpVINJdklm1bLsL/Cqf8C/4sWbeNRfY7qth4o+yPB484bMvDCWwqLvf3pT0zOzc/OFheLi0vLK6tr6RtNGieHQ4JGMzGXILEihoYECJVzGBpgKJbTC29Nhv3UHxopIX+Aghq5i11r0BWfopHrlaq3kl6uV6kGlSnNy6I/JgSNB2c9ROnndz3F+te4tdHoRTxRo5JJZ2w78GLspMyi4hKzYSSzEjN+ya0jz/TK646Qe7UfGPY00Vyd8TFk7UKFzKoY39ndvKP7VayfYP+qmQscJguajj/qJpBjR4bG0JwxwlANHGDfCbUj5DTOMo4ukWOxouOeRUkz30o61NnPV2WIcVxzkB024lDMhPGC6l2UuvJ+E6P+kWSkHfjmo+6XaMRmhQLbINtklATkkNXJGzkmDcALkkTyRZ+/Fe/PevY+Rdcobz2ySCXhf34vkpkU=</latexit><latexit sha1_base64="FkvbQ1qHgIyPrcJyTGKFBRgxZ1o=">AAACIHicdVBNSwMxEM36bf3Wo5dgEbxYdktpPYngxaOC1YItkk2nbWiSXZJZdVn2F3jVP+Cv8SYe9deYruuhog8yPN68ITMvjKWw6Psf3szs3PzC4tJyZWV1bX1jc2v7ykaJ4dDmkYxMJ2QWpNDQRoESOrEBpkIJ1+H4dNK/vgNjRaQvMY2hp9hQi4HgDJ10Ub/drPq1Rr3RrDdoQVp+SZqOBDW/QJWUOL/d8pa7/YgnCjRyyay9CfwYexkzKLiEvNJNLMSMj9kQsmK/nO47qU8HkXFPIy3UKR9T1qYqdE7FcGR/9ybiX72bBAdHvUzoOEHQ/PujQSIpRnRyLO0LAxxl6gjjRrgNKR8xwzi6SCqVroZ7HinFdD/rWmtzV50txrJiWhw05VLOhPCA2WGeu/B+EqL/k6t6LfBrwYVfPTkuY1wiu2SPHJCAtMgJOSPnpE04AfJInsiz9+K9em/e+7d1xitndsgUvM8vF8ukEQ==</latexit>

k
<latexit sha1_base64="FAnQOU4HgpjDF7ldRY8q3rAUg1c="></latexit><latexit sha1_base64="/kmRpxCvWy+SjWBNCgVMRR9Tofw=">AAACIHicdVBNSwMxEM36bf3Wo5dgEbxYdlu19qKCF48KVgVbJJtONTTJLsmsWpb9BV71D/hXvHgTj/przG71UNEHGR5v3pCZF8ZSWPT9D29kdGx8YnJqujQzOze/sLi0fGajxHBo8khG5iJkFqTQ0ESBEi5iA0yFEs7D3mHeP78FY0WkT7EfQ1uxay26gjN00knvarHsV7aCanUnoDlpNBq1nFS3g3qdBhW/QHn/pVbg+GrJm251Ip4o0Mgls/Yy8GNsp8yg4BKyUiuxEDPeY9eQFvtldN1JHdqNjHsaaaEO+Ziytq9C51QMb+zvXi7+1btMsLvbToWOEwTNBx91E0kxovmxtCMMcJR9Rxg3wm1I+Q0zjKOLpFRqabjjkVJMd9KWtTZz1dli/K7YLw4acilnQrjHdDPLXHg/CdH/yVm1EviV4MQvH+yRAabIKlkjGyQgdXJAjsgxaRJOgDyQR/LkPXuv3pv3PrCOeN8zK2QI3ucXBZ2mjA==</latexit><latexit sha1_base64="/kmRpxCvWy+SjWBNCgVMRR9Tofw="></latexit><latexit sha1_base64="oo+zKqhhwrnBn5wc1lWn47IG024=">AAACIHicdVDLSgMxFM34rPXV6tJNsAhuLDP1UbsRwY1LBauFtkgmvdXQJDMkd9QyzBe41R/wa9yJS/0aM7UuKnogl8O555J7TxhLYdH3P7yp6ZnZufnCQnFxaXlltVReu7RRYjg0eSQj0wqZBSk0NFGghFZsgKlQwlU4OMn7V3dgrIj0BQ5j6Cp2o0VfcIZOOh9clyp+dS+o1Q4CmpNGo7Gbk9p+UK/ToOqPUCFjnF2XvYVOL+KJAo1cMmvbgR9jN2UGBZeQFTuJhZjxAbuBdLRfRrec1KP9yLinkY7UCR9T1g5V6JyK4a393cvFv3rtBPuH3VToOEHQ/PujfiIpRjQ/lvaEAY5y6AjjRrgNKb9lhnF0kRSLHQ33PFKK6V7asdZmrjpbjOOKw9FBEy7lTAgPmO5kmQvvJyH6P7msVQO/Gpz7leOjcYwFskE2yTYJSJ0ck1NyRpqEEyCP5Ik8ey/eq/fmvX9bp7zxzDqZgPf5BZF1pFg=</latexit>

(c) A complex Fourier series is a
complex-valued function of a discrete
variable k ∈ Z depicted here as a vec-
tor in a complex plane at each k. Thus
x : Z → C, and therefore lies in the func-
tion space CZ .

t
<latexit sha1_base64="XfemvfXR3+RUwdIC+e5WWYAZPi4="></latexit><latexit sha1_base64="F7NYAiCYCb2pYKnZU2/Dbjglsuc="></latexit><latexit sha1_base64="F7NYAiCYCb2pYKnZU2/Dbjglsuc="></latexit><latexit sha1_base64="2aZrcv60lrJJcLeHLJXQ1sl0T/c=">AAACIHicdVDLSgMxFM34rPWtSzfBIrixzNRH7UYKblwq2AfYIpn0tgaTzJDcUcswX+BWf8CvcScu9WvM1Lqo6IFcDueeS+49YSyFRd//8KamZ2bn5gsLxcWl5ZXVtfWNpo0Sw6HBIxmZdsgsSKGhgQIltGMDTIUSWuHtad5v3YGxItKXOIyhq9hAi77gDJ10gddrJb98EFQqRwHNSa1W289J5TCoVmlQ9kcokTHOr9e9hU4v4okCjVwya68CP8ZuygwKLiErdhILMeO3bADpaL+M7jipR/uRcU8jHakTPqasHarQORXDG/u7l4t/9a4S7B93U6HjBEHz74/6iaQY0fxY2hMGOMqhI4wb4Tak/IYZxtFFUix2NNzzSCmme2nHWpu56mwxjisORwdNuJQzITxgupdlLryfhOj/pFkpB345uPBL9ZNxjAWyRbbJLglIldTJGTknDcIJkEfyRJ69F+/Ve/Pev61T3nhmk0zA+/wCoRGkYQ==</latexit>

x1(t)
<latexit sha1_base64="B6B78i819yMD7v2paat4+C8jt64="></latexit><latexit sha1_base64="YBUL+S+oFQjiD7/glbsD61AJEzM="></latexit><latexit sha1_base64="YBUL+S+oFQjiD7/glbsD61AJEzM="></latexit><latexit sha1_base64="XW4bPUqr6x6huRc2SXGgMfleKCY="></latexit>

x2(t)
<latexit sha1_base64="mTBgiSmDExlCVU9L4pdr7FTrqrw="></latexit><latexit sha1_base64="QRI6HVu4AasDikqgHQgmfNsJCVk="></latexit><latexit sha1_base64="QRI6HVu4AasDikqgHQgmfNsJCVk="></latexit><latexit sha1_base64="dZWvxE+J/aMdGyHlR9v7KHDuiek="></latexit>

xn(t)
<latexit sha1_base64="X1RCkIXQiq7xIVJ6crWdOYUBnjI=">AAACJXicdVBNTxsxEJ1NaYH0Cwo3LlYRUnroyhsFAjckLj2CREKkJApex5u4sb0re5YSrfY/9Ap/gF/DrULixF/BSeCQqn2SR09v3sgzL86UdEjpY1B5s/L23eraevX9h4+fPm9sfmm7NLdctHiqUtuJmRNKGtFCiUp0MiuYjpW4iCcns/7FlbBOpuYcp5noazYyMpGcoZfa1wNTw2+DjV0a0qPmYb1BaHgQ1Q+ifU/ofv2oGZEopHPsHm8nySUAnA42g/XeMOW5Fga5Ys51I5phv2AWJVeirPZyJzLGJ2wkivmSJdnz0pAkqfXPIJmrSz6mnZvq2Ds1w7H7uzcT/9Xr5pgc9gtpshyF4YuPklwRTMnsYjKUVnBUU08Yt9JvSPiYWcbR51Kt9oz4xVOtmRkWPedc6au3ZfhScTo/aMmlvQnFNRbfy9KH95oQ+T9p18OIhtGZT7EBC6zBDnyFGkTQhGP4AafQAg4/4TfcwG1wF9wHf4KHhbUSvMxswRKCp2d1yqed</latexit><latexit sha1_base64="WGeSH7ZtPBJ798Xake3i9nCPqxo="></latexit><latexit sha1_base64="WGeSH7ZtPBJ798Xake3i9nCPqxo="></latexit><latexit sha1_base64="BzjI/MXNyofktaImJsb/btd5J48="></latexit>

t
<latexit sha1_base64="XfemvfXR3+RUwdIC+e5WWYAZPi4="></latexit><latexit sha1_base64="F7NYAiCYCb2pYKnZU2/Dbjglsuc="></latexit><latexit sha1_base64="F7NYAiCYCb2pYKnZU2/Dbjglsuc="></latexit><latexit sha1_base64="2aZrcv60lrJJcLeHLJXQ1sl0T/c=">AAACIHicdVDLSgMxFM34rPWtSzfBIrixzNRH7UYKblwq2AfYIpn0tgaTzJDcUcswX+BWf8CvcScu9WvM1Lqo6IFcDueeS+49YSyFRd//8KamZ2bn5gsLxcWl5ZXVtfWNpo0Sw6HBIxmZdsgsSKGhgQIltGMDTIUSWuHtad5v3YGxItKXOIyhq9hAi77gDJ10gddrJb98EFQqRwHNSa1W289J5TCoVmlQ9kcokTHOr9e9hU4v4okCjVwya68CP8ZuygwKLiErdhILMeO3bADpaL+M7jipR/uRcU8jHakTPqasHarQORXDG/u7l4t/9a4S7B93U6HjBEHz74/6iaQY0fxY2hMGOMqhI4wb4Tak/IYZxtFFUix2NNzzSCmme2nHWpu56mwxjisORwdNuJQzITxgupdlLryfhOj/pFkpB345uPBL9ZNxjAWyRbbJLglIldTJGTknDcIJkEfyRJ69F+/Ve/Pev61T3nhmk0zA+/wCoRGkYQ==</latexit>

,
<latexit sha1_base64="MHv0nzz+2bfGyhHpLES5kjyF8LM="></latexit><latexit sha1_base64="rlPlkBsxfFnjTNUMRLidQhkDqS0="></latexit><latexit sha1_base64="rlPlkBsxfFnjTNUMRLidQhkDqS0="></latexit><latexit sha1_base64="ITRR5jez2tKYu+NY83dJK3AQVtw=">AAACMHicbVC7TsNAEDyHVwivACWNRYREQ2TTQImgoaAIEoFIOIrOl3Vyyj2suzUQWf4SWvgBvgYqRMtXcAluEhjpVqPZWd3uxKngFoPgw6ssLC4tr1RXa2vrG5tb9e2dW6szw6DNtNCmE1MLgitoI0cBndQAlbGAu3h0MenfPYCxXKsbHKfQlXSgeMIZRSf16lvRFSRo+GCI1Bj92Ks3gmYwhf+XhCVpkBKt3ra3GvU1yyQoZIJaex8GKXZzapAzAUUtyiyklI3oAPLpvoV/4KS+n2jjnkJ/qs74qLR2LGPnlBSHdr43Ef/r3WeYnHZzrtIMQbHfj5JM+Kj9yfF+nxtgKMaOUGa429BnQ2ooQxdRrRYpeGRaSqr6eWStLVx1thTLiuPpQTMu6UwIT5gfFYULL5yP6i+5PW6GQTO8Dhpn52WMVbJH9skhCckJOSOXpEXahJGMPJMX8uq9ee/ep/f1a6145cwumYH3/QPFcqqR</latexit>

x(t)
<latexit sha1_base64="SyoZWvnPyfcem/aWNiQ+64En+ew=">AAACI3icbVA9S8RAEJ34eRe/tRQkKIIWHomNVnJgY6ngnYJ3yGaz8RZ3N2F3ooaQv2Crdjb+GjuxsfC/uMldc+qDHR5v3rAzL0wFN+j7X87E5NT0zGyj6c7NLywuLa+sdk2Saco6NBGJvgyJYYIr1kGOgl2mmhEZCnYR3h5X/Ys7pg1P1DnmKetLcqN4zCnBSnrYwd3r5S2/5dfw/pJgRLbaGy8vrwBwer3iNHtRQjPJFFJBjLkK/BT7BdHIqWCl28sMSwm9JTesqFcsvW0rRV6caPsUerU65iPSmFyG1ikJDszvXiX+17vKMD7sF1ylGTJFhx/FmfAw8ap7vYhrRlHklhCqud3QowOiCUWbiuv2FLuniZRERUXPGFPaam0pjirm9UFjLmlNyB6w2CtLG17wO6q/pLvfCvxWcGZTPIIhGrAOm7ADARxAG07gFDpAYQCP8ATPzpvz7nw4n0PrhDOaWYMxON8/XcunKw==</latexit><latexit sha1_base64="G4O1jZKHE+HOQiu/MqH9u6wwAao=">AAACI3icbVDLSgMxFM34bOur1aUgg0WoC8uMG11JwY3LCvYBbSmZTNqGJpkhuaMtw/yCWx97v8aduHHhv5iZdtPWA7kczj2X3Hu8kDMNjvNjra1vbG5t5/KFnd29/YNi6bCpg0gR2iABD1Tbw5pyJmkDGHDaDhXFwuO05Y1v037rkSrNAvkA05D2BB5KNmAEQypNKnDeL5adqpPBXiXunJRrJ28p3uv9kpXv+gGJBJVAONa64zoh9GKsgBFOk0I30jTEZIyHNM5WTOwzI/n2IFDmSbAzdcGHhdZT4RmnwDDSy71U/K/XiWBw3YuZDCOgksw+GkTchsBO77V9pigBPjUEE8XMhjYZYYUJmFQKha6kTyQQAks/7mqtE1ONLYR5hWl20IJLGBPQCcQXSWLCc5ejWiXNy6rrVN17k+INmiGHjtEpqiAXXaEaukN11EAEjdAzekGv1of1aX1Z3zPrmjWfOUILsH7/AB4vqPA=</latexit><latexit sha1_base64="G4O1jZKHE+HOQiu/MqH9u6wwAao=">AAACI3icbVDLSgMxFM34bOur1aUgg0WoC8uMG11JwY3LCvYBbSmZTNqGJpkhuaMtw/yCWx97v8aduHHhv5iZdtPWA7kczj2X3Hu8kDMNjvNjra1vbG5t5/KFnd29/YNi6bCpg0gR2iABD1Tbw5pyJmkDGHDaDhXFwuO05Y1v037rkSrNAvkA05D2BB5KNmAEQypNKnDeL5adqpPBXiXunJRrJ28p3uv9kpXv+gGJBJVAONa64zoh9GKsgBFOk0I30jTEZIyHNM5WTOwzI/n2IFDmSbAzdcGHhdZT4RmnwDDSy71U/K/XiWBw3YuZDCOgksw+GkTchsBO77V9pigBPjUEE8XMhjYZYYUJmFQKha6kTyQQAks/7mqtE1ONLYR5hWl20IJLGBPQCcQXSWLCc5ejWiXNy6rrVN17k+INmiGHjtEpqiAXXaEaukN11EAEjdAzekGv1of1aX1Z3zPrmjWfOUILsH7/AB4vqPA=</latexit><latexit sha1_base64="uWVHTWHh8KfOVgDYZ+2RQguIrps=">AAACI3icbVDLTsJAFJ3iC/AFunTTSExwIWnd6MqQuHGJiTwSSsh0GGDCzLSZuVWapr/gVn/Ar3Fn3LjwXxxKN4AnmZuTc8/N3Hv8kDMNjvNjFba2d3b3iqXy/sHh0XGletLRQaQIbZOAB6rnY005k7QNDDjthYpi4XPa9Wf3i373mSrNAvkEcUgHAk8kGzOCYSHN63A5rNSchpPB3iRuTmooR2tYtUreKCCRoBIIx1r3XSeEQYIVMMJpWvYiTUNMZnhCk2zF1L4w0sgeB8o8CXamrviw0DoWvnEKDFO93luI//X6EYxvBwmTYQRUkuVH44jbENiLe+0RU5QAjw3BRDGzoU2mWGECJpVy2ZP0hQRCYDlKPK11aqqxhZBXiLODVlzCmIDOIblKUxOeux7VJulcN1yn4T46teZdHmMRnaFzVEcuukFN9IBaqI0ImqJX9IberQ/r0/qyvpfWgpXPnKIVWL9/72qk+w==</latexit>

(d) A vector signal can be viewed in two equivalent ways. As a
vector (Rn)-valued function on R (left), or as an R-valued function
on n copies of R, i.e. on n × R (right). The corresponding signal

spaces would then be (Rn)R (left) and R(n×R) (right). The two signal
spaces are in one-to-one correspondence.
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x(k1, k2)
<latexit sha1_base64="GEpAubwZ1X3GSMi8UE49x1A5reM="></latexit><latexit sha1_base64="zmh2ZFdF5pC8Tkr6jHTovA9o2HY="></latexit><latexit sha1_base64="zmh2ZFdF5pC8Tkr6jHTovA9o2HY=">AAACKXicdVDLSgMxFM34tr7qY+cmKIKClqSItjvBjUsFq6ItJZNmNDTJDMkdbRnmL9zqD/g17tStP2Km1UVFDyQczjkh954wUdIBIe/B2PjE5NT0zGxpbn5hcam8vHLh4tRy0eCxiu1VyJxQ0ogGSFDiKrGC6VCJy7B7XPiX98I6GZtz6CeipdmtkZHkDLx03dvutulut13daZc3SYUQQinFBaGHB8STer1WpTVMC8tj82gtGuC0vRzMNjsxT7UwwBVz7oaSBFoZsyC5EnmpmTqRMN5ltyIbDJrjLS91cBRbfwzggTqSY9q5vg59UjO4c7+9QvzLu0khqrUyaZIUhOHDj6JUYYhxsTXuSCs4qL4njFvpJ8T8jlnGwXdTKjWNeOCx1sx0sqZzLve3jyXwfUN/sNBISvsQiB5ke3nuy/tpCP9PLqoVSir0zLe4j4aYQetoA20jig7RETpBp6iBODLoET2h5+AleA3ego9hdCz4frOKRhB8fgFb9qnK</latexit><latexit sha1_base64="yok+4WLLeGIimIWrkQ5Zzm+UEj8="></latexit>

(e) A grey-scale, n × n pixel image is
an R-valued function on the index set
{1, . . . , n} × {1, . . . , n} =: n × n. Such
an image is thus in the function space
Rn×n.

Figure 1.2: The set of functions x : Ω → X from the set Ω to the set X is denoted by XΩ. If this is thought
of as a set of signals, then these signals are indexed by the domain set Ω, and take values in X. This way
we can describe, discrete-time and continuous-time signals, as well as those that are scalar-, complex-, or
vector-valued.

Function Space as a Vector Space

The two properties of addition and scaling are the fundamental properties of vectors. Real-
valued functions can also be added and scaled just like vectors. Let f and g be two real-
valued functions, then we typically define addition and scaling pointwise as follows

(f + g) (i) := f(i) + g(i), (αf) (i) := αf(i). (1.3)

Compare those expressions to (1.1) and (1.2). We can define such operations not only on
real-valued function, but in fact on any set of functions f : Ω → V, where addition and
scaling is defined on V itself, e.g. when V is a vector space. Note that the right hand side
of the definitions (1.3) are in V. All the examples shown in Figure 1.2 are of this type.

We now return to our original aim of defining a vector space abstractly. The pattern of
adding and scaling vectors (or functions) by component-wise (or point-wise) addition and
scaling indicates that those two operations are the ones that define a vector space. Inspired
by these examples, we define an abstract vector space as follows.

Definition 1.1. A vector space over the reals R is a set V together with (a) an addition
operation +, and (b) an operation of vector scaling (by scalars, i.e. elements of R) such
that V is closed under both operations

u, v ∈ V ⇒ u+ v ∈ V, α ∈ R, v ∈ V, ⇒ αv ∈ V.

These operations satisfy the following properties

1. Commutativity and associativity of addition:

u+ v = v + u, (u+ v) + w = u+ (v + w).
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Chapter 1. Vector Spaces and Linear Operators 13

2. There exists an additive identity, denoted by 0, such that

∀v ∈ V, v + 0 = v,

and each v ∈ V has an additive inverse, denoted by −v, such that

(−v) + v = 0.

3. Properties of scalings: For any α, β ∈ R, and any u, v ∈ V

(αβ) v = α (βv) , (α+ β) v = αv + βv,

1v = v, 0v = 0,

α (u+ v) = αu+ αv.

There are other equivalent ways of stating the above conditions. For example, we leave
it as an exercise to show that being closed under addition and multiplication by scalars can
be stated in four equivalent ways. Let α, β ∈ R and u, v,∈ V be arbitrarily elements, then

(u+ v ∈ V) and (αu ∈ V)

⇕
αu+ v ∈ V ⇔ αu+ βv ∈ V ⇔ u+ βv ∈ V

In addition, there are several consequences of the definitions above. For example, the scalings
properties imply that every vector v ∈ V has an additive inverse, namely (−1)v since

v + (−1)v = (1)v + (−1)v = (1− 1)v = 0v = 0.

As an exercise, the reader should verify every equality in the preceding equation using the
scalings properties listed in Definition 1.1.3.

Example 1.2. As examples of vector spaces, we have already seen Rn. Now consider the set
of all polynomials with real coefficients of degree at most n

Pn :=
{
p(x) = a0 + a1x+ · · ·+ anx

n; ak ∈ R, k = 0, 1, · · · , n
}
.

Each polynomial in Pn is uniquely identified by its n+1 coefficients (a0, . . . , an), and therefore
there is a one-to-one correspondence between polynomials of degree n and vectors of dimension
n + 1. A natural question is whether this correspondence carries over to addition. Does the
addition of two polynomials correspond to the addition of the two vectors? This is indeed the
case since for any two polynomials p and q

p(x) = a0 + a1x+ · · ·+ anx
n

q(x) = b0 + b1x+ · · ·+ bnx
n

}
⇒ (p+ q) (x) = (a0+b0)+(a1+b1) x+· · ·+(an+bn) x

n.

Similarly for scaling of a polynomial

(αp) (x) = αa0 + αa1 x+ · · ·+ αan xn.

Thus elements in Pn behave exactly like elements of Rn+1 under additions and scaling. We
say that these two vector spaces Pn and Rn+1 are “isomorphic”, a notion that will shortly be
defined more precisely.

The function space examples we have seen in this section (e.g. in Figure 1.2) so far
satisfy all the above requirements with pointwise addition and scaling. In fact, for any set
Ω, the function space RΩ is a vector space with pointwise addition and scaling. We can take
this a little further. Let V be any vector space, and Ω any other set (with no particular
structure), then the set VΩ is another vector space with pointwise addition and scaling.
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14 1.1. Rn and Abstract Vector Spaces

0 1-1 0 1-1 0 1-1

f(x) f(x) f(x)

x x x

Figure 1.3: Examples of the vector space of functions over [−1, 1] that are piecewise constant over the
intervals [−1, 0) and (0, 1]. This is a vector space since additions and scalings of such functions maintain
the piecewise-constant property. Each such function is completely specified by three real numbers, namely
its values over x = 0, and each of the two intervals respectively. Additions and scalings of these functions
corresponds to additions and scalings of these numbers as a 3-tuple. Thus this space “looks like” (i.e.
isomorphic to) R3.

Definition 1.3. Let Ω be any set, and consider the collection of all vector-space-valued
functions f : Ω→ V, where V is a vector space (e.g. R or Rn)

VΩ := {f : Ω→ V} .
This set is itself a vector space referred to as a function space (the space of functions over
the set Ω) with additions and scalings defined pointwise

(
f1 + f2

)
(x) := f1(x) + f2(x)(

αf
)
(x) := αf(x).

Note that both operations on the right hand side are performed in V, and thus we say that
VΩ “inherits” the vector space structure from V.

Function spaces as defined above are generally “too big” for many of the questions that
arise in applications, so we typically impose additional conditions on functions and consider
subspaces of a general function space. A subspace of a vector space is defined as a subset
that is itself a vector space, i.e. closed under additions and scalings. The following examples
are of subspaces of function spaces as defined above.

Example 1.4. Consider real-valued functions on the interval [−1, 1] that are constant on the
subintervals [−1, 0) and (0, 1] as depicted in Figure 1.3. It is clear that additions and scalings
of such functions maintain the property of being constant on the subintervals [−1, 0) and (0, 1],
and thus the space of such functions is a vector space. In the notation of Definition 1.3 this
space is denoted by RΩ, where Ω := {[-1, 0), 0, (0, 1]}, a three-element set where each element
is a subset of R. This space is clearly a subspace of the much larger function space R[-1,1] (all
real-valued functions on the interval [-1, 1]).

Any function in R{[-1,0),0,(0,1]} is completely described by a 3-tuple of numbers (f-1, f0, f1)
as follows

f(x) =





f-1, x ∈ [-1, 0)
f0, x = 0
f1, x ∈ (0, 1]

. (1.4)

Adding and scaling any two such functions corresponds to simply adding and scaling the 3-tuples
that represent them

f(x) =





f-1, x ∈ [-1, 0)
f0, x = 0
f1, x ∈ (0, 1]

, g(x) =





g-1, x ∈ [-1, 0)
g0, x = 0
g1, x ∈ (0, 1]

⇒ (f + g) (x) =





f-1 + g-1, x ∈ [-1, 0)
f0 + g0, x = 0
f1 + g1, x ∈ (0, 1]

.
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This space of functions therefore “looks like” the space of 3-tuples of real numbers R3. The
meaning of the phrase “looks like” is that there is a correspondence, or a one-to-one and onto
mapping (indicated below by the double arrow ↔) between R{[-1,0),0,(0,1]} and R3

f ↔ (f-1, f0, f1)

g ↔ (g-1, g0, g1)

αf + βg ↔ α(f-1, f0, f1) + β(g-1, g0, g1) = (αf-1 + βg-1, αf0 + βg0, αf1 + βg1).

The last statement implies that vector space operations in R{[-1,0),0,(0,1]} are mapped exactly to
equivalent vector space operations in R3. Again, this notion will be formalized using the concept
of isomorphism that will be described shortly.

Example 1.5. Let Rn×m be the set of all n × m matrices with real coefficients. This set
is a vector space with the usual operations of matrix addition and scaling which are defined
“element-by-element”, i.e. if we denote by aij the ij’th entry of a matrix A = [aij ], then for
n×m matrices A,B and C

C = αA+ βB ⇔ cij = αaij + βbij .

Let vec(A) be the operation of “vectorizing” a matrix, i.e. stacking all its columns into a
single vector. It is clear that this operation is linear, one-to-one and onto from n×m matrices
to vectors of size nm, i.e. an invertible linear mapping vec : Rn×m −→ Rnm. Thus as a vector
space, the space of n×m matrices behaves like (i.e. isomorphic) to the space of nm real vectors.

While the mapping vec is compatible with matrix addition and scalings, it does not make
sense for matrix multiplication (since we can’t multiply vectors). It does however have some
uses in matrix equations we will encounter later.

Example 1.6. Continuous functions on a finite interval [a, b] ⊂ R form a vector space since
sums and scalings of continuous functions are also continuous. This space is denoted by

C[a, b] :=
{
f : [a, b]→ R; f continuous

}
.

Functions on [a, b] with continuous derivatives also form a vector space denoted by C1[a, b].
More generally, the space of functions with n continuous derivatives is

Cn[a, b] :=
{
f : [a, b]→ R; f (n) continuous

}
, n ∈ N.

Recall that if the n’th derivative f (n) of a function f is continuous, then the k’th derivative f (k)

is also continuous for all k = 0, 1, . . . , n. Thus we have a “nesting of vector spaces

Cn[a, b] ⊂ Cn-1 ⊂ · · · ⊂ C1[a, b] ⊂ C[a, b].

Finally, C∞[a, b] denotes the vector space of functions on [a, b] with all derivatives continuous.
It can also be described as the intersection of all vector spaces Ck[a, b] for all k

C∞[a, b] :=

∞⋂

k=0

Ck[a, b].

All of the vector space just described are subspaces of the larger function space R[a,b].
In contrast to the Rn and Pn, each element of the space C[a, b] requires an infinite number of

“parameters” to describe (e.g. one has to give the values of the function at the infinite number
of points in [a, b]). This is an example of an “infinite-dimensional” vector space, a notion that
we will make precise in Section 1.3.

Draft: Notes on Linear Algebra and Functional Analysis © July 19, 2024, Bassam Bamieh



16 1.2. Linear Operators

Complex Vector Spaces

A complex vector space is defined exactly as in Definition 1.1 by replacing the set of scalars
R with the complex scalars C. More generally, let F be any field, then a vector space over
the field F is defined the same way, but with scalars belonging to the field F. For this to
make sense, the scaling operation αx, with α ∈ F and x ∈ V must be defined. In particular,
for any index set Ω, the space FΩ is a well-defined vector space (e.g. Fn is the space of
n-vectors with components in F). Note that in Definition 1.3, VΩ is a vector space over the
same field that V is a vector space over.

In this book, we only consider vector spaces over R or C.

1.2 Linear Operators

The reader is likely familiar with matrix-vector multiplication as an example of a linear op-
eration on vectors. We will see that matrices are actually representations of linear operators
in a particular basis. We will also see many useful examples of bases, and other repre-
sentations of linear operators. However, we begin here with a “basis-free” way of defining
and analyzing linear operators. In fact, the key idea in viewing matrices and general linear
operators in the same framework is to work with them without any specific choice of bases.

Definition 1.7. Let A : V → W be a mapping between two vector spaces V and W. This
mapping is said to be a homomorphism, or equivalently a linear operator if

α, β ∈ R, v1, v2 ∈ V ⇒ A(αv1 + βv2) = αA(v1) + βA(v2), (1.5)

i.e. if it “respects the vector space structure” (also referred to as satisfying the “superposition
property”). If in addition A is one-to-one and onto, then it is said to be an isomorphism,
and the two spaces V and W are said to be isomorphic (denoted as V ∼W).

Thus a linear operator is a mapping that is “compatible” with the vector space structure of
V and W. Note that for linear operators, we use the notation A(v) = Av interchangeably2.
The reader should verify that condition (1.5) is equivalent to the following condition

v1, v2 ∈ V ⇒ A(v1+v2) = A(v1)+A(v2), and α ∈ R ⇒ A(αv) = α A(v). (1.6)

Remark 1.8. An isomorphism between two vector spaces is special. If two vector spaces are
isomorphic, then they are essentially two copies of the same space since their addition and
scaling structures are equivalent. Finding isomorphisms is usually a good way to understand
an unfamiliar space, by establishing an isomorphism to a more familiar space. Example 1.2
was one such instance, where an isomorphism between polynomials of degree n, namely Pn

and n+1 dimensional vectors in Rn+1 was established. Also note that we have already used
this concept (without calling it an isomorphism) when we presented the analogy between
Rn (n-tuples of real numbers) and R{1,...,n} (real-valued functions on the set {1, . . . , n}) in
Figure 1.1. That correspondence was so obvious that we didn’t have to formally justify it.
It is clearly an isomorphism.

The following are examples of linear operators. They are generally not isomorphisms
(i.e. not one-to-one and onto).

Example 1.9. Matrices: An n×m matrix A represents a mapping A : Rm → Rn by the usual
matrix-vector product formula

y = Ax ⇔ yk =

m∑

l=1

Akl xl, (1.7)

2This comes from matrix-vector multiplication notation. If A is matrix and v is a column vector, the
standard notation is Av for the matrix-vector product, which is also the action of A on v as a mapping.
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Chapter 1. Vector Spaces and Linear Operators 17

where Akl is the kl entry of the matrix A. The fact that this operation is linear follows from the
distributive properties of multiplication and addition. This particular example is not done in a
“basis-free” way. A matrix representation implies an implicit choice of basis as will be discussed
in Section 1.3.

Example 1.10. Shifts of functions: Consider the function space RZ of real-valued functions
on the integers (i.e. the space of two-sided sequences). The “shift operator” S shifts a function
to the right by 1 step

[Su](k) := u(k − 1).

This operator is clearly linear as seen from

[
S
(
αu1 + βu2

)]
(k) = [αu1 + βu2](k − 1) = α u1(k − 1) + β u2(k − 1)

= α [Su1](k) + β [Su2](k).

Since this equality holds for each k in the domain Z of the functions, we write the conclusion
equivalently as

S
(
αu1 + βu2

)
= α Su1 + β Su2.

Note that a basis is not needed to define the operator or to establish its linearity.

Example 1.11. Multiplication operators: Consider the vector space RΩ of real-valued func-
tions3 on some set Ω. Given a particular function a : Ω → R in this space, we can define the
operator Ma of multiplication by a that acts on any other function u : Ω→ R by

[Mau](x) := a(x) u(x), x ∈ Ω. (1.8)

Thus Ma is the operator of pointwise multiplication by the function a. The fact that this
operator is linear follows from the distributive property of multiplication and addition of real
numbers.

A familiar example of multiplication operators is given by the action of diagonal matrices on
vectors. If we choose Ω = {1, . . . , n}, and therefore RΩ = Rn, then given a vector a ∈ Rn, it
defines a multiplication operator Ma whose action on any other vector u ∈ Rn is given by

y = Ma u
yi = (Mau)i = aiui, i ∈ {1, . . . , n} ⇔



y1
...
yn


 =



a1

. . .

an






u1

...
un


 .

Thus the operation Mau is represented by multiplying the column vector u by a diagonal matrix
whose diagonal elements are made up of the components of the vector a.

The definition (1.8) of a multiplication operator on any function space should be thought
of as a generalization of diagonal matrices. Diagonal matrices are the simplest, non-trivial
matrices that can be studied. Similarly, multiplication operators are the simplest, non-trivial
infinite-dimensional operators that can be studied. The concept of multiplication operators will
be very useful in signal and system analysis later on. Signal and system transforms such as
the Fourier, Laplace, Z-transform, etc. can be thought of as the infinite-dimensional analogue
of diagonalizing matrices. Diagonalization of matrices, and more generally transforming linear
operators to multiplication operators (whenever possible) is the most effective technique for
uncovering properties of linear operators.

3All statements in this example apply equally to the vector space CΩ of complex-valued functions on Ω.
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18 1.2. Linear Operators

Example 1.12. Integral operators: Consider the space R[0,1] of real-valued functions on
the interval [0, 1]. Given a function a(., .) of two variables, it defines an integral operator by

y = Au ⇔ y(x) =

∫ 1

0

a(x, ξ) u(ξ) dξ, x ∈ [0, 1]. (1.9)

Since the integral may not converge for all functions u, this operator is not defined on
all of R[0,1], but rather on a subset of it. The exact specifications of the subset depends
on properties of the function a, and will not be discusses here. The function a(., .) is
called the kernel function of the operator A, and the integral equation (1.9) is called the
kernel representation of the operator A. These kernel representations are important in
understanding a large class of operators, and will be studied in detail in Chapter 6.

The reader should note the similarity between the matrix-vector product (1.7) and the
integral (1.9), which can be thought of as a “continuum” version of a matrix-vector product.
The integration variable ξ in (1.9) is analogous to the summation variable l in (1.7). Thus
an integral, or kernel, representation of an operator on a function space can be thought of
as a “continuum” version of a matrix representation. These useful analogies will be pursued
further in Chapter 6.

Finally, the linearity of (1.9) follows from the linearity of integration, e.g.
∫ 1

0

a(x, ξ)
(
u1(ξ) + u2(ξ)

)
dξ =

∫ 1

0

a(x, ξ) u1(ξ) dξ +

∫ 1

0

a(x, ξ) u2(ξ) dξ. ■

Example 1.13. Differential operators: Differentiation is a linear operation

d
dx

(
αu1(x) + βu2(x)

)
= α

du1

dx
(x) + β

du2

dx
(x),

and so are higher order derivatives as well as partial derivatives. Thus, a large class of ordinary
and partial differential equations, including those with varying coefficients, can be analyzed using
the concepts of linear operators on function spaces. The ordinary differential operator (of a single
variable) is defined formally as

(Du) (x) :=
du

dx
(x).

The next question is on which vector spaces of functions does this operator act?
Recall the spaces C[a, b] and C(n)[a, b] defined in Example 1.6. The differential operator

D acts on functions with n continuous derivatives to give a function with n − 1 continuous
derivatives. Therefore depending on the choice of the domain space, we can view D in any one
of multiple ways

D : C1[a, b] −→ C[a, b], D : Cn[a, b] −→ Cn-1[a, b], D : C∞[a, b] −→ C∞[a, b].

Differential operators can also be defined on other (than Cn or C∞) spaces. However, a little
more care is needed in those cases since they have to operate on restricted classes of functions,
namely those that have derivatives with certain other properties. These issues will be discussed
in the context of so-called unbounded operators, of which differential operators are the prime
example.

The Vector Space of Linear Operators

Recall that in Example 1.5 we showed how the set of matrices of a given size forms a vector
space. This was a special case of the fact that the set of all linear operators between two
vector spaces V and W is itself a vector space

L(V,W) :=
{
A : V→W; A linear

}
.
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Chapter 1. Vector Spaces and Linear Operators 19

Addition and scalings of operators is defined “pointwise”

(A+B) v := Av + Bv, (αA) v := α Av.

The observant reader will realize that we do not need V to be a vector space for these
definitions to make sense. Recall (Definition 1.3) that any function space ΩW is a vector
space provided the functions take values in a vector space W. The domain Ω of the functions
need not have any structure. None the less, the set of linear operators between two vector
spaces has some special structure which we will study later (Section 3.6), especially when
the operators will be endowed with norms that are induced from the two vector space norms.

1.3 Bases and Dimension

For clarity of exposition, in this section (and later in Section 1.6) we adopt the notation that
elements of a vector space are denoted by bold letters (e.g. v), and scalars will be denoted
in regular font (e.g. x1). We will not use this notation in the remainder of the book, but
here it serves as a useful visual aid when discussing bases and bases representations for the
first time. To define bases, we need the concept of linear (in)dependence, and for that in
turn we need the concept of the span of a collection of vectors.

Definition 1.14. Let v := {vk; k = 1, . . . , n} be a finite set in a vector space V. The span
of v is the set of a all linear combinations of its elements

span{v} := span{vk} :=
{
x1v1 + · · ·+ xnvn; x1, . . . , xn ∈ R

}
.

It is a linear subspace of V. We say that the set v generates (or spans) span{v}.
Given a set of vectors, we want to generate its span without any “redundancy”. For

example, consider any two vectors v1 and v2 and their span. We can add a third vector
that is a linear combination of both, but then the three vectors generate the same span as
the original two

span{v1,v2} = span{v1,v2,v1 + v2} .
To avoid such redundancies, we need the concept of linear (in)dependence. We first give the
formal definition, and then explain why it captures the notion of no redundancy.

Definition 1.15. Let v := {v1, . . . ,vn} be a finite set of elements of a vector space V.

1. The set v is said to be linearly independent if there is no non-trivial linear combination
(i.e. not all coefficients are zero) of its elements that equals the zero vector, i.e.

xk ∈ R, x1v1 + · · ·+ xnvn = 0 ⇒ x1 = · · · = xn = 0.

Otherwise, the set is said to be linearly dependent.

2. A linearly independent set that generates all of V (i.e. span{vk} = V) is called a basis.

A linearly dependent set has the property that one of the vectors can be written as a
linear combination of the others. Given such a set, assume xl ̸= 0, then

x1v1 + · · ·+ xnvn = 0 ⇒ vl = − 1

xl

∑

k ̸=l

xkvk. (1.10)

Thus a linearly dependent set has redundancy. If we remove the vector vl above from the
set, the smaller set will still generate the same span as the original set. Given a linearly
dependent set, we can remove elements as above until “it becomes” linearly independent.
This implies that a linearly independent set has a “minimality property” which can be stated
as follows.
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20 1.3. Bases and Dimension

Lemma 1.16. Let v := {vk; k = 1, . . . , n} be a finite set that spans a vector space V. v
is linearly independent iff there is no smaller set w := {wk; k = 1, . . . ,m} with |w| = m <
n = |v| that also spans V.

Proof. The contrapositive is stated as

v linearly dependent ⇔ ∃w, |w| < n, span{w} = span{v} .

The argument of Equation (1.10) showed that if v is linearly dependent, a smaller set with
the same span is constructed by removing one element from v. This proves the⇒ direction.
For the converse, assume we found a smaller set w with the same span as v. That means
every element of v can be written as a linear combination of elements of w

vk = ak1w1 + · · ·+ akmwm, k = 1, . . . , n. (1.11)

These relations can be written in “matrix-vector” form shown on the left below4, and by a
process of elimination with row operations (see Exercise 1.1), converted to the equations on
the right




v1

...

...
vn


 =




a11 ··· a1m

...
...

...
...

an1 ··· anm



[ w1

...
wm

]
⇔

[ vm+1

...
vn

]
=

[ ∗ ··· ∗
...

...
∗ ··· ∗

] [ v1

...
vm

]
. (1.12)

Thus the vectors {vm+1, . . . ,vn} can be written as a linear combination of the vectors
{v1, . . . ,vm} implying that the set v is linearly dependent.

Another way to read the above lemma is that a set is linearly independent iff removal of
any vector makes the span strictly smaller.

The preceding lemma implies that a basis is a generating set of minimal size. We can
now formally define the notion of dimension of a vector space.

Definition 1.17. If v := {vk; k = 1, . . . , n} is a linearly independent set that spans a vector
space V (i.e. a basis), we say that the dimension of V is n (dim(V) = n). Thus the dimension
of a vector space is the minimal size of a linearly independent set that spans V.
If there is no finite subset of V that spans it, we say that V is infinite dimensional.

Example 1.18. Consider Rn and the following set of vectors

e1 := (1, 0, . . . , 0) , · · · , en := (0, . . . , 0, 1) . (1.13)

This set is linearly independent according to Definition 1.15, and any vector x ∈ Rn can be
written as a linear combination of its elements. Thus, it forms a basis for Rn. We typically
express the coefficients of the linear combination as a “column vector”

x = x1e1 + · · ·+xnen = x1

[
1
0
...
0

]
+ · · ·+ xn

[
0
...
0
1

]
=



x1

:
xn


 = (x1, . . . , xn) . (1.14)

The set (1.13) is called the canonical basis of Rn. Thus, whenever a column vector or an n-tuple
of numbers is written as on the right of (1.14), it is implicit that the vector components are the
coefficients of the vector’s representation in the canonical basis {ek}.

4This matrix-vector representation of the equations (1.11) is to be interpreted carefully. Each “com-
ponent” vk and wk are themselves vectors in V. The matrix-vector form (1.12) is simply a compact
representation of the n equations in (1.11).
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Figure 1.4: Example 1.19: Two different bases v := {v1,v2,v3} and w := {w1,w2,w3} of the vector
space R{[-1,0),0,(0,1]} of Example 1.4. The function u shown on the left can be expressed in terms of each
of the bases sets as u = .5v1 − v2 − v3 = −.25w1 −w2 + .75w3.

Example 1.19. Consider the vector space of Example 1.4. When we established the corre-
spondence (1.4) with R3, we had implicitly chosen a basis. To make this point clear, consider
the two sets of functions v := {v1,v2,v3} and w := {w1,w2,w3} shown in Figure 1.4. These
two sets are linearly independent in the vector space R{[-1,0),0,(0,1]}. Each is also a basis. For
example, the function u shown in Figure 1.4 can be written in each of the two bases as follows

u = .5v1 − v2 − v3 = − .25w1 − w2 + .75w3.

The two bases sets are easily relatable by a set of equations similar to (1.12) as follows



w1

w2

w3


 =



1 0 1
0 1 0
1 0 -1





v1

v2

v3


 ⇔



v1

v2

v3


 =



1 0 1
0 1 0
1 0 -1



-1 

w1

w2

w3


 =




1
2 0 1

2
0 1 0
1
2 0 -1

2





w1

w2

w3


 (1.15)

The first equation can be verified by inspection of Figure 1.4. The second equation follows by
multiplying both sides by the inverse of the matrix of coefficients.

The representation (1.4) exactly corresponds to using the first basis set, i.e. for the function
f as defined in (1.4) we can write

f = f-1v1 + f0v2 + f1v3.

Once an expression for any function f is given in terms of the basis v, then the coefficients of
its representation in the other basis w can be found from the relation (1.15) as follows

f = f-1v1 + f0v2 + f1v3

= f̂-1w1 + f̂0w2 + f̂1w3

= f̂-1(v1 + v3) + f̂0v2 + f̂1(v1 − v3)

=
(
f̂-1 + f̂1

)
v1 + f̂0v1 +

(
f̂-1 − f̂1

)
v3.

(1.16)

Note how (1.16) give two sets of coefficients for the representation of f in the v basis. Lemma 1.42
will shortly show that those two sets of coefficients must be equal, i.e. that

f̂-1 + f̂1 = f-1,

f̂-1 − f̂1 = f1
⇔



f-1
f0
f1


 =



1 0 1
0 1 0
1 0 -1





f̂-1
f̂0
f̂1


 . (1.17)

it is clear that to obtain the coefficients (f̂-1, f̂0, f̂1) from (f-1, f0, f1), we simply invert the
matrix-vector relation above. We will see in Lemma 1.44 that this procedure generalizes to any
finite-dimensional vector space.
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The basis v might seem as the “natural” one for this vector space, but that is only one
possible choice. Any other set of three linearly independent functions in R{[-1,0),0,(0,1]} is equally
valid as a basis.

The Infinite-dimensional Case

For infinite-dimensional vector spaces, the notion of basis will need to involve more than just
algebraic properties in order for it to be useful. We will need to make sense of representations
that involve infinite sums like

u =

∞∑

k=1

xkvk. (1.18)

This will require notions of convergence and topology which will be introduced in Chapter 3.
There is however a definition of bases in infinite dimensions that is purely algebraic, and is
referred to as a Hamel basis. Because it is purely algebraic, it turns out not to be too useful,
but we describe it briefly in the next example for the sake of contrast with later definitions.

Definition 1.20. Let v := {vk} be a (possibly infinite) set in a vector space V.

1. The span of v is the set of all finite linear combinations of its elements

span{v} :=
{

n∑

k=1

xkvk; vk ∈ v, xk ∈ R, n ∈ N

}
.

2. The set v is called linearly independent if no non-trivial finite linear combination of ele-
ments of v is zero.

3. A (possibly infinite) linearly independent set v ⊂ V that spans a (possibly infinite-
dimensional) vector space V is called a Hamel basis.

The reason for using only finite linear combinations in the above definitions is that unless
we have a notion of convergence, only finite sums are well defined. The next examples clarify
this issue.

Example 1.21. Consider the vector space of real sequences RZ, and consider the set

ek := ( · · · , 0, 1, 0, · · · ), k ∈ Z. (1.19)

↑ k’th entry

This set is easily seen to be linearly independent. It is an infinite set. It does not span RZ

however since every finite linear combination of such elements can only give a sequence with
finitely many non-zero entries

span{ek} = sequences with finitely many non-zero entries ⊊ RZ.

Therefore, span{ek} is an infinite-dimensional subspace of RZ, and {ek} is a Hamel basis for
that subspace.

Example 1.22. Consider linear the set of all finite linear combinations of harmonic functions
of arbitrary frequencies

V :=
{
f : R→ C; f(t) = α1e

jω1t + · · ·+ αne
jωnt, αi, ωi ∈ R, n ∈ N

}
.
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This set is an infinite-dimensional vector space (over the scalars in C). According to Defini-
tion 1.20, it is the span of the following set of functions indexed by R

V = span{v} := span
{
ejωt; ω ∈ R

}
.

The set v is linearly independent since no non-trivial linear combination of such elements can
be the zero function provided the frequencies ω1, . . . , ωn are all distinct. Thus the set v :={
ejωt; ω ∈ R

}
is a Hamel basis for V (almost by definition). Note that this is an uncountable

basis since it has the same cardinality as R. We will return to this example in later chapters as
it forms the backbone of so-called “almost periodic functions”.

Amore useful concept introduced in later chapters involves the same basis (1.19). We will
however define norms on subspaces of RZ, and take the “closure” of span{ek} with respect
to those norms. This will yield for example the ℓp(Z) spaces. By taking the closure, we can
make sense of a series like (1.18), in that finite partial sums converge (in the defined norm)
to the element u. This discussion will have to wait until we define norms and convergence
properties.

1.4 Subspaces, Direct Sums and Quotients

A subset S ⊆ V of a vector space V that is itself a vector space is called a subspace of V.
The set S has to therefore satisfy all the properties listed in Definition 1.1. Some of these
properties are automatically inherited from V, namely, commutativity and associativity of
vector addition, as well as the properties of scalings. Thus we only need to explicitly require
the property of closure under linear combinations.

Definition 1.23. A subset S ⊆ V of a vector space is called a subspace if it is closed under
linear combinations

∀α, β ∈ R, x, y ∈ S ⇒ αx+ βy ∈ S.

In particular 0 ∈ S, and S is itself a vector space.

Example 1.24. Consider the set of “zero mean” vectors in Rn

S :=

{
x ∈ Rn;

n∑

i=1

xi = 0

}
.

Due to the linearity of sums, this subset is clearly closed under linear combinations. If x, y ∈ S,
then

n∑

i=1

(αx+ βy)i =

n∑

i=1

(αxi + βyi) = α

n∑

i=1

xi + β

n∑

i=1

yi = 0 + 0.

Note that the zero mean condition can also be written as 1∗x = 0, where 1∗ is the transpose of
1, the vector whose entries are all 1. The reader should verify as an exercise that for any fixed
vector v ∈ Rn, the set {x ∈ Rn; v∗x = 0} is indeed a subspace. Thus the example above is a
special case of this more general type of subspace.

Vector spaces can be “collected together” to form bigger vector spaces that contain
them. This is the concept of the direct sum of vector spaces. There are two versions of the
direct sum concept depending on whether we consider the vector spaces to be combined as
unrelated, or if they are subspaces of some larger vector space. We begin with the former
concept.
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Definition 1.25. Given two vector spaces V1 and V2, their external direct sum is the set of
ordered pairs

V1⊕eV2 :=
{
(v1, v2); v1 ∈ V1, v2 ∈ V2

}
,

where the vector space operations are defined “componentwise”, i.e.

(v1, v2) + (u1, u2) := (v1 + u1, v2 + u2), α(v1, v2) := (αv1, αv2).

The basic example is that of R2 = R⊕eR, which is ordered pairs of real numbers.
Each vector space V1 and V2 is embedded in V1⊕eV2 as a subspace since e.g.

S :=
{
(v1, 0) ∈ V1⊕eV2; v1 ∈ V1

}

is clearly a set closed under additions and scalings. S is itself a vector space which can
be “identified” with V1, i.e. S is isomorphic to V1. Now let’s look at another way we can
combine subspaces of a given vector space.

Definition 1.26. Given two subspaces S1,S2 ⊆ V of a vector space V, their internal direct
sum is

S1⊕iS2 :=
{
v ∈ V; v = v1 + v2, v1 ∈ S1, v2 ∈ S2

}
.

This is the set of all possible linear combinations of elements from S1 and S2.

Note the difference between this definition and the previous one. In the latter, one
can make sense of the sum v1 + v2 since both vectors are in V, in which addition is well
defined. The distinction in terminology between external and internal direct sums was made
to emphasize this difference.

Consider for example the plane R2 and the subspace S which is the x-axis. The internal
direct sum R2⊕iS is just all of R2 (adding a vector aligned with the x-axis to any other
vector in the plane gives a vector in the plane). However, when we take an external direct
sum, R2 and S are considered as vector spaces in their own right, and not as subspaces
of another vector space. In this case therefore R2⊕eS = R3 since it is the set of ordered
3-tuples (two coordinates come from R2, and the third coordinate is from S, which is just
the set of real numbers).

The internal and external direct sums are equal, or more precisely they are isomorphic,
if any vector can written as v = v1 + v2 in a unique way. This turns out to be equivalent to
the two subspaces having only the trivial intersection.

Lemma 1.27. Let S1,S2 ⊆ V be subspaces of a vector space V.

1. S1 ∩ S2 = 0 iff any vector v in the internal direct sum can be written uniquely as
v = v1 + v2 with vi ∈ Si.

2. If S1 ∩ S2 = 0, then the internal sum S1⊕iS2 and the external sum S1⊕eS2 are iso-
morphic. In this case we simply write S1 ⊕ S2 for either sum.

Proof. 1. We show the contrapositive. Suppose S1 ∩ S2 ̸= 0, and select a non-zero vector
w from it. Note that w ∈ S1 and w ∈ S2, and v can be alternatively decomposed as

v = v1 + v2 = (v1 + w) + (v2 − w), (v1 + w) ∈ S1, (v2 − w) ∈ S2,

which is another, distinct (since w ̸= 0), representation of v as the sum of two vectors
from S1 and S2 respectively. This geometry illustrated in Figure 1.5a.
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S1

S2

S1 \ S2

v1

u1
v2

u2

v
w

w
-w

(a) Two subspaces S1 and S2 with a non-trivial intersection
S1 ∩ S2 ̸= 0 (here depicted as the thick grey line). Because the
intersection is non-trivial, any vector of the form v = v1 + v2
(where v1 ∈ S1 and v2 ∈ S2) can be rewritten in an infinite
number of other ways as the sum of two vectors from S1 and S2

respectively. Given any non-zero vector w ∈ S1 ∩ S2, then v =
v1 +v2 = (v1 +w)+ (v2 −w) is another distinct decomposition
of v.

v1

v2

v

S1 S2

(b) A subspace S2 is complementary to an-
other subspace S1 if S1⊕S2 = V, and S1∩S2 =
0. This last condition insures that any vector
v ∈ V can be written uniquely as v = v1 + v2
with v1 ∈ S1 and v2 ∈ S2.

Figure 1.5: Illustrations of the concepts of internal direct sum and complementary subspaces.

Conversely, if there exists two distinct representations

v = v1 + v2
= v̂1 + v̂2

,
v1, v̂1 ∈ S1
v2, v̂2 ∈ S2 ,

v1 ̸= v̂1
or v2 ̸= v̂2

⇒
{

(v1 + v2)-(v̂1 + v̂2) = 0
⇔ (v1-v̂1) = (v2-v̂2) =:w

and this non-zero vector w belongs to both S1 and S2.

2. When S1 ∩ S2 = 0, the unique decomposition v = v1 + v2 gives a mapping A between
the external and internal sums

A : S1⊕eS2 → S1⊕iS2, A(v1, v2) := v1 + v2.

The uniqueness of the decomposition implies that this map is one-to-one. It is clearly
onto and linear, and therefore an isomorphism.

It will be assumed going forward (unless otherwise stated) that when taking direct sums
of subspaces, their intersection is 0. The next concept deals with decomposing a vector
space into a direct sum of subspaces.

Definition 1.28. Consider a vector space V with a subspace S1 ⊂ V. A subspace S2 is said
to be complementary to S1 if their intersection is zero, and their direct sum is all of V

S2 complementary subspace to S1 ⇔ S1 ∩ S2 = 0, and S1 ⊕ S2 = V.

This concept is illustrated in Figure 1.5b. Complementary subspaces are not unique. There
is always an infinite number of choices of subspaces that are complementary to any given
subspace5.

Example 1.29. Consider the space RR of functions on the real line. We will give two different
decompositions of it into complementary subspaces. First, recall that any function u on the real
line can be written uniquely as the sum of its odd and even parts

uo(t) := u(t)−u(−t), ue(t) := u(t)+u(−t), ⇒ u(t) = (uo(t) + ue(t)) /2.

5It is important to mention that a complementary subspace S2 does not have to be “orthogonal” to
S1. The concept of orthogonal complements will be discussed later when inner products, and therefore the
notion of orthogonality, are introduced. Orthogonal complements are however unique.

Draft: Notes on Linear Algebra and Functional Analysis © July 19, 2024, Bassam Bamieh



26 1.4. Subspaces, Direct Sums and Quotients

u
uo

ue

u+

u��

u
u

Figure 1.6: The decompositions of Example 1.29 of the space of functions on the real line RR into two
complementary subspaces in two different ways. (Left) Any function can be written uniquely as u(t) =
uo(t) + ue(t), the sum of its odd and even parts respectively. (Right) Any function can be written uniquely
as u(t) = u+(t)+u−(t), the sum of functions supported on [0,∞) and (−∞, 0) respectively. Thus the vector
space RR is isomorphic to the direct sum R[0,∞) ⊕ R(−∞,0).

Let
(
RR)

o
and

(
RR)

e
refer to the subspaces of odd and even functions on R respectively

(convince yourself that they are indeed subspaces). Their intersection is zero since any function
that is both even and odd must satisfy

u(−t) = u(t) = −u(t) ⇒ u(t) = 0.

Thus RR =
(
RR)

o
⊕
(
RR)

e
is a decomposition into complementary subspaces. This decompo-

sition is illustrated in Figure 1.6
Alternatively, consider the subspaces of RR of functions that are supported on the non-

negative and negative real lines respectively

(
RR)

+
:=
{
u : R→ R; u(t) = 0, if t < 0

}
,

(
RR)

− :=
{
u : R→ R; u(t) = 0, if t ≥ 0

}
.

Any function can be decomposed uniquely into its corresponding positively and negatively sup-
ported parts

u+(t) :=

{
u(t), t ≥ 0,
0, t < 0,

u−(t) :=

{
0, t ≥ 0,
u(t), t < 0,

⇒ u(t) = u+(t)+u−(t).

This decomposition is illustrated in Figure 1.6. The intersection of
(
RR)

+
and

(
RR)

− is clearly

zero, and therefore they are complementary subspaces of RR.
Finally, we note that this last decomposition gives a useful illustration of the correspondence

between internal and external direct sums. Consider the space R[0,∞) of functions defined on
[0,∞). It is clearly isomorphic to the subspace

(
RR)

+
, but they are not equal. The former

contains functions that are defined only on the interval [0,∞), while the latter has functions
defined on all of R, but constrained to be zero over (−∞, 0). Similarly for R(-∞,0). These
isomorphisms can be summarized as follows
(
RR)

+
∼ R[0,∞)

(
RR)

− ∼ R(-∞,0) and RR =
(
RR)

+
⊕i

(
RR)

− ⇒ RR ∼ R[0,∞)⊕e R(-∞,0).

Thus RR is equal to the internal direct sum of two complementary subspaces, while it is iso-
morphic to the external direct sum of two separately defined vector spaces. Once this no-
tion is understood, we will not make a distinction in the sequel between internal and exter-
nal direct sums (provided the intersection of the subspaces is zero), and we may simply write
RR = R[0,∞) ⊕ R(-∞,0) with the understanding that this is equality “up to isomorphisms”.

Projections

Whenever a vector space V has a decomposition in terms of complementary subspaces S1
and S2, then projection operators onto those subspaces are defined as follows. Since every
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v ∈ V has a unique decomposition as the sum of two vectors

v = v1 + v2, v1 ∈ S1, v2 ∈ S2,

this gives the well-defined mappings

Π1 : V→ S1
Π2 : V→ S2

,
Π1v := v1
Π2v := v2

.

These mappings are clearly linear. For example, for any two elements v, w ∈ V, each has a
unique decomposition v = v1+v2, w = w1+w2, and therefore v+w = (v1+w1)+(v2+w2)
is a unique decomposition, and consequently Π1(v + w) = v1 + w2 = Π1v +Π1w.

Projections can be visualized as in Figure 1.5b, and are generally called oblique projec-
tions. In inner product spaces (to be introduced later), there is a notion of orthogonality,
and when the complementary subspaces are orthogonal, then the projections Π1 and Π2 are
called orthogonal projections.

The projections Πi are linear operators, and they have a very special property. If we
apply the projection twice to the same vector Π2v = Π(Πv) = Πv1 = v1 (since v1 is already
in S1). This property is a defining property of projections as the following statement implies.

Lemma 1.30. Let Π : V → S be a linear operator from a vector space V to a subspace
S ⊂ V. If Π2 = Π, then Π is a projection, and the linear operator

Πc := (I −Π),

is the complementary projection which maps Πc : V→ Sc, where Sc := Im(Πc) is a subspace
complementary to S in V.

Proof. First note that the two mappings Π and (I −Π) give a decomposition of any vector

v = (Π + I −Π) v = Πv + (I −Π)v = v1 + v2, v1 ∈ S, v2 ∈ Sc.

To show that S and Sc are complementary, we need to show that their intersection is 0.
Indeed, suppose a vector v ∈ S and v ∈ Sc

Πv = v, and (I −Π)v = v ⇒ v = (I −Π)v = v −Πv = v − v = 0.

Thus only the 0 vector is in S∩ Sc and therefore the two subspaces are complementary.

The lemma gives a technique for finding complementary subspaces. If we find an operator
that is equal to its square Π2 = Π, then the lemma guarantees that Im(Π) and Im(I −Π) are
complementary subspaces, and the decomposition of any vector can be obtained by applying
those two operators to the vector.

Example 1.31. Returning to Example 1.29, consider again the space of all functions on the
real line V = RR. Define the operator Π which “zeros out” the part of a function on the negative
real line (−∞, 0)

(Πu) (t) :=

{
0, t < 0,
u(t), t ≥ 0.

This operator clearly has the property Π2 = Π. It is easy to see that its complementary projection
(I −Π) “zeros out” the part of a function supported on [0,∞)

(I −Π)u = u − Πu = u − u+ = u− :=

{
u(t), t < 0,
0, t ≥ 0

,

where we are using the notation of Example 1.29 for the positively u+ and negatively u−
supported portions of u respectively.
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v1

v2

S

v3

v4

v1 + S = v2 + S

v3 + S

v4 + S

v1-v2

v1-v2

V/S

(v3 + v4) + S

v3 + v4

(a) Cosets of a subspace S are sets of the form v+S (depicted
in green) for any vector v, called a coset representative. Rep-
resentatives are not unique, any two vectors with v1 −v2 ∈ S
represent the same coset, i.e. v1 + S = v2 + S. At the top,
the sum (v1 + S) + (v2 + S) = (v1 + v2) + S is depicted. The
set of all cosets of any subspace is itself a vector space with
addition and scaling induced from the original space V. This
set is denoted by V/S (depicted in blue), the quotient space
of V by S.

S1

V/S1 ⇠ S2

(b) The set of all cosets V/S1 can be identified
with (i.e. is isomorphic to) any space S2 that is
complementary to S1. Complementary subspaces
S1 and S2 intersect only at 0, and it then follows
that S2 intersects each coset at exactly one point.
Each such point is taken as the representative of
its containing coset, and this gives the isomor-
phism S2 ∼ V/S1.

Figure 1.7: The concepts of cosets of a subspace and the corresponding quotient space. The quotient of
V by S1, denoted V/S1 is isomorphic to any subspace S2 that is complementary to S1.

1.4.1 Cosets and Quotient Spaces

The problem of finding complementary subspaces is a fundamental one that occurs often,
and we will introduce various techniques for addressing it depending on the setting. At a
more abstract level, there is a generic technique for constructing a complementary subspace
using the notion of cosets of subspaces.

Definition 1.32. Given a subspace S ⊂ V, a coset of S is a set of the form

v + S := {v + x; x ∈ S} ,
where v ∈ V is any vector, which is called a representative of the coset v + S.

Note that coset representatives are not unique. For example given any coset v+S, adding
an element u ∈ S to v gives the same coset

u ∈ S ⇒ (v + u) + S = {(v + u) + x; x ∈ S} = {v + y; y ∈ S} = v + S (1.20)

Thus v and v + u represent the same coset if u ∈ S. Also note that if the representative is
actually a member of S, then its coset is just the “zero coset”, which is the subspace itself

v ∈ S ⇒ v + S = 0 + S = S.

Cosets can be visualized as “affine shifts” of the subspace as illustrated in Figure 1.7a. The
figure also illustrates another way to see (1.20). Two vectors v1 and v2 whose difference lies
in S represent the same coset

(v1 − v2) ∈ S ⇔ v1 + S = v2 + S.

We now consider the set of cosets of a given subspace S. First observe that belonging
to a coset is an equivalence relation, i.e. if v1 and v2 belong to a coset, v2 and v3 belong
to the same coset, then clearly v1 and v3 belong to that coset. Therefore cosets of a given
subspace partitions V into non-intersecting subsets whose union is all of V.

The set of cosets is itself a vector space with the natural definition of addition as

(v1 + S) + (v2 + S) := (v1 + v2) + S

α (v + S) := αv + S.
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These definitions are independent of the choice of cosets representatives, e.g.

v1 + S = u1 + S ⇒ u1 − v1 ∈ S

v2 + S = u2 + S ⇒ u2 − v2 ∈ S

∴ (v1 + v2) + S = (v1 + v2) + (u1 − v1) + (u2 − v2) + S = (u1 + u2) + S.

Figure 1.7a depicts several cosets of a subspace S. These cosets are visualized as a “layered”
collection of affine spaces, which can be added and scaled in the same manner as their coset
representatives.

The set of all cosets of a subspace S ⊂ V is a vector space called the quotient space V/S.
Figure 1.7a illustrates that V/S can be thought of as a subspace complementary to S. We
make this precise in the next statement.

Lemma 1.33. Let S1 ⊂ V be subspace of a vector space V, and S2 ⊂ V be a complementary
subspace. Then S2 is isomorphic to the quotient space V/S1. Thus for any subspace S ⊂ V,
the vector space decomposes as V ∼ S⊕ V/S.

Note that this lemma also implies that all subspaces complementary to a given subspace
are isomorphic to each other, and to V/S1 in particular. The argument for this lemma is
best illustrated by Figure 1.7b. Consider all cosets of S1 (which partition the entire space
V), and their intersection points with the complementary subspace S2. Since S1 and S2
intersect at only the single point 0, then it follows that S2 intersects each coset at exactly
one point. Indeed, if v1 ̸= v2 belong to the same coset (i.e. v1 − v2 ∈ S1), and they also
belong to S2, then v1 − v2 ∈ S2 (since S2 is a subspace), and therefore v1 − v2 ̸= 0 belongs
to S1 ∩ S2, which means that S2 is not complementary to S1.

Another perspective on this lemma is given by reexamination of Figure 1.7b. One can
always choose one representative from each coset of S1, and the collection of such represen-
tatives forms a set that is in one-to-one correspondence with V/S1. However, in a vector
space, those representatives can be chosen so that they themselves form a subspace, namely
the subspace S2. We note that this process of choosing representatives is not unique, as is
the choice of complementary subspaces.

1.5 Image/Null Subspaces and Linear Equations Solvability

The theory of vector spaces and linear operators provides a powerful framework for treatment
of the many of fundamental equations in science and engineering. These vary from matrix-
vector equations to (ordinary or partial) differential equations as well as integral equations.
If a vector space structure can be found in which the equations involve linear operators,
then this theory is applicable. It is also often true that for nonlinear equations, analysis
of the linear parts provides significant insight into properties of the solutions of the overall
equations.

The first questions about equations are those of solvability, i.e. when do there exist
solutions, and if they do, are they unique? If not, can one characterize all possible solutions?
Regardless of the details of the equations (e.g. whether they involve matrices, differential
or integral operators), the notions of image and null spaces are fundamental to answering
solvability questions for linear equations. We first motivate the formal definitions.

When do there exist solutions to a linear equation? Consider a linear operator A : V −→
W between vector spaces and the equation

Ax = b, (1.21)

where b ∈W is some given vector. It’s almost a tautology to say that there exists a solution
iff there exists a vector x̄ ∈ V such that Ax̄ = b. We therefore are motivated to define the
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V W

A

00
Nu(A) Im(A)

Figure 1.8: Illustration of the image Im(A) and null Nu(A) spaces of a linear operator A between two
vector spaces V and W. The image space (depicted in light blue on the right) is elements of W that are
images of any elements in V. It is a linear subspace of W. Clearly A is onto iff Im(A) = W (i.e. the image
space of A “fills up” all of W). The null space is the set of all elements that are mapped to 0 (depicted in
light red on the left). It is a linear subspace of V. The null space always contains 0, but if it contains other
elements, i.e. Nu(A) ̸= 0, then A is clearly not one-to-one (more than one element is mapped to the same
element, namely zero). It is also true that Nu(A) = 0 iff A is one-to-one.

set of all vectors in W for which there exists vectors in V mapped to them. This is the
concept of the “image space”.

Definition 1.34. Given a linear operator A : V → W between two vector spaces V and W,
the image space Im(A) ⊆W of A is

Im(A) := {w ∈W; ∃v ∈ V, Av = w}
As illustrated in Figure 1.8, the image space is the range of A as a function (i.e. all the

elements of W that have at least one element of V mapped to them). The fact that it is a
subspace (rather than an arbitrary set) is a consequence of the linearity of the mapping A

w1 = Av1, w2 = Av2 ⇒ A (αv2 + βv2) = α Av1 + β Av2 = αw1 + βw2,

∴ w1, w2 ∈ Im(A) ⇒ (αw1 + βw2) ∈ Im(A) .

We can now simply say that there exists a solution to (1.21) iff b ∈ Im(A). Suppose
now we want to go further and find a criterion for solvability of (1.21) for all possible “right
hand sides” b ∈ W. It is immediate from Definition 1.34 that as a mapping A is onto iff
Im(A) = W (we can say that the image of A “fills up” all of W). We can now say that for
any b ∈W, there exists a solution to (1.21) iff Im(A) = W.

Now for the other important questions of whether a solution is unique, and if not, how
to characterize all possible solutions. The key is to consider the homogenous equation

Ax = 0. (1.22)

Now suppose we have found one solution x̄ ∈ V to the original equation so that

Ax̄ = b.

The linearity property then implies that any vector of the form x̄ + x̃ where x̃ solves the
homogenous equation (1.22) (i.e. Ax̃ = 0) must also be a solution since

A (x̄+ x̃) = Ax̄ + Ax̃ = b + 0 = b. (1.23)

Therefore given one solution of the original equation, we can generate other solutions by
simply adding to it any solution of the homogenous equation (1.22). Observe that the set
of all solutions to the homogenous equation is actually a subspace since

Ax1 = 0, Ax2 = 0 ⇒ A (αx1 + βx2) = α Ax1 + β Ax2 = 0 + 0 = 0.

The set of all solutions to the homogenous equation (1.22) is called the “null space” of the
operator A. We are therefore led to the following definition.
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Definition 1.35. Given a linear operator A : V → W between two vector spaces V and W,
the null space of A is the subspace of vectors mapped to zero

Nu(A) := {v ∈ V; Av = 0} ⊆ V.

Figure 1.8 illustrates the geometry where the null space is the set of all vectors in V mapped
to the zero vector in W.

Recall that the image space characterizes when a map is onto. On the other hand, the
null space characterizes when a linear map is one-to-one. Indeed, note that zero is always
in the null space since zero is mapped to zero by any linear operator. If the null space of A
contains more than just the zero element, then A is clearly not one-to-one since more than
one element is mapped to zero. Conversely, suppose that A is not one-to-one, then there
are two vectors v1 ̸= v2 such that

Av1 = Av2 ⇔ Av1 −Av2 = 0 ⇔ A(v1 − v2) = 0,

i.e. we found a non-zero vector v1 − v2 ̸= 0 that is in Nu(A). Note how the linearity of
A was the key to this argument. We therefore have just argued the contrapositive of the
following statement

A is one-to-one ⇔ Nu(A) = 0. (1.24)

This criterion is exceedingly useful! Checking whether a mapping is one-to-one would require
insuring that all elements of the domain set are each mapped to distinct elements. For linear
mappings, it suffices to check the size of the null space. We now summarize all the previous
arguments in the following lemma.

Lemma 1.36. (Linear Equations Solvability) Let A : V → W be a linear operator between
two vector spaces. Consider the abstract linear equation Av = w where w is given, and v is
the unknown.

1. For a fixed w̄ ∈W, the equation Av = w̄ has a solution iff w̄ ∈ Im(A).

2. For each w ∈W, the equation Av = w has a solution iff Im(A) = W (i.e. A is onto).

3. Given w̄ ∈W, and one solution Av̄ = w̄, this solution is unique iff Nu(A) = 0.

If Nu(A) ̸= 0, then any other solution of Av = w̄ is of the form v = v̄ + ṽ, where
ṽ ∈ Nu(A).

We have already argued all the points above except for the last one. The argument (1.23)
shows that if ṽ ∈ Nu(A) then v̄ + ṽ is a solution. Conversely, if v any other solution with
Av = w̄, then consider v − v̄

A (v − v̄) = Av −Av̄ = b− b = 0 ⇒ ṽ := v − v̄ ∈ Nu(A) , and v = v̄ + ṽ,

i.e. the solution v can be written as v̄ + ṽ where ṽ is in the null space. Thus the null space
“parameterizes” all solutions of a linear equation.

In summary, Lemma 1.36 implies that to understand properties of solutions of linear
equations, one must understand the null and image spaces of the underlying operator.

Example 1.37. For matrices, the image space is the so-called “column span” (the span of the
all the columns viewed as vectors). This can be easily seen from the definition of matrix-vector
products and partition notation as follows. Let A : Rm → Rn be an n ×m matrix. It maps a
vector v ∈ Rm to a vector w = Av ∈ Rn by

[
w

]
=

[
a1 · · · am

]


v1
:

vm


 =

[
a1

]
v1 + · · · +

[
am

]
vm,
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where {a1, . . . ,am} are the columns of the matrix A. This way we can view w as a linear com-
bination of the columns of A, formed with coefficients {v1, . . . , vm}, which are the components
of the vector v. If we let v range over all possible vectors in Rm, then the left hand side w will
correspond to all possible linear combinations of the columns of A, i.e. to the column span. We
therefore conclude that for a matrix A

Im(A) = col.span
(
A
)
.

Example 1.38. Consider the two-variable equation
[
1 -1
-1 1

] [
x1

x2

]
=

[
1
1

]
. (1.25)

To see if there exists a solution, check whether the vector (1, 1) is in the image space, or
equivalently in the column span of the matrix. The two columns of the matrix are actually
multiples of each other (column 2 is -1 times column 1) and therefore we conclude

Im

([
1 -1
-1 1

])
= span

[
1
-1

]
,

[
1
1

]
/∈ span

[
1
-1

]
⇒ (1.25) has no solution.

On the other hand, consider the equation with a different right hand side which is in the
image space

[
1 -1
-1 1

] [
x1

x2

]
=

[
-1
1

]
. (1.26)

By inspection, one solution is the vector (x̄1, x̄2) = (0, 1). To characterize all solutions, we need
to find the null space. By inspection again, one vector that is in the null space is (1, 1)

[
1 -1
-1 1

] [
1
1

]
=

[
0
0

]
.

Could the null space be any bigger? The answer is no, and the justification will be provided by
the rank-nullity theorem of the next section6, which in this case states that the dimension of
the null space plus the dimension of the image space is exactly 2 (the dimension of the space
in which x lives). We already showed that the image space is 1 dimensional, and therefore the
null space must be one dimensional. Therefore all solutions of (1.26) are

x̄ + x̃ =

[
0
1

]
+ α

[
1
1

]
=

[
α

1 + α

]
, α ∈ R.

The reader should verify that any vector of this form satisfies (1.26).

Example 1.39. Consider the first order differential equation

df

dt
(t) = w̄(t), t ∈ [a, b], (1.27)

where w̄(.) is a given function on the interval [a, b]. Recalling the derivative operator of Exam-
ple 1.13, we can think of this differential equation as a linear equation in a function space of the
form (1.21) as follows

Df = w̄, D : C1[a, b] −→ C[a, b]. (1.28)

6In this simple example, this can also be justified directly. An vector x in the null space satisfies
x1 − x2 = 0 and −x1 + x2 = 0. All such vectors have the property that x2 = −x1, and are therefore scalar
multiples of the vector (1,−1). The rank-nullity theorem is however useful for more complicated examples.
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For a given right hand side w̄, the equation has a solution iff w̄ ∈ Im(D). Examining the image
space is relatively easy in this case since integration reverses D up to a constant, i.e. given a
continuous function g ∈ C[a, b], then for any constant c ∈ R

d

dt

(∫ t

a

g(τ) dτ + c

)
= g(t).

The indefinite integral of g ∈ C[a, b] belongs to C1[a, b], and therefore the mapping D :
C1[a, b] −→ C[a, b] is onto and Im(D) = C[a, b] in this case. Therefore, the equation (1.28) has
a solution f ∈ C1[a, b] for any w̄ ∈ C[a, b].

To find all solutions, we need to characterize the null space Nu(D)

Df = 0 ⇔ df

dt
(t) = 0 ⇔ f(t) = c, c ∈ R,

i.e. it is the one-dimensional space of constant functions. Therefore, given any particular solution
f̄ of (1.27), all other solutions f are obtained by adding elements of the null space

f(t) = f̄(t) + c, c ∈ R.

1.5.1 The General Rank-Nullity Theorem

Some questions about linear operators or solvability of linear equations do not require a
complete characterization of the image and null spaces, but only knowing their dimensions.
This leads to the concepts of the “rank” and “nullity” of a linear operator.

Definition 1.40. Given a linear operator A : V→W between two vector spaces, its rank is
the dimension of its image space and its nullity is the dimension of its null space

rk(A) := dim(Im(A)) , nl(A) := dim(Nu(A)) .

Both rank and nullity could be finite or infinite. Of course if W is finite dimensional, then
necessarily the rank is finite, and similarly if V is finite dimensional then the nullity is finite.
It is also possible that some operators between infinite dimensional spaces can have finite
rank or finite nullity (but not both, see (1.29) below).

For matrices, we recall from Example 1.37 that the image space is the column span,
which then implies that the rank of a matrix is precisely the number of linearly indepen-
dent columns. This last statement is sometimes taken as the definition of the rank of a
matrix. However, Definition 1.40 is preferable as a starting point since it is applicable to
any linear operator and thus more general. The statement about the number of linearly
independent columns of a matrix should be thought of as a result (justified in the arguments
of Example 1.37) rather than a definition.

A related statement that the reader may be familiar with is that the number of linearly
independent columns of a matrix is the same as the number of linearly independent rows
(and is equal to the rank). While it is possible to prove this fact by algebraic manipulations,
there are important geometric reasons for this fact that are difficult to appreciate at this
point. A better geometric understanding can be achieved after discussing the fundamental
concepts of duality and operator adjoints, and we therefore postpone a proof until then.
In the meantime, we can still uncover interesting and fundamental relations between null,
image and quotient spaces. This is the subject of the so-called rank-nullity theorem.

Let A : V −→W be a mapping between two vector spaces. Consider first the case when
A has trivial null space (i.e. Nu(A) = 0). Recall from (1.24) that this implies that A is
one-to-one. Now consider Im(A) ⊆ W, which is a subspace of W (see Figure 1.9a for an
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V

W
A

0
Im(A)

0 = Nu(A)

(a) When the null space Nu(A) is trivial (i.e. just the zero element), then the linear mapping A is one-to-one.
This implies that V is mapped isomorphically onto Im(A) ⊆ W. Since Im(A) is itself a vector space, we have
a vector space isomorphism Im(A) ∼ V.

W
V

A

0

0Nu(A)

Im(A)

V/Nu(A)

(b) The quotient space V/Nu(A) can be viewed as a subspace complementary to Nu(A) in V. The null space
is mapped to 0, but the complement V/Nu(A) is mapped isomorphically (one-to-one and onto, depicted by
the long blue arrows) to Im(A). Since Nu(A) ⊕ V/Nu(A) ∼ V, and V/Nu(A) is isomorphic to Im(A), this
implies the isomorphism Nu(A) ⊕ Im(A) ∼ V. This isomorphism holds even though Nu(A) and Im(A) are in
different spaces, and therefore ⊕ here is the external direct sum. The isomorphism implies the rank-nullity
relation dim(V) = nl(A) + rk(A).

Figure 1.9: Illustration of rank-nullity Lemma 1.41 in the simple case when Nu(A) = 0 (top), and the
general case Nu(A) ̸= 0 (bottom).

illustration). Since Im(A) is itself a vector space, we can think of A as a map A : V→ Im(A),
which is then onto by definition. Since this map is now one-to-one and onto, we can say
that V is isomorphic to Im(A) if Nu(A) = 0. This is true even if Im(A) doesn’t “fill up” all
of W, since now we consider A as mapping onto Im(A) rather than W.

What if Nu(A) ̸= 0? There is still an important statement we can make. Refer to
Figure 1.9b and consider the quotient space V/Nu(A). Recall (Lemma 1.33) that it can be
viewed as a subspace (of V) complementary to Nu(A). The restriction of A to V/Nu(A)
has trivial null space (the intersection of V/Nu(A) and Nu(A) is 0), thus restricting A to
the subspace V/Nu(A) (or equivalently to any subspace complementary to Nu(A)) makes
it into a one-to-one mapping onto Im(A). This implies that the quotient space V/Nu(A) is
isomorphic to Im(A). We summarize the above conclusions in the following Lemma.

Lemma 1.41. Let A : V→W be linear operator between vector spaces.

1. If Nu(A) = 0, then A is one-to-one and V is isomorphic to Im(A).

2. The restriction of A to V/Nu(A) defined by

A
(
v + Nu(A)

)
:= Av,

maps V/Nu(A) isomorphically onto Im(A). Therefore V/Nu(A) ∼ Im(A).

Equivalently, any subspace of V complementary to Nu(A) is mapped by A isomorphi-
cally onto Im(A).

3. rank-nullity: V ∼ Nu(A)⊕ V/Nu(A) ∼ Nu(A)⊕ Im(A). In particular

dim(V) = dim(Nu(A)) + dim(Im(A)) = nl(A) + rk(A) . (1.29)
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The third statement is illustrated in Figure 1.9b where V is the direct sum7 of Nu(A)
and V/Nu(A), both viewed as subspace of V. Since V/Nu(A) and Im(A) are isomorphic, we
can then say that V ∼ Nu(A) ⊕ Im(A) even though Im(A) is a subspace of another vector
space W.

Another consequence of (1.29) is that if V is infinite dimensional, then the rank and
nullity cannot both be finite. A linear operator on an infinite dimensional space can possibly
have finite-dimensional null space or a finite-dimensional image space, but not both.

1.6 Bases Representations and Change of Bases

We have shown several examples of finite-dimensional vector spaces that “look like” Rn.
In fact, for any finite-dimensional vector space, there are many ways to map it to Rn

isomorphically by choosing different bases.

Lemma 1.42. Let v := {vk; k = 1, . . . , n} ⊂ V be a basis. Each element u ∈ V can be
written as a unique linear combination of the basis elements, i.e.

u = x1v1+ · · ·+xnvn = y1v1+ · · ·+ ynvn ⇒ xk = yk, k = 1, . . . , n. (1.30)

Thus a choice of basis v induces a well-defined mapping u 7→ (x1, . . . , xn), which is a vector
space isomorphism from V to Rn.

The unique n numbers (x1, · · · , xn) are called the coordinates or the representation of the
vector u in the basis v.

Proof. If for at least one index k, xk ̸= yk, then subtract one representation from the other

0 = u− u = (x1 − y1) v1 + · · ·+ (xn − yn) vn.

Since (xk−yk) ̸= 0, we have found one non-trivial linear combinations of the basis elements
that sums to zero, i.e. the set v is not linearly independent. This uniqueness property shows
that the mapping u 7→ (x1, . . . , xn) is well defined and one-to-one. It is also onto since
any n-tuple of coefficients (x1, . . . , xn) corresponds to a vector in V by taking the linear
combination (1.30) (because v is a basis).

Finally, the mapping is linear since

u = x1v1 + · · ·+ xnvn

w = y1v1 + · · ·+ ynvn

}
⇒ u+w = (x1 + y1) v1 + · · ·+ (xn + yn) vn,

and recall that (x1, . . . , xn)+(y1, . . . , yn) := (x1+y1, . . . , xn+yn) is the definition of vector
addition in Rn. Thus the mapping u 7→ (x1, . . . , xn) is an isomorphism.

Lemma 1.42 implies that every finite-dimensional (real8) vector space V is isomorphic to
Rn, where n is the dimension of V. Every choice of basis v := {vk; k = 1, . . . , n} ⊂ V induces
an isomorphism between V and Rn. We call such an isomorphism a basis representation of
elements of V. To make this precise and avoid confusion, we adopt the following notation
as needed for clarity

u = x1v1 + · · ·+ xnvn ⇔ [u]v = (x1, . . . , xn). (1.31)

Thus [u]v is the vector of coefficients of u in the basis {vk}. In a different basis, say {wk},
the same vector u will have a different set of basis coefficients [u]w.

7Note that by definition of the quotient, V ∼ U⊕V/U where U is any subspace of V. Here we apply this
statement to the subspace Nu(A).

8Similar arguments imply that also any n-dimensional complex vector space is isomorphic to Cn.
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Recall that when we write a column vector x ∈ Rn, we are implicitly writing it using a
basis expansion in the canonical basis e := {e1, . . . , en}

x =

[ x1

...

xn

]
= x1

[
1
0
...
0

]
+ · · ·+ xn

[
0
...
0
1

]
= x1e1 + · · ·+ xnen.

In the notation of (1.31), x = [x]e, but since x is actually given in terms of the canonical
basis to begin with, we sometimes simply write x rather than [x]e.

Now given another basis v := {v1, . . . ,vn} of Rn, how do we find the coefficients of any
vector x (given initially in the canonical basis) in this new basis? We present now a method
that gives a nice, compact formula for the new coefficients using matrix-vector notation.

Lemma 1.43. Consider a basis v := {v1, . . . ,vn} of Rn, and the representations {[v1]e , . . . , [vn]e}
of its vectors in the canonical basis. Given any vector x ∈ Rn, the relation between its rep-
resentation in the canonical basis e and the new basis v is given by

x= x1e1 + · · ·+ xnen
= x̂1v1 + · · ·+ x̂nvn

⇔ [x]v :=



x̂1

:

x̂n


=


 [v1]e · · · [vn]e



-1

x1
...
xn


 =:V -1

e [x]e , (1.32)

where Ve is the matrix made up of the vectors {[vk]e} as its columns.

Proof. Observe that the expansion of x in the new basis can be written compactly as the
following matrix-vector product

x = x̂1v1 + · · ·+ x̂nvn

⇕
[x]e = x̂1 [v1]e + · · ·+ x̂n [vn]e

⇕

[x]e =



x1

:
xn


 =


 [v1]e · · · [vn]e





x̂1
...
x̂n




⇔
[x]e = Ve [x]v

⇕
[x]v = V -1

e [x]e

,

where Ve is the matrix whose columns are the vectors {vk} expressed in the canonical basis,
and [x]v is a column vector containing the new coefficients. Since the columns of Ve are
linearly independent, Ve is invertible.

The matrix V defined above has a geometric interpretation. It maps each canonical basis
vector to the respective new basis vector

V ek =

[
v1 · · · vn

][
0
:
1
:
0

]
↙ k’th entry

= vk,

where we have dropped the notation [vk]e and Ve for simplicity. If we think of {ek} as
coordinate axes, and similarly consider {vk} as new coordinate axes, then V is the lin-
ear transformation on Rn that transforms the old coordinate axes to the new ones. The
coefficients of any vector however transform according to V -1 in (1.32). We say that the
coefficients transform in a contravariant (i.e. in the “opposite”) manner to the coordinate
axes. Figure 1.10 illustrates this geometry with an example.

In Example 1.19 we saw how to relate two different bases and the corresponding coef-
ficients in those bases. The arguments in (1.16)-(1.17) apply to bases of any size, and we
state the conclusion next.
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e1

e2

v2
v1

x x

x1

x2

x̂2

x̂1

v1 = V e1

v2 = V e2


x1

x2

�

x̂1

x̂2

x1

x2

x̂1

x̂2

�

x̂1

x̂2

�
= V �1


x1

x2

�

Figure 1.10: A change of basis can be viewed as a transformation of “coordinate axes”. Here the matrix V
transforms (top figure) the canonical basis vectors e1 and e2 to the vectors v1 and v2 , the two columns of
the 2× 2 matrix V . The transformation of bases is depicted as a 45◦ counter-clockwise rotation of the axes.
On the other hand, the coefficients (x1, x2) and (x̂1, x̂2) of any vector x in each of the two bases respectively
transform with V −1, i.e. in a manner “contravariant” to the transformation of the axes. The vector (x̂1, x̂2)
of coefficients (as distinct from the vector x itself) is depicted (bottom figure) as a 45◦ clockwise rotation
of the original coefficents vector (x1, x2).

Lemma 1.44. Let v := {v1, . . . ,vn} and w := {w1, . . . ,wn} be two bases of an n-dimensional
vector space V. Let {[vk]u} and {[wk]u} be the vectors of coefficients of the sets v and w in
any third basis u, and form the matrices

Vu :=


 [v1]u · · · [vn]u


 , Wu :=


 [w1]u · · · [wn]u


 ,

If [u]w = (x1, . . . , xn) and [u]v = (x̂1, . . . , x̂n) are the respective basis coefficients of any
vector u ∈ V

u = x1w1 + · · ·+ xnwn = x̂1v1 + · · ·+ x̂nvn, (1.33)

then the two sets of coefficients are related by

[u]v =



x̂1

:
x̂n


 =


 A





x1

:
xn


 = A [u]w ⇔ [u]w = A-1 [u]v , (1.34)

where A := V -1
u Wu. The matrix A is independent of the choice of the third basis u.

Proof. Since v and w are both bases of Rn, each element of w can be written as a linear
combination of elements of v. Denote the coefficients of these linear combinations as follows

wk = a1kv1 + · · ·+ ankvn, k = 1, .., n. (1.35)

Note that these coefficients are determined by the sets v and w, and do not depend on any
third bases u.

The equations (1.35) can each be expressed in the third basis u. First, each as an equation

Draft: Notes on Linear Algebra and Functional Analysis © July 19, 2024, Bassam Bamieh
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with a matrix-vector product, and then all of them together as a single matrix equation

[wk]u = a1k [v1]u + · · ·+ ank [vn]u =


 [v1]u · · · [vn]u





a1k
...

ank


 , k = 1, .., n

⇔


 [w1]u · · · [wn]u


 =


 [v1]u · · · [vn]u





a11 · · · a1n
...

...
an1 · · · ann




⇒ Wu = Vu A ⇒ A = V -1
u Wu,

where the matrix A is defined as above using all the coefficients {aij}. Note that the matrices
Vu and Wu are invertible (since their columns are linearly independent respectively), and
then so is A.

Now given any vector u, we can write the expression (1.33) in the v basis as

u = x̂1v1 + · · ·+ x̂nvn = x1w1 + · · ·+ xnwn

⇔ [u]v =



x̂1

:
x̂n


 = x1 [w1]v + · · ·+ xn [wn]v =


 [w1]v · · · [wn]v





x1
...
xn




⇔ [u]v = Wv [u]w = A [u]w .

The last equivalence follows from A = V -1
u Wu in any basis u. In the v basis Vv = I, and

therefore A = V -1
v Wv = Wv.

Note how this lemma generalizes the previous Lemma 1.43. To obtain the previous
lemma from the current one, set w = e, and use u = e. We then have that We = I, and
Lemma 1.44 says A = V -1

e We = V -1
e , which the same statement as in Lemma 1.43.

1.6.1 Matrix Representations of Linear Operators

Consider a linear operator A : V → W between two finite dimensional vector spaces. The
operator A is given by some recipe or algorithm such that given any vector f ∈ V, the
algorithm gives the vector Af ∈W.

Let v := {v1, . . . ,vm} and w := {w1, . . . ,wn} be bases in V and W respectively. We
now ask the following question. If a vector f is mapped to a vector g = Af , how is the
basis representation of f mapped to that of g?

Consider the basis representations of f and g (in the respective bases of V and W), and
organize the coefficients into “column vectors” as follows

f = x1v1 + · · ·+ xmvm

g = y1w1 + · · ·+ ynwn
, x := [f ]v =



x1

...
xm


 , y := [g]w =



y1
...
yn


 . (1.36)

Our goal is to find the matrix that relates those two coefficient vectors.
Each vj is mapped to a vector Avj ∈ W. Since {wi} is a basis in W, we can write Avj

as a unique linear combination

Avj = a1j w1 + · · ·+ anj wn, j = 1, . . . ,m. (1.37)

where {a1j , . . . , anj} are the coefficients of the representation of Avj in the basis {wi}. This
set of n ×m numbers {aij} is what we need to describe the relation between the column
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vectors x and y in (1.36). Consider now the equation g = Af expressed using the basis
expansions of f and g

g = Af = A




m∑

j=1

xjvj


 =

m∑

j=1

xj A (vj) (by linearity of A)

=

m∑

j=1

xj

(
n∑

i=1

aijwi

)
=

m∑

j=1

(
n∑

i=1

aijxj

)
wi (from (1.37) and rearranging sum)

⇒ yi =

m∑

j=1

aij xj .

Note that the last sum is the matrix-vector product between the matrix whose entries are
{aij} and the vector x. We summarize the above in the following statement.

Lemma 1.45. Let A : V → W be a linear operator between two finite dimensional vector
spaces with bases v := {vi; i = 1, . . . ,m} and w := {wi; i = 1, . . . , n} respectively. Let the
array of numbers {aij} be the coefficients of the vectors Avj in the basis w as

Av1 = a11w1 + · · ·+ an1wn,

: (1.38)

Avm = a1mw1 + · · ·+ anmwn,

For any vectors f ∈ V and g ∈W with g = Af , their basis coefficients are related by

f = x1v1 + · · ·+ xmvm

g = y1w1 + · · ·+ ynwn
⇔ y :=



y1
:
yn


 =



a11 · · · a1m
: :

an1 · · · anm





x1

:
xm


 =: A x (1.39)

Thus we say that A :=
[
a11 ··· a1m
: :

an1 ··· anm

]
is the matrix representation of the operator A in the

bases {vj} and {wi}. Note the arrangement of the coefficients {aij} in (1.38) in comparison
to that in (1.39). As arrays, they are “transposes” of each other.

If the linear operator A is already described by a matrix representation (say with respect
to the canonical basis of Rn), then the lemma above describes how to change bases. This is
worked out explicitly in Example 1.47 below. However, we begin here with a more abstract
example where the operator A is first given in a “basis-free” manner.

Example 1.46. Recall the space R{[-1,0),0,(0,1]} of Examples 1.4 and 1.19. LetA be an operator
which acts on functions over [-1, 1] in the following manner

(Af) (x) :=





-f(x), x ∈ [-1, 0),
f(x), x = 0,
f(x) + f(−x), x ∈ (0, 1].

(1.40)

It’s easy to verify that this operator is linear. If f is piece-wise constant on [-1, 0) and (0, 1],
then so is Af , and therefore A maps the vector space R{[-1,0),0,(0,1]} to itself.

Now consider the basis v := {v1,v2,v3} shown in Figure 1.4. What is the matrix represen-
tation of the operator A of (1.40) in this basis? To answer this, we simply repeat the procedure
described earlier. In particular, we need to find the coefficients {aij} of (1.37). Note that in this
case, the two vector spaces V and W, and the two basis sets are the same respectively. The first
step is to apply the operator A as described in (1.40) to each of the basis elements as shown
here
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v2 v3

A A A

v1

Av1 Av2 Av3

The next step is to write out each Avi in terms of the basis, which will then yield the matrix
representation coefficients {aij} as follows

A v1 = − v1 + 0v2 + v3

A v2 = 0v1 + v2 + 0v3

A v3 = 0v1 + 0v2 + v3

⇒ A =



−1 0 0
0 1 0
1 0 1


 .

Note again how the array of coefficients on the left is the transpose of the array of matrix entries
on the right as per Lemma 1.45.

To take this example further, consider this same operator and g = Af , but now we choose to
represent f in the v basis and g in the w basis of Figure 1.4. What would its matrix representation
be in this case? Following the procedure of Lemma 1.45 again, we calculate (from the above
figure, and from the description of the basis w in Figure 1.4)

A v1 = 0w1 + 0w2 − w3

A v2 = 0w1 + w2 + 0w3

A v3 = 1
2w1 + 0w2 − 1

2w3

⇒ A =




0 0 1
2

0 1 0
−1 0 − 1

2


 .

Example 1.47. Recall that when we write a column vector x ∈ Rn, we are implicitly writing
it using a basis expansion in the canonical basis

x =

[ x1

...

xn

]
= x1

[
1
0
...
0

]
+ · · ·+ xn

[
0
...
0
1

]
= x1e1 + · · ·+ xnen.

Now given an n×m matrix A, it defines a linear operator A : Rm → Rn by the usual matrix-
vector product. Comparing the matrix-vector product with (1.37)



y1
:
yn


 =



a11 · · · a1m
: :

an1 · · · anm





x1

:
xm


 ⇒ Aej =



a1j
:

anj


 = a1je1 + · · · anjen.

Thus the ij’th entry aij of the matrix A is the i’th coefficient of the expansion of the vector
Aej in the canonical basis {e1, . . . , en} of Rn. In other words, when we write down a matrix,
it is the representation of a linear operator in the canonical basis.

A natural question is what are the entries of the matrix representation of A if we choose
different (other than the canonical) bases for Rm and Rn? Lemma 1.45 gives the answer in
general, and we will apply this lemma to give a compact formula using matrix notation as
follows. Let v := {v1, . . . ,vm} and w := {w1, . . . ,wn} be bases for Rm and Rn respectively.
Each element of each basis can be written as a column vector, and those column vectors
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can be “joined together” to form two matrices as follows

vj =



v1j
:

vmj


 , j = 1, ..,m, V :=

[
v1 · · · vm

]
⇒ V =



v11 · · · v1m
...

...
vm1 · · · vmm


 ,

wj =



w1j

:
wnj


 , j = 1, .., n, W :=

[
w1 · · · wn

]
⇒ W =



w11 · · · w1n

...
...

wn1 · · · wnn


 .

Note that all these vectors are written in terms of the canonical basis, but we have now
dropped notation like [vj ]e and Ve for simplicity.

Now let Â = [âij ] be the matrix representation of A in the bases v and w of Rm and Rn.

By (1.38) (Lemma 1.45), the j’th column of Â is given by the expansion coefficients

Avj = â1jw1 + · · ·+ ânjwn =

[
w1 · · · wn

][
â1j
:
ânj

]
, j = 1, ..,m. (1.41)

Combining all the vectors Avj as columns of a matrix, we arrive at the matrix equation

[

A

][
v1 · · · vm

]
1
=

[
Av1 · · · Avm

]
2
=

[
w1 · · · wn

]

â11 · · · â1m
...

...
ân1 · · · ânm


 (1.42)

⇒ A V = W Â ⇒ Â = W -1AV. (1.43)

Note that
1
= follows from the definition of the matrix-matrix product, while

2
= is simply the

m equations (1.41) expressed as a single matrix equation.
The matrix formula (1.43) is undeniably elegant and compact. It involves the original

matrix A (i.e. the representation of the linear transformation in the canonical basis), as well
as the matrices V and W which contain all the bases vectors. This is an important enough
result to summarize as a lemma.

Lemma 1.48. Let A : Rm → Rn be an n×m matrix representing (in the canonical bases)
a linear operator. Let v := {v1, . . . ,vm} and w := {w1, . . . ,wn} be vectors in Rm and Rn

which are bases sets respectively. Then the matrix representation Â of A in these bases is
given by

Â = W -1AV , V :=

[
v1 · · · vm

]
, W :=

[
w1 · · · wn

]
.

In other words


y1
:
yn


 =


 A





x1

:
xm


 and

x = x1e1 + · · ·+ xnem = x̂1v1 + · · ·+ x̂nvm

y = y1e1 + · · ·+ ynen = ŷ1w1 + · · ·+ ŷnwn

⇓


ŷ1
:
ŷn


 =


 W -1AV





x̂1

:
x̂m




We note here that the arguments in (1.41) and (1.42) are done using partitioned matrix
notation, which enables writing complicated sets of scalar equations as compact matrix
equations. Much more will be done with partitioned matrix notation in Chapter 7.
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Similarity Transformations as a Change of Basis Representations

An important special case of formula (1.43) is when the matrix is “square” A : Rn → Rn,
and the same new basis v := {v1, . . . ,vn} is used for both the domain and range. The two
bases v and w in the previous example are the same, the new matrix representation is

Â = V -1 A V, (1.44)

where the columns of V are the new basis vectors.
A change of basis can be regarded as a transformation V : Rn → Rn which takes the

canonical vectors ei to the vectors vi respectively

vi = V ei, i = 1, .., n.

The linearity property implies that this defines a transformation on all of Rn since {ei} is
a basis of Rn. On the other hand, the relation (1.44) defines a transformation on matrices

A 7−→ Â = V -1AV.

A transformation of this form is called a similarity transformation. The term “similarity” is
evocative. Both A and Â are the same linear transformation, but expressed in two different
bases. All the “basis-free” properties of a transformation (i.e. whether it is one-to-one, onto,
its rank and nullity, and as we will see later, its eigenvalues) are exactly the same for A and
Â. It is in this sense that A and Â are similar.

Similarity transformations play a major role in linear algebra. Diagonalizing a matrix,
or transforming it into Jordan normal form is done by finding a special basis (the choice
depends on the given matrix) in which Â in (1.44) has that form. Properties such as
range and null spaces and eigenvalues can then be easily “read off” the special form of Â.
Another very useful special form, namely the “Singular Value Decomposition” (SVD), is not
a similarity transformation, but rather different bases in the domain and range are used,
and that transformation is of the type (1.43).

Exercises

Exercise 1.1

Consider the proof of Lemma 1.16. Starting with the first equation in (1.12), at least one
of the coefficients a11, . . . , a1m is non-zero. Assume without loss of generality that it is a11
(otherwise reindex the set w). Then

w1 =
1

a11
(v1 + a12w2 + · · ·+ a1mwm) .

This can be substituted for w in (1.11), and the equations become

[ v2

...
vn

]
=

[ ∗ ··· ··· ∗
...

...
∗ ··· ··· ∗

] [ v1
w2

...
wm

]
.

Show that by repeating this process recursively, the form on the right in (1.12) is obtained.
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Chapter 2

Norm and Inner Product Spaces

Additional structures can be layered on top of the additive vector space structure. The most
basic is a metric which measures distances between two points. If the metric is “compatible”
with the vector space structure, i.e. translation invariant and scaling equivariant, then it
becomes a norm, which is a measure of the length of a vector. A vector space can typically
be endowed with many different norms, and the choice of the proper norm depends on the
application. The geometry of a normed space is determined by the shape of its unit ball, and
there is a one-to-one correspondence between convex sets with certain properties and norms.
Normed spaces where the norms satisfy additional properties can be endowed with an inner
product, which behaves similarly to the standard dot product in Euclidean space. Inner
products give a notion of angles between abstract vectors, and induce a rather structured
geometry which can be exploited in devising algorithms for construction and reconstruction
of vectors and functions.

This chapter is concerned primarily with the basic “geometric” aspects of vector spaces.

Introduction

On abstract sets, we can define geometrical notions such as distances, lengths and angles.
The most basic notion is that of a distance between any two points, also called a metric.
This makes a set into a so-called metric space. If in addition that set has a vector space
structure, then a translation invariant and homogenous metric defines a norm (or length)
of a vector. The distance between two points then becomes the length of the vector joining
those two points, and those distances are unchanged by parallel translations of the two
points, and also scale homogeneously as the vector is multiplied by a scalar. Vector spaces
equipped with such vector norms are called Normed Vector Spaces.

If the vector norm satisfies further properties such as the parallelogram law, then we can
define an inner product which has similar properties to the dot product in Euclidean space.
The inner product gives a notion of angles and orthogonality akin to those in Euclidean
geometry. The three types of overlaid structures are thus a metric space as the most general,
then a normed vector space as a special case, and then an inner product space as the most
special structure. The notion of distance in an inner product space is thus highly restricted,
and has to obey several properties that hold in Euclidean geometry, but may not hold in
more general geometries. This hierarchy of structures is illustrated in Figure 2.1.

Recall that in Rn, the length of a vector v is traditionally defined as follows

∥v∥2 :=
√
v21 + · · ·+ v2n. (2.1)
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Inner Product Spaces

Normed Vector Spaces
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Figure 2.1: The hierarchy of structures on abstract spaces. One of the most basic is the vector space
structure which allows for addition and scaling of elements, but has no notion of length or distances. A
metric space has a notion of distances between two points, but may or may not be itself a vector space. If it
is, and the metric is compatible with the vector space structure in the sense of being translation invariant
and homogenous, then it is called a normed vector space. In such spaces, the “norm” is the length of a
vector, and distances between points are given by the length of the vector joining them. In an inner product
space the length of a vector is given by the inner product of a vector with itself. The inner product also
characterizes angles between vectors, and therefore induces a notion of orthogonality.

This definition is motivated from the generalization of the Pythagorean theorem to more
than 2 dimensions. This measure of vector length is a special case of a norm on a vector
space, and is referred as the Euclidean norm on Rn. It is also called the “2-norm”, which
explains the subscript in the notation ∥.∥2. It is a special case of more general norms that
will be introduced shortly.

The vector length formula (2.1) above also gives a metric on Rn, where the distance
between two points is given by the length of the vector connecting the points

d(v, w) := ∥v − w∥2 =
√
(v1 − w1)2 + · · ·+ (vn − wn)2.

These familiar geometric notions in so-called Euclidean space can be abstracted and gener-
alized to function spaces.

2.1 Metric Spaces

We start from the most basic structure of a metric space, which is just a set (not necessarily
a vector space) with a notion of distance between its members.

Definition 2.1. A Metric Space is a set M and a real-valued, non-negative distance function
d(., .) : M×M −→ R with the following properties

• Symmetry: d(v, w) = d(w, v).
This is a natural requirement that the distance from v to w should be the same as the
distance from w to v.

• Definiteness: d(v, w) = 0 ⇔ v = w.
This means that the metric “separates distinct points”, so that if two points v and w are
distinct, then d(v, w) ̸= 0.

• Triangle Inequality: For any three points u, v, w we have

d(u,w) ≤ d(u, v) + d(v, w). (2.2)

This means that there are “no short cuts”, i.e. the distance from u to w cannot be
made shorter by going through an intermediate point v, since that total traveled distance
d(u, v) + d(v, w) will be at least as large as the direct travel distance d(u,w).
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Chapter 2. Norm and Inner Product Spaces 45

Figure 2.2: The 2-sphere in R3 is
{
x ∈ R3; ∥x∥2 = 1

}
⊂ R3, the set of vectors of length 1. (Left) The

2-sphere is not a vector space (i.e. not a subspace of R3) since adding two vectors on the sphere produces a
vector outside of it. (Right) It is however a metric space. The metric is given by the length of the geodesic
(a path within the 2-sphere which is of minimum length) joining two points. Think of the 2-sphere as the
surface of the earth. The geodesics are then the great circle arcs joining the two points.

The triangle inequality is illustrated in Figure 2.3. Although not stated explicitly in the
requirements above, the distance function is always positive between distinct points. This
follows from the three requirements above by observing that

d(v, w)
1
=

1

2
(d(v, w) + d(w, v))

2
≥ 1

2
d(v, v) = 0,

where
1
= follows from symmetry, and

2
≥ from the triangle inequality. Finally, combining

d(v, w) ≥ 0 with definiteness implies that d(v, w) > 0 if v ̸= w.
A metric space does not necessarily have to be a vector space. An example of such a

space is the sphere (the shell of the unit ball) shown in Figure 2.2. It is clearly not a vector
subspace of R3 since addition of vectors does not remain in the set. It is however a metric
space when the metric is defined as the length of minimum-length path joining two points
(called a geodesic). We will mostly deal with metrics on vector spaces, the most useful of
which have additional structure that renders them into normed vector spaces.

2.2 Normed Vector Spaces

We begin with the formal definition of a norm, and then show how it induces a metric.
The metric induced by a norm on a vector space has the additional important properties of
translation invariance and homogeneity as well.

Definition 2.2. A Normed Space V is a vector space with a Norm (a measure of the length
of each vector), which is a real-valued functional ∥.∥ : V −→ R with the following properties

• Definitness: For any vector v ∈ V, its norm is zero iff it is the zero vector

∥v∥ = 0 ⇔ v = 0.

• Homogeneity: If a vector v is scaled by a scalar α, then its norm is proportionally scaled

∥αv∥ = |α| ∥v∥.

• Triangle Inequality: For any three vectors u, v, w we have

∥v + w∥ ≤ ∥v∥+ ∥w∥ or equivalently ∥v − w∥ ≤ ∥v∥+ ∥w∥

Note that the equivalence of the two forms of the triangle inequality follows from simply
substituting −w for w in either of the forms, and using the homogeneity property which
implies ∥ − w∥ = ∥w∥. This is depicted in the last panel of Figure 2.3.
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Figure 2.3: The requirements on metrics and norms in abstract spaces generalize the ordinary notions
of distance and vector length in standard geometry. (Left) A metric space M is a set (not necessarily a
vector space) with a distance function d(., .) that satisfies the metric properties. Here the triangle inequality
d(u,w) ≤ d(u, v)+d(v, w) is depicted: one cannot decrease the total “travelled distance” between u and w by
going through an intermediary point v. (Middle) In a normed vector space, the norm induces a metric where
the distance between any two points u and v is the norm (aka vector length) d(u, v) := ∥u− v∥ of the vector
joining those two points. This metric is translation invariant d(u+ a, v + a) = ∥u+ a− (v + a)∥ = d(u, v).
(Right) Two equivalent forms of the triangle inequality ∥v −w∥ ≤ ∥v∥+ ∥w∥ and ∥v +w∥ ≤ ∥v∥+ ∥w∥ are
depicted.

Given a norm, we can think about proposing a metric where the distance between two
points is the length of the vector that joins them

d(x, y) := ∥x− y∥. (2.3)

This satisfies all the properties of a metric as shown by

d(x, y) = ∥x− y∥ = ∥y − x∥ = d(y, x), (Symmetry follows from ∥v∥ = ∥-v∥)
0 = d(x, y) = ∥x− y∥ ⇔ x− y = 0 ⇔ x = y,

(Definiteness follows from definiteness of ∥.∥)
d(u,w) = ∥u− w∥ = ∥(u− v) + (v − w)∥ ≤ ∥u− v∥+ ∥v − w∥ = d(u, v) + d(v, w)

(Triangle inequality)

The metric defined from a norm by (2.3) has some additional properties that not all
metrics have. These properties can be understood as “compatibility properties” between
the metric and the vector space structure. The first property is that the distance between
two points remains the same if we translate those two points equally in a parallel manner

d(v + a,w + a) = ∥(v + a)− (w + a)∥ = ∥v − w∥ = d(v, w), (2.4)

i.e. the metric is translation invariant. This property is depicted in Figure 2.3.
Another property comes from the fact that any point in a vector space can be scaled

towards or away from the origin by multiplying it by a scalar. The distance between two
points should scale in the same manner if we scale both points equally, i.e.

d(αv, αw) = ∥αv − αw∥ = ∥α (v − w)∥ = |α| ∥v − w∥ = |α| d(v, w).

Note that this property and translation invariance (2.4) only make sense in a vector space.
On a general metric space, the operations of addition v+a and scaling αv are not necessarily
defined.

We have so far seen that a metric induced by norm satisfies the two properties above.
The converse is also true, if a metric posses those two properties, then it is a metric that is
induced by a norm.

Theorem 2.3. Let d be a metric on a vector space V with the following additional properties

• Translation Invariance: For any two vectors v and w, and any translation a ∈ V

d(v, w) = d(v + a,w + a). (2.5)
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• Homogeneity: (or scale proportionality) For vectors v and w and any scalar α

d(αv, αw) = |α| d(v, w)

Then the metric d makes V into a normed vector space with the norm

∥v∥ := d(0, v). (2.6)

Another way to state this theorem is to say that a metric is induced by a norm iff the metric
is homogenous and translation invariant.

Proof. Its immediate to show that the norm thus defined is definite and homogenous

0 = ∥v∥ = d(0, v) ⇒ v = 0, (by definiteness of d)

d(0, αv) = |α| d(0, v) ⇒ ∥αv∥ = |α| ∥v∥.

In addition, the definition (2.6) together with translation invariance (2.5) imply that the
distance between two points is the length of the vector joining them. This is because we
can translate one point to the origin, and then measure the distance from zero to the other
point by (2.6), which will be the norm of the difference

d(u,w) = d(u− u,w − u) = d(0, w − u) = ∥w − u∥.

The triangle inequality also follows from this

∥u− w∥ = d(u,w) ≤ d(u, v) + d(v, w) = ∥u− v∥+ ∥v − w∥.

Therefore, the definition (2.6) satisfies all the properties of a norm.

It is rare that one would use a metric on a vector space that does not have the natural
translation invariance and homogeneity properties. We therefore always work with normed
vector spaces whenever a metric is needed.

An important property of the norm functional ∥.∥ : V → R is that it is a convex func-
tional1. This can be easily verified as follows. Given α ∈ [0, 1]

∥α v1 + (1− α) v2∥ ≤ α ∥v1∥ + (1− α) ∥v2∥,

which follows from the triangle inequality and homogeneity of the norm. A particular sub-
level set of the norm functional is the unit ball, namely the set of all vectors with norm less
than one

B := {v ∈ Rn; ∥v∥ ≤ 1} .

The geometry of the unit ball of a normed vector space encodes many of the properties of a
particular norm. Aside from being a convex set, it has other properties as well. In fact, any
convex set that has certain other properties as outlined in Appendix 2.B induces a norm.
The next few examples serve to illustrate some of those geometrical properties.

1The reader not familiar with the basics of convexity should now consult Appendix 2.A.
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Figure 2.4: (Left) The boundaries of the unit balls of the ∥.∥p norms for various values of 1 ≤ p ≤ ∞.
These curves represent points that are equidistant from the origin with ∥.∥p as the distance measure. Note
how the p = 2 norm is the only rotationally symmetric one (the unit ball is a perfect sphere), and how the
p = 10 case is very close to the p = ∞ case. The boundary curves are smooth (infinitely differentiable) for
the cases 1 < p < ∞, but have corners for the cases p = 1,∞. (Right) The boundaries of the sets ∥v∥p ≤ 1
for p < 1. These are clearly not convex sets, implying that for p < 1, ∥.∥p does not satisfy the triangle
inequality, and is therefore not a norm.

2.2.1 Finite Dimensional Examples

We started this section with the Euclidean norm (2.1) in Rn. There are many other possible
norms on Rn as well. The most common are the so-called p-norms

∥v∥p :=
(
|v1|p + · · ·+ |vn|p

)1/p
, 1 ≤ p <∞. (2.7)

Note that p = 2 is the special case of the Euclidean norm. The ∥.∥∞ norm is defined a little
differently using

∥v∥∞ := max {|v1|, . . . , |vn|} . (2.8)

It is possible to show that limp→∞ ∥v∥p = ∥v∥∞, which explains the notation for ∥.∥∞.
The unit balls of several representative p-norms are shown in Figure 2.4. The reader

should note that the unit balls for p ∈ [1,∞] appear to be convex sets. Figure 2.4 also shows
unit balls of the quantity ∥.∥p for p < 1. It is important to note that in these latter cases,
∥.∥p is not actually a norm since the unit balls of ∥.∥p for p < 1 are clearly not convex. As
already stated, this implies that the quantity ∥.∥p does not satisfy the triangle inequality
for p < 1.

Figure 2.4 also shows how limp→∞ ∥v∥p = ∥v∥∞. Note how the unit ball for p = 10 is
already almost identical to the unit ball for p =∞. For 1 < p <∞, the curves are smooth
(infinitely differentiable) implying that the norm function ∥.∥p is smooth for these cases.
For the extreme cases of p = 1,∞, while the norm function is continuous, it is however not
differentiable. This property plays an important role in some optimization problems.

The unit balls of norms serve as a nice geometrical illustration of the comparative prop-
erties of norms. Let’s see what it means for one unit ball to be contained in another. Let
∥.∥a and ∥.∥b be two norms and Ba and Bb their respective unit balls, and note that

∥v∥a ≤ ∥v∥b ⇒ (∥v∥b ≤ 1 ⇒ ∥v∥a ≤ 1) ⇒ (v ∈ Bb ⇒ v ∈ Ba) ⇒ Bb ⊆ Ba.

Conversely

Bb ⊆ Ba ⇒ (∥v∥b = 1 ⇒ ∥v∥a ≤ 1) ⇒ ∥v∥a ≤ ∥v∥b. (2.9)

Note how the smaller the norm is, the bigger is its unit ball (to achieve unit norm, the vector
has to be longer). Thus we see that unit ball containment implies a bound on norms, but
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in the opposite order

Bb ⊆ Ba ⇔ ∥v∥a ≤ ∥v∥b. (2.10)

Examining Figure 2.4 we observe the following containment of the p-norms for p ∈ [1,∞]

B1 ⊆ · · · ⊆ B2 ⊆ · · · B∞,

which implies the following inequalities (in reverse order of containment) between the norms

∥v∥∞ ≤ · · · ∥v∥2 ≤ · · · ∥v∥1.
These, and other inequalities are discussed in further detail in Appendix 2.C.

It remains to show that the p-norms (2.7),(2.8) satisfy the properties of a norm as stated
in Definition 2.2. Definiteness and homogeneity are easy to verify and the reader should do
so as an exercise. Verifying that they satisfy the triangle inequality requires a little more
work. We first do the simplest cases of the 1 and ∞ norms

∥v + w∥1 =

n∑

i=1

|vi + wi| ≤
n∑

i=1

|vi|+ |wi| =

n∑

i=1

|vi|+
n∑

i=1

|wi| = ∥v∥1 + ∥w∥1

∥v + w∥∞ = max
1≤i≤n

|vi + wi| ≤ max
1≤i≤n

(
|vi|+ |wi|

)
≤ max

1≤i≤n
|vi|+ max

1≤i≤n
|wi|

= ∥v∥∞ + ∥w∥∞.

The triangle inequality for the other p-norms is the statement of the Minkowski inequality
which simply states

∥v + w∥p ≤ ∥v∥p + ∥w∥p
for p ∈ [1,∞]. We will revisit this inequality and other related inequalities such as the
Hölder and Cauchy-Schwartz inequalities in Chapter 4. They are best understood using
the concept of duality of normed vector spaces which also provides intuitive geometrical
interpretations.

We close by giving a geometrical argument for the Minkowski inequality. We will show
that the set {v ∈ Rn; ∥v∥p ≤ 1} for p ∈ [1,∞) is convex. By Theorem 2.9 it would then
follow that ∥.∥p is a norm, and in particular, it satisfies the triangle inequality. First observe
that the function |x|p (for a scalar x) is convex for p ∈ [1,∞), while it is not for p < 1. Now
given two vectors ∥v∥p ≤ 1 and ∥w∥p ≤ 1, we take a convex combination

∥αv + (1− α)w∥pp =

n∑

i=1

|αvi + (1− α)wi|p ≤
n∑

i=1

α |vi|p + (1− α) |wi|p

= α∥v∥pp + (1− α)∥w∥pp ≤ 1,

and note how we used the convexity of the scalar function |x|p in the inequality above.
This argument shows why the set {v ∈ Rn; ∥v∥p ≤ 1} =

{
v ∈ Rn; ∥v∥pp ≤ 1

}
is convex for

p ∈ [0,∞), while it is not for p < 1.

2.2.2 Function Space Examples

The typical function space examples are those of functions on some set Ω which is a subset
of Rn or Cn. These functions will typically (but not always) take values of real or complex
numbers (we call these scalar-valued functions), or take values as n-vectors (real or complex,
we call these vector-valued functions), or more generally take values in some vector space
V. We will also view sequence spaces as function spaces since finite or infinite sequences are
functions on some subset of Z, and more generally on some subset of Zd.

The counter part of the p-norms in function space are the function space Lp and the
sequence spaces ℓp. The sequence spaces are easier to deal with, so we start with them.
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The ℓp Spaces

The ℓp spaces contain functions defined on a discrete set, typically a subset of the integers
Z or the integer lattice Zd. For example

ℓp(Z) :=

{
v : Z→ R; ∥v∥pp :=

∑

i∈Z
|vi|p < ∞

}
, p ∈ [1,∞)

:=

{
v : Z→ R; ∥v∥∞ := sup

i∈Z
|vi| < ∞

}
, p =∞,

which should be thought of as the space of all double-sided sequences of finite p-norm. We
will use the notation ℓp(Ω) where Ω ⊆ Z (or Ω ⊆ Zd) to specify the domain of the sequence
index, e.g.

ℓp(N) :=

{
v : N→ R; ∥v∥pp :=

∞∑

i=0

|vi|p < ∞
}
,

to denote a space of one-sided sequences with finite p-norm.
Recall Figure 1.1 and observe that we can identify Rn with the p-norm on the one hand

with the function space

ℓp(n) = ℓp
(
{1, . . . , N}

)
=

{
v : n→ R; ∥v∥pp :=

n∑

i=1

|vi|p
}

= Rn (with the p-norm)

on the other. Note that the norm is always finite in this case, and there is no need to
include the finiteness clause in the set definition. The sequence spaces ℓp are the closest
to the finite dimensional Rn with p-norms. An element of ℓp(N) can be thought of as a
one-sided sequence

v = (v0, v1, v2, . . .)

or a semi-infinite vector with components {vi}. All of the arguments that we went through
to verify that the ∥.∥p norms in Rn are actually norms (i.e. definiteness, homogeneity and
the triangle inequality) apply without change to the case of ℓp(Ω) for any Ω ⊆ Zd.

We will also have occasion to work with spaces of vector-valued sequences. The vector-
valued ℓp spaces are defined similarly to the above. For any subset Ω ⊆ Zd

ℓpn(Ω) :=



v : Ω→ Rn; ∥v∥pp :=

∑

i∈Ω⊆Zd

∥vi∥pp < ∞



 . (2.11)

The notation should be parsed carefully. There four integers, p, n, d and i which all play
different roles. d is the dimension of underlying domain in Zd (take it to be 1 for the sake of
this explanation). At each i ∈ Ω ⊆ Zd, vi is an n-vector in Rn. ∥vi∥p is the p-norm of that
vector (if the signal were scalar-valued, i.e. n = 1, then we would simply have the absolute
value |vi|p in the expression above). The p-norm of the entire function v is then computed
by summing all p-powers of the p-norm ∥vi∥p of those n-vectors at all points i ∈ Ω in the
domain of the function.

We can extend the definition (2.11) a little further by generalizing from n-vector-valued
sequences to sequences that take values in any normed vector space V. The definition is

ℓpV(Ω) :=



v : Ω→ V; ∥v∥pp :=

∑

i∈Ω⊆Zd

∥vi∥pV < ∞



 . (2.12)
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Note that ∥vi∥V is the norm of the i’th element of the sequence in the normed space V.
The reader should compare this with (2.11), where ∥vi∥p is the norm of the i’th sequence
element (which is itself an n-vector) in Rn equipped with the p-norm.

We will often simplify the notation by writing ℓp instead of ℓpV(Ω) or ℓpn(Ω) when the
choice of domain and range spaces are clear from context. It turns out that this detail is
immaterial to many of the algebraic relations and manipulations we use.

The Lp Spaces

Now we define the so-called Lebesgue spaces of functions of a continuous variable. Let
Ω ⊂ Rd be any subset. We define Lpn(Ω) as the space of all functions f : Ω→ Rn that have
finite p-norm-power integrals2

Lpn(Ω) :=

{
v : Ω→ Rn; ∥v∥pp :=

∫

Ω

∥v(x)∥pp dx < ∞
}
, p ∈ [1,∞),

:=

{
v : Ω→ Rn; ∥v∥∞ := sup

x∈Ω
∥v(x)∥∞ < ∞

}
, p =∞.

It is instructive to compare this definition with (2.11). At each x ∈ Ω, we take the p-norm
of the n-vector v(x), raise it to the p power, and then integrate (rather than sum) over the
entire domain.

It can be shown that the norm ∥v∥p defined here satisfies all the requirements of a norm,
and thus this space is indeed a normed vector space closed under additions and scalings.
The arguments are very similar to the ℓp case. In particular, the Minkowski inequalities for
Lp(Ω) follow by a similar argument as follows

∥αv + (1− α)w∥pp =

∫

Ω

∣∣∣αv(x) + (1− α)w(x)
∣∣∣
p

dx ≤
∫

Ω

(
α |v(x)|p + (1− α) |w(x)|p

)
dx

= α∥v∥pp + (1− α)∥w∥pp,

where the inequality follows from the convexity of the function |.|p for p ∈ [1,∞). This
shows that the sets {∥v∥p ≤ 1} =

{
∥v∥pp ≤ 1

}
are convex, and therefore it follows from

Theorem 2.9 (Appendix 2.B) that the Lp norms satisfy the triangle inequality.
The most commonly used Lp spaces are L1, L2 and L∞. These different norms tend

to weight different signal behaviors differently. An example is shown in Figure 2.5 which
highlights one contrast between the L1, L2 and L20 norms (the latter is used as a sort of
“approximation” to the L∞ norm). The L2 norm tends to emphasize the contribution of the
peaks of signals more than the L1 norm, and similarly the L20 norm tends to emphasize the
peaks more than the L2 norm. The extreme case of this situation is the limit lim

p→∞
∥v∥p =

∥v∥∞, which means that for large p, essentially only the peak of the signal values contributes
to the norm. For comparison purposes, the signal in Figure 2.5 has been normalized so that
its peak value is 1. This is without loss of generality since ∥γv∥p = |γ|∥v∥p, and therefore
for comparison across different values of p, the factor γ is the same.

For both the ℓp and Lp sets of spaces, the case p = 2 is special. These are sets of square
integrable signals, and it turns out that in addition to forming normed vector spaces, their
norms have a very special property in that they come from an inner product. Such spaces
have a much richer geometry which we examine next.

2For the case of p = ∞, the definition should be done with the “essential supremum” ess sup instead
of the supremum sup, as the values of the function on sets of measure zero do not contribute to the norm.
This technicality is not worth spending time on. For the classes of functions we deal with, sup and ess sup
are the same.
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v2(t) v(t)

|v(t)|

t

v20(t)

1

Figure 2.5: A graph of a signal v is shown as the solid gray curve. For comparison, its peak value has
been normalized to 1. The other curves show its absolute value |v(t)| (dashed blue), its square v2(t) (red),
and v20(t) (green). The L1, L2 and L20 norms of v are given by the areas under the respective curves, and
then taking the 1, 1/2 and 1/20 power of those quantities respectively. Notice how the values of the signal
near its peaks contribute more to the L20 relative to the L2 norm, as well as more to the L2 relative to the
L1 norm of the signal. Thus as p → ∞, the Lp norm tends to be dominated by the portions of the signal
near where its peak value is achieved.

2.3 Inner Product Spaces

For any vector v ∈ Rn let v∗ denote its transpose. For a complex number α ∈ C, let α∗

denote its complex conjugate, and for a vector v ∈ Cn, let v∗ denote is complex conjugate
transpose. The well-known “dot product” of vectors is

⟨v , w⟩ := v∗w =
[
v∗1 · · · v∗n

]


w1

...
wn


 =

n∑

k=1

v∗kwk. (2.13)

Note that with this notational choice, the expressions are the same whether we are working
with Rn or Cn. The dot product is a special case of what is more generally referred to as an
“inner product”. The following definition turns out to capture all the important properties
of the standard dot product that can be generalized to more abstract spaces.

Definition 2.4. An inner product on a vector space V is a symmetric, positive definite,
function ⟨. , .⟩ : V × V → R (or ⟨. , .⟩ : V × V → C if the underlying field of scalars is C)
which is bilinear, i.e.
• Symmetry: For any two vectors v, w ∈ V

⟨v,w⟩ = ⟨w , v⟩∗ .

• Positive Definiteness: For all vectors v, ⟨v , 0⟩ = 0, and for all non-zero vectors

⟨v , v⟩ ∈ R, ⟨v , v⟩ > 0.

• Bilinearity: For any vectors v, w, v1, v2, w1, w2 ∈ V and any scalars α ∈ R (or C)

⟨v , w1 + w2⟩ = ⟨v , w1⟩+ ⟨v , w2⟩ ⟨v , αw⟩ = α ⟨v , w⟩
⟨v1 + v2 , w⟩ = ⟨v1 , w⟩+ ⟨v2 , w⟩ ⟨αv , w⟩ = α∗ ⟨v , w⟩ (2.14)

The dot product on Rn clearly satisfies all these properties of an inner product, which is
why it is traditionally referred to as the “Euclidean inner product” on Rn. There are other
possible inner products on Rn as we will see later in this section.

If the vector space is over the complex scalars, then the inner product can have complex
values. Some references refer to the symmetry property ⟨u , v⟩ = ⟨v , u⟩∗ as conjugate
symmetry, and call an operation that satisfies ⟨u , αv⟩ = α ⟨u , v⟩ and ⟨αu , v⟩ = α∗ ⟨u , v⟩
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<latexit sha1_base64="sJax/5vPsabOXMNTQ2mZCpQS4/8=">AAACIHicbVDLSgNBEOz1mcS3Hr0sBsGLYdeL4kXBi8cEjAomyOykY4bMzC4zveqy7Bd41R/QH/HoTTyJfo2TxyVqwTRFdTXTXVEihaUg+PKmpmdm5+ZL5crC4tLyyura+rmNU8OxyWMZm8uIWZRCY5MESbxMDDIVSbyI+ieD/sUtGitifUZZgm3FbrToCs7ISY3b69VqUAuG8P+ScEyqR68vn+BQv17zyq1OzFOFmrhk1l6FQULtnBkSXGJRaaUWE8b77Abz4X6Fv+2kjt+NjXua/KE64WPK2kxFzqkY9ezv3kD8r3eVUvegnQudpISajz7qptKn2B8c63eEQU4yc4RxI9yGPu8xwzi5SCqVlsY7HivFdCdvWWsLV50toXGlbHjQhEs5E+E95btF4cILf0f1l5zv1cKgFjaC6vEhjFCCTdiCHQhhH47hFOrQBA4ID/AIT96z9+a9ex8j65Q3ntmACXjfPwYipos=</latexit><latexit sha1_base64="Ye1tSR557JFU2I5M8DdluBuqFvU=">AAACIHicbVBNSwMxEM362a5fVY9eFovgxbLrRRFEwYvHFqwKtkg2nbahSXZJZqtl2V/gVf+A+kM8ehNPor/GdNtLqw8yPN68ITMvjAU36Pvfzszs3PzCYqHoLi2vrK6V1jcuTZRoBnUWiUhfh9SA4ArqyFHAdayBylDAVdg7G/av+qANj9QFDmJoStpRvM0ZRSvV+relsl/xc3h/STAm5ZO3ly/3OH6t3q47xUYrYokEhUxQY24CP8ZmSjVyJiBzG4mBmLIe7UCa75d5O1Zqee1I26fQy9UJH5XGDGRonZJi10z3huJ/vZsE24fNlKs4QVBs9FE7ER5G3vBYr8U1MBQDSyjT3G7osS7VlKGNxHUbCu5YJCVVrbRhjMlstbYYxxUH+UETLmlNCPeY7mWZDS+YjuovudyvBH4lqPnl0yMyQoFskW2ySwJyQE7JOamSOmEEyAN5JE/Os/PufDifI+uMM57ZJBNwfn4BIWen5g==</latexit><latexit sha1_base64="Ye1tSR557JFU2I5M8DdluBuqFvU=">AAACIHicbVBNSwMxEM362a5fVY9eFovgxbLrRRFEwYvHFqwKtkg2nbahSXZJZqtl2V/gVf+A+kM8ehNPor/GdNtLqw8yPN68ITMvjAU36Pvfzszs3PzCYqHoLi2vrK6V1jcuTZRoBnUWiUhfh9SA4ArqyFHAdayBylDAVdg7G/av+qANj9QFDmJoStpRvM0ZRSvV+relsl/xc3h/STAm5ZO3ly/3OH6t3q47xUYrYokEhUxQY24CP8ZmSjVyJiBzG4mBmLIe7UCa75d5O1Zqee1I26fQy9UJH5XGDGRonZJi10z3huJ/vZsE24fNlKs4QVBs9FE7ER5G3vBYr8U1MBQDSyjT3G7osS7VlKGNxHUbCu5YJCVVrbRhjMlstbYYxxUH+UETLmlNCPeY7mWZDS+YjuovudyvBH4lqPnl0yMyQoFskW2ySwJyQE7JOamSOmEEyAN5JE/Os/PufDifI+uMM57ZJBNwfn4BIWen5g==</latexit><latexit sha1_base64="e95MjGdyRgjOK47HH18TmH+SjH8=">AAACIHicbVDLTgJBEJz1CfgCPXrZSEy8SHa9aDyRePEIiTwSIGR2aGDCzOxmphclm/0Cr/oDfo0341G/xgH2AljJdCrV1ZnuCiLBDXrej7O1vbO7t5/LFw4Oj45PiqXTpgljzaDBQhHqdkANCK6ggRwFtCMNVAYCWsHkYd5vTUEbHqonnEXQk3Sk+JAzilaqT/vFslfxFnA3iZ+RMslQ65ecfHcQsliCQiaoMR3fi7CXUI2cCUgL3dhARNmEjiBZ7Je6l1YauMNQ26fQXagrPiqNmcnAOiXFsVnvzcX/ep0Yh3e9hKsoRlBs+dEwFi6G7vxYd8A1MBQzSyjT3G7osjHVlKGNpFDoKnhmoZRUDZKuMSa11doizCrOFgetuKQ1Ibxgcp2mNjx/PapN0ryp+F7Fr3vl6n0WY46ckwtyRXxyS6rkkdRIgzAC5JW8kXfnw/l0vpzvpXXLyWbOyAqc3z8jfaQS</latexit>

u+v
<latexit sha1_base64="0jiUOBpiYsQ+uB2hx7DXUBoOdBk=">AAACKXicbVBNS8NAEJ3Urxo/q0cvwSIIYkm8KJ4ELx4VrIpNqZvttl26uwm7k2oJ+Q1evOof8Nd4U6/+EbdpL60+2OHx5g0786JEcIO+/+WU5uYXFpfKy+7K6tr6xmZl68bEqaasTmMR67uIGCa4YnXkKNhdohmRkWC3Uf981L8dMG14rK5xmLCmJF3FO5wStNJ9GiJ7wuwgH7Q2q37NL+D9JcGEVM9KrecHALhsVZzlsB3TVDKFVBBjGoGfYDMjGjkVLHfD1LCE0D7psqxYNPf2rNT2OrG2T6FXqFM+Io0Zysg6JcGeme2NxP96jRQ7J82MqyRFpuj4o04qPIy90dVem2tGUQwtIVRzu6FHe0QTijYb1w0Ve6SxlES1s9AYk9tqbQlOKg6Lg6Zc0pqK8A7z3IYXzEb1l9wc1QK/FlzZFE9hjDLswC7sQwDHcAYXcAl1oKDgBV7hzXl3PpxP53tsLTmTmW2YgvPzC215qbU=</latexit><latexit sha1_base64="AuzsEirnAM/DYtLZVXgSzRF0+7o=">AAACKXicbVDLTgIxFO3gC/AFunQzkZiYGMmMGw0rEhe6xEQekSGkUwo0tp1JewedTOYb3LjVH/Br3Klbf8QysAE8SW9Ozj03vff4IWcaHOfbyq2tb2xu5QvF7Z3dvf1S+aClg0gR2iQBD1THx5pyJmkTGHDaCRXFwue07T9eT/vtCVWaBfIe4pD2BB5JNmQEg5EeIg/oMyRn6aRfqjhVJ4O9Stw5qdRz/Zcbp15r9MtWwRsEJBJUAuFY667rhNBLsAJGOE2LXqRpiMkjHtEkWzS1T4w0sIeBMk+CnakLPiy0joVvnALDWC/3puJ/vW4Ew6tewmQYAZVk9tEw4jYE9vRqe8AUJcBjQzBRzGxokzFWmIDJplj0JH0igRBYDhJPa52aamwhzCvE2UELLmFMWXjnaWrCc5ejWiWti6rrVN07k2INzZBHR+gYnSIXXaI6ukUN1EQESfSK3tC79WF9Wl/Wz8yas+Yzh2gB1u8fTrqqRg==</latexit><latexit sha1_base64="AuzsEirnAM/DYtLZVXgSzRF0+7o=">AAACKXicbVDLTgIxFO3gC/AFunQzkZiYGMmMGw0rEhe6xEQekSGkUwo0tp1JewedTOYb3LjVH/Br3Klbf8QysAE8SW9Ozj03vff4IWcaHOfbyq2tb2xu5QvF7Z3dvf1S+aClg0gR2iQBD1THx5pyJmkTGHDaCRXFwue07T9eT/vtCVWaBfIe4pD2BB5JNmQEg5EeIg/oMyRn6aRfqjhVJ4O9Stw5qdRz/Zcbp15r9MtWwRsEJBJUAuFY667rhNBLsAJGOE2LXqRpiMkjHtEkWzS1T4w0sIeBMk+CnakLPiy0joVvnALDWC/3puJ/vW4Ew6tewmQYAZVk9tEw4jYE9vRqe8AUJcBjQzBRzGxokzFWmIDJplj0JH0igRBYDhJPa52aamwhzCvE2UELLmFMWXjnaWrCc5ejWiWti6rrVN07k2INzZBHR+gYnSIXXaI6ukUN1EQESfSK3tC79WF9Wl/Wz8yas+Yzh2gB1u8fTrqqRg==</latexit><latexit sha1_base64="JxDYRAV+lOMSQ8Y64m6x9E5UAYs=">AAACKXicbVDLTsJAFJ3iC/AFunTTSExMjKR1o3FF4sYlJvKIlJDpMMCEmWkzc4s2Tf/Crf6AX+NO3fojDqUbwJPMzcm552buPX7ImQbH+bYKG5tb2zvFUnl3b//gsFI9ausgUoS2SMAD1fWxppxJ2gIGnHZDRbHwOe3407t5vzOjSrNAPkIc0r7AY8lGjGAw0lPkAX2B5CKdDSo1p+5ksNeJm5MaytEcVK2SNwxIJKgEwrHWPdcJoZ9gBYxwmpa9SNMQkyke0yRbNLXPjDS0R4EyT4KdqUs+LLSOhW+cAsNEr/bm4n+9XgSjm37CZBgBlWTx0SjiNgT2/Gp7yBQlwGNDMFHMbGiTCVaYgMmmXPYkfSaBEFgOE09rnZpqbCHkFeLsoCWXMKYsvMs0NeG5q1Gtk/ZV3XXq7oNTa9zmMRbRCTpF58hF16iB7lETtRBBEr2iN/RufVif1pf1s7AWrHzmGC3B+v0D+fmoJQ==</latexit>

u-v<latexit sha1_base64="Rfpvd+djo0yXXOli5OMv6xurUr4=">AAACKXicbVC7TgMxENwLryS8EihpTkRINER3NCAqJBrKIJGHyEXB5ziJhe072XtAdLpvoKGFH+Br6ICWH8F5NEkYyavR7Ky8O2EsuEHP+3ZyK6tr6xv5QnFza3tnt1Tea5go0ZTVaSQi3QqJYYIrVkeOgrVizYgMBWuGD1fjfvORacMjdYujmHUkGSje55Sgle6SANkzpifZY7dU8areBO4y8WekcpnrvtwDQK1bdgpBL6KJZAqpIMa0fS/GTko0cipYVgwSw2JCH8iApZNFM/fISj23H2n7FLoTdc5HpDEjGVqnJDg0i72x+F+vnWD/vJNyFSfIFJ1+1E+Ei5E7vtrtcc0oipElhGpuN3TpkGhC0WZTLAaKPdFISqJ6aWCMyWy1thhnFUeTg+Zc0ppm4WU2PH8xqmXSOK36XtW/sSlewBR5OIBDOAYfzuASrqEGdaCg4BXe4N35cD6dL+dnas05s5l9mIPz+wdw9am3</latexit><latexit sha1_base64="0rOhXaVIOdvLxLe5Ok7eJFMx+tk=">AAACKXicbVC7TsMwFHXKqy2vFkaWiAqJhSphAXWqxABjkehDNFXlOE5r1XYi+6ZQRfkGFlb4Ab6GDVj5EdzH0pYj+ero3HPle48fc6bBcb6t3Mbm1vZOvlDc3ds/OCyVj1o6ShShTRLxSHV8rClnkjaBAaedWFEsfE7b/uhm2m+PqdIskg8wiWlP4IFkISMYjPSYeECfIb3Ixv1Sxak6M9jrxF2QSj3Xf7l16rVGv2wVvCAiiaASCMdad10nhl6KFTDCaVb0Ek1jTEZ4QNPZopl9ZqTADiNlngR7pi75sNB6InzjFBiGerU3Ff/rdRMIr3spk3ECVJL5R2HCbYjs6dV2wBQlwCeGYKKY2dAmQ6wwAZNNsehJ+kQiIbAMUk9rnZlqbDEsKkxmBy25hDEtwstMeO5qVOukdVl1nap7b1KsoTny6ASdonPkoitUR3eogZqIIIle0Rt6tz6sT+vL+plbc9Zi5hgtwfr9A1I2qkg=</latexit><latexit sha1_base64="0rOhXaVIOdvLxLe5Ok7eJFMx+tk=">AAACKXicbVC7TsMwFHXKqy2vFkaWiAqJhSphAXWqxABjkehDNFXlOE5r1XYi+6ZQRfkGFlb4Ab6GDVj5EdzH0pYj+ero3HPle48fc6bBcb6t3Mbm1vZOvlDc3ds/OCyVj1o6ShShTRLxSHV8rClnkjaBAaedWFEsfE7b/uhm2m+PqdIskg8wiWlP4IFkISMYjPSYeECfIb3Ixv1Sxak6M9jrxF2QSj3Xf7l16rVGv2wVvCAiiaASCMdad10nhl6KFTDCaVb0Ek1jTEZ4QNPZopl9ZqTADiNlngR7pi75sNB6InzjFBiGerU3Ff/rdRMIr3spk3ECVJL5R2HCbYjs6dV2wBQlwCeGYKKY2dAmQ6wwAZNNsehJ+kQiIbAMUk9rnZlqbDEsKkxmBy25hDEtwstMeO5qVOukdVl1nap7b1KsoTny6ASdonPkoitUR3eogZqIIIle0Rt6tz6sT+vL+plbc9Zi5hgtwfr9A1I2qkg=</latexit><latexit sha1_base64="qmI/0W8isg2gF0vxV+U2LtpQHjU=">AAACKXicbVDLTsMwEHR4tuXVwpFLRIXEhSrhAuJUiQvHItGHaKrKcdzWqu1E9qYQRfkLrvADfA034MqP4Ka5tGUkr0azs/Lu+BFnGhzn29rY3Nre2S2VK3v7B4dH1dpxR4exIrRNQh6qno815UzSNjDgtBcpioXPadef3s373RlVmoXyEZKIDgQeSzZiBIORnmIP6Aukl9lsWK07DSeHvU7cgtRRgdawZpW9ICSxoBIIx1r3XSeCQYoVMMJpVvFiTSNMpnhM03zRzD43UmCPQmWeBDtXl3xYaJ0I3zgFhole7c3F/3r9GEY3g5TJKAYqyeKjUcxtCO351XbAFCXAE0MwUcxsaJMJVpiAyaZS8SR9JqEQWAapp7XOTDW2CIoKSX7QkksYUxFeZsJzV6NaJ52rhus03Aen3rwtYiyhU3SGLpCLrlET3aMWaiOCJHpFb+jd+rA+rS/rZ2HdsIqZE7QE6/cP/XWoJw==</latexit>

u
<latexit sha1_base64="60Dj5bUvmd3KvoinaGzZon9dtqY="></latexit><latexit sha1_base64="lTAIW30w49nPCNqtWn6SHJAbeDg="></latexit><latexit sha1_base64="lTAIW30w49nPCNqtWn6SHJAbeDg="></latexit><latexit sha1_base64="psgQkSVZgroFaNKWVwtEWtKFNXM=">AAACIHicdVDLSgMxFM3UV61vXboJFsGNZaaUVl0V3LhUsCq0pWTS2zY0yQzJHbUM8wVu9Qf8GnfiUr/G9OGiogdyOZx7Lrn3hLEUFn3/08stLC4tr+RXC2vrG5tb2zu7NzZKDIcGj2Rk7kJmQQoNDRQo4S42wFQo4TYcno/7t/dgrIj0NY5iaCvW16InOEMnXSWd7aJfqpQr1VqFTkm1/ENOaVDyJyiSGS47O95qqxvxRIFGLpm1zcCPsZ0yg4JLyAqtxELM+JD1IZ3sl9FDJ3VpLzLuaaQTdc7HlLUjFTqnYjiwv3tj8a9eM8HeSTsVOk4QNJ9+1EskxYiOj6VdYYCjHDnCuBFuQ8oHzDCOLpJCoaXhgUdKMd1NW9bazFVni3FWcTQ5aM6lnAnhEdPjLHPh/SRE/yc35VLgl4Irv1g/m8WYJ/vkgByRgNRInVyQS9IgnAB5Is/kxXv13rx372NqzXmzmT0yB+/rG6ocpGM=</latexit>

v
<latexit sha1_base64="JVBCuLuVP1MWzEWq+Zxfcep4WcE="></latexit><latexit sha1_base64="BeCS3laxEKe84+A5B12gA7oxE1k="></latexit><latexit sha1_base64="BeCS3laxEKe84+A5B12gA7oxE1k="></latexit><latexit sha1_base64="o/UtrRhW3tOLuF2qDZh5GpIzGkk=">AAACIHicdVBNSwMxEM36bf2sHr0Ei+DFsltKq54KXjwqWBVskWw61WCSXZJZdVn2F3jVP+Cv8SYe9deYbtdDRR9keLx5Q2ZeGEth0fc/vanpmdm5+YXFytLyyuraenXj3EaJ4dDlkYzMZcgsSKGhiwIlXMYGmAolXIR3R6P+xT0YKyJ9hmkMfcVutBgKztBJp/fX6zW/3mw0W+0mHZNW44cc0KDuF6iREifXVW+xN4h4okAjl8zaq8CPsZ8xg4JLyCu9xELM+B27gazYL6c7ThrQYWTc00gLdcLHlLWpCp1TMby1v3sj8a/eVYLD/X4mdJwgaD7+aJhIihEdHUsHwgBHmTrCuBFuQ8pvmWEcXSSVSk/DA4+UYnqQ9ay1uavOFmNZMS0OmnApZ0J4xGwvz114PwnR/8l5ox749eDUr3UOyxgXyBbZJrskIG3SIcfkhHQJJ0CeyDN58V69N+/d+xhbp7xyZpNMwPv6BqvYpGQ=</latexit>

(a) The bilinearity property (2.14)
of the inner product gives a version
of Pythagoras’ theorem. Orthogo-
nality ⟨u , v⟩ = 0 directly implies
⟨u , u⟩+ ⟨v , v⟩ = ⟨u + v , u + v⟩ =
⟨u − v , u − v⟩.

u
<latexit sha1_base64="60Dj5bUvmd3KvoinaGzZon9dtqY="></latexit><latexit sha1_base64="lTAIW30w49nPCNqtWn6SHJAbeDg="></latexit><latexit sha1_base64="lTAIW30w49nPCNqtWn6SHJAbeDg="></latexit><latexit sha1_base64="psgQkSVZgroFaNKWVwtEWtKFNXM=">AAACIHicdVDLSgMxFM3UV61vXboJFsGNZaaUVl0V3LhUsCq0pWTS2zY0yQzJHbUM8wVu9Qf8GnfiUr/G9OGiogdyOZx7Lrn3hLEUFn3/08stLC4tr+RXC2vrG5tb2zu7NzZKDIcGj2Rk7kJmQQoNDRQo4S42wFQo4TYcno/7t/dgrIj0NY5iaCvW16InOEMnXSWd7aJfqpQr1VqFTkm1/ENOaVDyJyiSGS47O95qqxvxRIFGLpm1zcCPsZ0yg4JLyAqtxELM+JD1IZ3sl9FDJ3VpLzLuaaQTdc7HlLUjFTqnYjiwv3tj8a9eM8HeSTsVOk4QNJ9+1EskxYiOj6VdYYCjHDnCuBFuQ8oHzDCOLpJCoaXhgUdKMd1NW9bazFVni3FWcTQ5aM6lnAnhEdPjLHPh/SRE/yc35VLgl4Irv1g/m8WYJ/vkgByRgNRInVyQS9IgnAB5Is/kxXv13rx372NqzXmzmT0yB+/rG6ocpGM=</latexit>

v
<latexit sha1_base64="JVBCuLuVP1MWzEWq+Zxfcep4WcE=">AAACIHicdVBNTxsxEJ2FQiF8Bo5crEZIXIh2oyjQXorUS49EahIkEiGvMwEL27uyZ9NGq/0FvZY/QP9Ij9wQJwS/ps4HhyB4kkdPb97IMy9OlXQUhk/BwuKHpeWPK6ultfWNza3t8k7bJZkV2BKJSuxZzB0qabBFkhSepRa5jhV24utv435niNbJxPygUYo9zS+NHEjByUvN4cV2JazWa/XGUZ1NSaP2Qj6zqBpOUPn67+8jeJxelIPVbj8RmUZDQnHnzqMwpV7OLUmhsCh1M4cpF9f8EvPJfgXb91KfDRLrnyE2Ued8XDs30rF3ak5X7nVvLL7VO89ocNzLpUkzQiOmHw0yxShh42NZX1oUpEaecGGl35CJK265IB9JqdQ1+FMkWnPTz7vOucJXb0tpVmk0OWjOpb2J8Bflh0Xhw3tJiL1P2rVqFFajZlg5+QJTrMAefIIDiOAITuA7nEILBCD8hj9wE9wGd8F98DC1LgSzmV2YQ/D8H459pt0=</latexit><latexit sha1_base64="BeCS3laxEKe84+A5B12gA7oxE1k="></latexit><latexit sha1_base64="BeCS3laxEKe84+A5B12gA7oxE1k="></latexit><latexit sha1_base64="o/UtrRhW3tOLuF2qDZh5GpIzGkk=">AAACIHicdVBNSwMxEM36bf2sHr0Ei+DFsltKq54KXjwqWBVskWw61WCSXZJZdVn2F3jVP+Cv8SYe9deYbtdDRR9keLx5Q2ZeGEth0fc/vanpmdm5+YXFytLyyuraenXj3EaJ4dDlkYzMZcgsSKGhiwIlXMYGmAolXIR3R6P+xT0YKyJ9hmkMfcVutBgKztBJp/fX6zW/3mw0W+0mHZNW44cc0KDuF6iREifXVW+xN4h4okAjl8zaq8CPsZ8xg4JLyCu9xELM+B27gazYL6c7ThrQYWTc00gLdcLHlLWpCp1TMby1v3sj8a/eVYLD/X4mdJwgaD7+aJhIihEdHUsHwgBHmTrCuBFuQ8pvmWEcXSSVSk/DA4+UYnqQ9ay1uavOFmNZMS0OmnApZ0J4xGwvz114PwnR/8l5ox749eDUr3UOyxgXyBbZJrskIG3SIcfkhHQJJ0CeyDN58V69N+/d+xhbp7xyZpNMwPv6BqvYpGQ=</latexit>

e
<latexit sha1_base64="/2SO+SUWODq8eAYnIQqcMxYq1vE="></latexit><latexit sha1_base64="uwTRSvmudL8kD1XJJKw3bPailec="></latexit><latexit sha1_base64="uwTRSvmudL8kD1XJJKw3bPailec="></latexit><latexit sha1_base64="0eoT3zsEkeCs4VoHt0AsMqBBn1k=">AAACIHicdVDLSgMxFM3UV61vXboJFsGNZaaUVl0V3LhUsCq0pWTS2zY0yQzJHbUM8wVu9Qf8GnfiUr/G9OGiogdyOZx7Lrn3hLEUFn3/08stLC4tr+RXC2vrG5tb2zu7NzZKDIcGj2Rk7kJmQQoNDRQo4S42wFQo4TYcno/7t/dgrIj0NY5iaCvW16InOEMnXUFnu+iXKuVKtVahU1It/5BTGpT8CYpkhsvOjrfa6kY8UaCRS2ZtM/BjbKfMoOASskIrsRAzPmR9SCf7ZfTQSV3ai4x7GulEnfMxZe1Ihc6pGA7s795Y/KvXTLB30k6FjhMEzacf9RJJMaLjY2lXGOAoR44wboTbkPIBM4yji6RQaGl44JFSTHfTlrU2c9XZYpxVHE0OmnMpZ0J4xPQ4y1x4PwnR/8lNuRT4peDKL9bPZjHmyT45IEckIDVSJxfkkjQIJ0CeyDN58V69N+/d+5hac95sZo/Mwfv6Bo5cpFM=</latexit>

⇧uv =
hu, vi
hu, ui u

<latexit sha1_base64="RNlJ7PqJqMh4OdNf2QNol3qv+3A="></latexit><latexit sha1_base64="YgjZRbW+H1S9pDqihX2aPJr/sXg="></latexit><latexit sha1_base64="YgjZRbW+H1S9pDqihX2aPJr/sXg="></latexit><latexit sha1_base64="2sPJbIp2OBgYPuyyWRsL6zIWNfw="></latexit>

(b) The orthogonal projection Πuv
of one vector v onto another u is de-
fined by the property that the dif-
ference e := Πuv − v is orthogonal
to u, i.e. ⟨e , u⟩ = 0. This condi-
tion gives the explicit formula above
(in red) for the projection.

u
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(c) The angle between two vectors
in an abstract inner product space
can be defined as above purely in
terms of inner products. For the
standard dot product, this formula
gives the usual angles in Euclidean
space.

Figure 2.6: The inner product induces a notion of angles. (a) Orthogonality implies a version of Pythago-
ras’ theorem. (b) Orthogonal projections of one vector onto another can be defined, and an explicit formula
obtained. The Cauchy-Schwarz inequality is obtained by applying Pythagoras to the right-angled triangle
formed by the orthogonal projection. (c) The normalized inner product is always between −1 and 1 by the
Cauchy-Schwarz inequality, and can therefore be used to define the angle between two vectors in an abstract
inner product space.

sesquilinear. We will avoid this terminology and simply use the terms symmetry and bilinear
with the understanding that they are defined as above for the complex case.

Good geometric intuition can be built up about inner products using notions of projec-
tions and angles. This generalizes the projection properties of the standard Euclidean inner
product. Figure 2.6 illustrates the most basic two concepts. Two vectors u and v are said
to be orthogonal if ⟨u , v⟩ = 0. A version of Pythagoras’ theorem holds for such orthogonal
vectors, which we state using inner products

⟨u+ v , u+ v⟩ = ⟨u , u⟩+ ⟨v , v⟩+ 2����:0⟨u , v⟩ = ⟨u , u⟩+ ⟨v , v⟩
⟨u− v , u− v⟩ = ⟨u , u⟩+ ⟨v , v⟩ − 2⟨u , v⟩ = ⟨u , u⟩+ ⟨v , v⟩

(2.15)

and note that the only property used is the bilinearity of the inner product. Figure 2.6a
illustrates this relation.

The projection of a vector v onto another vector u is a vector co-linear with u, i.e.
the vector αu for some scalar α. The orthogonal projection Πuv of v onto u is defined
by the additional property that the difference e := Πuv − v must be orthogonal to u (see
Figure 2.6b). This requirement gives an explicit expression for α as follows

⟨e , u⟩ = 0 ⇔ ⟨αu− v , u⟩ = 0 ⇔ ⟨αu− v , u⟩ = 0 ⇔ α ⟨u , u⟩ − ⟨v , u⟩ = 0.

Thus the orthogonal projection of v onto u is explicitly given using inner products as

Πuv =
⟨u , v⟩
⟨u , u⟩ u. (2.16)

Using the projection formula (2.16), we can derive another important property of inner
products that characterizes relations between non-orthogonal vectors, and in particular a
notion of the angle between them. Consider Figure 2.6b. The vectors v, Πuv and e = Πuv−v
form a right angled triangle (in the sense that Πuv and e = Πuv − v are orthogonal, and
v = Πuv − e), and we can therefore apply Pythagoras (2.15)

⟨v , v⟩ = ⟨Πuv , Πuv⟩+ ⟨e , e⟩
⇒ ⟨v , v⟩ = ⟨αu , αu⟩+ ⟨e , e⟩ = α2 ⟨u , u⟩+ ⟨e , e⟩

⇒ ⟨v , v⟩ − ⟨u , v⟩
2

⟨u , u⟩2
⟨u , u⟩ = ⟨e , e⟩ ≥ 0,
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54 2.3. Inner Product Spaces

where the inequality is strict (i.e. ⟨e , e⟩ > 0) unless u and v are co-linear (for which then
e = 0). This last inequality can be rewritten as follows

⟨u , v⟩2
⟨u , u⟩ ⟨v , v⟩ ≤ 1 ⇔ − 1 ≤ ⟨u , v⟩√

⟨u , u⟩
√
⟨v , v⟩

≤ 1 (2.17)

⇔ |⟨u , v⟩| ≤
√
⟨u , u⟩

√
⟨v , v⟩. (2.18)

The last expression is the Cauchy-Schwartz inequality in inner-product form.
Note that an inner product can be either positive or negative. We can think of the

fraction in (2.17) as a sort of “normalized” inner product between u and v. The Cauchy-
Schwarz inequality says that the normalized inner product between any two vectors is always
between −1 and 1. This inequality motivates a definition of angles between vectors in an
abstract inner product space. The normalized inner product between two vectors u and v
is 1 if they’re co-linear and have the same sense (i.e. the angle between them is 0◦), it is
−1 if they’re co-linear and have opposite sense (i.e. the angle between them is 180◦), and is
zero if they’re orthogonal. This quantity therefore seems to behave like a cosine. We thus
adopt a definition of the angle θ between any two vectors u and v such that its cosine is the
normalized inner product

cos (θ) :=
⟨u , v⟩√

⟨u , u⟩
√
⟨v , v⟩

. (2.19)

This corresponds to the standard angles between vectors in the Euclidean space R2 (with
the inner product as the standard dot product). It also gives the standard angle in the
Euclidean space Rn (since any two vectors are contained in a 2-dimensional subspace, which
has the same geometry as R2). The formula however allows us to define angles in abstract
inner product spaces. In particular, in Rn with an inner product that is different from
the standard dot product, the formula (2.19) will give angles that are different from stan-
dard Euclidean geometry. In function space, this formula gives the angle and describes
orthogonality between two functions.

2.3.1 The Norm Induced by an Inner Product

Recall that in Euclidean geometry, the length of a vector is the square root of the inner
product of the vector with itself ∥v∥2 =

√
v∗v. We can try to generalize this statement by

using any inner product to define a norm as follows

∥v∥2 := ⟨v , v⟩ . (2.20)

We must check that this definition satisfies the three properties of a norm in Definition 2.2.
Definiteness is immediate to see, and homogeneity follows from the bilinearity of the inner
product. Before checking the triangle inequality, observe that with the definition (2.20), the
Cauchy-Schwarz inequality (2.18) can be rewritten as

|⟨u , v⟩| ≤ ∥u∥ ∥v∥. (2.21)

We now check the triangle inequality by first calculating

∥u+ v∥2 = ⟨u+ v , u+ v⟩ = ⟨u , u⟩+ ⟨v , v⟩+ 2 ⟨u , v⟩ (2.22)

≤ ∥u∥2 + ∥v∥2 + 2∥u∥∥v∥ = (∥u∥+ ∥v∥)2 , (2.23)

where the inequality above follows from the Cauchy-Schwarz inequality (2.21). Taking
square roots of both sides in (2.23) shows that the triangle inequality is indeed satisfied. To
summarize, we have just proved the following statement.
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Theorem 2.5. An inner product space is also a normed vector space with the norm

∥v∥2 := ⟨v , v⟩ . (2.24)

This norm and the inner product are further related by the Cauchy-Schwarz inequality

|⟨u , v⟩| ≤ ∥u∥ ∥v∥. (2.25)

The canonical examples of an inner product space are Rn and Cn with the Euclidean
inner product, and the function spaces ℓ2 and L2 (over any domain). The only difference
between Rn and Cn on the one hand and ℓ2 and L2 on the other is that the finite sums
in the inner product become infinite sums and integrals respectively. For example in ℓ2(Z)
and L2(R) the inner products are

⟨u , v⟩ :=
∑

i∈Z
u∗
i vi, ⟨u , v⟩ :=

∫

R
u∗(x) v(x) dx (2.26)

respectively3. It is a quick exercise to check that these definition satisfy all the requirements
of an inner product laid out in Definition 2.4. The Cauchy-Schwartz inequality (2.21) for
these inner product becomes

∣∣∣∣∣
∑

i∈Z
u∗
i vi

∣∣∣∣∣ ≤
(∑

i∈Z
|ui|2

)1/2 (∑

i∈Z
|vi|2

)1/2

(2.27)

The definitions (2.26) can be generalized to ℓ2V(Ω) and L2
V(Ω) for spaces of functions over

any domain Ω (in either Zd or Rd respectively), and that take values in any inner-product
space V

〈
u , v

〉
ℓ2V(Ω)

:=
∑

i∈Ω

〈
ui , vi

〉
V
,

〈
u , v

〉
L2

V(Ω)
:=

∫

Ω

〈
u(x) , v(x)

〉
V

dx. (2.28)

The reader should note how that various inner products were carefully labeled in this case.
For example, ⟨u(x) , v(x)⟩V is the inner product in V since the function u : Ω→ V takes its
values in V for each x ∈ Ω.

2.3.2 Other Inner Products in Rn

There are many inner products on Rn other than the standard “dot product” (2.13). They
are described here briefly for the sake of comparison with other norms in Rn that have
been previously mentioned. Chapter ?? will provide a more thorough study of all the inner
products on Rn since they are intimately related to positive definite matrices. The following
material assumes some familiarity with positive definite matrices.

Let Q be any symmetric, positive definite matrix with ij’th entry denoted by qij . The
bilinear form on Rn

⟨u , v⟩Q := u∗Qv =
∑

1≤i,j≤n

qij ui vj (2.29)

defines an inner product. It is easy to check that the properties of Definition 2.4 hold for
this product. In particular, the definiteness property of v ̸= 0 ⇒ v∗Qv > 0 is the defining
property of a positive definite matrix. The standard dot product corresponds to Q = I.

3If the functions are scalar valued, then the notation u∗i stands for the complex conjugate of ui, while if
u is vector valued, then u∗i is the complex conjugate transpose of ui (and similarly for u(x)). This provides
for a single notational convention that covers both scalar-valued and vector-valued functions.
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If the same vector is used for each of the two vectors in the bilinear form (2.29), then
the quantity ⟨x , x⟩Q is a called a quadratic form. It is instructive to “unpack” what this
quantity is in terms of the vector components x ∈ Rn

x∗Qx =
∑

1≤i,j≤n

qij xixj =
∑

1≤i≤n

qii x
2
i + 2

∑

1≤i<j≤n

qij xixj . (2.30)

The first term corresponds to the diagonal entries of Q, while the second term represents the
off-diagonal entries. Note that since Q is symmetric, then for off-diagonal terms qij = qji,
and therefore we combined each pair of “cross terms” as qijxixj + qjixjxi = 2qijxixj . This
is the most general form of a quadratic function of n variables, thus the term “quadratic
form”.

Some geometrical insight can be gained by studying the unit balls of the norm induced
by this inner product

BQ := {v ∈ Rn; v∗Qv ≤ 1} .

The figure on the right shows examples of unit ball boundaries for three different choices
of positive definite matrices Q, one of which is the identity. That latter unit ball BI is just
the unit disk which corresponds to the standard dot product. Note that the other balls

v1

v2

look like ellipses, and in fact they are. It will be shown in Chap-
ter ?? that all unit balls of inner products of the form (2.29) are
indeed ellipsoids. Furthermore, their principal axes are deter-
mined by the eigenvectors and eigenvalues of the matrix Q. This
fact distinguishes the geometry of inner product spaces from that
of general normed spaces. The latter have unit balls that can be
any arbitrary symmetric, convex sets (with the additional proper-
ties listed in Theorem 2.9). See e.g. Figure 2.10a. Inner product
unit balls however can only be ellipsoids, and thus have a much more restricted geometry,
which is parsimonously encoded in the properties of the matrix Q. This fact generalizes to
infinite-dimensional inner product spaces where inner products are given by positive definite
operators rather than matrices.

As just stated, the geometry of normed spaces is more general and richer than that of
inner product spaces. However, the restrictive geometry induced by inner products enables
much sharper results and algorithms when it comes to optimization and other applications.
This is the typical tradeoff between generality versus structure that occurs throughout
mathematics.

2.3.3 The Parallelogram Law and the Polarization Identity

We have seen how an inner product gives a norm by (2.24). A natural question to ask is
whether a given norm comes from an inner product in this manner. If one is given only
the norm, for example, the ∥.∥p norms in Rn, we ask whether there is an underlying inner
product that gives rise to this norm?

To answer the above question, we can look at properties that a norm induced by an inner
product must satisfy. Pythagoras is one such property which states that for two orthogonal
vectors u and v

∥u+ v∥2 = ∥u∥2 + ∥v∥2.

However, if we’re only given the norm, we cannot check the orthogonality ⟨u , v⟩ = 0 since
that requires knowing the inner product! An equivalent statement to Pythagoras that
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<latexit sha1_base64="sJax/5vPsabOXMNTQ2mZCpQS4/8=">AAACIHicbVDLSgNBEOz1mcS3Hr0sBsGLYdeL4kXBi8cEjAomyOykY4bMzC4zveqy7Bd41R/QH/HoTTyJfo2TxyVqwTRFdTXTXVEihaUg+PKmpmdm5+ZL5crC4tLyyura+rmNU8OxyWMZm8uIWZRCY5MESbxMDDIVSbyI+ieD/sUtGitifUZZgm3FbrToCs7ISY3b69VqUAuG8P+ScEyqR68vn+BQv17zyq1OzFOFmrhk1l6FQULtnBkSXGJRaaUWE8b77Abz4X6Fv+2kjt+NjXua/KE64WPK2kxFzqkY9ezv3kD8r3eVUvegnQudpISajz7qptKn2B8c63eEQU4yc4RxI9yGPu8xwzi5SCqVlsY7HivFdCdvWWsLV50toXGlbHjQhEs5E+E95btF4cILf0f1l5zv1cKgFjaC6vEhjFCCTdiCHQhhH47hFOrQBA4ID/AIT96z9+a9ex8j65Q3ntmACXjfPwYipos=</latexit><latexit sha1_base64="Ye1tSR557JFU2I5M8DdluBuqFvU=">AAACIHicbVBNSwMxEM362a5fVY9eFovgxbLrRRFEwYvHFqwKtkg2nbahSXZJZqtl2V/gVf+A+kM8ehNPor/GdNtLqw8yPN68ITMvjAU36Pvfzszs3PzCYqHoLi2vrK6V1jcuTZRoBnUWiUhfh9SA4ArqyFHAdayBylDAVdg7G/av+qANj9QFDmJoStpRvM0ZRSvV+relsl/xc3h/STAm5ZO3ly/3OH6t3q47xUYrYokEhUxQY24CP8ZmSjVyJiBzG4mBmLIe7UCa75d5O1Zqee1I26fQy9UJH5XGDGRonZJi10z3huJ/vZsE24fNlKs4QVBs9FE7ER5G3vBYr8U1MBQDSyjT3G7osS7VlKGNxHUbCu5YJCVVrbRhjMlstbYYxxUH+UETLmlNCPeY7mWZDS+YjuovudyvBH4lqPnl0yMyQoFskW2ySwJyQE7JOamSOmEEyAN5JE/Os/PufDifI+uMM57ZJBNwfn4BIWen5g==</latexit><latexit sha1_base64="Ye1tSR557JFU2I5M8DdluBuqFvU=">AAACIHicbVBNSwMxEM362a5fVY9eFovgxbLrRRFEwYvHFqwKtkg2nbahSXZJZqtl2V/gVf+A+kM8ehNPor/GdNtLqw8yPN68ITMvjAU36Pvfzszs3PzCYqHoLi2vrK6V1jcuTZRoBnUWiUhfh9SA4ArqyFHAdayBylDAVdg7G/av+qANj9QFDmJoStpRvM0ZRSvV+relsl/xc3h/STAm5ZO3ly/3OH6t3q47xUYrYokEhUxQY24CP8ZmSjVyJiBzG4mBmLIe7UCa75d5O1Zqee1I26fQy9UJH5XGDGRonZJi10z3huJ/vZsE24fNlKs4QVBs9FE7ER5G3vBYr8U1MBQDSyjT3G7osS7VlKGNxHUbCu5YJCVVrbRhjMlstbYYxxUH+UETLmlNCPeY7mWZDS+YjuovudyvBH4lqPnl0yMyQoFskW2ySwJyQE7JOamSOmEEyAN5JE/Os/PufDifI+uMM57ZJBNwfn4BIWen5g==</latexit><latexit sha1_base64="e95MjGdyRgjOK47HH18TmH+SjH8=">AAACIHicbVDLTgJBEJz1CfgCPXrZSEy8SHa9aDyRePEIiTwSIGR2aGDCzOxmphclm/0Cr/oDfo0341G/xgH2AljJdCrV1ZnuCiLBDXrej7O1vbO7t5/LFw4Oj45PiqXTpgljzaDBQhHqdkANCK6ggRwFtCMNVAYCWsHkYd5vTUEbHqonnEXQk3Sk+JAzilaqT/vFslfxFnA3iZ+RMslQ65ecfHcQsliCQiaoMR3fi7CXUI2cCUgL3dhARNmEjiBZ7Je6l1YauMNQ26fQXagrPiqNmcnAOiXFsVnvzcX/ep0Yh3e9hKsoRlBs+dEwFi6G7vxYd8A1MBQzSyjT3G7osjHVlKGNpFDoKnhmoZRUDZKuMSa11doizCrOFgetuKQ1Ibxgcp2mNjx/PapN0ryp+F7Fr3vl6n0WY46ckwtyRXxyS6rkkdRIgzAC5JW8kXfnw/l0vpzvpXXLyWbOyAqc3z8jfaQS</latexit>

u+v
<latexit sha1_base64="0jiUOBpiYsQ+uB2hx7DXUBoOdBk=">AAACKXicbVBNS8NAEJ3Urxo/q0cvwSIIYkm8KJ4ELx4VrIpNqZvttl26uwm7k2oJ+Q1evOof8Nd4U6/+EbdpL60+2OHx5g0786JEcIO+/+WU5uYXFpfKy+7K6tr6xmZl68bEqaasTmMR67uIGCa4YnXkKNhdohmRkWC3Uf981L8dMG14rK5xmLCmJF3FO5wStNJ9GiJ7wuwgH7Q2q37NL+D9JcGEVM9KrecHALhsVZzlsB3TVDKFVBBjGoGfYDMjGjkVLHfD1LCE0D7psqxYNPf2rNT2OrG2T6FXqFM+Io0Zysg6JcGeme2NxP96jRQ7J82MqyRFpuj4o04qPIy90dVem2tGUQwtIVRzu6FHe0QTijYb1w0Ve6SxlES1s9AYk9tqbQlOKg6Lg6Zc0pqK8A7z3IYXzEb1l9wc1QK/FlzZFE9hjDLswC7sQwDHcAYXcAl1oKDgBV7hzXl3PpxP53tsLTmTmW2YgvPzC215qbU=</latexit><latexit sha1_base64="AuzsEirnAM/DYtLZVXgSzRF0+7o=">AAACKXicbVDLTgIxFO3gC/AFunQzkZiYGMmMGw0rEhe6xEQekSGkUwo0tp1JewedTOYb3LjVH/Br3Klbf8QysAE8SW9Ozj03vff4IWcaHOfbyq2tb2xu5QvF7Z3dvf1S+aClg0gR2iQBD1THx5pyJmkTGHDaCRXFwue07T9eT/vtCVWaBfIe4pD2BB5JNmQEg5EeIg/oMyRn6aRfqjhVJ4O9Stw5qdRz/Zcbp15r9MtWwRsEJBJUAuFY667rhNBLsAJGOE2LXqRpiMkjHtEkWzS1T4w0sIeBMk+CnakLPiy0joVvnALDWC/3puJ/vW4Ew6tewmQYAZVk9tEw4jYE9vRqe8AUJcBjQzBRzGxokzFWmIDJplj0JH0igRBYDhJPa52aamwhzCvE2UELLmFMWXjnaWrCc5ejWiWti6rrVN07k2INzZBHR+gYnSIXXaI6ukUN1EQESfSK3tC79WF9Wl/Wz8yas+Yzh2gB1u8fTrqqRg==</latexit><latexit sha1_base64="AuzsEirnAM/DYtLZVXgSzRF0+7o=">AAACKXicbVDLTgIxFO3gC/AFunQzkZiYGMmMGw0rEhe6xEQekSGkUwo0tp1JewedTOYb3LjVH/Br3Klbf8QysAE8SW9Ozj03vff4IWcaHOfbyq2tb2xu5QvF7Z3dvf1S+aClg0gR2iQBD1THx5pyJmkTGHDaCRXFwue07T9eT/vtCVWaBfIe4pD2BB5JNmQEg5EeIg/oMyRn6aRfqjhVJ4O9Stw5qdRz/Zcbp15r9MtWwRsEJBJUAuFY667rhNBLsAJGOE2LXqRpiMkjHtEkWzS1T4w0sIeBMk+CnakLPiy0joVvnALDWC/3puJ/vW4Ew6tewmQYAZVk9tEw4jYE9vRqe8AUJcBjQzBRzGxokzFWmIDJplj0JH0igRBYDhJPa52aamwhzCvE2UELLmFMWXjnaWrCc5ejWiWti6rrVN07k2INzZBHR+gYnSIXXaI6ukUN1EQESfSK3tC79WF9Wl/Wz8yas+Yzh2gB1u8fTrqqRg==</latexit><latexit sha1_base64="JxDYRAV+lOMSQ8Y64m6x9E5UAYs=">AAACKXicbVDLTsJAFJ3iC/AFunTTSExMjKR1o3FF4sYlJvKIlJDpMMCEmWkzc4s2Tf/Crf6AX+NO3fojDqUbwJPMzcm552buPX7ImQbH+bYKG5tb2zvFUnl3b//gsFI9ausgUoS2SMAD1fWxppxJ2gIGnHZDRbHwOe3407t5vzOjSrNAPkIc0r7AY8lGjGAw0lPkAX2B5CKdDSo1p+5ksNeJm5MaytEcVK2SNwxIJKgEwrHWPdcJoZ9gBYxwmpa9SNMQkyke0yRbNLXPjDS0R4EyT4KdqUs+LLSOhW+cAsNEr/bm4n+9XgSjm37CZBgBlWTx0SjiNgT2/Gp7yBQlwGNDMFHMbGiTCVaYgMmmXPYkfSaBEFgOE09rnZpqbCHkFeLsoCWXMKYsvMs0NeG5q1Gtk/ZV3XXq7oNTa9zmMRbRCTpF58hF16iB7lETtRBBEr2iN/RufVif1pf1s7AWrHzmGC3B+v0D+fmoJQ==</latexit>

u-v<latexit sha1_base64="Rfpvd+djo0yXXOli5OMv6xurUr4=">AAACKXicbVC7TgMxENwLryS8EihpTkRINER3NCAqJBrKIJGHyEXB5ziJhe072XtAdLpvoKGFH+Br6ICWH8F5NEkYyavR7Ky8O2EsuEHP+3ZyK6tr6xv5QnFza3tnt1Tea5go0ZTVaSQi3QqJYYIrVkeOgrVizYgMBWuGD1fjfvORacMjdYujmHUkGSje55Sgle6SANkzpifZY7dU8areBO4y8WekcpnrvtwDQK1bdgpBL6KJZAqpIMa0fS/GTko0cipYVgwSw2JCH8iApZNFM/fISj23H2n7FLoTdc5HpDEjGVqnJDg0i72x+F+vnWD/vJNyFSfIFJ1+1E+Ei5E7vtrtcc0oipElhGpuN3TpkGhC0WZTLAaKPdFISqJ6aWCMyWy1thhnFUeTg+Zc0ppm4WU2PH8xqmXSOK36XtW/sSlewBR5OIBDOAYfzuASrqEGdaCg4BXe4N35cD6dL+dnas05s5l9mIPz+wdw9am3</latexit><latexit sha1_base64="0rOhXaVIOdvLxLe5Ok7eJFMx+tk=">AAACKXicbVC7TsMwFHXKqy2vFkaWiAqJhSphAXWqxABjkehDNFXlOE5r1XYi+6ZQRfkGFlb4Ab6GDVj5EdzH0pYj+ero3HPle48fc6bBcb6t3Mbm1vZOvlDc3ds/OCyVj1o6ShShTRLxSHV8rClnkjaBAaedWFEsfE7b/uhm2m+PqdIskg8wiWlP4IFkISMYjPSYeECfIb3Ixv1Sxak6M9jrxF2QSj3Xf7l16rVGv2wVvCAiiaASCMdad10nhl6KFTDCaVb0Ek1jTEZ4QNPZopl9ZqTADiNlngR7pi75sNB6InzjFBiGerU3Ff/rdRMIr3spk3ECVJL5R2HCbYjs6dV2wBQlwCeGYKKY2dAmQ6wwAZNNsehJ+kQiIbAMUk9rnZlqbDEsKkxmBy25hDEtwstMeO5qVOukdVl1nap7b1KsoTny6ASdonPkoitUR3eogZqIIIle0Rt6tz6sT+vL+plbc9Zi5hgtwfr9A1I2qkg=</latexit><latexit sha1_base64="0rOhXaVIOdvLxLe5Ok7eJFMx+tk=">AAACKXicbVC7TsMwFHXKqy2vFkaWiAqJhSphAXWqxABjkehDNFXlOE5r1XYi+6ZQRfkGFlb4Ab6GDVj5EdzH0pYj+ero3HPle48fc6bBcb6t3Mbm1vZOvlDc3ds/OCyVj1o6ShShTRLxSHV8rClnkjaBAaedWFEsfE7b/uhm2m+PqdIskg8wiWlP4IFkISMYjPSYeECfIb3Ixv1Sxak6M9jrxF2QSj3Xf7l16rVGv2wVvCAiiaASCMdad10nhl6KFTDCaVb0Ek1jTEZ4QNPZopl9ZqTADiNlngR7pi75sNB6InzjFBiGerU3Ff/rdRMIr3spk3ECVJL5R2HCbYjs6dV2wBQlwCeGYKKY2dAmQ6wwAZNNsehJ+kQiIbAMUk9rnZlqbDEsKkxmBy25hDEtwstMeO5qVOukdVl1nap7b1KsoTny6ASdonPkoitUR3eogZqIIIle0Rt6tz6sT+vL+plbc9Zi5hgtwfr9A1I2qkg=</latexit><latexit sha1_base64="qmI/0W8isg2gF0vxV+U2LtpQHjU=">AAACKXicbVDLTsMwEHR4tuXVwpFLRIXEhSrhAuJUiQvHItGHaKrKcdzWqu1E9qYQRfkLrvADfA034MqP4Ka5tGUkr0azs/Lu+BFnGhzn29rY3Nre2S2VK3v7B4dH1dpxR4exIrRNQh6qno815UzSNjDgtBcpioXPadef3s373RlVmoXyEZKIDgQeSzZiBIORnmIP6Aukl9lsWK07DSeHvU7cgtRRgdawZpW9ICSxoBIIx1r3XSeCQYoVMMJpVvFiTSNMpnhM03zRzD43UmCPQmWeBDtXl3xYaJ0I3zgFhole7c3F/3r9GEY3g5TJKAYqyeKjUcxtCO351XbAFCXAE0MwUcxsaJMJVpiAyaZS8SR9JqEQWAapp7XOTDW2CIoKSX7QkksYUxFeZsJzV6NaJ52rhus03Aen3rwtYiyhU3SGLpCLrlET3aMWaiOCJHpFb+jd+rA+rS/rZ2HdsIqZE7QE6/cP/XWoJw==</latexit>

u
<latexit sha1_base64="60Dj5bUvmd3KvoinaGzZon9dtqY="></latexit><latexit sha1_base64="lTAIW30w49nPCNqtWn6SHJAbeDg="></latexit><latexit sha1_base64="lTAIW30w49nPCNqtWn6SHJAbeDg="></latexit><latexit sha1_base64="psgQkSVZgroFaNKWVwtEWtKFNXM=">AAACIHicdVDLSgMxFM3UV61vXboJFsGNZaaUVl0V3LhUsCq0pWTS2zY0yQzJHbUM8wVu9Qf8GnfiUr/G9OGiogdyOZx7Lrn3hLEUFn3/08stLC4tr+RXC2vrG5tb2zu7NzZKDIcGj2Rk7kJmQQoNDRQo4S42wFQo4TYcno/7t/dgrIj0NY5iaCvW16InOEMnXSWd7aJfqpQr1VqFTkm1/ENOaVDyJyiSGS47O95qqxvxRIFGLpm1zcCPsZ0yg4JLyAqtxELM+JD1IZ3sl9FDJ3VpLzLuaaQTdc7HlLUjFTqnYjiwv3tj8a9eM8HeSTsVOk4QNJ9+1EskxYiOj6VdYYCjHDnCuBFuQ8oHzDCOLpJCoaXhgUdKMd1NW9bazFVni3FWcTQ5aM6lnAnhEdPjLHPh/SRE/yc35VLgl4Irv1g/m8WYJ/vkgByRgNRInVyQS9IgnAB5Is/kxXv13rx372NqzXmzmT0yB+/rG6ocpGM=</latexit>

v
<latexit sha1_base64="JVBCuLuVP1MWzEWq+Zxfcep4WcE="></latexit><latexit sha1_base64="BeCS3laxEKe84+A5B12gA7oxE1k="></latexit><latexit sha1_base64="BeCS3laxEKe84+A5B12gA7oxE1k="></latexit><latexit sha1_base64="o/UtrRhW3tOLuF2qDZh5GpIzGkk=">AAACIHicdVBNSwMxEM36bf2sHr0Ei+DFsltKq54KXjwqWBVskWw61WCSXZJZdVn2F3jVP+Cv8SYe9deYbtdDRR9keLx5Q2ZeGEth0fc/vanpmdm5+YXFytLyyuraenXj3EaJ4dDlkYzMZcgsSKGhiwIlXMYGmAolXIR3R6P+xT0YKyJ9hmkMfcVutBgKztBJp/fX6zW/3mw0W+0mHZNW44cc0KDuF6iREifXVW+xN4h4okAjl8zaq8CPsZ8xg4JLyCu9xELM+B27gazYL6c7ThrQYWTc00gLdcLHlLWpCp1TMby1v3sj8a/eVYLD/X4mdJwgaD7+aJhIihEdHUsHwgBHmTrCuBFuQ8pvmWEcXSSVSk/DA4+UYnqQ9ay1uavOFmNZMS0OmnApZ0J4xGwvz114PwnR/8l5ox749eDUr3UOyxgXyBbZJrskIG3SIcfkhHQJJ0CeyDN58V69N+/d+xhbp7xyZpNMwPv6BqvYpGQ=</latexit>

(a) Pythagoras’ theorem states that
for two orthogonal vectors u and v, we
have ∥u + v∥2 = ∥u − v∥2 = ∥u∥2 +
∥v∥2. Statement of this theorem in an
abstract vector space requires a norm,
and a notion of orthogonality, i.e. an
inner product.

u
<latexit sha1_base64="sn5a1gTXgCefyf2lSBxOWxg1Ed0=">AAACIHicbVDLSgNBEOz1mcRXokcvi0HwYtj1ongx4MWjgomCCTI76SSDM7PLTK8alv0Cr/oD+iMevYkn0a9x8rhELZimqK5muitKpLAUBF/ezOzc/MJioVhaWl5ZXStX1ps2Tg3HBo9lbC4jZlEKjQ0SJPEyMchUJPEiujke9i9u0VgR63MaJNhWrKdFV3BGTjpLr8vVoBaM4P8l4YRUj15fPsHh9LriFVudmKcKNXHJrL0Kg4TaGTMkuMS81EotJozfsB5mo/1yf9tJHb8bG/c0+SN1yseUtQMVOadi1Le/e0Pxv95VSt2DdiZ0khJqPv6om0qfYn94rN8RBjnJgSOMG+E29HmfGcbJRVIqtTTe8VgppjtZy1qbu+psCU0qDUYHTbmUMxHeU7ab5y688HdUf0lzrxYGtfAsqNYPYYwCbMIW7EAI+1CHEziFBnBAeIBHePKevTfv3fsYW2e8ycwGTMH7/gEEZqaK</latexit><latexit sha1_base64="8TE0Xj09Ko520zYE1DXYarkl0lM=">AAACIHicbVBNSwMxEM3W7/Wr1aOXxSJ4sex6UQRR8OJRwdpCW0o2nWpokl2SWbUs+wu86h9Qf4hHb+JJ9NeYbntp64MMjzdvyMwLY8EN+v6PU5iZnZtfWFxyl1dW19aLpY1rEyWaQZVFItL1kBoQXEEVOQqoxxqoDAXUwt7ZoF+7A214pK6wH0NL0hvFu5xRtNJl0i6W/Yqfw5smwYiUT95fv93j+O2iXXKWmp2IJRIUMkGNaQR+jK2UauRMQOY2EwMxZT16A2m+X+btWKnjdSNtn0IvV8d8VBrTl6F1Soq3ZrI3EP/rNRLsHrZSruIEQbHhR91EeBh5g2O9DtfAUPQtoUxzu6HHbqmmDG0krttUcM8iKanqpE1jTGartcU4qtjPDxpzSWtCeMB0L8tseMFkVNPker8S+JXg0i+fHpEhFskW2Sa7JCAH5JSckwtSJYwAeSRP5Nl5cT6cT+draC04o5lNMgbn9w8fq6fl</latexit><latexit sha1_base64="8TE0Xj09Ko520zYE1DXYarkl0lM=">AAACIHicbVBNSwMxEM3W7/Wr1aOXxSJ4sex6UQRR8OJRwdpCW0o2nWpokl2SWbUs+wu86h9Qf4hHb+JJ9NeYbntp64MMjzdvyMwLY8EN+v6PU5iZnZtfWFxyl1dW19aLpY1rEyWaQZVFItL1kBoQXEEVOQqoxxqoDAXUwt7ZoF+7A214pK6wH0NL0hvFu5xRtNJl0i6W/Yqfw5smwYiUT95fv93j+O2iXXKWmp2IJRIUMkGNaQR+jK2UauRMQOY2EwMxZT16A2m+X+btWKnjdSNtn0IvV8d8VBrTl6F1Soq3ZrI3EP/rNRLsHrZSruIEQbHhR91EeBh5g2O9DtfAUPQtoUxzu6HHbqmmDG0krttUcM8iKanqpE1jTGartcU4qtjPDxpzSWtCeMB0L8tseMFkVNPker8S+JXg0i+fHpEhFskW2Sa7JCAH5JSckwtSJYwAeSRP5Nl5cT6cT+draC04o5lNMgbn9w8fq6fl</latexit><latexit sha1_base64="xgstjAngkeZCh1E1KIy6YZ6BQ14=">AAACIHicbVDLTgJBEJzFF+AL9OhlIzHxItn1ovFE4sUjJPJIgJDZoYEJM7ObmV6VbPYLvOoP+DXejEf9GgfYC2Al06lUV2e6K4gEN+h5P05ua3tndy9fKO4fHB4dl8onLRPGmkGThSLUnYAaEFxBEzkK6EQaqAwEtIPp/bzffgJteKgecRZBX9Kx4iPOKFqpEQ9KFa/qLeBuEj8jFZKhPig7hd4wZLEEhUxQY7q+F2E/oRo5E5AWe7GBiLIpHUOy2C91L6w0dEehtk+hu1BXfFQaM5OBdUqKE7Pem4v/9boxjm77CVdRjKDY8qNRLFwM3fmx7pBrYChmllCmud3QZROqKUMbSbHYU/DMQimpGiY9Y0xqq7VFmFWcLQ5acUlrQnjB5CpNbXj+elSbpHVd9b2q3/Aqtbssxjw5I+fkkvjkhtTIA6mTJmEEyCt5I+/Oh/PpfDnfS2vOyWZOyQqc3z8hwaQR</latexit>

v
<latexit sha1_base64="sJax/5vPsabOXMNTQ2mZCpQS4/8=">AAACIHicbVDLSgNBEOz1mcS3Hr0sBsGLYdeL4kXBi8cEjAomyOykY4bMzC4zveqy7Bd41R/QH/HoTTyJfo2TxyVqwTRFdTXTXVEihaUg+PKmpmdm5+ZL5crC4tLyyura+rmNU8OxyWMZm8uIWZRCY5MESbxMDDIVSbyI+ieD/sUtGitifUZZgm3FbrToCs7ISY3b69VqUAuG8P+ScEyqR68vn+BQv17zyq1OzFOFmrhk1l6FQULtnBkSXGJRaaUWE8b77Abz4X6Fv+2kjt+NjXua/KE64WPK2kxFzqkY9ezv3kD8r3eVUvegnQudpISajz7qptKn2B8c63eEQU4yc4RxI9yGPu8xwzi5SCqVlsY7HivFdCdvWWsLV50toXGlbHjQhEs5E+E95btF4cILf0f1l5zv1cKgFjaC6vEhjFCCTdiCHQhhH47hFOrQBA4ID/AIT96z9+a9ex8j65Q3ntmACXjfPwYipos=</latexit><latexit sha1_base64="Ye1tSR557JFU2I5M8DdluBuqFvU=">AAACIHicbVBNSwMxEM362a5fVY9eFovgxbLrRRFEwYvHFqwKtkg2nbahSXZJZqtl2V/gVf+A+kM8ehNPor/GdNtLqw8yPN68ITMvjAU36Pvfzszs3PzCYqHoLi2vrK6V1jcuTZRoBnUWiUhfh9SA4ArqyFHAdayBylDAVdg7G/av+qANj9QFDmJoStpRvM0ZRSvV+relsl/xc3h/STAm5ZO3ly/3OH6t3q47xUYrYokEhUxQY24CP8ZmSjVyJiBzG4mBmLIe7UCa75d5O1Zqee1I26fQy9UJH5XGDGRonZJi10z3huJ/vZsE24fNlKs4QVBs9FE7ER5G3vBYr8U1MBQDSyjT3G7osS7VlKGNxHUbCu5YJCVVrbRhjMlstbYYxxUH+UETLmlNCPeY7mWZDS+YjuovudyvBH4lqPnl0yMyQoFskW2ySwJyQE7JOamSOmEEyAN5JE/Os/PufDifI+uMM57ZJBNwfn4BIWen5g==</latexit><latexit sha1_base64="Ye1tSR557JFU2I5M8DdluBuqFvU=">AAACIHicbVBNSwMxEM362a5fVY9eFovgxbLrRRFEwYvHFqwKtkg2nbahSXZJZqtl2V/gVf+A+kM8ehNPor/GdNtLqw8yPN68ITMvjAU36Pvfzszs3PzCYqHoLi2vrK6V1jcuTZRoBnUWiUhfh9SA4ArqyFHAdayBylDAVdg7G/av+qANj9QFDmJoStpRvM0ZRSvV+relsl/xc3h/STAm5ZO3ly/3OH6t3q47xUYrYokEhUxQY24CP8ZmSjVyJiBzG4mBmLIe7UCa75d5O1Zqee1I26fQy9UJH5XGDGRonZJi10z3huJ/vZsE24fNlKs4QVBs9FE7ER5G3vBYr8U1MBQDSyjT3G7osS7VlKGNxHUbCu5YJCVVrbRhjMlstbYYxxUH+UETLmlNCPeY7mWZDS+YjuovudyvBH4lqPnl0yMyQoFskW2ySwJyQE7JOamSOmEEyAN5JE/Os/PufDifI+uMM57ZJBNwfn4BIWen5g==</latexit><latexit sha1_base64="e95MjGdyRgjOK47HH18TmH+SjH8=">AAACIHicbVDLTgJBEJz1CfgCPXrZSEy8SHa9aDyRePEIiTwSIGR2aGDCzOxmphclm/0Cr/oDfo0341G/xgH2AljJdCrV1ZnuCiLBDXrej7O1vbO7t5/LFw4Oj45PiqXTpgljzaDBQhHqdkANCK6ggRwFtCMNVAYCWsHkYd5vTUEbHqonnEXQk3Sk+JAzilaqT/vFslfxFnA3iZ+RMslQ65ecfHcQsliCQiaoMR3fi7CXUI2cCUgL3dhARNmEjiBZ7Je6l1YauMNQ26fQXagrPiqNmcnAOiXFsVnvzcX/ep0Yh3e9hKsoRlBs+dEwFi6G7vxYd8A1MBQzSyjT3G7osjHVlKGNpFDoKnhmoZRUDZKuMSa11doizCrOFgetuKQ1Ibxgcp2mNjx/PapN0ryp+F7Fr3vl6n0WY46ckwtyRXxyS6rkkdRIgzAC5JW8kXfnw/l0vpzvpXXLyWbOyAqc3z8jfaQS</latexit>

u+v
<latexit sha1_base64="0jiUOBpiYsQ+uB2hx7DXUBoOdBk=">AAACKXicbVBNS8NAEJ3Urxo/q0cvwSIIYkm8KJ4ELx4VrIpNqZvttl26uwm7k2oJ+Q1evOof8Nd4U6/+EbdpL60+2OHx5g0786JEcIO+/+WU5uYXFpfKy+7K6tr6xmZl68bEqaasTmMR67uIGCa4YnXkKNhdohmRkWC3Uf981L8dMG14rK5xmLCmJF3FO5wStNJ9GiJ7wuwgH7Q2q37NL+D9JcGEVM9KrecHALhsVZzlsB3TVDKFVBBjGoGfYDMjGjkVLHfD1LCE0D7psqxYNPf2rNT2OrG2T6FXqFM+Io0Zysg6JcGeme2NxP96jRQ7J82MqyRFpuj4o04qPIy90dVem2tGUQwtIVRzu6FHe0QTijYb1w0Ve6SxlES1s9AYk9tqbQlOKg6Lg6Zc0pqK8A7z3IYXzEb1l9wc1QK/FlzZFE9hjDLswC7sQwDHcAYXcAl1oKDgBV7hzXl3PpxP53tsLTmTmW2YgvPzC215qbU=</latexit><latexit sha1_base64="AuzsEirnAM/DYtLZVXgSzRF0+7o=">AAACKXicbVDLTgIxFO3gC/AFunQzkZiYGMmMGw0rEhe6xEQekSGkUwo0tp1JewedTOYb3LjVH/Br3Klbf8QysAE8SW9Ozj03vff4IWcaHOfbyq2tb2xu5QvF7Z3dvf1S+aClg0gR2iQBD1THx5pyJmkTGHDaCRXFwue07T9eT/vtCVWaBfIe4pD2BB5JNmQEg5EeIg/oMyRn6aRfqjhVJ4O9Stw5qdRz/Zcbp15r9MtWwRsEJBJUAuFY667rhNBLsAJGOE2LXqRpiMkjHtEkWzS1T4w0sIeBMk+CnakLPiy0joVvnALDWC/3puJ/vW4Ew6tewmQYAZVk9tEw4jYE9vRqe8AUJcBjQzBRzGxokzFWmIDJplj0JH0igRBYDhJPa52aamwhzCvE2UELLmFMWXjnaWrCc5ejWiWti6rrVN07k2INzZBHR+gYnSIXXaI6ukUN1EQESfSK3tC79WF9Wl/Wz8yas+Yzh2gB1u8fTrqqRg==</latexit><latexit sha1_base64="AuzsEirnAM/DYtLZVXgSzRF0+7o=">AAACKXicbVDLTgIxFO3gC/AFunQzkZiYGMmMGw0rEhe6xEQekSGkUwo0tp1JewedTOYb3LjVH/Br3Klbf8QysAE8SW9Ozj03vff4IWcaHOfbyq2tb2xu5QvF7Z3dvf1S+aClg0gR2iQBD1THx5pyJmkTGHDaCRXFwue07T9eT/vtCVWaBfIe4pD2BB5JNmQEg5EeIg/oMyRn6aRfqjhVJ4O9Stw5qdRz/Zcbp15r9MtWwRsEJBJUAuFY667rhNBLsAJGOE2LXqRpiMkjHtEkWzS1T4w0sIeBMk+CnakLPiy0joVvnALDWC/3puJ/vW4Ew6tewmQYAZVk9tEw4jYE9vRqe8AUJcBjQzBRzGxokzFWmIDJplj0JH0igRBYDhJPa52aamwhzCvE2UELLmFMWXjnaWrCc5ejWiWti6rrVN07k2INzZBHR+gYnSIXXaI6ukUN1EQESfSK3tC79WF9Wl/Wz8yas+Yzh2gB1u8fTrqqRg==</latexit><latexit sha1_base64="JxDYRAV+lOMSQ8Y64m6x9E5UAYs=">AAACKXicbVDLTsJAFJ3iC/AFunTTSExMjKR1o3FF4sYlJvKIlJDpMMCEmWkzc4s2Tf/Crf6AX+NO3fojDqUbwJPMzcm552buPX7ImQbH+bYKG5tb2zvFUnl3b//gsFI9ausgUoS2SMAD1fWxppxJ2gIGnHZDRbHwOe3407t5vzOjSrNAPkIc0r7AY8lGjGAw0lPkAX2B5CKdDSo1p+5ksNeJm5MaytEcVK2SNwxIJKgEwrHWPdcJoZ9gBYxwmpa9SNMQkyke0yRbNLXPjDS0R4EyT4KdqUs+LLSOhW+cAsNEr/bm4n+9XgSjm37CZBgBlWTx0SjiNgT2/Gp7yBQlwGNDMFHMbGiTCVaYgMmmXPYkfSaBEFgOE09rnZpqbCHkFeLsoCWXMKYsvMs0NeG5q1Gtk/ZV3XXq7oNTa9zmMRbRCTpF58hF16iB7lETtRBBEr2iN/RufVif1pf1s7AWrHzmGC3B+v0D+fmoJQ==</latexit>

u-v
<latexit sha1_base64="Rfpvd+djo0yXXOli5OMv6xurUr4=">AAACKXicbVC7TgMxENwLryS8EihpTkRINER3NCAqJBrKIJGHyEXB5ziJhe072XtAdLpvoKGFH+Br6ICWH8F5NEkYyavR7Ky8O2EsuEHP+3ZyK6tr6xv5QnFza3tnt1Tea5go0ZTVaSQi3QqJYYIrVkeOgrVizYgMBWuGD1fjfvORacMjdYujmHUkGSje55Sgle6SANkzpifZY7dU8areBO4y8WekcpnrvtwDQK1bdgpBL6KJZAqpIMa0fS/GTko0cipYVgwSw2JCH8iApZNFM/fISj23H2n7FLoTdc5HpDEjGVqnJDg0i72x+F+vnWD/vJNyFSfIFJ1+1E+Ei5E7vtrtcc0oipElhGpuN3TpkGhC0WZTLAaKPdFISqJ6aWCMyWy1thhnFUeTg+Zc0ppm4WU2PH8xqmXSOK36XtW/sSlewBR5OIBDOAYfzuASrqEGdaCg4BXe4N35cD6dL+dnas05s5l9mIPz+wdw9am3</latexit><latexit sha1_base64="0rOhXaVIOdvLxLe5Ok7eJFMx+tk=">AAACKXicbVC7TsMwFHXKqy2vFkaWiAqJhSphAXWqxABjkehDNFXlOE5r1XYi+6ZQRfkGFlb4Ab6GDVj5EdzH0pYj+ero3HPle48fc6bBcb6t3Mbm1vZOvlDc3ds/OCyVj1o6ShShTRLxSHV8rClnkjaBAaedWFEsfE7b/uhm2m+PqdIskg8wiWlP4IFkISMYjPSYeECfIb3Ixv1Sxak6M9jrxF2QSj3Xf7l16rVGv2wVvCAiiaASCMdad10nhl6KFTDCaVb0Ek1jTEZ4QNPZopl9ZqTADiNlngR7pi75sNB6InzjFBiGerU3Ff/rdRMIr3spk3ECVJL5R2HCbYjs6dV2wBQlwCeGYKKY2dAmQ6wwAZNNsehJ+kQiIbAMUk9rnZlqbDEsKkxmBy25hDEtwstMeO5qVOukdVl1nap7b1KsoTny6ASdonPkoitUR3eogZqIIIle0Rt6tz6sT+vL+plbc9Zi5hgtwfr9A1I2qkg=</latexit><latexit sha1_base64="0rOhXaVIOdvLxLe5Ok7eJFMx+tk=">AAACKXicbVC7TsMwFHXKqy2vFkaWiAqJhSphAXWqxABjkehDNFXlOE5r1XYi+6ZQRfkGFlb4Ab6GDVj5EdzH0pYj+ero3HPle48fc6bBcb6t3Mbm1vZOvlDc3ds/OCyVj1o6ShShTRLxSHV8rClnkjaBAaedWFEsfE7b/uhm2m+PqdIskg8wiWlP4IFkISMYjPSYeECfIb3Ixv1Sxak6M9jrxF2QSj3Xf7l16rVGv2wVvCAiiaASCMdad10nhl6KFTDCaVb0Ek1jTEZ4QNPZopl9ZqTADiNlngR7pi75sNB6InzjFBiGerU3Ff/rdRMIr3spk3ECVJL5R2HCbYjs6dV2wBQlwCeGYKKY2dAmQ6wwAZNNsehJ+kQiIbAMUk9rnZlqbDEsKkxmBy25hDEtwstMeO5qVOukdVl1nap7b1KsoTny6ASdonPkoitUR3eogZqIIIle0Rt6tz6sT+vL+plbc9Zi5hgtwfr9A1I2qkg=</latexit><latexit sha1_base64="qmI/0W8isg2gF0vxV+U2LtpQHjU=">AAACKXicbVDLTsMwEHR4tuXVwpFLRIXEhSrhAuJUiQvHItGHaKrKcdzWqu1E9qYQRfkLrvADfA034MqP4Ka5tGUkr0azs/Lu+BFnGhzn29rY3Nre2S2VK3v7B4dH1dpxR4exIrRNQh6qno815UzSNjDgtBcpioXPadef3s373RlVmoXyEZKIDgQeSzZiBIORnmIP6Aukl9lsWK07DSeHvU7cgtRRgdawZpW9ICSxoBIIx1r3XSeCQYoVMMJpVvFiTSNMpnhM03zRzD43UmCPQmWeBDtXl3xYaJ0I3zgFhole7c3F/3r9GEY3g5TJKAYqyeKjUcxtCO351XbAFCXAE0MwUcxsaJMJVpiAyaZS8SR9JqEQWAapp7XOTDW2CIoKSX7QkksYUxFeZsJzV6NaJ52rhus03Aen3rwtYiyhU3SGLpCLrlET3aMWaiOCJHpFb+jd+rA+rS/rZ2HdsIqZE7QE6/cP/XWoJw==</latexit>

u
<latexit sha1_base64="sn5a1gTXgCefyf2lSBxOWxg1Ed0=">AAACIHicbVDLSgNBEOz1mcRXokcvi0HwYtj1ongx4MWjgomCCTI76SSDM7PLTK8alv0Cr/oD+iMevYkn0a9x8rhELZimqK5muitKpLAUBF/ezOzc/MJioVhaWl5ZXStX1ps2Tg3HBo9lbC4jZlEKjQ0SJPEyMchUJPEiujke9i9u0VgR63MaJNhWrKdFV3BGTjpLr8vVoBaM4P8l4YRUj15fPsHh9LriFVudmKcKNXHJrL0Kg4TaGTMkuMS81EotJozfsB5mo/1yf9tJHb8bG/c0+SN1yseUtQMVOadi1Le/e0Pxv95VSt2DdiZ0khJqPv6om0qfYn94rN8RBjnJgSOMG+E29HmfGcbJRVIqtTTe8VgppjtZy1qbu+psCU0qDUYHTbmUMxHeU7ab5y688HdUf0lzrxYGtfAsqNYPYYwCbMIW7EAI+1CHEziFBnBAeIBHePKevTfv3fsYW2e8ycwGTMH7/gEEZqaK</latexit><latexit sha1_base64="8TE0Xj09Ko520zYE1DXYarkl0lM=">AAACIHicbVBNSwMxEM3W7/Wr1aOXxSJ4sex6UQRR8OJRwdpCW0o2nWpokl2SWbUs+wu86h9Qf4hHb+JJ9NeYbntp64MMjzdvyMwLY8EN+v6PU5iZnZtfWFxyl1dW19aLpY1rEyWaQZVFItL1kBoQXEEVOQqoxxqoDAXUwt7ZoF+7A214pK6wH0NL0hvFu5xRtNJl0i6W/Yqfw5smwYiUT95fv93j+O2iXXKWmp2IJRIUMkGNaQR+jK2UauRMQOY2EwMxZT16A2m+X+btWKnjdSNtn0IvV8d8VBrTl6F1Soq3ZrI3EP/rNRLsHrZSruIEQbHhR91EeBh5g2O9DtfAUPQtoUxzu6HHbqmmDG0krttUcM8iKanqpE1jTGartcU4qtjPDxpzSWtCeMB0L8tseMFkVNPker8S+JXg0i+fHpEhFskW2Sa7JCAH5JSckwtSJYwAeSRP5Nl5cT6cT+draC04o5lNMgbn9w8fq6fl</latexit><latexit sha1_base64="8TE0Xj09Ko520zYE1DXYarkl0lM=">AAACIHicbVBNSwMxEM3W7/Wr1aOXxSJ4sex6UQRR8OJRwdpCW0o2nWpokl2SWbUs+wu86h9Qf4hHb+JJ9NeYbntp64MMjzdvyMwLY8EN+v6PU5iZnZtfWFxyl1dW19aLpY1rEyWaQZVFItL1kBoQXEEVOQqoxxqoDAXUwt7ZoF+7A214pK6wH0NL0hvFu5xRtNJl0i6W/Yqfw5smwYiUT95fv93j+O2iXXKWmp2IJRIUMkGNaQR+jK2UauRMQOY2EwMxZT16A2m+X+btWKnjdSNtn0IvV8d8VBrTl6F1Soq3ZrI3EP/rNRLsHrZSruIEQbHhR91EeBh5g2O9DtfAUPQtoUxzu6HHbqmmDG0krttUcM8iKanqpE1jTGartcU4qtjPDxpzSWtCeMB0L8tseMFkVNPker8S+JXg0i+fHpEhFskW2Sa7JCAH5JSckwtSJYwAeSRP5Nl5cT6cT+draC04o5lNMgbn9w8fq6fl</latexit><latexit sha1_base64="xgstjAngkeZCh1E1KIy6YZ6BQ14=">AAACIHicbVDLTgJBEJzFF+AL9OhlIzHxItn1ovFE4sUjJPJIgJDZoYEJM7ObmV6VbPYLvOoP+DXejEf9GgfYC2Al06lUV2e6K4gEN+h5P05ua3tndy9fKO4fHB4dl8onLRPGmkGThSLUnYAaEFxBEzkK6EQaqAwEtIPp/bzffgJteKgecRZBX9Kx4iPOKFqpEQ9KFa/qLeBuEj8jFZKhPig7hd4wZLEEhUxQY7q+F2E/oRo5E5AWe7GBiLIpHUOy2C91L6w0dEehtk+hu1BXfFQaM5OBdUqKE7Pem4v/9boxjm77CVdRjKDY8qNRLFwM3fmx7pBrYChmllCmud3QZROqKUMbSbHYU/DMQimpGiY9Y0xqq7VFmFWcLQ5acUlrQnjB5CpNbXj+elSbpHVd9b2q3/Aqtbssxjw5I+fkkvjkhtTIA6mTJmEEyCt5I+/Oh/PpfDnfS2vOyWZOyQqc3z8hwaQR</latexit>

v
<latexit sha1_base64="sJax/5vPsabOXMNTQ2mZCpQS4/8=">AAACIHicbVDLSgNBEOz1mcS3Hr0sBsGLYdeL4kXBi8cEjAomyOykY4bMzC4zveqy7Bd41R/QH/HoTTyJfo2TxyVqwTRFdTXTXVEihaUg+PKmpmdm5+ZL5crC4tLyyura+rmNU8OxyWMZm8uIWZRCY5MESbxMDDIVSbyI+ieD/sUtGitifUZZgm3FbrToCs7ISY3b69VqUAuG8P+ScEyqR68vn+BQv17zyq1OzFOFmrhk1l6FQULtnBkSXGJRaaUWE8b77Abz4X6Fv+2kjt+NjXua/KE64WPK2kxFzqkY9ezv3kD8r3eVUvegnQudpISajz7qptKn2B8c63eEQU4yc4RxI9yGPu8xwzi5SCqVlsY7HivFdCdvWWsLV50toXGlbHjQhEs5E+E95btF4cILf0f1l5zv1cKgFjaC6vEhjFCCTdiCHQhhH47hFOrQBA4ID/AIT96z9+a9ex8j65Q3ntmACXjfPwYipos=</latexit><latexit sha1_base64="Ye1tSR557JFU2I5M8DdluBuqFvU=">AAACIHicbVBNSwMxEM362a5fVY9eFovgxbLrRRFEwYvHFqwKtkg2nbahSXZJZqtl2V/gVf+A+kM8ehNPor/GdNtLqw8yPN68ITMvjAU36Pvfzszs3PzCYqHoLi2vrK6V1jcuTZRoBnUWiUhfh9SA4ArqyFHAdayBylDAVdg7G/av+qANj9QFDmJoStpRvM0ZRSvV+relsl/xc3h/STAm5ZO3ly/3OH6t3q47xUYrYokEhUxQY24CP8ZmSjVyJiBzG4mBmLIe7UCa75d5O1Zqee1I26fQy9UJH5XGDGRonZJi10z3huJ/vZsE24fNlKs4QVBs9FE7ER5G3vBYr8U1MBQDSyjT3G7osS7VlKGNxHUbCu5YJCVVrbRhjMlstbYYxxUH+UETLmlNCPeY7mWZDS+YjuovudyvBH4lqPnl0yMyQoFskW2ySwJyQE7JOamSOmEEyAN5JE/Os/PufDifI+uMM57ZJBNwfn4BIWen5g==</latexit><latexit sha1_base64="Ye1tSR557JFU2I5M8DdluBuqFvU=">AAACIHicbVBNSwMxEM362a5fVY9eFovgxbLrRRFEwYvHFqwKtkg2nbahSXZJZqtl2V/gVf+A+kM8ehNPor/GdNtLqw8yPN68ITMvjAU36Pvfzszs3PzCYqHoLi2vrK6V1jcuTZRoBnUWiUhfh9SA4ArqyFHAdayBylDAVdg7G/av+qANj9QFDmJoStpRvM0ZRSvV+relsl/xc3h/STAm5ZO3ly/3OH6t3q47xUYrYokEhUxQY24CP8ZmSjVyJiBzG4mBmLIe7UCa75d5O1Zqee1I26fQy9UJH5XGDGRonZJi10z3huJ/vZsE24fNlKs4QVBs9FE7ER5G3vBYr8U1MBQDSyjT3G7osS7VlKGNxHUbCu5YJCVVrbRhjMlstbYYxxUH+UETLmlNCPeY7mWZDS+YjuovudyvBH4lqPnl0yMyQoFskW2ySwJyQE7JOamSOmEEyAN5JE/Os/PufDifI+uMM57ZJBNwfn4BIWen5g==</latexit><latexit sha1_base64="e95MjGdyRgjOK47HH18TmH+SjH8=">AAACIHicbVDLTgJBEJz1CfgCPXrZSEy8SHa9aDyRePEIiTwSIGR2aGDCzOxmphclm/0Cr/oDfo0341G/xgH2AljJdCrV1ZnuCiLBDXrej7O1vbO7t5/LFw4Oj45PiqXTpgljzaDBQhHqdkANCK6ggRwFtCMNVAYCWsHkYd5vTUEbHqonnEXQk3Sk+JAzilaqT/vFslfxFnA3iZ+RMslQ65ecfHcQsliCQiaoMR3fi7CXUI2cCUgL3dhARNmEjiBZ7Je6l1YauMNQ26fQXagrPiqNmcnAOiXFsVnvzcX/ep0Yh3e9hKsoRlBs+dEwFi6G7vxYd8A1MBQzSyjT3G7osjHVlKGNpFDoKnhmoZRUDZKuMSa11doizCrOFgetuKQ1Ibxgcp2mNjx/PapN0ryp+F7Fr3vl6n0WY46ckwtyRXxyS6rkkdRIgzAC5JW8kXfnw/l0vpzvpXXLyWbOyAqc3z8jfaQS</latexit>

u+v
<latexit sha1_base64="0jiUOBpiYsQ+uB2hx7DXUBoOdBk=">AAACKXicbVBNS8NAEJ3Urxo/q0cvwSIIYkm8KJ4ELx4VrIpNqZvttl26uwm7k2oJ+Q1evOof8Nd4U6/+EbdpL60+2OHx5g0786JEcIO+/+WU5uYXFpfKy+7K6tr6xmZl68bEqaasTmMR67uIGCa4YnXkKNhdohmRkWC3Uf981L8dMG14rK5xmLCmJF3FO5wStNJ9GiJ7wuwgH7Q2q37NL+D9JcGEVM9KrecHALhsVZzlsB3TVDKFVBBjGoGfYDMjGjkVLHfD1LCE0D7psqxYNPf2rNT2OrG2T6FXqFM+Io0Zysg6JcGeme2NxP96jRQ7J82MqyRFpuj4o04qPIy90dVem2tGUQwtIVRzu6FHe0QTijYb1w0Ve6SxlES1s9AYk9tqbQlOKg6Lg6Zc0pqK8A7z3IYXzEb1l9wc1QK/FlzZFE9hjDLswC7sQwDHcAYXcAl1oKDgBV7hzXl3PpxP53tsLTmTmW2YgvPzC215qbU=</latexit><latexit sha1_base64="AuzsEirnAM/DYtLZVXgSzRF0+7o=">AAACKXicbVDLTgIxFO3gC/AFunQzkZiYGMmMGw0rEhe6xEQekSGkUwo0tp1JewedTOYb3LjVH/Br3Klbf8QysAE8SW9Ozj03vff4IWcaHOfbyq2tb2xu5QvF7Z3dvf1S+aClg0gR2iQBD1THx5pyJmkTGHDaCRXFwue07T9eT/vtCVWaBfIe4pD2BB5JNmQEg5EeIg/oMyRn6aRfqjhVJ4O9Stw5qdRz/Zcbp15r9MtWwRsEJBJUAuFY667rhNBLsAJGOE2LXqRpiMkjHtEkWzS1T4w0sIeBMk+CnakLPiy0joVvnALDWC/3puJ/vW4Ew6tewmQYAZVk9tEw4jYE9vRqe8AUJcBjQzBRzGxokzFWmIDJplj0JH0igRBYDhJPa52aamwhzCvE2UELLmFMWXjnaWrCc5ejWiWti6rrVN07k2INzZBHR+gYnSIXXaI6ukUN1EQESfSK3tC79WF9Wl/Wz8yas+Yzh2gB1u8fTrqqRg==</latexit><latexit sha1_base64="AuzsEirnAM/DYtLZVXgSzRF0+7o=">AAACKXicbVDLTgIxFO3gC/AFunQzkZiYGMmMGw0rEhe6xEQekSGkUwo0tp1JewedTOYb3LjVH/Br3Klbf8QysAE8SW9Ozj03vff4IWcaHOfbyq2tb2xu5QvF7Z3dvf1S+aClg0gR2iQBD1THx5pyJmkTGHDaCRXFwue07T9eT/vtCVWaBfIe4pD2BB5JNmQEg5EeIg/oMyRn6aRfqjhVJ4O9Stw5qdRz/Zcbp15r9MtWwRsEJBJUAuFY667rhNBLsAJGOE2LXqRpiMkjHtEkWzS1T4w0sIeBMk+CnakLPiy0joVvnALDWC/3puJ/vW4Ew6tewmQYAZVk9tEw4jYE9vRqe8AUJcBjQzBRzGxokzFWmIDJplj0JH0igRBYDhJPa52aamwhzCvE2UELLmFMWXjnaWrCc5ejWiWti6rrVN07k2INzZBHR+gYnSIXXaI6ukUN1EQESfSK3tC79WF9Wl/Wz8yas+Yzh2gB1u8fTrqqRg==</latexit><latexit sha1_base64="JxDYRAV+lOMSQ8Y64m6x9E5UAYs=">AAACKXicbVDLTsJAFJ3iC/AFunTTSExMjKR1o3FF4sYlJvKIlJDpMMCEmWkzc4s2Tf/Crf6AX+NO3fojDqUbwJPMzcm552buPX7ImQbH+bYKG5tb2zvFUnl3b//gsFI9ausgUoS2SMAD1fWxppxJ2gIGnHZDRbHwOe3407t5vzOjSrNAPkIc0r7AY8lGjGAw0lPkAX2B5CKdDSo1p+5ksNeJm5MaytEcVK2SNwxIJKgEwrHWPdcJoZ9gBYxwmpa9SNMQkyke0yRbNLXPjDS0R4EyT4KdqUs+LLSOhW+cAsNEr/bm4n+9XgSjm37CZBgBlWTx0SjiNgT2/Gp7yBQlwGNDMFHMbGiTCVaYgMmmXPYkfSaBEFgOE09rnZpqbCHkFeLsoCWXMKYsvMs0NeG5q1Gtk/ZV3XXq7oNTa9zmMRbRCTpF58hF16iB7lETtRBBEr2iN/RufVif1pf1s7AWrHzmGC3B+v0D+fmoJQ==</latexit>

u-v
<latexit sha1_base64="Rfpvd+djo0yXXOli5OMv6xurUr4=">AAACKXicbVC7TgMxENwLryS8EihpTkRINER3NCAqJBrKIJGHyEXB5ziJhe072XtAdLpvoKGFH+Br6ICWH8F5NEkYyavR7Ky8O2EsuEHP+3ZyK6tr6xv5QnFza3tnt1Tea5go0ZTVaSQi3QqJYYIrVkeOgrVizYgMBWuGD1fjfvORacMjdYujmHUkGSje55Sgle6SANkzpifZY7dU8areBO4y8WekcpnrvtwDQK1bdgpBL6KJZAqpIMa0fS/GTko0cipYVgwSw2JCH8iApZNFM/fISj23H2n7FLoTdc5HpDEjGVqnJDg0i72x+F+vnWD/vJNyFSfIFJ1+1E+Ei5E7vtrtcc0oipElhGpuN3TpkGhC0WZTLAaKPdFISqJ6aWCMyWy1thhnFUeTg+Zc0ppm4WU2PH8xqmXSOK36XtW/sSlewBR5OIBDOAYfzuASrqEGdaCg4BXe4N35cD6dL+dnas05s5l9mIPz+wdw9am3</latexit><latexit sha1_base64="0rOhXaVIOdvLxLe5Ok7eJFMx+tk=">AAACKXicbVC7TsMwFHXKqy2vFkaWiAqJhSphAXWqxABjkehDNFXlOE5r1XYi+6ZQRfkGFlb4Ab6GDVj5EdzH0pYj+ero3HPle48fc6bBcb6t3Mbm1vZOvlDc3ds/OCyVj1o6ShShTRLxSHV8rClnkjaBAaedWFEsfE7b/uhm2m+PqdIskg8wiWlP4IFkISMYjPSYeECfIb3Ixv1Sxak6M9jrxF2QSj3Xf7l16rVGv2wVvCAiiaASCMdad10nhl6KFTDCaVb0Ek1jTEZ4QNPZopl9ZqTADiNlngR7pi75sNB6InzjFBiGerU3Ff/rdRMIr3spk3ECVJL5R2HCbYjs6dV2wBQlwCeGYKKY2dAmQ6wwAZNNsehJ+kQiIbAMUk9rnZlqbDEsKkxmBy25hDEtwstMeO5qVOukdVl1nap7b1KsoTny6ASdonPkoitUR3eogZqIIIle0Rt6tz6sT+vL+plbc9Zi5hgtwfr9A1I2qkg=</latexit><latexit sha1_base64="0rOhXaVIOdvLxLe5Ok7eJFMx+tk=">AAACKXicbVC7TsMwFHXKqy2vFkaWiAqJhSphAXWqxABjkehDNFXlOE5r1XYi+6ZQRfkGFlb4Ab6GDVj5EdzH0pYj+ero3HPle48fc6bBcb6t3Mbm1vZOvlDc3ds/OCyVj1o6ShShTRLxSHV8rClnkjaBAaedWFEsfE7b/uhm2m+PqdIskg8wiWlP4IFkISMYjPSYeECfIb3Ixv1Sxak6M9jrxF2QSj3Xf7l16rVGv2wVvCAiiaASCMdad10nhl6KFTDCaVb0Ek1jTEZ4QNPZopl9ZqTADiNlngR7pi75sNB6InzjFBiGerU3Ff/rdRMIr3spk3ECVJL5R2HCbYjs6dV2wBQlwCeGYKKY2dAmQ6wwAZNNsehJ+kQiIbAMUk9rnZlqbDEsKkxmBy25hDEtwstMeO5qVOukdVl1nap7b1KsoTny6ASdonPkoitUR3eogZqIIIle0Rt6tz6sT+vL+plbc9Zi5hgtwfr9A1I2qkg=</latexit><latexit sha1_base64="qmI/0W8isg2gF0vxV+U2LtpQHjU=">AAACKXicbVDLTsMwEHR4tuXVwpFLRIXEhSrhAuJUiQvHItGHaKrKcdzWqu1E9qYQRfkLrvADfA034MqP4Ka5tGUkr0azs/Lu+BFnGhzn29rY3Nre2S2VK3v7B4dH1dpxR4exIrRNQh6qno815UzSNjDgtBcpioXPadef3s373RlVmoXyEZKIDgQeSzZiBIORnmIP6Aukl9lsWK07DSeHvU7cgtRRgdawZpW9ICSxoBIIx1r3XSeCQYoVMMJpVvFiTSNMpnhM03zRzD43UmCPQmWeBDtXl3xYaJ0I3zgFhole7c3F/3r9GEY3g5TJKAYqyeKjUcxtCO351XbAFCXAE0MwUcxsaJMJVpiAyaZS8SR9JqEQWAapp7XOTDW2CIoKSX7QkksYUxFeZsJzV6NaJ52rhus03Aen3rwtYiyhU3SGLpCLrlET3aMWaiOCJHpFb+jd+rA+rS/rZ2HdsIqZE7QE6/cP/XWoJw==</latexit>

v
<latexit sha1_base64="JVBCuLuVP1MWzEWq+Zxfcep4WcE="></latexit><latexit sha1_base64="BeCS3laxEKe84+A5B12gA7oxE1k="></latexit><latexit sha1_base64="BeCS3laxEKe84+A5B12gA7oxE1k="></latexit><latexit sha1_base64="o/UtrRhW3tOLuF2qDZh5GpIzGkk=">AAACIHicdVBNSwMxEM36bf2sHr0Ei+DFsltKq54KXjwqWBVskWw61WCSXZJZdVn2F3jVP+Cv8SYe9deYbtdDRR9keLx5Q2ZeGEth0fc/vanpmdm5+YXFytLyyuraenXj3EaJ4dDlkYzMZcgsSKGhiwIlXMYGmAolXIR3R6P+xT0YKyJ9hmkMfcVutBgKztBJp/fX6zW/3mw0W+0mHZNW44cc0KDuF6iREifXVW+xN4h4okAjl8zaq8CPsZ8xg4JLyCu9xELM+B27gazYL6c7ThrQYWTc00gLdcLHlLWpCp1TMby1v3sj8a/eVYLD/X4mdJwgaD7+aJhIihEdHUsHwgBHmTrCuBFuQ8pvmWEcXSSVSk/DA4+UYnqQ9ay1uavOFmNZMS0OmnApZ0J4xGwvz114PwnR/8l5ox749eDUr3UOyxgXyBbZJrskIG3SIcfkhHQJJ0CeyDN58V69N+/d+xhbp7xyZpNMwPv6BqvYpGQ=</latexit>

a
<latexit sha1_base64="ESLhuihNUI+7VGRgy1lbfno1TtY=">AAACIHicdVDLSgNBEOz1bXzr0ctgELwYdkPwcVLw4lHBqGCCzE46Ojgzu8z0qmHZL/CqB2/iX/gH3sSjfo2TRA8RLZimqK5muitOlXQUhh/B0PDI6Nj4xGRpanpmdm5+YfHYJZkVWBeJSuxpzB0qabBOkhSepha5jhWexFd73f7JNVonE3NEnRSbml8Y2ZaCk5cO+fl8OazUqrWNzRrrk43qD9lmUSXsobzz8vj4BAAH5wvBZKOViEyjIaG4c2dRmFIz55akUFiUGpnDlIsrfoF5b7+CrXqpxdqJ9c8Q66kDPq6d6+jYOzWnS/e71xX/6p1l1N5q5tKkGaER/Y/amWKUsO6xrCUtClIdT7iw0m/IxCW3XJCPpFRqGLwRidbctPKGc67w1dtS+q7U6R004NLeRHhL+XpR+PB+EmL/k+NqJQor0WFY3q1BHxOwDCuwBhFswi7swwHUQQDCHdzDQ/AcvAZvwXvfOhR8zyzBAILPL+ZspxM=</latexit><latexit sha1_base64="ForSeva441dM3JmjqkBPXOzdgvk=">AAACIHicdVDLSgMxFM3Ud33r0k2wCG4sM6W0ulJw41LBqtAWyaS3bWiSGZI7ahnmC9zqQpf+hX/gTlzq15g+XFT0QC6Hc88l954wlsKi7396uanpmdm5+YX84tLyyura+saFjRLDocYjGZmrkFmQQkMNBUq4ig0wFUq4DHvHg/7lDRgrIn2O/RiainW0aAvO0Eln7Hqt4BfLpXKlWqYjUin9kAMaFP0hCoevTwM8n16vewuNVsQTBRq5ZNbWAz/GZsoMCi4hyzcSCzHjPdaBdLhfRnec1KLtyLinkQ7VCR9T1vZV6JyKYdf+7g3Ev3r1BNv7zVToOEHQfPRRO5EUIzo4lraEAY6y7wjjRrgNKe8ywzi6SPL5hoZbHinFdCttWGszV50txnHF/vCgCZdyJoQ7TPeyzIX3kxD9n1yUioFfDM78wlGZjDBPtsg22SUBqZIjckJOSY1wAuSePJBH78V78969j5E1541nNskEvK9vptCo2A==</latexit><latexit sha1_base64="ForSeva441dM3JmjqkBPXOzdgvk=">AAACIHicdVDLSgMxFM3Ud33r0k2wCG4sM6W0ulJw41LBqtAWyaS3bWiSGZI7ahnmC9zqQpf+hX/gTlzq15g+XFT0QC6Hc88l954wlsKi7396uanpmdm5+YX84tLyyura+saFjRLDocYjGZmrkFmQQkMNBUq4ig0wFUq4DHvHg/7lDRgrIn2O/RiainW0aAvO0Eln7Hqt4BfLpXKlWqYjUin9kAMaFP0hCoevTwM8n16vewuNVsQTBRq5ZNbWAz/GZsoMCi4hyzcSCzHjPdaBdLhfRnec1KLtyLinkQ7VCR9T1vZV6JyKYdf+7g3Ev3r1BNv7zVToOEHQfPRRO5EUIzo4lraEAY6y7wjjRrgNKe8ywzi6SPL5hoZbHinFdCttWGszV50txnHF/vCgCZdyJoQ7TPeyzIX3kxD9n1yUioFfDM78wlGZjDBPtsg22SUBqZIjckJOSY1wAuSePJBH78V78969j5E1541nNskEvK9vptCo2A==</latexit><latexit sha1_base64="Pq7f44F3SsK4sYjlncFBav4TFBA=">AAACIHicdVDLSgMxFM3Ud321unQTLIIby0wpre4KblwqWC3YUjLpbRuaZIbkjlqG+QK3+gN+jTtxqV9j+nBR0QO5HM49l9x7wlgKi77/6eWWlldW19Y38ptb2zu7heLejY0Sw6HJIxmZVsgsSKGhiQIltGIDTIUSbsPR+aR/ew/Gikhf4ziGjmIDLfqCM3TSFesWSn65WqnW6lU6I7XKDzmjQdmfokTmuOwWvY12L+KJAo1cMmvvAj/GTsoMCi4hy7cTCzHjIzaAdLpfRo+c1KP9yLinkU7VBR9T1o5V6JyK4dD+7k3Ev3p3CfZPO6nQcYKg+eyjfiIpRnRyLO0JAxzl2BHGjXAbUj5khnF0keTzbQ0PPFKK6V7attZmrjpbjPOK4+lBCy7lTAiPmJ5kmQvvJyH6P7mplAO/HFz5pUZ1HuM6OSCH5JgEpE4a5IJckibhBMgTeSYv3qv35r17HzNrzpvP7JMFeF/fhZ6kSQ==</latexit>

b
<latexit sha1_base64="C5sNFPDZi38eZsuSgUL6X7jr6UE=">AAACIHicdVDLSgNBEOz1bXzr0ctgELwYdkPwcVLw4lHBqGCCzE46Ojgzu8z0qmHZL/CqB2/iX/gH3sSjfo2TRA8RLZimqK5muitOlXQUhh/B0PDI6Nj4xGRpanpmdm5+YfHYJZkVWBeJSuxpzB0qabBOkhSepha5jhWexFd73f7JNVonE3NEnRSbml8Y2ZaCk5cO4/P5clipVWsbmzXWJxvVH7LNokrYQ3nn5fHxCQAOzheCyUYrEZlGQ0Jx586iMKVmzi1JobAoNTKHKRdX/ALz3n4FW/VSi7UT658h1lMHfFw719Gxd2pOl+53ryv+1TvLqL3VzKVJM0Ij+h+1M8UoYd1jWUtaFKQ6nnBhpd+QiUtuuSAfSanUMHgjEq25aeUN51zhq7el9F2p0ztowKW9ifCW8vWi8OH9JMT+J8fVShRWosOwvFuDPiZgGVZgDSLYhF3YhwOogwCEO7iHh+A5eA3egve+dSj4nlmCAQSfX+gopxQ=</latexit><latexit sha1_base64="+j4AZx5X7LL2XU6GL1h9milE1Uc=">AAACIHicdVDLSgMxFM3Ud33r0k2wCG4sM6W0ulJw41LBqtAWyaS3bWiSGZI7ahnmC9zqQpf+hX/gTlzq15g+XFT0QC6Hc88l954wlsKi7396uanpmdm5+YX84tLyyura+saFjRLDocYjGZmrkFmQQkMNBUq4ig0wFUq4DHvHg/7lDRgrIn2O/RiainW0aAvO0Eln4fVawS+WS+VKtUxHpFL6IQc0KPpDFA5fnwZ4Pr1e9xYarYgnCjRyyaytB36MzZQZFFxClm8kFmLGe6wD6XC/jO44qUXbkXFPIx2qEz6mrO2r0DkVw6793RuIf/XqCbb3m6nQcYKg+eijdiIpRnRwLG0JAxxl3xHGjXAbUt5lhnF0keTzDQ23PFKK6VbasNZmrjpbjOOK/eFBEy7lTAh3mO5lmQvvJyH6P7koFQO/GJz5haMyGWGebJFtsksCUiVH5ISckhrhBMg9eSCP3ov35r17HyNrzhvPbJIJeF/fqIyo2Q==</latexit><latexit sha1_base64="+j4AZx5X7LL2XU6GL1h9milE1Uc=">AAACIHicdVDLSgMxFM3Ud33r0k2wCG4sM6W0ulJw41LBqtAWyaS3bWiSGZI7ahnmC9zqQpf+hX/gTlzq15g+XFT0QC6Hc88l954wlsKi7396uanpmdm5+YX84tLyyura+saFjRLDocYjGZmrkFmQQkMNBUq4ig0wFUq4DHvHg/7lDRgrIn2O/RiainW0aAvO0Eln4fVawS+WS+VKtUxHpFL6IQc0KPpDFA5fnwZ4Pr1e9xYarYgnCjRyyaytB36MzZQZFFxClm8kFmLGe6wD6XC/jO44qUXbkXFPIx2qEz6mrO2r0DkVw6793RuIf/XqCbb3m6nQcYKg+eijdiIpRnRwLG0JAxxl3xHGjXAbUt5lhnF0keTzDQ23PFKK6VbasNZmrjpbjOOK/eFBEy7lTAh3mO5lmQvvJyH6P7koFQO/GJz5haMyGWGebJFtsksCUiVH5ISckhrhBMg9eSCP3ov35r17HyNrzhvPbJIJeF/fqIyo2Q==</latexit><latexit sha1_base64="CxB+AvWg1CID32UaqvTfsy9nQnM=">AAACIHicdVDLSgMxFM3Ud321unQTLIIby0wpre4KblwqWC3YUjLpbRuaZIbkjlqG+QK3+gN+jTtxqV9j+nBR0QO5HM49l9x7wlgKi77/6eWWlldW19Y38ptb2zu7heLejY0Sw6HJIxmZVsgsSKGhiQIltGIDTIUSbsPR+aR/ew/Gikhf4ziGjmIDLfqCM3TSVdgtlPxytVKt1at0RmqVH3JGg7I/RYnMcdktehvtXsQTBRq5ZNbeBX6MnZQZFFxClm8nFmLGR2wA6XS/jB45qUf7kXFPI52qCz6mrB2r0DkVw6H93ZuIf/XuEuyfdlKh4wRB89lH/URSjOjkWNoTBjjKsSOMG+E2pHzIDOPoIsnn2xoeeKQU0720ba3NXHW2GOcVx9ODFlzKmRAeMT3JMhfeT0L0f3JTKQd+ObjyS43qPMZ1ckAOyTEJSJ00yAW5JE3CCZAn8kxevFfvzXv3PmbWnDef2ScL8L6+AYdapEo=</latexit>

b
<latexit sha1_base64="C5sNFPDZi38eZsuSgUL6X7jr6UE=">AAACIHicdVDLSgNBEOz1bXzr0ctgELwYdkPwcVLw4lHBqGCCzE46Ojgzu8z0qmHZL/CqB2/iX/gH3sSjfo2TRA8RLZimqK5muitOlXQUhh/B0PDI6Nj4xGRpanpmdm5+YfHYJZkVWBeJSuxpzB0qabBOkhSepha5jhWexFd73f7JNVonE3NEnRSbml8Y2ZaCk5cO4/P5clipVWsbmzXWJxvVH7LNokrYQ3nn5fHxCQAOzheCyUYrEZlGQ0Jx586iMKVmzi1JobAoNTKHKRdX/ALz3n4FW/VSi7UT658h1lMHfFw719Gxd2pOl+53ryv+1TvLqL3VzKVJM0Ij+h+1M8UoYd1jWUtaFKQ6nnBhpd+QiUtuuSAfSanUMHgjEq25aeUN51zhq7el9F2p0ztowKW9ifCW8vWi8OH9JMT+J8fVShRWosOwvFuDPiZgGVZgDSLYhF3YhwOogwCEO7iHh+A5eA3egve+dSj4nlmCAQSfX+gopxQ=</latexit><latexit sha1_base64="+j4AZx5X7LL2XU6GL1h9milE1Uc=">AAACIHicdVDLSgMxFM3Ud33r0k2wCG4sM6W0ulJw41LBqtAWyaS3bWiSGZI7ahnmC9zqQpf+hX/gTlzq15g+XFT0QC6Hc88l954wlsKi7396uanpmdm5+YX84tLyyura+saFjRLDocYjGZmrkFmQQkMNBUq4ig0wFUq4DHvHg/7lDRgrIn2O/RiainW0aAvO0Eln4fVawS+WS+VKtUxHpFL6IQc0KPpDFA5fnwZ4Pr1e9xYarYgnCjRyyaytB36MzZQZFFxClm8kFmLGe6wD6XC/jO44qUXbkXFPIx2qEz6mrO2r0DkVw6793RuIf/XqCbb3m6nQcYKg+eijdiIpRnRwLG0JAxxl3xHGjXAbUt5lhnF0keTzDQ23PFKK6VbasNZmrjpbjOOK/eFBEy7lTAh3mO5lmQvvJyH6P7koFQO/GJz5haMyGWGebJFtsksCUiVH5ISckhrhBMg9eSCP3ov35r17HyNrzhvPbJIJeF/fqIyo2Q==</latexit><latexit sha1_base64="+j4AZx5X7LL2XU6GL1h9milE1Uc=">AAACIHicdVDLSgMxFM3Ud33r0k2wCG4sM6W0ulJw41LBqtAWyaS3bWiSGZI7ahnmC9zqQpf+hX/gTlzq15g+XFT0QC6Hc88l954wlsKi7396uanpmdm5+YX84tLyyura+saFjRLDocYjGZmrkFmQQkMNBUq4ig0wFUq4DHvHg/7lDRgrIn2O/RiainW0aAvO0Eln4fVawS+WS+VKtUxHpFL6IQc0KPpDFA5fnwZ4Pr1e9xYarYgnCjRyyaytB36MzZQZFFxClm8kFmLGe6wD6XC/jO44qUXbkXFPIx2qEz6mrO2r0DkVw6793RuIf/XqCbb3m6nQcYKg+eijdiIpRnRwLG0JAxxl3xHGjXAbUt5lhnF0keTzDQ23PFKK6VbasNZmrjpbjOOK/eFBEy7lTAh3mO5lmQvvJyH6P7koFQO/GJz5haMyGWGebJFtsksCUiVH5ISckhrhBMg9eSCP3ov35r17HyNrzhvPbJIJeF/fqIyo2Q==</latexit><latexit sha1_base64="CxB+AvWg1CID32UaqvTfsy9nQnM=">AAACIHicdVDLSgMxFM3Ud321unQTLIIby0wpre4KblwqWC3YUjLpbRuaZIbkjlqG+QK3+gN+jTtxqV9j+nBR0QO5HM49l9x7wlgKi77/6eWWlldW19Y38ptb2zu7heLejY0Sw6HJIxmZVsgsSKGhiQIltGIDTIUSbsPR+aR/ew/Gikhf4ziGjmIDLfqCM3TSVdgtlPxytVKt1at0RmqVH3JGg7I/RYnMcdktehvtXsQTBRq5ZNbeBX6MnZQZFFxClm8nFmLGR2wA6XS/jB45qUf7kXFPI52qCz6mrB2r0DkVw6H93ZuIf/XuEuyfdlKh4wRB89lH/URSjOjkWNoTBjjKsSOMG+E2pHzIDOPoIsnn2xoeeKQU0720ba3NXHW2GOcVx9ODFlzKmRAeMT3JMhfeT0L0f3JTKQd+ObjyS43qPMZ1ckAOyTEJSJ00yAW5JE3CCZAn8kxevFfvzXv3PmbWnDef2ScL8L6+AYdapEo=</latexit>

a
<latexit sha1_base64="ESLhuihNUI+7VGRgy1lbfno1TtY=">AAACIHicdVDLSgNBEOz1bXzr0ctgELwYdkPwcVLw4lHBqGCCzE46Ojgzu8z0qmHZL/CqB2/iX/gH3sSjfo2TRA8RLZimqK5muitOlXQUhh/B0PDI6Nj4xGRpanpmdm5+YfHYJZkVWBeJSuxpzB0qabBOkhSepha5jhWexFd73f7JNVonE3NEnRSbml8Y2ZaCk5cO+fl8OazUqrWNzRrrk43qD9lmUSXsobzz8vj4BAAH5wvBZKOViEyjIaG4c2dRmFIz55akUFiUGpnDlIsrfoF5b7+CrXqpxdqJ9c8Q66kDPq6d6+jYOzWnS/e71xX/6p1l1N5q5tKkGaER/Y/amWKUsO6xrCUtClIdT7iw0m/IxCW3XJCPpFRqGLwRidbctPKGc67w1dtS+q7U6R004NLeRHhL+XpR+PB+EmL/k+NqJQor0WFY3q1BHxOwDCuwBhFswi7swwHUQQDCHdzDQ/AcvAZvwXvfOhR8zyzBAILPL+ZspxM=</latexit><latexit sha1_base64="ForSeva441dM3JmjqkBPXOzdgvk=">AAACIHicdVDLSgMxFM3Ud33r0k2wCG4sM6W0ulJw41LBqtAWyaS3bWiSGZI7ahnmC9zqQpf+hX/gTlzq15g+XFT0QC6Hc88l954wlsKi7396uanpmdm5+YX84tLyyura+saFjRLDocYjGZmrkFmQQkMNBUq4ig0wFUq4DHvHg/7lDRgrIn2O/RiainW0aAvO0Eln7Hqt4BfLpXKlWqYjUin9kAMaFP0hCoevTwM8n16vewuNVsQTBRq5ZNbWAz/GZsoMCi4hyzcSCzHjPdaBdLhfRnec1KLtyLinkQ7VCR9T1vZV6JyKYdf+7g3Ev3r1BNv7zVToOEHQfPRRO5EUIzo4lraEAY6y7wjjRrgNKe8ywzi6SPL5hoZbHinFdCttWGszV50txnHF/vCgCZdyJoQ7TPeyzIX3kxD9n1yUioFfDM78wlGZjDBPtsg22SUBqZIjckJOSY1wAuSePJBH78V78969j5E1541nNskEvK9vptCo2A==</latexit><latexit sha1_base64="ForSeva441dM3JmjqkBPXOzdgvk=">AAACIHicdVDLSgMxFM3Ud33r0k2wCG4sM6W0ulJw41LBqtAWyaS3bWiSGZI7ahnmC9zqQpf+hX/gTlzq15g+XFT0QC6Hc88l954wlsKi7396uanpmdm5+YX84tLyyura+saFjRLDocYjGZmrkFmQQkMNBUq4ig0wFUq4DHvHg/7lDRgrIn2O/RiainW0aAvO0Eln7Hqt4BfLpXKlWqYjUin9kAMaFP0hCoevTwM8n16vewuNVsQTBRq5ZNbWAz/GZsoMCi4hyzcSCzHjPdaBdLhfRnec1KLtyLinkQ7VCR9T1vZV6JyKYdf+7g3Ev3r1BNv7zVToOEHQfPRRO5EUIzo4lraEAY6y7wjjRrgNKe8ywzi6SPL5hoZbHinFdCttWGszV50txnHF/vCgCZdyJoQ7TPeyzIX3kxD9n1yUioFfDM78wlGZjDBPtsg22SUBqZIjckJOSY1wAuSePJBH78V78969j5E1541nNskEvK9vptCo2A==</latexit><latexit sha1_base64="Pq7f44F3SsK4sYjlncFBav4TFBA=">AAACIHicdVDLSgMxFM3Ud321unQTLIIby0wpre4KblwqWC3YUjLpbRuaZIbkjlqG+QK3+gN+jTtxqV9j+nBR0QO5HM49l9x7wlgKi77/6eWWlldW19Y38ptb2zu7heLejY0Sw6HJIxmZVsgsSKGhiQIltGIDTIUSbsPR+aR/ew/Gikhf4ziGjmIDLfqCM3TSFesWSn65WqnW6lU6I7XKDzmjQdmfokTmuOwWvY12L+KJAo1cMmvvAj/GTsoMCi4hy7cTCzHjIzaAdLpfRo+c1KP9yLinkU7VBR9T1o5V6JyK4dD+7k3Ev3p3CfZPO6nQcYKg+eyjfiIpRnRyLO0JAxzl2BHGjXAbUj5khnF0keTzbQ0PPFKK6V7attZmrjpbjPOK4+lBCy7lTAiPmJ5kmQvvJyH6P7mplAO/HFz5pUZ1HuM6OSCH5JgEpE4a5IJckibhBMgTeSYv3qv35r17HzNrzpvP7JMFeF/fhZ6kSQ==</latexit>

(b) The parallelogram law states that for any two (not necessar-

ily orthogonal) vectors, u and v, we have ∥u + v∥2 + ∥u − v∥2 =
2
(
∥u∥2 + ∥v∥2

)
. It is valid in any inner product space, but its state-

ment does not require knowing the inner product. Its proof follows from
applying Pythagoras’ theorem to the red, blue, and green right-angled
triangles shown above, and then eliminating the lengths a and b from
the resulting 3 equations.

u
<latexit sha1_base64="sn5a1gTXgCefyf2lSBxOWxg1Ed0=">AAACIHicbVDLSgNBEOz1mcRXokcvi0HwYtj1ongx4MWjgomCCTI76SSDM7PLTK8alv0Cr/oD+iMevYkn0a9x8rhELZimqK5muitKpLAUBF/ezOzc/MJioVhaWl5ZXStX1ps2Tg3HBo9lbC4jZlEKjQ0SJPEyMchUJPEiujke9i9u0VgR63MaJNhWrKdFV3BGTjpLr8vVoBaM4P8l4YRUj15fPsHh9LriFVudmKcKNXHJrL0Kg4TaGTMkuMS81EotJozfsB5mo/1yf9tJHb8bG/c0+SN1yseUtQMVOadi1Le/e0Pxv95VSt2DdiZ0khJqPv6om0qfYn94rN8RBjnJgSOMG+E29HmfGcbJRVIqtTTe8VgppjtZy1qbu+psCU0qDUYHTbmUMxHeU7ab5y688HdUf0lzrxYGtfAsqNYPYYwCbMIW7EAI+1CHEziFBnBAeIBHePKevTfv3fsYW2e8ycwGTMH7/gEEZqaK</latexit><latexit sha1_base64="8TE0Xj09Ko520zYE1DXYarkl0lM=">AAACIHicbVBNSwMxEM3W7/Wr1aOXxSJ4sex6UQRR8OJRwdpCW0o2nWpokl2SWbUs+wu86h9Qf4hHb+JJ9NeYbntp64MMjzdvyMwLY8EN+v6PU5iZnZtfWFxyl1dW19aLpY1rEyWaQZVFItL1kBoQXEEVOQqoxxqoDAXUwt7ZoF+7A214pK6wH0NL0hvFu5xRtNJl0i6W/Yqfw5smwYiUT95fv93j+O2iXXKWmp2IJRIUMkGNaQR+jK2UauRMQOY2EwMxZT16A2m+X+btWKnjdSNtn0IvV8d8VBrTl6F1Soq3ZrI3EP/rNRLsHrZSruIEQbHhR91EeBh5g2O9DtfAUPQtoUxzu6HHbqmmDG0krttUcM8iKanqpE1jTGartcU4qtjPDxpzSWtCeMB0L8tseMFkVNPker8S+JXg0i+fHpEhFskW2Sa7JCAH5JSckwtSJYwAeSRP5Nl5cT6cT+draC04o5lNMgbn9w8fq6fl</latexit><latexit sha1_base64="8TE0Xj09Ko520zYE1DXYarkl0lM=">AAACIHicbVBNSwMxEM3W7/Wr1aOXxSJ4sex6UQRR8OJRwdpCW0o2nWpokl2SWbUs+wu86h9Qf4hHb+JJ9NeYbntp64MMjzdvyMwLY8EN+v6PU5iZnZtfWFxyl1dW19aLpY1rEyWaQZVFItL1kBoQXEEVOQqoxxqoDAXUwt7ZoF+7A214pK6wH0NL0hvFu5xRtNJl0i6W/Yqfw5smwYiUT95fv93j+O2iXXKWmp2IJRIUMkGNaQR+jK2UauRMQOY2EwMxZT16A2m+X+btWKnjdSNtn0IvV8d8VBrTl6F1Soq3ZrI3EP/rNRLsHrZSruIEQbHhR91EeBh5g2O9DtfAUPQtoUxzu6HHbqmmDG0krttUcM8iKanqpE1jTGartcU4qtjPDxpzSWtCeMB0L8tseMFkVNPker8S+JXg0i+fHpEhFskW2Sa7JCAH5JSckwtSJYwAeSRP5Nl5cT6cT+draC04o5lNMgbn9w8fq6fl</latexit><latexit sha1_base64="xgstjAngkeZCh1E1KIy6YZ6BQ14=">AAACIHicbVDLTgJBEJzFF+AL9OhlIzHxItn1ovFE4sUjJPJIgJDZoYEJM7ObmV6VbPYLvOoP+DXejEf9GgfYC2Al06lUV2e6K4gEN+h5P05ua3tndy9fKO4fHB4dl8onLRPGmkGThSLUnYAaEFxBEzkK6EQaqAwEtIPp/bzffgJteKgecRZBX9Kx4iPOKFqpEQ9KFa/qLeBuEj8jFZKhPig7hd4wZLEEhUxQY7q+F2E/oRo5E5AWe7GBiLIpHUOy2C91L6w0dEehtk+hu1BXfFQaM5OBdUqKE7Pem4v/9boxjm77CVdRjKDY8qNRLFwM3fmx7pBrYChmllCmud3QZROqKUMbSbHYU/DMQimpGiY9Y0xqq7VFmFWcLQ5acUlrQnjB5CpNbXj+elSbpHVd9b2q3/Aqtbssxjw5I+fkkvjkhtTIA6mTJmEEyCt5I+/Oh/PpfDnfS2vOyWZOyQqc3z8hwaQR</latexit>

v
<latexit sha1_base64="sJax/5vPsabOXMNTQ2mZCpQS4/8=">AAACIHicbVDLSgNBEOz1mcS3Hr0sBsGLYdeL4kXBi8cEjAomyOykY4bMzC4zveqy7Bd41R/QH/HoTTyJfo2TxyVqwTRFdTXTXVEihaUg+PKmpmdm5+ZL5crC4tLyyura+rmNU8OxyWMZm8uIWZRCY5MESbxMDDIVSbyI+ieD/sUtGitifUZZgm3FbrToCs7ISY3b69VqUAuG8P+ScEyqR68vn+BQv17zyq1OzFOFmrhk1l6FQULtnBkSXGJRaaUWE8b77Abz4X6Fv+2kjt+NjXua/KE64WPK2kxFzqkY9ezv3kD8r3eVUvegnQudpISajz7qptKn2B8c63eEQU4yc4RxI9yGPu8xwzi5SCqVlsY7HivFdCdvWWsLV50toXGlbHjQhEs5E+E95btF4cILf0f1l5zv1cKgFjaC6vEhjFCCTdiCHQhhH47hFOrQBA4ID/AIT96z9+a9ex8j65Q3ntmACXjfPwYipos=</latexit><latexit sha1_base64="Ye1tSR557JFU2I5M8DdluBuqFvU=">AAACIHicbVBNSwMxEM362a5fVY9eFovgxbLrRRFEwYvHFqwKtkg2nbahSXZJZqtl2V/gVf+A+kM8ehNPor/GdNtLqw8yPN68ITMvjAU36Pvfzszs3PzCYqHoLi2vrK6V1jcuTZRoBnUWiUhfh9SA4ArqyFHAdayBylDAVdg7G/av+qANj9QFDmJoStpRvM0ZRSvV+relsl/xc3h/STAm5ZO3ly/3OH6t3q47xUYrYokEhUxQY24CP8ZmSjVyJiBzG4mBmLIe7UCa75d5O1Zqee1I26fQy9UJH5XGDGRonZJi10z3huJ/vZsE24fNlKs4QVBs9FE7ER5G3vBYr8U1MBQDSyjT3G7osS7VlKGNxHUbCu5YJCVVrbRhjMlstbYYxxUH+UETLmlNCPeY7mWZDS+YjuovudyvBH4lqPnl0yMyQoFskW2ySwJyQE7JOamSOmEEyAN5JE/Os/PufDifI+uMM57ZJBNwfn4BIWen5g==</latexit><latexit sha1_base64="Ye1tSR557JFU2I5M8DdluBuqFvU=">AAACIHicbVBNSwMxEM362a5fVY9eFovgxbLrRRFEwYvHFqwKtkg2nbahSXZJZqtl2V/gVf+A+kM8ehNPor/GdNtLqw8yPN68ITMvjAU36Pvfzszs3PzCYqHoLi2vrK6V1jcuTZRoBnUWiUhfh9SA4ArqyFHAdayBylDAVdg7G/av+qANj9QFDmJoStpRvM0ZRSvV+relsl/xc3h/STAm5ZO3ly/3OH6t3q47xUYrYokEhUxQY24CP8ZmSjVyJiBzG4mBmLIe7UCa75d5O1Zqee1I26fQy9UJH5XGDGRonZJi10z3huJ/vZsE24fNlKs4QVBs9FE7ER5G3vBYr8U1MBQDSyjT3G7osS7VlKGNxHUbCu5YJCVVrbRhjMlstbYYxxUH+UETLmlNCPeY7mWZDS+YjuovudyvBH4lqPnl0yMyQoFskW2ySwJyQE7JOamSOmEEyAN5JE/Os/PufDifI+uMM57ZJBNwfn4BIWen5g==</latexit><latexit sha1_base64="e95MjGdyRgjOK47HH18TmH+SjH8=">AAACIHicbVDLTgJBEJz1CfgCPXrZSEy8SHa9aDyRePEIiTwSIGR2aGDCzOxmphclm/0Cr/oDfo0341G/xgH2AljJdCrV1ZnuCiLBDXrej7O1vbO7t5/LFw4Oj45PiqXTpgljzaDBQhHqdkANCK6ggRwFtCMNVAYCWsHkYd5vTUEbHqonnEXQk3Sk+JAzilaqT/vFslfxFnA3iZ+RMslQ65ecfHcQsliCQiaoMR3fi7CXUI2cCUgL3dhARNmEjiBZ7Je6l1YauMNQ26fQXagrPiqNmcnAOiXFsVnvzcX/ep0Yh3e9hKsoRlBs+dEwFi6G7vxYd8A1MBQzSyjT3G7osjHVlKGNpFDoKnhmoZRUDZKuMSa11doizCrOFgetuKQ1Ibxgcp2mNjx/PapN0ryp+F7Fr3vl6n0WY46ckwtyRXxyS6rkkdRIgzAC5JW8kXfnw/l0vpzvpXXLyWbOyAqc3z8jfaQS</latexit>

u+
v

<latexit sha1_base64="0jiUOBpiYsQ+uB2hx7DXUBoOdBk=">AAACKXicbVBNS8NAEJ3Urxo/q0cvwSIIYkm8KJ4ELx4VrIpNqZvttl26uwm7k2oJ+Q1evOof8Nd4U6/+EbdpL60+2OHx5g0786JEcIO+/+WU5uYXFpfKy+7K6tr6xmZl68bEqaasTmMR67uIGCa4YnXkKNhdohmRkWC3Uf981L8dMG14rK5xmLCmJF3FO5wStNJ9GiJ7wuwgH7Q2q37NL+D9JcGEVM9KrecHALhsVZzlsB3TVDKFVBBjGoGfYDMjGjkVLHfD1LCE0D7psqxYNPf2rNT2OrG2T6FXqFM+Io0Zysg6JcGeme2NxP96jRQ7J82MqyRFpuj4o04qPIy90dVem2tGUQwtIVRzu6FHe0QTijYb1w0Ve6SxlES1s9AYk9tqbQlOKg6Lg6Zc0pqK8A7z3IYXzEb1l9wc1QK/FlzZFE9hjDLswC7sQwDHcAYXcAl1oKDgBV7hzXl3PpxP53tsLTmTmW2YgvPzC215qbU=</latexit><latexit sha1_base64="AuzsEirnAM/DYtLZVXgSzRF0+7o=">AAACKXicbVDLTgIxFO3gC/AFunQzkZiYGMmMGw0rEhe6xEQekSGkUwo0tp1JewedTOYb3LjVH/Br3Klbf8QysAE8SW9Ozj03vff4IWcaHOfbyq2tb2xu5QvF7Z3dvf1S+aClg0gR2iQBD1THx5pyJmkTGHDaCRXFwue07T9eT/vtCVWaBfIe4pD2BB5JNmQEg5EeIg/oMyRn6aRfqjhVJ4O9Stw5qdRz/Zcbp15r9MtWwRsEJBJUAuFY667rhNBLsAJGOE2LXqRpiMkjHtEkWzS1T4w0sIeBMk+CnakLPiy0joVvnALDWC/3puJ/vW4Ew6tewmQYAZVk9tEw4jYE9vRqe8AUJcBjQzBRzGxokzFWmIDJplj0JH0igRBYDhJPa52aamwhzCvE2UELLmFMWXjnaWrCc5ejWiWti6rrVN07k2INzZBHR+gYnSIXXaI6ukUN1EQESfSK3tC79WF9Wl/Wz8yas+Yzh2gB1u8fTrqqRg==</latexit><latexit sha1_base64="AuzsEirnAM/DYtLZVXgSzRF0+7o=">AAACKXicbVDLTgIxFO3gC/AFunQzkZiYGMmMGw0rEhe6xEQekSGkUwo0tp1JewedTOYb3LjVH/Br3Klbf8QysAE8SW9Ozj03vff4IWcaHOfbyq2tb2xu5QvF7Z3dvf1S+aClg0gR2iQBD1THx5pyJmkTGHDaCRXFwue07T9eT/vtCVWaBfIe4pD2BB5JNmQEg5EeIg/oMyRn6aRfqjhVJ4O9Stw5qdRz/Zcbp15r9MtWwRsEJBJUAuFY667rhNBLsAJGOE2LXqRpiMkjHtEkWzS1T4w0sIeBMk+CnakLPiy0joVvnALDWC/3puJ/vW4Ew6tewmQYAZVk9tEw4jYE9vRqe8AUJcBjQzBRzGxokzFWmIDJplj0JH0igRBYDhJPa52aamwhzCvE2UELLmFMWXjnaWrCc5ejWiWti6rrVN07k2INzZBHR+gYnSIXXaI6ukUN1EQESfSK3tC79WF9Wl/Wz8yas+Yzh2gB1u8fTrqqRg==</latexit><latexit sha1_base64="JxDYRAV+lOMSQ8Y64m6x9E5UAYs=">AAACKXicbVDLTsJAFJ3iC/AFunTTSExMjKR1o3FF4sYlJvKIlJDpMMCEmWkzc4s2Tf/Crf6AX+NO3fojDqUbwJPMzcm552buPX7ImQbH+bYKG5tb2zvFUnl3b//gsFI9ausgUoS2SMAD1fWxppxJ2gIGnHZDRbHwOe3407t5vzOjSrNAPkIc0r7AY8lGjGAw0lPkAX2B5CKdDSo1p+5ksNeJm5MaytEcVK2SNwxIJKgEwrHWPdcJoZ9gBYxwmpa9SNMQkyke0yRbNLXPjDS0R4EyT4KdqUs+LLSOhW+cAsNEr/bm4n+9XgSjm37CZBgBlWTx0SjiNgT2/Gp7yBQlwGNDMFHMbGiTCVaYgMmmXPYkfSaBEFgOE09rnZpqbCHkFeLsoCWXMKYsvMs0NeG5q1Gtk/ZV3XXq7oNTa9zmMRbRCTpF58hF16iB7lETtRBBEr2iN/RufVif1pf1s7AWrHzmGC3B+v0D+fmoJQ==</latexit>

u-v
<latexit sha1_base64="Rfpvd+djo0yXXOli5OMv6xurUr4=">AAACKXicbVC7TgMxENwLryS8EihpTkRINER3NCAqJBrKIJGHyEXB5ziJhe072XtAdLpvoKGFH+Br6ICWH8F5NEkYyavR7Ky8O2EsuEHP+3ZyK6tr6xv5QnFza3tnt1Tea5go0ZTVaSQi3QqJYYIrVkeOgrVizYgMBWuGD1fjfvORacMjdYujmHUkGSje55Sgle6SANkzpifZY7dU8areBO4y8WekcpnrvtwDQK1bdgpBL6KJZAqpIMa0fS/GTko0cipYVgwSw2JCH8iApZNFM/fISj23H2n7FLoTdc5HpDEjGVqnJDg0i72x+F+vnWD/vJNyFSfIFJ1+1E+Ei5E7vtrtcc0oipElhGpuN3TpkGhC0WZTLAaKPdFISqJ6aWCMyWy1thhnFUeTg+Zc0ppm4WU2PH8xqmXSOK36XtW/sSlewBR5OIBDOAYfzuASrqEGdaCg4BXe4N35cD6dL+dnas05s5l9mIPz+wdw9am3</latexit><latexit sha1_base64="0rOhXaVIOdvLxLe5Ok7eJFMx+tk=">AAACKXicbVC7TsMwFHXKqy2vFkaWiAqJhSphAXWqxABjkehDNFXlOE5r1XYi+6ZQRfkGFlb4Ab6GDVj5EdzH0pYj+ero3HPle48fc6bBcb6t3Mbm1vZOvlDc3ds/OCyVj1o6ShShTRLxSHV8rClnkjaBAaedWFEsfE7b/uhm2m+PqdIskg8wiWlP4IFkISMYjPSYeECfIb3Ixv1Sxak6M9jrxF2QSj3Xf7l16rVGv2wVvCAiiaASCMdad10nhl6KFTDCaVb0Ek1jTEZ4QNPZopl9ZqTADiNlngR7pi75sNB6InzjFBiGerU3Ff/rdRMIr3spk3ECVJL5R2HCbYjs6dV2wBQlwCeGYKKY2dAmQ6wwAZNNsehJ+kQiIbAMUk9rnZlqbDEsKkxmBy25hDEtwstMeO5qVOukdVl1nap7b1KsoTny6ASdonPkoitUR3eogZqIIIle0Rt6tz6sT+vL+plbc9Zi5hgtwfr9A1I2qkg=</latexit><latexit sha1_base64="0rOhXaVIOdvLxLe5Ok7eJFMx+tk=">AAACKXicbVC7TsMwFHXKqy2vFkaWiAqJhSphAXWqxABjkehDNFXlOE5r1XYi+6ZQRfkGFlb4Ab6GDVj5EdzH0pYj+ero3HPle48fc6bBcb6t3Mbm1vZOvlDc3ds/OCyVj1o6ShShTRLxSHV8rClnkjaBAaedWFEsfE7b/uhm2m+PqdIskg8wiWlP4IFkISMYjPSYeECfIb3Ixv1Sxak6M9jrxF2QSj3Xf7l16rVGv2wVvCAiiaASCMdad10nhl6KFTDCaVb0Ek1jTEZ4QNPZopl9ZqTADiNlngR7pi75sNB6InzjFBiGerU3Ff/rdRMIr3spk3ECVJL5R2HCbYjs6dV2wBQlwCeGYKKY2dAmQ6wwAZNNsehJ+kQiIbAMUk9rnZlqbDEsKkxmBy25hDEtwstMeO5qVOukdVl1nap7b1KsoTny6ASdonPkoitUR3eogZqIIIle0Rt6tz6sT+vL+plbc9Zi5hgtwfr9A1I2qkg=</latexit><latexit sha1_base64="qmI/0W8isg2gF0vxV+U2LtpQHjU=">AAACKXicbVDLTsMwEHR4tuXVwpFLRIXEhSrhAuJUiQvHItGHaKrKcdzWqu1E9qYQRfkLrvADfA034MqP4Ka5tGUkr0azs/Lu+BFnGhzn29rY3Nre2S2VK3v7B4dH1dpxR4exIrRNQh6qno815UzSNjDgtBcpioXPadef3s373RlVmoXyEZKIDgQeSzZiBIORnmIP6Aukl9lsWK07DSeHvU7cgtRRgdawZpW9ICSxoBIIx1r3XSeCQYoVMMJpVvFiTSNMpnhM03zRzD43UmCPQmWeBDtXl3xYaJ0I3zgFhole7c3F/3r9GEY3g5TJKAYqyeKjUcxtCO351XbAFCXAE0MwUcxsaJMJVpiAyaZS8SR9JqEQWAapp7XOTDW2CIoKSX7QkksYUxFeZsJzV6NaJ52rhus03Aen3rwtYiyhU3SGLpCLrlET3aMWaiOCJHpFb+jd+rA+rS/rZ2HdsIqZE7QE6/cP/XWoJw==</latexit>
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<latexit sha1_base64="oXuIVmG2L6uyYg6YiJ9kIBz15zw="></latexit><latexit sha1_base64="UsxDj7xFpp7AOKoxpeahvH+xD1k=">AAACIHicdVBNSwMxEM367fqtRy/BInix7JZiVRAFLx4VrAq2SDadajDJLsmsWpb9BV71D6g/xKM38ST6a8y2eqjogwyPN2/IzIsSKSwGwYc3MDg0PDI6Nu5PTE5Nz8zOzR/ZODUc6jyWsTmJmAUpNNRRoISTxABTkYTj6HK36B9fgbEi1ofYSaCp2LkWbcEZOung6my2FJSrYW2tukELslEJ1wtSqRZKWA66KG0/P777W8nT/tmcN95oxTxVoJFLZu1pGCTYzJhBwSXkfiO1kDB+yc4h6+6X02UntWg7Nu5ppF21z8eUtR0VOadieGF/9wrxr95piu31ZiZ0kiJo3vuonUqKMS2OpS1hgKPsOMK4EW5Dyi+YYRxdJL7f0HDNY6WYbmUNa23uqrMl+F2x0z2oz6WcCeEGs9U8d+H9JET/J0eVchiUw4OgtLNJehgji2SJrJCQ1MgO2SP7pE44AXJL7si99+C9eK/eW8864H3PLJA+eJ9fru6oOw==</latexit><latexit sha1_base64="UsxDj7xFpp7AOKoxpeahvH+xD1k="></latexit><latexit sha1_base64="ZfT/6lwSFJOfgWDngRkIma1rRhw=">AAACIHicdVBNSwMxEM36bf1q9eglWAQvlt1SbOup4MWjglXBFsmmUxuaZJdktlqW/QVe9Q/4a7yJR/01Zms9VPRBhsebN2TmhbEUFn3/w5ubX1hcWl5ZLaytb2xuFUvblzZKDIc2j2RkrkNmQQoNbRQo4To2wFQo4SocnuT9qxEYKyJ9geMYuordadEXnKGTzke3xbJfqQX1o1qT5qRZDRo5qdZyJaj4E5TJFGe3JW+104t4okAjl8zam8CPsZsyg4JLyAqdxELM+JDdQTrZL6P7TurRfmTc00gn6oyPKWvHKnROxXBgf/dy8a/eTYL9RjcVOk4QNP/+qJ9IihHNj6U9YYCjHDvCuBFuQ8oHzDCOLpJCoaPhnkdKMd1LO9bazFVni3FacTw5aMalnAnhAdPDLHPh/SRE/yeX1UrgV4Jzv9w6nsa4QnbJHjkgAamTFjklZ6RNOAHySJ7Is/fivXpv3vu3dc6bzuyQGXifX7EEpGc=</latexit>

(c) Failure of the parallelogram law for ∥.∥∞ in R2.
∥u∥∞ = ∥(1, 0)∥∞ = 1 and ∥v∥∞ = ∥(0, 1)∥∞ =
1, and ∥u + v∥∞ = ∥(1, 1)]∥∞ = 1, ∥u − v∥∞ =
∥(1,−1)∥∞ = 1. Thus ∥u + v∥∞ + ∥u − v∥∞ = 2,
while 2 (∥u∥∞ + ∥v∥∞) = 4.

u
<latexit sha1_base64="sn5a1gTXgCefyf2lSBxOWxg1Ed0=">AAACIHicbVDLSgNBEOz1mcRXokcvi0HwYtj1ongx4MWjgomCCTI76SSDM7PLTK8alv0Cr/oD+iMevYkn0a9x8rhELZimqK5muitKpLAUBF/ezOzc/MJioVhaWl5ZXStX1ps2Tg3HBo9lbC4jZlEKjQ0SJPEyMchUJPEiujke9i9u0VgR63MaJNhWrKdFV3BGTjpLr8vVoBaM4P8l4YRUj15fPsHh9LriFVudmKcKNXHJrL0Kg4TaGTMkuMS81EotJozfsB5mo/1yf9tJHb8bG/c0+SN1yseUtQMVOadi1Le/e0Pxv95VSt2DdiZ0khJqPv6om0qfYn94rN8RBjnJgSOMG+E29HmfGcbJRVIqtTTe8VgppjtZy1qbu+psCU0qDUYHTbmUMxHeU7ab5y688HdUf0lzrxYGtfAsqNYPYYwCbMIW7EAI+1CHEziFBnBAeIBHePKevTfv3fsYW2e8ycwGTMH7/gEEZqaK</latexit><latexit sha1_base64="8TE0Xj09Ko520zYE1DXYarkl0lM=">AAACIHicbVBNSwMxEM3W7/Wr1aOXxSJ4sex6UQRR8OJRwdpCW0o2nWpokl2SWbUs+wu86h9Qf4hHb+JJ9NeYbntp64MMjzdvyMwLY8EN+v6PU5iZnZtfWFxyl1dW19aLpY1rEyWaQZVFItL1kBoQXEEVOQqoxxqoDAXUwt7ZoF+7A214pK6wH0NL0hvFu5xRtNJl0i6W/Yqfw5smwYiUT95fv93j+O2iXXKWmp2IJRIUMkGNaQR+jK2UauRMQOY2EwMxZT16A2m+X+btWKnjdSNtn0IvV8d8VBrTl6F1Soq3ZrI3EP/rNRLsHrZSruIEQbHhR91EeBh5g2O9DtfAUPQtoUxzu6HHbqmmDG0krttUcM8iKanqpE1jTGartcU4qtjPDxpzSWtCeMB0L8tseMFkVNPker8S+JXg0i+fHpEhFskW2Sa7JCAH5JSckwtSJYwAeSRP5Nl5cT6cT+draC04o5lNMgbn9w8fq6fl</latexit><latexit sha1_base64="8TE0Xj09Ko520zYE1DXYarkl0lM=">AAACIHicbVBNSwMxEM3W7/Wr1aOXxSJ4sex6UQRR8OJRwdpCW0o2nWpokl2SWbUs+wu86h9Qf4hHb+JJ9NeYbntp64MMjzdvyMwLY8EN+v6PU5iZnZtfWFxyl1dW19aLpY1rEyWaQZVFItL1kBoQXEEVOQqoxxqoDAXUwt7ZoF+7A214pK6wH0NL0hvFu5xRtNJl0i6W/Yqfw5smwYiUT95fv93j+O2iXXKWmp2IJRIUMkGNaQR+jK2UauRMQOY2EwMxZT16A2m+X+btWKnjdSNtn0IvV8d8VBrTl6F1Soq3ZrI3EP/rNRLsHrZSruIEQbHhR91EeBh5g2O9DtfAUPQtoUxzu6HHbqmmDG0krttUcM8iKanqpE1jTGartcU4qtjPDxpzSWtCeMB0L8tseMFkVNPker8S+JXg0i+fHpEhFskW2Sa7JCAH5JSckwtSJYwAeSRP5Nl5cT6cT+draC04o5lNMgbn9w8fq6fl</latexit><latexit sha1_base64="xgstjAngkeZCh1E1KIy6YZ6BQ14=">AAACIHicbVDLTgJBEJzFF+AL9OhlIzHxItn1ovFE4sUjJPJIgJDZoYEJM7ObmV6VbPYLvOoP+DXejEf9GgfYC2Al06lUV2e6K4gEN+h5P05ua3tndy9fKO4fHB4dl8onLRPGmkGThSLUnYAaEFxBEzkK6EQaqAwEtIPp/bzffgJteKgecRZBX9Kx4iPOKFqpEQ9KFa/qLeBuEj8jFZKhPig7hd4wZLEEhUxQY7q+F2E/oRo5E5AWe7GBiLIpHUOy2C91L6w0dEehtk+hu1BXfFQaM5OBdUqKE7Pem4v/9boxjm77CVdRjKDY8qNRLFwM3fmx7pBrYChmllCmud3QZROqKUMbSbHYU/DMQimpGiY9Y0xqq7VFmFWcLQ5acUlrQnjB5CpNbXj+elSbpHVd9b2q3/Aqtbssxjw5I+fkkvjkhtTIA6mTJmEEyCt5I+/Oh/PpfDnfS2vOyWZOyQqc3z8hwaQR</latexit>

v
<latexit sha1_base64="sJax/5vPsabOXMNTQ2mZCpQS4/8=">AAACIHicbVDLSgNBEOz1mcS3Hr0sBsGLYdeL4kXBi8cEjAomyOykY4bMzC4zveqy7Bd41R/QH/HoTTyJfo2TxyVqwTRFdTXTXVEihaUg+PKmpmdm5+ZL5crC4tLyyura+rmNU8OxyWMZm8uIWZRCY5MESbxMDDIVSbyI+ieD/sUtGitifUZZgm3FbrToCs7ISY3b69VqUAuG8P+ScEyqR68vn+BQv17zyq1OzFOFmrhk1l6FQULtnBkSXGJRaaUWE8b77Abz4X6Fv+2kjt+NjXua/KE64WPK2kxFzqkY9ezv3kD8r3eVUvegnQudpISajz7qptKn2B8c63eEQU4yc4RxI9yGPu8xwzi5SCqVlsY7HivFdCdvWWsLV50toXGlbHjQhEs5E+E95btF4cILf0f1l5zv1cKgFjaC6vEhjFCCTdiCHQhhH47hFOrQBA4ID/AIT96z9+a9ex8j65Q3ntmACXjfPwYipos=</latexit><latexit sha1_base64="Ye1tSR557JFU2I5M8DdluBuqFvU=">AAACIHicbVBNSwMxEM362a5fVY9eFovgxbLrRRFEwYvHFqwKtkg2nbahSXZJZqtl2V/gVf+A+kM8ehNPor/GdNtLqw8yPN68ITMvjAU36Pvfzszs3PzCYqHoLi2vrK6V1jcuTZRoBnUWiUhfh9SA4ArqyFHAdayBylDAVdg7G/av+qANj9QFDmJoStpRvM0ZRSvV+relsl/xc3h/STAm5ZO3ly/3OH6t3q47xUYrYokEhUxQY24CP8ZmSjVyJiBzG4mBmLIe7UCa75d5O1Zqee1I26fQy9UJH5XGDGRonZJi10z3huJ/vZsE24fNlKs4QVBs9FE7ER5G3vBYr8U1MBQDSyjT3G7osS7VlKGNxHUbCu5YJCVVrbRhjMlstbYYxxUH+UETLmlNCPeY7mWZDS+YjuovudyvBH4lqPnl0yMyQoFskW2ySwJyQE7JOamSOmEEyAN5JE/Os/PufDifI+uMM57ZJBNwfn4BIWen5g==</latexit><latexit sha1_base64="Ye1tSR557JFU2I5M8DdluBuqFvU=">AAACIHicbVBNSwMxEM362a5fVY9eFovgxbLrRRFEwYvHFqwKtkg2nbahSXZJZqtl2V/gVf+A+kM8ehNPor/GdNtLqw8yPN68ITMvjAU36Pvfzszs3PzCYqHoLi2vrK6V1jcuTZRoBnUWiUhfh9SA4ArqyFHAdayBylDAVdg7G/av+qANj9QFDmJoStpRvM0ZRSvV+relsl/xc3h/STAm5ZO3ly/3OH6t3q47xUYrYokEhUxQY24CP8ZmSjVyJiBzG4mBmLIe7UCa75d5O1Zqee1I26fQy9UJH5XGDGRonZJi10z3huJ/vZsE24fNlKs4QVBs9FE7ER5G3vBYr8U1MBQDSyjT3G7osS7VlKGNxHUbCu5YJCVVrbRhjMlstbYYxxUH+UETLmlNCPeY7mWZDS+YjuovudyvBH4lqPnl0yMyQoFskW2ySwJyQE7JOamSOmEEyAN5JE/Os/PufDifI+uMM57ZJBNwfn4BIWen5g==</latexit><latexit sha1_base64="e95MjGdyRgjOK47HH18TmH+SjH8=">AAACIHicbVDLTgJBEJz1CfgCPXrZSEy8SHa9aDyRePEIiTwSIGR2aGDCzOxmphclm/0Cr/oDfo0341G/xgH2AljJdCrV1ZnuCiLBDXrej7O1vbO7t5/LFw4Oj45PiqXTpgljzaDBQhHqdkANCK6ggRwFtCMNVAYCWsHkYd5vTUEbHqonnEXQk3Sk+JAzilaqT/vFslfxFnA3iZ+RMslQ65ecfHcQsliCQiaoMR3fi7CXUI2cCUgL3dhARNmEjiBZ7Je6l1YauMNQ26fQXagrPiqNmcnAOiXFsVnvzcX/ep0Yh3e9hKsoRlBs+dEwFi6G7vxYd8A1MBQzSyjT3G7osjHVlKGNpFDoKnhmoZRUDZKuMSa11doizCrOFgetuKQ1Ibxgcp2mNjx/PapN0ryp+F7Fr3vl6n0WY46ckwtyRXxyS6rkkdRIgzAC5JW8kXfnw/l0vpzvpXXLyWbOyAqc3z8jfaQS</latexit>

u+v
<latexit sha1_base64="0jiUOBpiYsQ+uB2hx7DXUBoOdBk=">AAACKXicbVBNS8NAEJ3Urxo/q0cvwSIIYkm8KJ4ELx4VrIpNqZvttl26uwm7k2oJ+Q1evOof8Nd4U6/+EbdpL60+2OHx5g0786JEcIO+/+WU5uYXFpfKy+7K6tr6xmZl68bEqaasTmMR67uIGCa4YnXkKNhdohmRkWC3Uf981L8dMG14rK5xmLCmJF3FO5wStNJ9GiJ7wuwgH7Q2q37NL+D9JcGEVM9KrecHALhsVZzlsB3TVDKFVBBjGoGfYDMjGjkVLHfD1LCE0D7psqxYNPf2rNT2OrG2T6FXqFM+Io0Zysg6JcGeme2NxP96jRQ7J82MqyRFpuj4o04qPIy90dVem2tGUQwtIVRzu6FHe0QTijYb1w0Ve6SxlES1s9AYk9tqbQlOKg6Lg6Zc0pqK8A7z3IYXzEb1l9wc1QK/FlzZFE9hjDLswC7sQwDHcAYXcAl1oKDgBV7hzXl3PpxP53tsLTmTmW2YgvPzC215qbU=</latexit><latexit sha1_base64="AuzsEirnAM/DYtLZVXgSzRF0+7o=">AAACKXicbVDLTgIxFO3gC/AFunQzkZiYGMmMGw0rEhe6xEQekSGkUwo0tp1JewedTOYb3LjVH/Br3Klbf8QysAE8SW9Ozj03vff4IWcaHOfbyq2tb2xu5QvF7Z3dvf1S+aClg0gR2iQBD1THx5pyJmkTGHDaCRXFwue07T9eT/vtCVWaBfIe4pD2BB5JNmQEg5EeIg/oMyRn6aRfqjhVJ4O9Stw5qdRz/Zcbp15r9MtWwRsEJBJUAuFY667rhNBLsAJGOE2LXqRpiMkjHtEkWzS1T4w0sIeBMk+CnakLPiy0joVvnALDWC/3puJ/vW4Ew6tewmQYAZVk9tEw4jYE9vRqe8AUJcBjQzBRzGxokzFWmIDJplj0JH0igRBYDhJPa52aamwhzCvE2UELLmFMWXjnaWrCc5ejWiWti6rrVN07k2INzZBHR+gYnSIXXaI6ukUN1EQESfSK3tC79WF9Wl/Wz8yas+Yzh2gB1u8fTrqqRg==</latexit><latexit sha1_base64="AuzsEirnAM/DYtLZVXgSzRF0+7o=">AAACKXicbVDLTgIxFO3gC/AFunQzkZiYGMmMGw0rEhe6xEQekSGkUwo0tp1JewedTOYb3LjVH/Br3Klbf8QysAE8SW9Ozj03vff4IWcaHOfbyq2tb2xu5QvF7Z3dvf1S+aClg0gR2iQBD1THx5pyJmkTGHDaCRXFwue07T9eT/vtCVWaBfIe4pD2BB5JNmQEg5EeIg/oMyRn6aRfqjhVJ4O9Stw5qdRz/Zcbp15r9MtWwRsEJBJUAuFY667rhNBLsAJGOE2LXqRpiMkjHtEkWzS1T4w0sIeBMk+CnakLPiy0joVvnALDWC/3puJ/vW4Ew6tewmQYAZVk9tEw4jYE9vRqe8AUJcBjQzBRzGxokzFWmIDJplj0JH0igRBYDhJPa52aamwhzCvE2UELLmFMWXjnaWrCc5ejWiWti6rrVN07k2INzZBHR+gYnSIXXaI6ukUN1EQESfSK3tC79WF9Wl/Wz8yas+Yzh2gB1u8fTrqqRg==</latexit><latexit sha1_base64="JxDYRAV+lOMSQ8Y64m6x9E5UAYs=">AAACKXicbVDLTsJAFJ3iC/AFunTTSExMjKR1o3FF4sYlJvKIlJDpMMCEmWkzc4s2Tf/Crf6AX+NO3fojDqUbwJPMzcm552buPX7ImQbH+bYKG5tb2zvFUnl3b//gsFI9ausgUoS2SMAD1fWxppxJ2gIGnHZDRbHwOe3407t5vzOjSrNAPkIc0r7AY8lGjGAw0lPkAX2B5CKdDSo1p+5ksNeJm5MaytEcVK2SNwxIJKgEwrHWPdcJoZ9gBYxwmpa9SNMQkyke0yRbNLXPjDS0R4EyT4KdqUs+LLSOhW+cAsNEr/bm4n+9XgSjm37CZBgBlWTx0SjiNgT2/Gp7yBQlwGNDMFHMbGiTCVaYgMmmXPYkfSaBEFgOE09rnZpqbCHkFeLsoCWXMKYsvMs0NeG5q1Gtk/ZV3XXq7oNTa9zmMRbRCTpF58hF16iB7lETtRBBEr2iN/RufVif1pf1s7AWrHzmGC3B+v0D+fmoJQ==</latexit>

u-v
<latexit sha1_base64="Rfpvd+djo0yXXOli5OMv6xurUr4=">AAACKXicbVC7TgMxENwLryS8EihpTkRINER3NCAqJBrKIJGHyEXB5ziJhe072XtAdLpvoKGFH+Br6ICWH8F5NEkYyavR7Ky8O2EsuEHP+3ZyK6tr6xv5QnFza3tnt1Tea5go0ZTVaSQi3QqJYYIrVkeOgrVizYgMBWuGD1fjfvORacMjdYujmHUkGSje55Sgle6SANkzpifZY7dU8areBO4y8WekcpnrvtwDQK1bdgpBL6KJZAqpIMa0fS/GTko0cipYVgwSw2JCH8iApZNFM/fISj23H2n7FLoTdc5HpDEjGVqnJDg0i72x+F+vnWD/vJNyFSfIFJ1+1E+Ei5E7vtrtcc0oipElhGpuN3TpkGhC0WZTLAaKPdFISqJ6aWCMyWy1thhnFUeTg+Zc0ppm4WU2PH8xqmXSOK36XtW/sSlewBR5OIBDOAYfzuASrqEGdaCg4BXe4N35cD6dL+dnas05s5l9mIPz+wdw9am3</latexit><latexit sha1_base64="0rOhXaVIOdvLxLe5Ok7eJFMx+tk=">AAACKXicbVC7TsMwFHXKqy2vFkaWiAqJhSphAXWqxABjkehDNFXlOE5r1XYi+6ZQRfkGFlb4Ab6GDVj5EdzH0pYj+ero3HPle48fc6bBcb6t3Mbm1vZOvlDc3ds/OCyVj1o6ShShTRLxSHV8rClnkjaBAaedWFEsfE7b/uhm2m+PqdIskg8wiWlP4IFkISMYjPSYeECfIb3Ixv1Sxak6M9jrxF2QSj3Xf7l16rVGv2wVvCAiiaASCMdad10nhl6KFTDCaVb0Ek1jTEZ4QNPZopl9ZqTADiNlngR7pi75sNB6InzjFBiGerU3Ff/rdRMIr3spk3ECVJL5R2HCbYjs6dV2wBQlwCeGYKKY2dAmQ6wwAZNNsehJ+kQiIbAMUk9rnZlqbDEsKkxmBy25hDEtwstMeO5qVOukdVl1nap7b1KsoTny6ASdonPkoitUR3eogZqIIIle0Rt6tz6sT+vL+plbc9Zi5hgtwfr9A1I2qkg=</latexit><latexit sha1_base64="0rOhXaVIOdvLxLe5Ok7eJFMx+tk=">AAACKXicbVC7TsMwFHXKqy2vFkaWiAqJhSphAXWqxABjkehDNFXlOE5r1XYi+6ZQRfkGFlb4Ab6GDVj5EdzH0pYj+ero3HPle48fc6bBcb6t3Mbm1vZOvlDc3ds/OCyVj1o6ShShTRLxSHV8rClnkjaBAaedWFEsfE7b/uhm2m+PqdIskg8wiWlP4IFkISMYjPSYeECfIb3Ixv1Sxak6M9jrxF2QSj3Xf7l16rVGv2wVvCAiiaASCMdad10nhl6KFTDCaVb0Ek1jTEZ4QNPZopl9ZqTADiNlngR7pi75sNB6InzjFBiGerU3Ff/rdRMIr3spk3ECVJL5R2HCbYjs6dV2wBQlwCeGYKKY2dAmQ6wwAZNNsehJ+kQiIbAMUk9rnZlqbDEsKkxmBy25hDEtwstMeO5qVOukdVl1nap7b1KsoTny6ASdonPkoitUR3eogZqIIIle0Rt6tz6sT+vL+plbc9Zi5hgtwfr9A1I2qkg=</latexit><latexit sha1_base64="qmI/0W8isg2gF0vxV+U2LtpQHjU=">AAACKXicbVDLTsMwEHR4tuXVwpFLRIXEhSrhAuJUiQvHItGHaKrKcdzWqu1E9qYQRfkLrvADfA034MqP4Ka5tGUkr0azs/Lu+BFnGhzn29rY3Nre2S2VK3v7B4dH1dpxR4exIrRNQh6qno815UzSNjDgtBcpioXPadef3s373RlVmoXyEZKIDgQeSzZiBIORnmIP6Aukl9lsWK07DSeHvU7cgtRRgdawZpW9ICSxoBIIx1r3XSeCQYoVMMJpVvFiTSNMpnhM03zRzD43UmCPQmWeBDtXl3xYaJ0I3zgFhole7c3F/3r9GEY3g5TJKAYqyeKjUcxtCO351XbAFCXAE0MwUcxsaJMJVpiAyaZS8SR9JqEQWAapp7XOTDW2CIoKSX7QkksYUxFeZsJzV6NaJ52rhus03Aen3rwtYiyhU3SGLpCLrlET3aMWaiOCJHpFb+jd+rA+rS/rZ2HdsIqZE7QE6/cP/XWoJw==</latexit>

v
<latexit sha1_base64="oXuIVmG2L6uyYg6YiJ9kIBz15zw="></latexit><latexit sha1_base64="UsxDj7xFpp7AOKoxpeahvH+xD1k="></latexit><latexit sha1_base64="UsxDj7xFpp7AOKoxpeahvH+xD1k="></latexit><latexit sha1_base64="ZfT/6lwSFJOfgWDngRkIma1rRhw=">AAACIHicdVBNSwMxEM36bf1q9eglWAQvlt1SbOup4MWjglXBFsmmUxuaZJdktlqW/QVe9Q/4a7yJR/01Zms9VPRBhsebN2TmhbEUFn3/w5ubX1hcWl5ZLaytb2xuFUvblzZKDIc2j2RkrkNmQQoNbRQo4To2wFQo4SocnuT9qxEYKyJ9geMYuordadEXnKGTzke3xbJfqQX1o1qT5qRZDRo5qdZyJaj4E5TJFGe3JW+104t4okAjl8zam8CPsZsyg4JLyAqdxELM+JDdQTrZL6P7TurRfmTc00gn6oyPKWvHKnROxXBgf/dy8a/eTYL9RjcVOk4QNP/+qJ9IihHNj6U9YYCjHDvCuBFuQ8oHzDCOLpJCoaPhnkdKMd1LO9bazFVni3FacTw5aMalnAnhAdPDLHPh/SRE/yeX1UrgV4Jzv9w6nsa4QnbJHjkgAamTFjklZ6RNOAHySJ7Is/fivXpv3vu3dc6bzuyQGXifX7EEpGc=</latexit>

(d) Failure of the parallelogram law for ∥.∥1 in R2.
∥u∥1 = ∥(1, 0)∥1 = 1 and ∥v∥1 = ∥(1, 1)∥1 = 2, and
∥u + v∥1 = ∥(2, 1)]∥1 = 3, ∥u − v∥1 = ∥(0,−1)∥1 = 1.
Thus ∥u+ v∥1 +∥u− v∥1 = 4, while 2 (∥u∥1 + ∥v∥1) =
2(1 + 2) = 6.

Figure 2.7: Pythagoras and the parallelogram law are equivalent statements valid in any inner product
space. However, we need a notion of angles (or orthogonality) to state Pythagoras’ theorem, while the
parallelogram law requires only a notion of vector norms. The latter can thus be used to check whether a
given norm arises out of an inner product. The bottom row figures give examples of how the parallelogram
law is invalid for the norms ∥.∥∞ and ∥.∥1 in Rn, thus implying that these norms do not arise out of an
inner product.

does not require knowing the inner product is the parallelogram law depicted in Figure 2.7.
Applying Pythagoras’ theorem to the three colored, right-angled triangles in Figure 2.7b

∥v∥2 = ∥a∥2 + ∥b∥2

∥u− v∥2 = ∥a∥2 + (∥u∥ − ∥b∥)2 = ∥a∥2 + ∥u∥2 + ∥b∥2 − 2∥u∥∥b∥
∥u+ v∥2 = ∥a∥2 + (∥u∥+ ∥b∥)2 = ∥a∥2 + ∥u∥2 + ∥b∥2 + 2∥u∥∥b∥.

Adding the last two equations, and substituting for ∥a∥2 + ∥b∥2 from the first equation
eliminates ∥a∥ and ∥b∥ to give the parallelogram law

∥u− v∥2 + ∥u+ v∥2 = 2
(
∥u∥2 + ∥v∥2

)
. (2.31)

Several remarks are now in order. First, the parallelogram law is equivalent to Pythago-
ras. It was derived from Pythagoras, and conversely if u and v are orthogonal, then
∥u − v∥ = ∥u + v∥, and (2.31) reduces to the statement ∥u + v∥2 = ∥u∥2 + ∥v∥2. The
second observation is that checking whether (2.31) holds does not require knowing the inner
product. Finally, recall the equation (2.22) and observe that we can use it to recover the
inner product from the norm

⟨u , v⟩ = 1

2

(
∥u+ v∥2 −

(
∥u∥2 + ∥v∥2

))

=
1

2

((
∥u∥2 + ∥v∥2

)
− ∥u− v∥2

)

=
1

4

(
∥u+ v∥2 − ∥u− v∥2

)
(2.32)
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The first equation is just (2.22), and the last two are different forms that follow from (2.31).
We have thus shown that the norm derived from an inner product satisfies the parallelogram
law. The converse is also true (Exercise 2.2), and we summarize the statement as follows.

Theorem 2.6. A normed space where the norm satisfies the parallelogram law

∥u+ v∥2 + ∥u− v∥2 = 2
(
∥u∥2 + ∥v∥2

)
(2.33)

is an inner product space where the inner product is given by the polarization identities (2.32).

Appendix

2.A Convexity

The reader is probably familiar with the notion of a convex scalar functional. This notion
can be generalized to functionals of several variables. The only concept needed is that of
taking convex combinations in the variables, and this is possible in any vector space.

Let v1, v2 ∈ V be vectors in any vector space V. A convex combination of v1 and v2 is
the vector

v(α) = α v1 + (1− α) v2, α ∈ [0, 1]. (2.34)

This has a simple geometrical interpretation. The vector v lies on the straight line segment
connecting v1 and v2 (see Figure 2.8a). In fact, the formula (2.34) is a parametrization of
that line segment. As α changes from 0 to 1, the point v moves along the line segment from
v2 to v1. To see that (2.34) parametrizes a straight line segment, take the derivative of v(α)
with respect to the parameter α, and compute dv/dα = v1 − v2. Thus the derivative is
independent of α (i.e. constant velocity), and in the direction of the vector v1 − v2 which
connects the two points v1 and v2.

It is worth noting that the convex combination (2.34) can be written in three different,
but equivalent ways

v = α v1 + (1− α) v2, α ∈ [0, 1],

= γ v1 + β v2, γ + β = 1, γ, β ≥ 0,

= α1
α1+α2

v1 + α2
α1+α2

v2, α1, α2 ≥ 0.

(2.35)

The reader should verify those equivalences as an exercise.
The notion of convex combination of points leads naturally to the notion of convex sets.

Definition 2.7. A subset Ω ⊂ V of a vector space is called convex if given any two points
v1, v2 ∈ Ω, all possible convex combinations of v1 and v2 (i.e. points on the entire straight
line segment joining v1 and v2) belong to Ω.

This concept is depicted in Figure 2.8b. The straight line segments joining any two points
in Ω must lie entirely inside Ω. The figure also depicts an example of a non-convex set for
comparison. For a set Ω ∈ R2 with smooth boundaries, there is a physical interpretation. If
one imagines a particle moving along the boundary of the set, then the acceleration vector
of the particle is always pointing inwards into the set.

Clearly the entire vector space is a convex set. Other examples include the “unit balls”
of normed spaces, e.g. the sets

{
v ∈ R2; ∥v∥p ≤ 1

}
for any p ∈ [1,∞] depicted in Figure 2.4.

For p < 1, those sets are clearly not convex since e.g. the line segment connecting (1, 0) and
(0, 1) lies outside the set (except for the end points of course).

The next concept is that of a convex functional.
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(1-↵)v2

v2

v1

↵v1

v

(a) Any convex combination v =
αv1 + (1-α)v2 of two points v1
and v2 in a vector space lies on
the straight line segment connect-
ing those two points.

⌦
v1

v2

⌦
v1

v2

(b) (Left) A set Ω is convex if
for every two points v1 and v2 in
Ω, the straight line segment join-
ing them is contained entirely in-
side Ω. (Right) An example of a
non-convex set.

V

R

f

epigraph of f

(c) A function f is convex iff its
epigraph is a convex set. The epi-
graph is the set of points in V × R
that are “above” the graph of f .

(d) A functional f on a vector space V is convex
if given any convex combination of elements v1, v2

(a point on the black line segment in V), the value
of the function f at that point is smaller than the
convex combination of the values of f(v1) and f(v2)
(those values depicted as the white line segment).

(e) The contours in V are the level sets of a function
f . The contours are the boundaries of the sub-level
sets of f . If f is convex, then its sub-level sets are
convex subsets of V.

Figure 2.8: Illustrations of the concepts of (a) convex combination of two points, (b) convex sets, (c)
convex epigraph, (d) convex functional, and (e) convex sub-level sets.

Definition 2.8. A functional f : V −→ R on a vector space V is called convex if for any
v1, v2 ∈ V and α ∈ [0, 1]

f
(
αv1 + (1− α)v2

)
≤ αf(v1) + (1− α) f(v2). (2.36)

In other words, if the value of f at any convex combination of v1 and v2 is no larger than the
same convex combination of the values f(v1) and f(v2). A function is called strictly convex
if (2.36) holds with strict inequality for α ∈ (0, 1). It is called concave (strictly concave) if
−f is convex (strictly convex).

This concept is depicted in Figure 2.8e. Convex functions can be thought of as “bowl
shaped”. For single-variable functionals f : R→ R, the reader may recall that convexity is
equivalent to the second derivative being non-negative everywhere (i.e. the function never
curves downwards). Similarly, if f is a twice-differentiable functional on Rn, its convexity
(strict convexity) is equivalent to its Hessian (which is the multivariate version of the second
derivative, see Chapter ??) being positive semi-definite (positive definite) everywhere.

Another characterization of convex functionals involves the concept of the epigraph of a
function, which is defined as the subset of V × R such that

epigraph(f) :=
{
(v, r) ∈ V × R; r ≥ f(v)

}
.

The epigraph is depicted in Figure 2.8c, it is the set of all points in V × R that include
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the graph of f as well as all points “above it”. It is a simple exercise to show that the
criterion (2.36) implies that a function f is convex iff its epigraph is a convex set.

Let f : V→ R be a convex functional, and consider its sub-level sets

Sγ :=
{
v ∈ V; f(v) ≤ γ

}
,

where the “level” γ ∈ R is any real number. An important property of convex functionals
is that their sub-level sets are convex sets

f(v1) ≤ γ, f(v2) ≤ γ ⇒ f
(
αv1 + (1− α)v2

)
≤ α f(v1) + (1− α) f(v2)

≤ α γ + (1− α) γ = γ.

Thus any convex combination of two elements v1 and v2 in Sγ is also in that sub-level set.
This is depicted in Figure 2.8e. A particularly important convex functional is the norm
functional ∥.∥ : V → R on a normed vector space V. Its convexity is a consequence of the
triangle inequality property of the norm. An important sub-level set of the norm functional
is the unit ball

B := {v ∈ V; ∥v∥ ≤ 1} .

The preceding argument implies that the unit ball of any norm must be convex. This is a
useful test to check whether a given set could be the unit ball of some norm. If that set
is not convex (note that we don’t need to know the norm to determine whether a set is
convex or not, the definition only involves convex combinations and set membership), then
it couldn’t possibly be the unit ball of a norm. This criterion shows that the sets {∥v∥p ≤ 1}
for p < 1 in Figure 2.4 are not unit balls of a norm, i.e. the quantity ∥.∥p does not define a
norm on Rn if p < 1.

It is important to point out that there are functions whose sub-level sets are all convex,
yet the function itself is not convex. Such functions are called quasi-convex, and they play an
important role in optimization. However, this concept is not needed in the present chapter.

2.B Norms Induced by Convex Sets

As already mentioned, the unit ball of any norm is a convex set. This is a consequence of
the triangle inequality. If ∥u∥ ≤ 1 and ∥v∥ ≤ 1, then

∥αu+ (1− α)v∥ ≤ ∥αu∥+ ∥(1− α)v∥ = α∥u∥+ (1− α)∥v∥ ≤ 1,

i.e. any convex combination of two vectors in the unit ball is also in the unit ball.
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↵ u + (1� ↵) v

B

This is illustrated in the figure on the right. Furthermore, one
consequence of homogeneity is that if ∥v∥ ≤ 1, then ∥ − v∥ ≤ 1,
i.e. the unit ball is symmetric with respect to reflections about
the origin.

Now consider the reverse question: which types of convex sets
are unit balls of norms? In addition, given such a convex set,
how can we define the norm for which it is the unit ball?

To answer the above questions, we investigate another im-
portant consequence of homogeneity, which describes how norms
scale with vector scalings. First, observe that for any vector v, normalizing it by its length
yields the vector v/∥v∥, which is a vector of unit length in the same direction as v. Thus
scaling by the factor 1/∥v∥ is such that the resulting vector just “touches” the edge of the
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unit ball. This is illustrated in Figure 2.9a. We can therefore characterize the norm of a
vector based on how much it has to be “scaled” before it is in or out of the unit ball, i.e.

∥v∥ =





inf {γ ≥ 0; ∥v∥ ≤ γ} = inf {γ ≥ 0; ∥v/γ∥ ≤ 1} = inf
{
γ ≥ 0; 1

γ v ∈ B
}
,

sup {γ ≥ 0; γ ≤ ∥v∥} = sup {γ ≥ 0; ∥v/γ∥ ≥ 1} = sup
{
γ ≥ 0; 1

γ v /∈ B
}
.

(2.37)

The reader should now parse through Figure 2.9a for geometrical illustrations of these
formulas as well as the following additional characterizations of the norm

1

∥v∥ =

{
sup {β ≥ 0; βv ∈ B} ,
inf {β ≥ 0; βv /∈ B} . (2.38)

We now observe that the quantities on the right in (2.37) and (2.38) are not written in
terms of the norm ∥.∥, but rather involve scalings and set membership in B. Thus given any
convex set Ω in a vector space, we can try to define a norm such that the given set is its unit
ball using those set membership conditions. We will also require additional properties on
the convex set that guarantee that the quantities in (2.37) and (2.38) are finite and non-zero
for non-zero vectors.

Theorem 2.9. Let Ω ⊂ V be a convex set containing the origin in a vector space V. If the
convex set Ω is

1. symmetric: v ∈ Ω ⇒ −v ∈ Ω,

2. absorbing: any non-zero vector v ∈ V can be scaled so that it “enters” Ω, i.e.

inf
{
β ≥ 0; βv /∈ Ω

}
> 0. (2.39)

3. bounded: any non-zero vector in Ω can be scaled so that it “exits” Ω

sup
{
β ≥ 0; βv ∈ Ω

}
< ∞, (2.40)

then V becomes a normed vector space with the norm4

∥v∥ := inf
{
γ ≥ 0; v/γ ∈ Ω

}
= sup

{
γ ≥ 0; v/γ /∈ Ω

}

=
1

sup
{
β ≥ 0; βv ∈ Ω

} =
1

inf
{
β ≥ 0; βv /∈ Ω

} (2.41)

Figure 2.9a illustrates the motivation for the norm definitions (2.41). Figures 2.9b
and 2.9c explain why the “absorbing” and “boundedness” conditions are needed respec-
tively. They illustrate why if the absorbing condition is not met, there exists vectors with
infinite norms, while if the boundedness condition is not met, there exists non-zero vectors
of zero norm.

To prove Theorem 2.9, we need to show that the norm defined by (2.41) satisfies the
three properties of a norm. Homogeneity is an immediate consequence of the definition

∥γ̄v∥ = inf
{
γ > 0; γ̄v/γ ∈ Ω

}
= inf

{
γ̄r > 0; v/r ∈ Ω

}
(substituting γ/γ̄ = r)

= γ̄ inf
{
r > 0; v/r ∈ Ω

}
= γ̄ ∥v∥ . (2.42)

4In some literature, such functions defined in terms of a given convex set are called Minkowski functionals,
though usually without the boundedness assumption, and therefore would only define seminorms rather than
proper norms.
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v/kvk v

kvk = sup {� > 0; v/� /2 ⌦} v/�

� > 1
� = 1

� < 1

v/�

� = 1

� < 1

� > 1

kvk = inf {� > 0; v/� 2 ⌦}

�v
� > 1

� < 1
� = 1

1/kvk = inf {� � 0; �v /2 ⌦}

�v

� < 1
� = 1

� > 1

1/kvk = sup {� � 0; �v 2 ⌦}

⌦

(a) Given any vector v in a normed space, its normalization v/∥v∥ (shown in red) is the vector in the same
direction as v, and lies exactly on the boundary of the unit ball. This property can be used to define a norm
from a convex set using set membership. The norm is given from the scalings v/γ or βv such that the scaled
vectors lie on the boundary of the set Ω.

v1

v2⌦

0

(b) A set Ω that is not “absorbing”. Shown here
as the light blue line segment. This set is one-
dimensional in R2. The vector v1 can be scaled so
that it “enters” Ω, and is therefore of finite norm.
However, there is no scaling of v2 such that it enters
Ω, and therefore v2 has infinite norm as per (2.41)
∥v∥ = sup {γ ≥ 0; v/γ /∈ Ω} = ∞.

v1

v2

⌦

0

(c) A set Ω that is not “bounded”. There is no
scaling of the vector v2 such that it “exits” this set,
i.e. sup {β ≥ 0; βv2 ∈ Ω} = ∞. Therefore v2 has
zero norm ∥v2∥ = 1/ sup {β ≥ 0; βv2 ∈ Ω} = 0 as
per (2.41), even though it is a non-zero vector.

Figure 2.9: A geometric interpretation of Theorem 2.9 where any convex set that is symmetric about
origin with the absorbing and boundedness properties induces a norm.

We note that if γ̄ < 0, we substitute γ/|γ̄| = r and use the symmetry property of Ω.
Definiteness of the norm (2.41) is a consequence of boundedness property (2.40),(2.38)

since for vectors inside Ω

∥v∥ = 0 ⇔ sup
{
β ≥ 0; βv ∈ Ω

}
=∞ ⇔ v = 0.

Definiteness also holds for vectors outside Ω since they can be scaled to be inside Ω. The
fact that the norm is finite for any v follows from the property (2.39) since

∥v∥ =∞ ⇔ inf
{
β ≥ 0; βv /∈ Ω

}
= 0.

Finally, the triangle inequality follows from convexity. Let u and v by any vectors. Use
the definition (2.41) for ∥u∥ and ∥v∥, and normalize so that u/∥u∥ and v/∥v∥ are at the
boundary of the set Ω (this follows by definition from (2.41)). Now the convexity of Ω
implies that any convex combination of the normalized vectors will be inside of Ω, i.e.

α1

α1 + α2

u

∥u∥ +
α2

α1 + α2

v

∥v∥ ∈ Ω.

The particular choice of α1 = ∥u∥ and α2 = ∥v∥ says that

∥u∥
∥u∥+ ∥v∥

u

∥u∥ +
∥v∥

∥u∥+ ∥v∥
v

∥v∥ =
1

∥u∥+ ∥v∥
(
u+ v

)
∈ Ω.
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This last statement is indeed the triangle inequality since

1

∥u∥+ ∥v∥
(
u+ v

)
∈ Ω ⇔

∥∥∥∥
1

∥u∥+ ∥v∥
(
u+ v

)∥∥∥∥ ≤ 1

⇔ 1

∥u∥+ ∥v∥ ∥u+ v∥ ≤ 1 ⇔ ∥u+ v∥ ≤ ∥u∥+ ∥v∥.

Note that the only property of ∥.∥ used in the above argument is the homogeneity property,
which has already been established by (2.42).

Theorem 2.9 establishes that there is an infinite variety of norms that can be defined
on Rn, each corresponding to any symmetric, bounded convex set. We thus see that the
p-norms depicted in Figure 2.4 are only a very special class of norms from amongst all the
possible norms on Rn.

2.C Equivalence of Norms in Finite Dimensions

Two norms ∥.∥a and ∥.∥b are said to be equivalent if each can be bounded by the other from
above and below, i.e. if there exists constants c, c > 0 such that for all vectors v

c ∥v∥b ≤ ∥v∥a ≤ c ∥v∥b ⇔ 1

c
∥v∥a ≤ ∥v∥b ≤

1

c
∥v∥a ⇔ ∥.∥a ∼ ∥.∥b.

Note that the constants c, c should not depend on the choice of vector v. We define the
notation ∥.∥a ∼ ∥.∥b to mean that the two norms are equivalent. The equations above imply
that this relation is symmetric, i.e. ∥.∥a ∼ ∥.∥b ⇔ ∥.∥b ∼ ∥.∥a. It is also easy to verify that
this relation is transitive, meaning that

(
∥.∥a ∼ ∥.∥b

)
and

(
∥.∥b ∼ ∥.∥c

)
⇒ ∥.∥a ∼ ∥.∥c,

and therefore equivalent norms (no pun intended) form equivalence classes.
A little care is needed in interpreting the notion of equivalence above. Two norms do

not have to be equal to be equivalent. If one tries to measure distances or optimize with
respect to one norm, the answers will generally be quite different when done with another,
but equivalent norm. The term “equivalent” above is to be understood with regard to
convergence notions. Given two equivalent norms, a sequence is convergent in one norm iff
it is convergent in another, equivalent norm.

Examples of bounds on norms in Rn are easy to derive. The following are bounds for
the 1, 2 and ∞ norms in Rn, together with examples of when these bounds are tight

∥v∥∞ ≤ ∥v∥2 ≤ ∥v∥1 with equality for v = (0, . . . , 0, 1, 0, . . . , 0) ,

∥v∥1 ≤
√
n ∥v∥2 ≤ n ∥v∥∞ with equality for v = (1, . . . , 1).

(2.43)

The inequalities involving ∥.∥∞ are relatively straightforward to verify, and are left to the
reader as an exercise. The inequality ∥v∥2 ≤ ∥v∥1 follows from the following calculation

∥v∥22 =

n∑

i=1

v2i =

n∑

i=1

|vi| |vi| ≤
(

n∑

i=1

|vi|
)(

max
1≤i≤n

|vi|
)

= ∥v∥1∥v∥∞ ≤ ∥v∥1∥v∥1 = ∥v∥21.

The inequality ∥v∥1 ≤
√
n∥v∥2 follows from the Cauchy-Schwartz inequality (Exercise 2.6)

which will be introduced later. Note that the first set of inequalities in (2.43) can be
visualized as in Figure 2.4 through the containment of their respective unit balls.
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0

Ba

Bb

�Bb

(a) If the unit ball Bb can be scaled to βBb so that it
is entirely contained in Ba, then ∥.∥a ≤ ∥.∥b/β. Note
that βBb is the unit ball of the scaled norm ∥.∥b/β, and
that unit ball containment and norm bounds are related by
(βBb ⊆ Ba) ⇔ (∥.∥a ≤ ∥.∥b/β). In finite dimensions, the
unit ball of any norm can be scaled as above so that it is
entirely contained in another unit ball. The containment
however is not “tight” in the sense that there could be un-
avoidable large gaps between βBb and Ba, implying that the
corresponding norm bounds are not tight. As the space di-
mension grows to infinity, these gaps can become arbitrarily
large, and thus the norm bounds arbitrarily loose.

0
Ba

Bb

kvka
kvkb

= c

kvka
kvkb

= c

(b) Bounds between two norms ∥.∥a and
∥.∥b are determined by the maxima and min-
ima (2.46) of the ratio ∥v∥a/∥v∥b over all direc-
tions in space. Equivalently, they are the max-
ima and minima of ∥v∥a as v ranges over the unit
sphere ∥v∥b = 1. The maximal (c) and mini-
mal (c) ratios and directions are shown above
for an example of Ba and Bb. Note that for ex-
ample when the boundary of Bb is inside Ba,
then ∥v∥a ≤ ∥v∥b, i.e. the ratio ∥v∥a/∥v∥b is
less than 1.

Figure 2.10: Two graphical illustrations of the equivalence of any two norms in finite dimensions. Ba and
Bb are the unit balls of two norms ∥.∥a and ∥.∥b. The geometrical relationships between the two sets Ba and
Bb determine the relative bounds between the norms ∥.∥a and ∥.∥b. For example (Bb ⊆ Ba) ⇔ (∥.∥a ≤ ∥.∥b),
i.e. unit ball containment implies a norm bound in the reverse order.

The reader should note how the bounds in the inequalities above depend on the space
dimension n. The second set of inequalities become progressively “looser” in higher dimen-
sions. In fact, they are not valid in any infinite-dimensional ℓp spaces, while the first set
of inequalities still hold in those spaces. This follows intuitively by observing that the first
set are independent of n, and therefore one expects them to hold unchanged as n→∞. In
addition, since the bounds become looser as n→∞, for large n, one would expect that an
optimization problem for ∥.∥p will yield very different answers from that for ∥.∥q if p ̸= q.
These caveats should be kept in mind when interpreting the notion of “equivalence” of norms
in finite dimensions that is stated in the next theorem.

Theorem 2.10. Let ∥.∥a and ∥.∥b be any two norms on Rn (or Cn) with n finite. The two
norms are equivalent.

Before we give the proof arguments, two geometric ideas provide helpful intuition. The
first is illustrated in Figure 2.10a. If one of the unit balls (say Bb) can be scaled so that it
is properly contained in the other, then a norm bound is obtained from the relation (2.10)

βBb ⊆ Ba ⇔ ∥v∥a ≤
1

β
∥v∥b,

since βBb is the unit ball for the scaled norm 1
β ∥.∥b. We can similarly scale Ba so that it

is inside Bb and obtain the other bound. We note that such scalings are possible in finite
dimensions, but it may not be possible in infinite dimensions to scale one unit ball so that it
is contained in the other. Furthermore, if β is chosen so that βBb “just fits” inside Ba, then
we have the best possible bound. However, there will be directions in space where there are
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potentially large gaps between the boundaries of the two balls. Along these directions, the
bounds are loose and not very useful. For many norms, as the space dimension increases
to infinity, these gaps can become arbitrarily large, and therefore the norm bounds along
those directions can become arbitrarily loose.

Now to prove the theorem, we first observe that since norm equivalence is a transitive
relation, we simply need to prove that any norm ∥.∥a is equivalent to some conveniently
chosen norm. In this case, it turns out that the ∥.∥1 norm or the ∥.∥∞ norm will do nicely.

The bounds in one direction can be established by simple inequalities. Let {ei} be some
basis of Rn, and write a vector v =

∑n
i=1 viei in that basis. Then

∥v∥a ≤
∥∥∥∥∥

n∑

i=1

viei

∥∥∥∥∥
a

≤
n∑

i=1

|vi| ∥ei∥a ≤
(

max
1≤i≤n

∥ei∥a
)( n∑

i=1

|vi|
)

=: c̄ ∥v∥1, (2.44)

where the last inequality is a version of the 1-∞ inequality (Exercise 2.5) . Note that the
finite number c̄ is a property of the vectors {ei}, and is therefore independent of v. We
can see how this argument might fail in infinite dimensions; the max1≤i≤n ∥ei∥a term would
instead be a supremum over an infinite index set, and therefore might itself be infinite.

The converse bound requires a different argument which also provides additional geo-
metrical insight which comes from examining the maxima and minima of the ratio of norms
∥v∥a/∥v∥b over all vectors v. Given two such norms, consider the extrema of the ratio

c := inf
v ̸=0

∥v∥a
∥v∥b

≤ ∥v∥a
∥v∥b

≤ sup
v ̸=0

∥v∥a
∥v∥b

=: c. (2.45)

If c > 0 and c <∞, then we have our equivalence bounds since then

c ∥v∥b ≤ ∥v∥a ≤ c ∥v∥b,

There is a useful reformulation of the relations (2.45) which comes from observing that
the ratio ∥v∥a/∥v∥b does not depend on the length of a vector v, but only its direction (norms
are homogenous, therefore ∥αv∥a/∥αv∥b = ∥v∥a/∥v∥b). We can therefore restate (2.45) in
the more useful form

c := inf
∥v∥b=1

∥v∥a = inf
v ̸=0

∥v∥a
∥v∥b

≤ ∥v∥a
∥v∥b

≤ sup
v ̸=0

∥v∥a
∥v∥b

= sup
∥v∥b=1

∥v∥a =: c. (2.46)

This is illustrated in Figure 2.10b. We can think of ∥v∥a as a functional ∥.∥a : Rn → R
restricted to the unit sphere {∥v∥b = 1}. The bounds c and c in (2.46) are the minimum
and maximum respectively of the function ∥.∥a over the set {∥v∥b = 1}. We need to show
that these are non-zero and finite respectively.

The extreme value theorem states that any continuous function on a compact set achieves
its minimum and maximum in that set. For the present argument, ∥.∥b = ∥.∥1, i.e. the 1-
norm, and the set {∥v∥1 ≤ 1} is closed and bounded in Rn, therefore compact. It remains
to show that the function ∥.∥a is continuous with respect to the 1-norm. This has effectively
been shown by (2.44). Indeed, given any point v̄ and ϵ > 0, there exists δ > 0 such that

∥v − v̄∥1 ≤ δ ⇒ ∥v − v̄∥a ≤ ϵ.

In particular, the choice δ ≤ ϵ/c̄ (from (2.44)) provides this bound.
The extreme value theorem thus says that the constants c and c in

c := inf
∥v∥1=1

∥v∥a ≤ sup
∥v∥1=1

∥v∥a =: c (2.47)
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are finite. To show that c > 0, note that the function ∥.∥a is strictly positive for all
{∥v∥1 = 1} since all members of that set are non-zero vectors. Since ∥.∥a achieves its mini-
mum at some point in that set, that minimum must be strictly positive.

To recap, we have shown that all norms in finite dimensions are equivalent. In infinite
dimensions, this statement is generally not true. As already stated, care should be taken in
interpreting the statement even in finite dimensions. Although norms can be “equivalent”
in the sense above, we have seen how the bounds become progressively looser as the space
dimension increases, and many such bounds become arbitrarily loose as n → ∞. When
thought of this way, the large (but finite) dimension case is conceptually not all that different
from the infinite dimensional case.

Exercises

Exercise 2.1

A seminorm on a vector space is a functional |.| : V → R which has all the properties of a
norm listed in Definition 2.2, except for definiteness. Thus there could be non-zero vectors
v ∈ V with zero norm |v| = 0. Consider the set of zero-norm vectors

Z :=
{
v ∈ V; |v| = 0

}
.

1. Show that Z is a subspace.

2. Show that if the difference of two vectors is in Z, then they have the same seminorm

(v1 − v2) ∈ Z ⇒ |v1| = |v2|.

Hint: Apply the triangle inequality to sums like v1 = (v1 − v2) + v2.

3. The previous part implies that if we consider a coset x+ Z of Z, then the quantity

∥x+ Z∥ := |x|,

is well defined and independent of the coset representative x. Show that this defines a
true norm (i.e. it is definite) on the quotient space V/Z.

Solution 2.1

1. Let v1 and v2 be in Z, i.e. |v1| = |v2| = 0, then

|αv1 + βv2| ≤ |αv1|+ |βv2| = |α||v1|+ |β||v2| = 0,

where the first inequality is the triangle inequality for |.|.

2. As per the hint

|v1| = |(v1 − v2) + v2|
≤ |v1 − v2|+ |v2| = |v2|

(
since (v1 − v2) ∈ Z ⇔ |v1 − v2| = 0

)

|v2| = |(v2 − v1) + v1| ≤ |v2 − v1|+ |v1| = |v1|.

Therefore |v1| = |v2|.
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3. All properties of ∥.∥ follow immediately from the properties of |.|. For example, the
triangle inequality is validated by

∥{x+ Z}+ {y + Z}∥ = ∥{(x+ y) + Z}∥ = |x+ y| ≤ |x|+ |y|
= ∥{x+ Z}∥+ ∥{y + Z}∥ .

Definiteness is also immediate since if ∥ {x+ Z} ∥ = 0, then |x| = 0, and therefore x ∈ Z,
which then implies that the coset x+ Z is the zero coset

{x+ Z} = {0 + Z} .

Exercise 2.2

Given a norm that satisfies the parallelogram law (2.33), show that the form defined by the
polarization identities (2.32) satisfies all the properties of an inner product. For example,
utilizing the last equation in (2.32), showing ⟨x+ y , z⟩ = ⟨x , z⟩ + ⟨y , z⟩ is equivalent to
showing that

∥x+ y + z∥2 − ∥x+ y − z∥2 = ∥x+ z∥2 − ∥x− z∥2 + ∥y + z∥ − ∥y − z∥2. (2.48)

The following diagram will be helpful. Note that the parallelograms in red are the ones
that involve the six quantities above.

x + y + z

x� y + z x� y � z
x + y � z x� y � z

x + y + z x + y � z
x� y + z

x x x x

xy yyy y

z z z z

x + z

x� z

y + z

y � z

Solution 2.2

Definiteness and symmetry immediately follow from the definition of the inner product using
the polarization identity. Additivity require more work though.

The first two parallelograms in the figure above involve the terms x+y+ z and x+y− z
as well as the terms x+ z and x− z. Writing the parallelogram law for each of them

∥x+ y + z∥2 + ∥x− y + z∥2 = 2
(
∥x+ z∥2 + ∥y∥2

)
, (2.49)

∥x− y − z∥2 + ∥x+ y − z∥2 = 2
(
∥x− z∥2 + ∥y∥2

)
. (2.50)

The last two paralellograms also involve the terms x+y+z and x+y−z, but the remaining
terms y + z and y − z in (2.48) as well

∥x+ y + z∥2 + ∥x− y − z∥2 = 2
(
∥y + z∥2 + ∥x∥2

)
, (2.51)

∥x+ y − z∥2 + ∥x− y + z∥2 = 2
(
∥y − z∥2 + ∥x∥2

)
. (2.52)

We clearly need to get rid of the terms ∥y∥2 and ∥x∥2 since they don’t occur in (2.48), so
subtracting (2.50) from (2.49) and adding that to the difference between (2.51) and (2.52)

∥x+ y + z∥2 +((((((∥x− y + z∥2 −((((((∥x− y − z∥2 − ∥x+ y − z∥2
+∥x+ y + z∥2 +((((((∥x− y − z∥2 − ∥x+ y − z∥2 −((((((∥x− y + z∥2

= 2
(
∥x+ z∥2 − ∥x− z∥2 + ∥y + z∥2 − ∥y − z∥2

)
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This is precisely the relation (2.48).
Now the fact that additivity holds implies (by induction) that the following is valid

⟨αx , y⟩ = α ⟨x , y⟩ , α ∈ N.

By replacing x with −x we see that homogeneity furthermore is valid for any α ∈ Z. This
fact also implies that homogeneity holds for any α = n/m ∈ Q (where n and m are integers)
due to the following implications

〈 n

m
x , y

〉
=

n

m
⟨x , y⟩ ⇔ m

〈 n

m
x , y

〉
= n ⟨x , y⟩ ⇔

〈
m

n

m
x , y

〉
= ⟨nx , y⟩ .

Note that the only property used was homogeneity for n,m ∈ Z.
Finally, homogeneity for any α ∈ R follows by continuity. The function α 7→ ⟨αx , y⟩

⟨αx , y⟩ = 1

4

(
∥αx+ y∥2 − ∥αx− y∥2

)
,

is continuous since αx + y and αx − y are a continuous functions of α, ∥.∥ is a continuous
function, and the sum of two continuous functions is continuous. Since two continuous
functions α ⟨x , y⟩ = ⟨αx , y⟩ are equal on a dense subset Q ⊂ R, they must be equal for all
α ∈ R.

Exercise 2.3

The following identity is a corollary to the parallelogram law, but involving three vectors in
an inner product space

∥u+ v + w∥2 + ∥u+ v − w∥2 + ∥u− v + w∥2 + ∥u− v − w∥2

= 4
(
∥u∥2 + ∥v∥2 + ∥w∥2

)
(2.53)

u

v

w

Note the following similarity between (2.53) and (2.33). In
both cases, the left hand side is the sum of all possible signed
combinations of the vectors, which correspond to all possible
diagonal lines in the parallelepiped formed by the vectors u,
v, and w in 3D space.

Show that (2.53) follows from (2.33).

Solution 2.3

The identity (2.53) follows from the parallelogram law (2.33) by breaking down the sums
on the left hand side of (2.53) into sums of pairs of vectors.

(
∥(u+ v) + w∥2 + ∥(u+ v)− w∥2

)
+
(
∥(u− v) + w∥2 + ∥(u− v)− w∥2

)

= 2
(
∥u+ v∥2 + ∥w∥2

)
+ 2

(
∥u− v∥2 + ∥w∥2

)

= 2
((
∥u+ v∥2 +

(
∥u− v∥2

)
+ 2∥w∥2

)
= 2

(
2
(
∥u∥2 + ∥v∥2

)
+ 2∥w∥2

))
.

Exercise 2.4

Consider the set P′ of all signals with “finite power” seminorm

∥u∥ := lim
T→∞

1

2T

∫ T

-T

u2(t) dt < ∞.
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This is a vector space, but the quantity ∥.∥ is only a seminorm. For example, any signal
that decays asymptotically (e.g. if it is in L2) will have zero seminorm. Such signals have
“finite energy” (if the L2 norm is interpreted as “energy”), but over all time, their average
power is zero.

Let N be the subspace of signals with zero power seminorm. This is clearly a subspace
of P′. Now consider the quotient space P := P′/N with the bilinear product

〈
{u+ N} , {v + N}

〉
:= lim

T→∞
1

2T

∫ T

-T

u(t) v(t) dt.

Show that this satisfies all the properties of an inner product on P′/N, including definiteness.

Solution 2.4

Symmetry and bilinearity follow immediately from the integral form. For definiteness, note
that

0 =
〈
{v + N} , {v + N}

〉
= lim

T→∞
1

2T

∫ T

-T

v2(t) dt,

implies that v ∈ N. Therefore an element {v + Z} with zero inner product with itself is in
the same coset as {0 + N}.

Exercise 2.5

One of the most basic inequalities used in many bounds involves the interplay between
absolute sums and maxima. One could call it the 1-∞ inequality. For n-vectors v and u it
states

|v∗u| := |v1u1 + · · ·+ vnun| ≤ |u1v1|+ · · ·+ |unvn| = |u1| |v1|+ · · ·+ |un| |vn|
≤
(
max

i
|ui|
)
|v1|+ · · ·+

(
max

i
|un|

)
|vn| =

(
max

i
|ui|
)(
|v1|+ · · ·+ |vn|

)

= ∥u∥∞ ∥v∥1.

This inequality can be used in many ways. Whenever one has a sum of several terms, the
individual terms can be grouped into the entries of two different vectors in several different
ways. Such arguments are useful e.g. in Exercise 2.6.

Show with a similar argument that for infinite sequences

∣∣∣∣∣
∑

i∈N
uivi

∣∣∣∣∣ ≤
(
sup
i∈N
|ui|
)(∑

i∈N
|vi|
)
,

and that for any function f : Ω→ R defined on a subset Ω ⊂ Rn

∣∣∣∣
∫

Ω

f(x) g(x) dx

∣∣∣∣ ≤
(
sup
x∈Ω
|f(x)|

)(∫

Ω

|g(x)| dx
)
.

Solution 2.5

For the discrete sum
∣∣∣∣∣
∑

i∈N
uivi

∣∣∣∣∣ ≤
∑

i∈N
|ui| |vi| ≤

∑

i∈N

(
sup
i∈N
|ui|
)
|vi| =

(
sup
i∈N
|ui|
)(∑

i∈N
|vi|
)

= ∥u∥∞∥v∥1.
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For the integral

∣∣∣∣
∫

Ω

f(x) g(x) dx

∣∣∣∣ ≤
∫

Ω

|f(x)| |g(x)| dx ≤
∫

Ω

(
sup
x∈Ω
|f(x)|

)
|g(x)| dx

=

(
sup
x∈Ω
|f(x)|

)∫

Ω

|g(x)| dx = ∥u∥∞∥v∥1.

Note: It is tempting to think of these bounds as parallels of the Cauchy-Schwartz inequality

⟨u , v⟩ ≤ ∥u∥∞∥v∥1.

It turns out that we can make this precise as we will see later. The quantity ⟨u , v⟩ is not to
be interpreted as an inner product, but rather as a u ∈ L∞ “acting” on v ∈ L1 as a linear
functional. Unlike the case of an inner product space, here u and v are in different spaces,
but one of them is the space of all bounded linear functionals (namely L∞) on L1. In fact,
we will generalize the notation ⟨u , v⟩ to mean u acting on v as a linear functional.

Exercise 2.6

Use the Cauchy-Schwartz inequality

(
n∑

i=1

aibi

)2

≤
(

n∑

i=1

a2i

)(
n∑

i=1

b2i

)

to prove the norm bound ∥v∥1 ≤
√
n∥v∥2.

Hint: Rewrite ∥v∥1 :=
∑n

i=1 |vi| =
∑n

i=1 vi sign(vi), and use Exercise 2.5.

Solution 2.6

Examining the inequality ∥v∥1 ≤
√
n∥v∥2 that we need to prove

n∑

i=1

|vi| ≤
√
n

(
n∑

i=1

v2i

)1/2

⇔
(

n∑

i=1

|vi|
)2

≤ n

n∑

i=1

v2i .

Comparing with the Cauchy-Schwartz inequality, we see that if we apply it with a =
(v1, . . . , vn) and b = (sign(v1), . . . , sign(vn)) then

(
n∑

i=1

vi sign(vi)

)2

≤
(

n∑

i=1

v2i

)(
n∑

i=1

(sign(vi))
2

)

(
n∑

i=1

|vi|
)2

≤
(

n∑

i=1

v2i

)(
n∑

i=1

1

)
=

(
n∑

i=1

v2i

)
n

⇔ ∥v∥1 ≤
√
n ∥v∥22.
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Chapter 3

Completeness and Continuity: Banach
and Hilbert Spaces

The metrics induced by norms and inner products imply a notion of convergence of sequences
in the space. A space is called complete if every sequence that “should converge” does indeed
converge in that space. Cauchy sequences are those that “should converge”, and a space is
complete if every Cauchy sequence converges in that space. Banach and Hilbert spaces are
complete normed and inner product spaces respectively. In such complete spaces one can
make sense of infinite bases, and the convergence of partial sums of basis expansions to any
particular element.

A notion of convergence induces a notion of continuity. A linear mapping between two
vector spaces is a continuous mapping iff it is continuous at the origin. Norms on vector
spaces induce a natural norm on linear operators called the “induced norm”. The bounded-
ness of the induced norm is equivalent to the continuity of the mapping at the origin, and
therefore everywhere.

The set of all bounded linear operators on a Banach space is itself a Banach space, with
the induced operator norm as the norm. The induced norm has the important property of
“sub-multiplicativity”, which makes the space of all bounded linear operators into a special
type of algebra called a Banach Algebra.

This chapter is concerned primarily with the basic “analysis” questions in vector spaces.

Introduction

So far we have discussed the algebraic and geometrical properties of normed and inner
product spaces. When describing limit processes or iterative algorithms in such spaces, we
will also need a notion of convergence and topology. These are the analysis aspects of the
subject. There are many ways to deal with these topological notions, but we will adopt here
the least abstract setting where we use distances and norms to describe convergence. A
metric can be used to define closed and open sets, and whether a vector space is complete or
not. Intuitively, a set is closed or a space is complete if all sequences that “should converge”
do converge in that space, i.e. the space has no holes or open boundaries in it. Complete
normed spaces are called Banach spaces, while complete inner product spaces are called
Hilbert spaces. We will see that once the algebraic and metric properties of a space are
specified, it can always be “completed” (i.e. all the holes added to the space) so that it
becomes a complete space.
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x

{xk}
✏

M

(a) A sequence {xk} converges to
a limit point x if given any ϵ > 0
(no matter how small), an infinite
“tail” of the sequence is inside an
ϵ-neighborhood around x.

{xk}
✏

M

(b) A sequence {xk} is Cauchy if
given any ϵ > 0 (no matter how
small), an infinite “tail” of the se-
quence is inside an ϵ ball, i.e. the
tail “bunches up” even if there is no
limit point.

x1

xN

✏

c1 c2

M

(c) A Cauchy sequence is bounded
since a tail is guaranteed to be in-
side an ϵ ball, and the remainder of
the sequence (the “head”) is finite,
and therefore within a distance c1
of the first element x1.

Figure 3.1: The concepts of (a) convergent sequences, (b) Cauchy sequences, and (c) the fact that Cauchy
sequences in a metric space M are bounded.

3.1 Convergence and Topology

The first concept to deal with is how to define convergence. If we are in a metric space, we
can use the distance function to define convergence.

Definition 3.1. Let M be a metric space with metric d(., .). We say a sequence {xk} ⊂ M
converges to a limit point x ∈ M (also written as limk→∞ xk = x) if for any ϵ > 0 there
exists a number N such that

∀k ≥ N, d(xk, x) ≤ ϵ. (3.1)

One way to parse this definition is to think of “tails” {xk}k≥N of the sequence. Each choice
of N defines a tail of the sequence with an infinite number of elements in it. The definition
says that x is a limit point, if for any distance ϵ, no matter how small, an entire tail of the
sequence is within that small distance from the limit point. This is illustrated in Figure 3.1a.

To use the definition above to determine if a sequence is convergent requires knowing the
limit x apriori. There is another way to define convergence that does not require knowing
the limit. These are the sequences that “should converge”.

Definition 3.2. Let M be a metric space with metric d(., .). A sequence {xk} ⊂ M is called
Cauchy if for any ϵ > 0 there exists a number N such that

∀k, l ≥ N, d(xk, xl) ≤ ϵ. (3.2)

This property will be equivalently stated in the abbreviated form

lim
k,l→∞

d(xk, xl) = 0.

This means that given any distance ϵ, no matter how small, there is a tail of the sequence
such that all elements of the tail are within ϵ-distance of each other (see Figure 3.1b). In
contrast to the condition (3.1), the Cauchy condition (3.2) does not require the existence (or
knowing) of a limit point. Now, the first property to establish is that a Cauchy sequence
can not “stray too far”.

Lemma 3.3. Every Cauchy sequence in metric space is bounded.

Proof. Choose some ϵ and find N such that all elements of the tail {xk}k≥N are within ϵ
of each other. Now find a ball around the first element x1 that contains all of the first N
elements (see Figure 3.1c)

c := max
1≤k≤N

d(x1, xk),
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and observe that c must be finite. Thus the first N elements are within distance c from x1.
In addition, the entire sequence is within distance c+ϵ from x1 because (see also Figure 3.1c)

k ≥ N ⇒ d(x1, xk) ≤ d(x1, xN ) + d(xN , xk) ≤ c+ ϵ

as follows from the triangle inequality. Thus the sequence is bounded.

The Cauchy condition appears to be the right condition for our intuitive notion of when
a sequence “should converge”. This motivates the next definition.

Definition 3.4. A metric space M is called complete if every Cauchy sequence is convergent,
i.e. if it has a limit point in M.

The classic example of an incomplete metric space is the set of rationals Q with the usual
distance d(x, y) := |x− y|. Every decimal expansion of an irrational number (e.g. π or

√
2)

defines a sequence of rationals (the truncation of that decimal expansion to a progressively
larger, but finite, number of digits) that converges to an irrational.

Given any metric space that is not complete, there is a procedure for completing it by
formally adding all the Cauchy sequences to it. The details are outlined in Appendix 3.A,
and will not be elaborated here. For example, the completion of Q is the real line R, and
in fact, that is one way to formally construct the reals from the rationals. We will assume
from now on that R is a complete metric space.

Open and Closed Sets

Now we introduce the concepts of closed and open sets. Consider the open and closed in-
tervals (0, 1) and [0, 1] in R. The interval [0, 1] contains all its limit points, i.e. all Cauchy
sequences in [0, 1] have limits in [0, 1]. On the other hand, the open interval (0, 1) does
not since the sequence 1/k is a Cauchy sequence entirely in (0, 1) with its limit 0 /∈ (0, 1).
The open interval does however have a property that the closed interval lacks. For every
number x̄ ∈ (0, 1), no matter how close to the boundary, we can find a “neighborhood”
{x ∈ (0, 1); |x− x̄| ≤ ϵ} of it that is entirely contained within (0, 1). These concepts gener-
alize to metric spaces as follows.

Definition 3.5. Let M be a complete metric space. A subset Ω ⊆ M is called
• closed: if every Cauchy sequence {xk} ⊂ Ω converges to a point x ∈ Ω, i.e. if Ω is itself
complete. For any arbitrary set Ω ∈ M, its closure Ω is the smallest closed set containing
it, namely the set obtained from Ω’s union with all of its limit points.

• open: if for each point x̄ ∈ Ω, we can find a “neighborhood of x̄”, i.e. an ϵ > 0 such that
Nϵ(x̄) := {x ∈ Ω; d(x, x̄) ≤ ϵ} is entirely contained in Ω.

Informally, a closed set is one which has no holes in it and contains all of of its boundaries.
An open set is one without boundaries, i.e. there are no points at “edges of the set” where
any neighborhood of those points, no matter how small, will contain points from outside
the set. These concepts are depicted visually in Figure 3.2. As the terminology suggests,
open intervals (a, b) ⊂ R are open sets, and closed intervals [a, b] are closed set. It is not
difficult to show from the definitions above that the set complement M− Ω of an open set
Ω is closed, and vice versa.

Note that a set can be open, closed, both open and closed, or neither. For example R
is both open and closed (it is complete, therefore closed, and it contains all neighborhoods,
therefore open). In fact, the entire complete metric space M in the definitions above is both
open and closed. The set of rationals Q ⊂ R is neither open nor closed. It is “full of holes”,
which are all the irrationals. Any irrational can be approximated by a Cauchy sequence
of rationals. The real line R is actually the completion (or closure) of Q in R, which we

Draft: Notes on Linear Algebra and Functional Analysis © July 19, 2024, Bassam Bamieh



74 3.2. Banach and Hilbert Spaces

x

y

z
⌦

M

(a) A set is open if for any point inside it (x, y or z
above), there is a neighborhood of the point that is
contained entirely in the set. Such sets cannot have
boundaries, i.e. a point x (as in the diagram to the
right) such that all neighborhoods contain contain
points from outside the set.

x{xk}

{zk}

z

⌦

M

(b) A set is closed if it contains all of its limit
points. Such a set has no holes and must contain
all of its boundaries as well. Here, Cauchy sequences
{zk} and {xk} are depicted converging to a limits z
and x inside and on the boundary respectively. The
boundary must be part of the set.

Figure 3.2: Graphical depiction of open (a) and closed (b) sets Ω in a complete metric space M.

write as Q = R. The set Q is also not open in R since any neighborhood around a rational
contains infinitely many irrationals. Thus Q is neither open nor closed.

Continuous Mappings

Definition 3.6. Let f : M1 → M2 be a mapping between two metric spaces.

1. f is continuous if the inverse image of every open set is open, or equivalently, the inverse
image of every closed set is closed.

2. f is continuous at a point x̄ ∈ M1 if given any ϵ > 0, there exists a δ > 0 such that

d(x̄, x̃) ≤ δ ⇒ d
(
f(x̄), f(x̃)

)
≤ ϵ. (3.3)

f is called continuous if it is continuous at each x ∈ M1.

3. f is called sequentially continuous if for every convergent sequence xk
k→∞−→ x, the values

of f also converge, i.e. f(xk)
k→∞−→ f(x).

The first definition is the most general one and is valid in any topological space, where
the topology is defined in terms of open sets and not necessarily in terms of a metric.
Definition 2 requires a metric. Sequential continuity in general does not require a metric,
but rather some notion of (sequential) convergence in the space. There is one important
example of sequential convergence that does not initially arise from a metric, and that
example is encountered in the theory of distributions (generalized functions). We leave this
discussion for later when we study generalized functions.

It is not difficult to show that 1, 2 and 3 are equivalent in a metric space, and this is
left as an exercise.

3.2 Banach and Hilbert Spaces

We now discuss the main issue in this chapter, which is complete vector spaces as opposed
to metric spaces in general. Recall that an inner product space is also a normed space, and
a normed space in turn is also a metric space, and therefore the completeness criterion in
Definition 3.4 applies equally well to inner product and normed vector spaces. The next
definition introduces the standard terminology for such spaces.
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Chapter 3. Completeness and Continuity: Banach and Hilbert Spaces 75

Definition 3.7. A normed vector space that is complete is called a Banach space. A complete
inner product space is called a Hilbert space.

Given an incomplete normed space, we can always form its “completion” (by appending
all the Cauchy sequences as described in Appendix 3.A) to obtain a complete normed space,
i.e. a Banach space. Similarly, any incomplete inner product space1 can be completed to
a Hilbert space. The completed spaces contain the original ones as (incomplete, i.e. not
closed) subspaces.

The spaces we will work most closely with are the Lp and ℓp spaces. We have already
shown that they are normed spaces (and an inner product space in the case of p = 2). They
are also complete spaces.

Theorem 3.8. Let Ω be a subset of Rn or Zn. The spaces Lp(Ω) or ℓp(Ω) for p ∈ [1,∞]
are complete, i.e. they are Banach spaces. In particular, ℓ2 and L2 are Hilbert spaces.

The proof of the Lp case is somewhat technical, requiring concepts from measure theory
and Lebesgue integration. It can be found in most textbooks on functional analysis and will
therefore be omitted. The proof for the ℓp case is less technical and more instructive, so we
illustrate it next.

Proof of Theorem 3.8 for the ℓp case. Let
{
v(k)

}
be a Cauchy sequence of elements in ℓp(Ω),

i.e. the sequence is such that given any ϵ > 0, ∃N such that for all k, l ≥ N

∥v(k) − v(l)∥pp :=
∑

i∈Ω

∣∣∣v(k)i − v
(l)
i

∣∣∣ ≤ ϵ.

Note that since Ω is discrete (i.e. countable), then the norm is given by a sum over Ω.
Therefore, at any individual point i ∈ Ω we have

∣∣∣v(k)i − v
(l)
i

∣∣∣ ≤
∑

i∈Ω

∣∣∣v(k)i − v
(l)
i

∣∣∣ ≤ ϵ.

This means that at any i ∈ Ω, the sequence of real numbers v
(k)
i is Cauchy, and therefore

by completeness of R, it must have a limit which we will call vi. We have thus established

that a sequence
{
v
(n)
i

}
that is Cauchy in ℓp(Ω) converges pointwise (i.e. at each i ∈ Ω) to

some function v : Ω→ R, i.e.

for each i ∈ Ω, vi = lim
k→∞

v
(k)
i .

It remains to prove that the function v has finite p-norm. Since Ω is countable, we can
identify Ω with {1, 2, . . .} and examine the partial sums

∑N
i=1

∣∣∣v(k)i

∣∣∣
p

≤ ∑∞
i=1

∣∣∣v(k)i

∣∣∣
p

≤ C,

where the last inequality is because
{
v(k)

}
is a Cauchy sequence in ℓp, and therefore is

bounded2, i.e. all their ℓp norms are bounded from above by some constant C. Since this

bound is independent of N , and the finite-vector sequence
{
v
(k)
i ; 1 ≤ i ≤ N

}
converges (in

RN ) to the finite vector {vi; 1 ≤ i ≤ N}, then we also have the bound
∑N

i=1 |vi|
p ≤ C.

This bound is independent of N , and therefore is also a bound on the infinite sum
∑∞

i=1 |vi|
p ≤ C,

and the limit function v is therefore in ℓp.
1An incomplete inner product space is sometimes called a “pre-Hilbert” space.
2Recall that in a metric space, every Cauchy sequence must be bounded.
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Example 3.9. Consider the subspace of ℓ∞(N) of asymptotically decaying sequences

ℓ∞0 (N) :=

{
v ∈ ℓ∞(N); lim

k→∞
vk = 0

}
.

This is clearly a subspace, but in addition it is a closed subspace in the ℓ∞ norm. Therefore
it is a Banach space in itself with the ∥.∥∞ norm. For several reasons to be explained later,
whenever the ∥.∥∞ norm is needed in applications, the space ℓ∞0 is a better setting for a
problem than ℓ∞.

Example 3.10. Consider the space C[a, b] of continuous functions on the interval [a, b] with
the maximum norm

C[a, b] :=
{
f : [a, b]→ R; f continuous

}
, ∥f∥∞ := max

x∈[a,b]
|f(x)|.

Note that since f is continuous, then its supremum on a closed interval is achieved at some
point in that interval (this is the “extreme value theorem” of Calculus), thus we write
maximum instead of supremum. This is a subspace of L∞[a, b] and therefore is a normed
vector space. The question is whether it is complete? Let {fk} be a Cauchy sequence (in
the max norm) of continuous functions. At each x ∈ [a, b], {fk(x)} is a Cauchy sequence of
real numbers because

∀x ∈ [a, b], |fk(x)− fl(x)| ≤ ∥fk − fl∥∞ .

This means that at each x the sequence of real numbers {fk(x)} converges to a real number,
which we can define as the value of the “limit function” f

f(x) := lim
k→∞

fk(x), x ∈ [a, b]

This function is the limit of the sequence {fk} in the max norm , i.e. limk→∞ ∥fk − f∥∞ = 0.
Note that convergence in the max norm is uniform convergence, and the uniform convergence
theorem states that the uniform limit of continuous functions is continuous, thus the limit
function f is itself a continuous function and therefore in C[a, b].

The space C[a, b] is therefore a Banach space, and it is a closed subspace of L∞[a, b].
This is only the case for bounded intervals. For example the vector space C[0,∞) is not a
normed space with the max norm since continuous functions on an unbounded interval are
not necessarily bounded.

Example 3.11. Consider the space C1[a, b] of continuously differentiable functions on the
interval [a, b] equipped with the “max” norm

C1[a, b] :=
{
f : [a, b]→ R; f ′ continuous

}
, ∥f∥∞ := max

x∈[a,b]
|f(x)|.

Note that since f is continuously differentiable, then its integral f is also continuous, and
therefore the maximum above is achieved for some x ∈ [a, b]. This is clearly a normed
vector space (it is closed under additions and scalings), which is also a subspace of C[a, b]
(continuous functions on [a, b] with the max norm). However, this subspace is not complete
with respect to the max norm. It is actually a dense subspace in C[a, b] since any continuous
function can be approximated arbitrarily closely by a continuously differentiable function
in the max norm (see Figure 3.3). As we will see later, C1[a, b] can be made into a Banach
space by defining a different (Sobolev) norm on it.
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✏

✏

f 2 C[a, b]

f✏ 2 C1[a, b]kf � f✏k  ✏

a b

Figure 3.3: Any continuous function f can be approximated arbitrarily closely by a continuously differen-
tiable function fϵ in the max norm ∥f−fϵ∥∞ := maxx∈[a,b] |f(x)−fϵ(x)|. Thus the subspace of continuously

differentiable functions C1[a, b] is dense in the Banach space of continuous functions C[a, b] with the max
norm. While C1[a, b] with this norm is itself a normed vector space, but it is not complete, and therefore
not a Banach space itself.

3.3 Bases

There are several notions of bases that can be defined in infinite-dimensional spaces. We have
already encountered Hamel bases (Definition 1.20), and recall the remark that that notion of
basis is not particularly useful. The main application of bases in infinite-dimensional spaces
is to enable approximations by finite-dimensional “truncations”, and the approximation is
to be measured using norms. The following definition which is sometimes referred to as a
“Schauder basis” captures this idea.

Definition 3.12. Let v := {vk}∞k=0 be an ordered, countable set in a Banach space V. This
set is called a basis of V if every element u ∈ V can be expressed uniquely as

u =

∞∑

k=0

αk vk,

where the convergence is in the norm of V. The unique sequence of numbers {αk} are called
the coefficients of u in the basis v.

This definition implies that the closure of span{vk} is all of V, but it is a little stronger than
that since the uniqueness of the coefficients is also required. We have already implicitly
worked with basis for the ℓp spaces.

Example 3.13. Consider the spaces ℓp(N) for p ∈ [1,∞), and the set of vectors e := {ek}
ek := (0, · · · , 0,1, 0, · · · ), k ∈ N. (3.4)

↑ k’th entry

Now any element u ∈ ℓp(N) can be written uniquely in this basis as

u := (u0, u1, · · ·) =

∞∑

k=0

ukek. (3.5)

The fact that u ∈ ℓp(N) (for p < ∞) implies that the tails of the sequence {uk} decay∑∞
k=n |uk|p n→∞−→ 0, and therefore the partial sums of the series (3.5) converge in the ℓp norm
∥∥∥∥∥

∞∑

k=0

ukek −
n−1∑

k=0

ukek

∥∥∥∥∥

p

p

=

∥∥∥∥∥
∞∑

k=n

ukek

∥∥∥∥∥

p

p

≤
∞∑

k=n

|uk|p ∥ek∥pp =

∞∑

k=n

|uk|p n→∞−→ 0.

Thus the series (3.5) is convergent in the ℓp norm for any u ∈ ℓp(N), p ∈ [1,∞). Finally note
that the case p = ∞ is excluded in this example since the argument fails in that case. We will
discuss this issue shortly in the context of the concept of separability.
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Bases in Banach versus Hilbert Spaces

The main difficulty in working with bases in Banach spaces is that, except for very special
cases (e.g. the canonical basis of Rn, or the bases of Example 3.13), there is usually not
a simple relationship between the vector norm and the basis coefficients. This problem is
apparent even in finite dimensional Banach spaces such as Rn with the ∥.∥p norms (p ̸= 2).
Consider for example the ∥.∥1 norm on R2. In the canonical basis, the expressions for
this norm in terms of the vector components follow from the definition as relatively simple
expressions

∥u∥1 =

∥∥∥∥
[
u1

u2

]∥∥∥∥
1

= ∥u1e1 + u2e2∥1 = |u1|+ |u2|.

On the other hand, if we choose a different basis, say v1 := e1 + e2 and v2 := e1 − e2, then

∥u∥1 = ∥u1v1 + u2v2∥1 = ∥u1(e1 + e2) + u2(e1 − e2)∥1
= ∥(u1 + u2)e1 + (u1 − u2)e2∥1 = |u1 + u2|+ |u1 − u2|.

The expressions become even more complex for other choices of bases, and more so in higher
dimensions. When the norms are given by a general convex set, it is generally not possible
to give algebraic expressions in terms of the basis coefficients.

The situation above is to be contrasted with that in a Hilbert space. Consider Rn

again with the Euclidean norm ∥.∥2. Suppose we choose a basis v := {v1, . . . ,vn}. Recall
from Lemma 1.43 that the relation between the coefficients in the new basis and the vector
components (which are the coefficients in the canonical basis) are

u = x1e1 + · · ·+ xnen
= x̂1v1 + · · ·+ x̂nvn

⇔ x :=



x1

:
xn


 =

[
v1 · · · vn

]

x̂1
...
x̂n


 =: V x̂.

Now since the norm is given by the inner product, we can calculate the norm in terms of
the new coefficients x̂1, . . . , x̂n by

∥u∥22 = x2
1 + · · ·+ x2

n = x∗x = x̂∗V ∗V x = x̂∗(V ∗V ) x̂.

This is a modified inner product, and can be easily calculated with matrix-vector operations.
It is for this reason that bases in Hilbert space are much easier to work with than in general
Banach spaces.

Orthogonal Bases in Hilbert Space

Recall that inner product spaces have a much richer geometry than normed spaces due to
the inner product which gives a notion of angles between vectors. In particular, mutually
orthogonal vectors provide bases with particularly nice properties.

Definition 3.14. A basis v := {vk} of a Hilbert space with the properties

⟨vk , vl⟩ =

{
1, k = l
0, k ̸= l

is called an orthonormal basis.

Orthonormal bases play very nicely with norms and inner product as shown by the
following famous identities.
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Theorem 3.15. Let v := {vk}∞k=0 be an orthonormal basis of a Hilbert space V. Then for
any vectors u,w ∈ V with expansions u =

∑∞
k=0 αkvk and u =

∑∞
k=0 βkvk

⟨u , w⟩ =

∞∑

k=0

α∗
kβk (Plancherel Identity)

∥u∥2 =

∞∑

k=0

|αk|2 (Parseval’s Identity)

Proof. First note that Parseval’s identity follows from the Plancherel identity by choosing
the two vectors equal3. Now compute

⟨u , w⟩ =

〈 ∞∑

k=0

αkvk ,

∞∑

l=0

βlvl

〉
=

∞∑

k=0

∞∑

l=0

⟨αkvk , βlvl⟩

=

∞∑

k=0

∞∑

l=0

α∗
kβl ⟨vk , vl⟩ =

∞∑

k=0

∞∑

l=0

α∗
kβl δk-l (δ is the Kronecker delta)

=

∞∑

k=0

α∗
kβk

Parseval’s identity can be thought of as the infinite-dimensional version of the Pythagorean
theorem. Another interpretation of the two identities is that any choice of orthonormal basis
of a Hilbert space makes it “look like” ℓ2(N). The one-to-one and onto correspondence is
given by the mapping from a vector to its basis coefficients u 7→ (α0, α1, . . .). Parseval’s
identity implies that this is an isometric isomorphism between V and ℓ2(N). Therefore any
choice of orthonormal basis of a Hilbert space induces an isometric isomorphism between it
and ℓ2(N).

Riesz Bases in Hilbert Space

When it is not possible to use orthogonal bases in Hilbert space, the next best construction
is as follows.

Definition 3.16. A basis v := {vk} of a Hilbert space V is called a Riesz basis if there are
constants c, c > 0 such that for any vector u ∈ V

u =

∞∑

k=0

αkvk ⇒ c

∞∑

k=0

|αk|2 ≤ ∥u∥2 ≤ c

∞∑

k=0

|αk|2 . (3.6)

To appreciate the need for such a definition, the reader should recall the concept of
“equivalence of norms” of Section 2.C. The definition above says that the Hilbert space
norm ∥u∥ and the ℓ2 norm of the sequence of coefficients {αk} are equivalent. Since each
choice of basis induces an isomorphism from V to ℓ2(N), the equivalence (3.6) implies that
this isomorphism is at least continuous even if it is not an isometry (as would be the case
with an orthonormal basis). Thus convergence arguments in V are equivalent to convergence
arguments of the corresponding basis coefficients in ℓ2(N).

3Since the inner product is also determined by the norm (via the polarization identity), then we can also
say that Parseval’s identity implies Plancherel’s. For this reason, the two names are used interchangeably
in the literature.
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Separability

Recall the convergence argument of Example 3.13, and note that the argument fails in the
case of ℓ∞ since the norm of the tail

∥∥∥∥∥
∞∑

k=n

ukek

∥∥∥∥∥
∞

= sup
k≥n
|uk|,

and this quantity does not always decay as n → ∞ (e.g. consider the element u :=
(1, 1, · · · )). However, the argument works in the space ℓ∞0 of Example 3.9, and therefore the
set e is a basis for ℓ∞0 .

The fact that the set (3.4) is not a basis for ℓ∞(N) is related to the important concept
of separability.

Definition 3.17. A vector space is called separable if it contains a countable dense subset.

The importance of this definition is that if a space is not separable, then its elements cannot
be approximated using finite arithmetic, e.g. on a computer. Therefore a non-separable
space is usually not a useful setting for problems in applications.

If a Banach space V has a basis (in the sense of Definition 3.12), then it must be separable.
indeed, let {vk}∞k=0 be such a basis, and consider combinations of basis elements but with
only rational coefficients

∞∑

k=0

αk vk, αk ∈ Q.

The set of such elements is countable (its cardinality is the same as NN), and also dense in
V. The converse however is trickier. There exists separable Banach spaces that do not have
a basis in the sense of Definition 3.12, but those are fairly esoteric and not of interest here.

It is possible to show (Exercise 3.1) that ℓ∞(N) is not separable, and since a space with
a basis must be separable, then ℓ∞(N) cannot have a basis, and we need not search for
alternatives to the basis {ek} for ℓ∞. On the other hand, its closed subspace ℓ∞0 (N) is
separable since e (3.4) is indeed a basis for it.

Example 3.18. (Finite-Power Signals and Almost-Periodic Functions)
Consider the following bilinear form defined for functions on the real line

⟨u , w⟩p := lim
T→∞

1

2T

∫ T

-T

u∗(t)w(t) dt, ∥u∥2p := ⟨u , u⟩p = lim
T→∞

1

2T

∫ T

-T

|u(t)|2 dt. (3.7)

In signal analysis, ∥.∥p is the Root Mean Square (RMS) value of a signal4, and signals for which
∥.∥p is finite are called “finite power signals”. Signals for which ∥.∥p ̸= 0 must be “persistent”,
i.e. not decay. For example, if u ∈ L2(R), then ∥u∥p = 0. Therefore ⟨. , .⟩p is not quite an
inner product since it is not definite. However, we can make it into a definite inner product
by considering the space of equivalence classes with respect to this indefinite norm, so that
u ∼ w ⇔ ∥u− w∥p = 0. More precisely, let

P′ :=
{
u : R→ R; ⟨u , u⟩p <∞

}
, N :=

{
u ∈ P′; ⟨u , u⟩p = 0

}
.

4In the definition, lim sup should be used instead of lim to guarantee the existence of a limit. For some
exotic signals, the limit above with T → ∞ may oscillate and not converge, even if it is bounded. We write
lim here instead of lim sup for simplicity of notation.
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Thus N contains all signals equivalent to the zero signal, and two signals are equivalent u ∼ w
iff (u−w) ∈ N. It is possible to show (recall Exercise 2.4) that N is a subspace of P′, and that
the inner product ⟨. , .⟩p is definite on the quotient space

P := P′/N.

Thus P is a Hilbert space5 of equivalence classes of finite-power signals.
We will show that this Hilbert space is not separable! Before we do that, we explain the

connection with what are called “almost-periodic functions”. Consider signals of the form

α1e
jω1t + · · · + αne

jωnt, (3.8)

where the frequencies ω1, . . . , ωn can be any real numbers, i.e. not necessarily commensurate,
and therefore such signals are not necessarily periodic, but they are “almost-periodic” in a
sense described in Exercise 3.2. The collection of all such signals is a vector space. Also by this
definition, the uncountable set of functions

{
ejωt; ω ∈ R

}
is a Hamel basis for this vector space.

It can be shown [3, page 109] that the completion of this vector space with the norm (3.7) is
exactly the space P defined above. Furthermore, there is a Parseval-type relation as follows

u ∈ P ⇔ u(t) =

∞∑

k=0

αke
jωkt, ∥u∥p := lim

T→∞
1

2T

∫ T

-T

|u(t)|2dt =

∞∑

k=0

|ak|2 < ∞.

Thus for every u ∈ P, there exists a countable set of “frequencies” {ωk} such that u can be
written as a trigonometric series. There are other classes of “almost-periodic functions” that
can be defined by taking closures of signals of the form (3.8) in various norms (e.g. with the
supremum norm or an “average” L1 norm). However, the power norm appears to be the most
useful one due to the above Parseval-type identity.

Now for separability. Observe that the Hamel basis described earlier is actually an uncountable
orthonormal set since

〈
ejωt , ejγt

〉
p

= lim
T→∞

1

2T

∫ T

-T

e−jωtejγt dt = lim
T→∞

1

2T

∫ T

-T

ej(ω−γ)t dt =

{
1, ω = γ
0, ω ̸= γ

.

The existence of an uncountable, orthonormal set implies that the space is not separable. The
argument is similar to that of Exercise 3.1, which can be informally described as follows: put
an open ball of radius < 1/2 around each element of the orthonormal set (i.e. at the “tip” of
each orthonormal vector). These balls do not intersect. Any dense subset must have at least
one element in each ball. Since the number of balls is uncountable, any dense subset must also
be uncountable.

3.4 Quotient Spaces and Minimum Distance Problems

In Section 1.4 we saw how to define quotient spaces in a general vector space. The construc-
tion was purely algebraic. Now that we have spaces equipped with norms, inner products
and notions of completeness, we study quotient spaces with all those extra structures.

The first question is given a normed vector space V and a subspace S ⊊ V, how does one
define a norm on the quotient space V/S? Figure 3.4 gives a motivation for the definition to
follow. Considering a coset v+S, its “norm” ∥v+S∥ should be its “distance” from the zero

5In the mathematics literature, this construction with with the more general p ∈ [1,∞) in place of 2
in (3.7) is called a “Besicovitch space”.
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S

v + S = w + S
v + w

w

w

v

S

v + S v d(v, S)

Figure 3.4: (Left) The definition of the norm of a cost v+ S as the distance between the two cosets v+ S
and 0 + S. The distance between two sets is defined as the infimum of the distance between all possible
elements of the two sets respectively (3.9). (Right) This definition is independent of the choice of coset
representative v, and is the same as the distance d(v,S) between v and the subspace S (3.10).

coset 0+S. This norm should of course be independent of the choice of coset representative
v. We can therefore attempt a definition as follows

∥v + S∥ := inf
w,u∈S

∥ v + w︸ ︷︷ ︸
all possible
members
of v + S

− u︸︷︷︸
all possible
members
of 0 + S

∥. (3.9)

This quantity captures the distance between the two cosets. The expression can be simplified
a bit since we can combine w, u ∈ S as a single parameter x = w − u and rewrite

∥v + S∥ := inf
x∈S
∥v + x∥ = inf

x∈S
∥v − x∥ = d(v,S), (3.10)

where d(v,S) is the minimum distance between the vector v and the subspace S. Note again
that this distance is the same for any vector in the same coset that v is in. More precisely

v1 − v2 ∈ S ⇒ d(v1,S) = d(v2,S).

Thus the definition (3.10) is independent of the choice of coset representative.
Now having defined the quantity (3.10), is it really a norm on the set of cosets? We need

to check homogeneity, the triangle inequality and definiteness which we do as follows.

• Homogeneity: The coset α(v + S) is by definition αv + S and therefore for α ̸= 0

∥α(v+S)∥ = inf
x∈S
∥αv + x∥ = inf

x∈S
|α| ∥v + x/α∥ 1

= |α| inf
y∈S
∥v + y∥ = |α|∥(v+S)∥,

where
1
= follows from S being a subspace, and therefore y = x/α ∈ S ⇔ x ∈ S.

• Triangle Inequality: This follows from the triangle inequality for vectors

∥(v + S) + (w + S)∥ = ∥(v + w) + S∥ = inf
x∈S
∥v + w − x∥ = inf

x,y∈S
∥v + w − x− y∥

≤ inf
x,y∈S

(∥v − x∥+ ∥w − y∥) = inf
x∈S
∥v − x∥+ inf

y∈S
∥w − y∥ .

• Definiteness: Here we require an additional condition on the subspace S. If S is not closed,
and v /∈ S is in its closure S, then the minimum distance is zero

v ∈ S ⇒ inf
x∈S
∥v − x∥ = 0.

Conversely, if the minimum distance ∥v + S∥ = 0, then v must be in the closure of S.
Thus if S is closed, then the norm (3.10) on the quotient space V/S is definite. Note
that in finite dimensions every subspace is closed, and in this case we do not require this
additional assumption.
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v1 + S

v2 + S

v3 + S

v4 + S

v5 + S

v1

v2

v3

v4

v5

(a) A sequence {(vk + S)}∞
k=0 of cosets can be Cauchy,

while a sequence {vk}∞
k=0 of their representatives is

not.

vk + S

vk-1 + S

d (vk + S, vk-1 + S)

wk-1

wk

d(wk, wk-1)

(b) Constructing a Cauchy sequence of representatives
for a Cauchy sequence of cosets. One can always choose
wk ∈ vk+S and wk-1 ∈ vk-1+S such that d(wk, wk-1) is
arbitrarily close to the distance between the two cosets
as in (3.12).

Figure 3.5: Graphical depiction of the proof of completeness of the quotient space V/S of Lemma 3.19.

Thus with the norm defined in (3.10), the quotient space V/S becomes a normed space
(provided S is closed). We can ask the next question which is about completeness.

Lemma 3.19. Let S be a closed subspace of a Banach space V. Then the quotient space
V/S endowed with the norm

∥v + S∥ := inf
x∈S
∥v − x∥, (3.11)

is itself a Banach space.

Proof. We have already shown that the norm (3.11) is independent of the choice v of coset
representative, and satisfies the three requirements of a norm. It remains to show complete-
ness of V/S. Take a Cauchy “sequence of cosets” {vk + V}, i.e.

∀ϵ, ∃N, ∀n,m ≥ N, ∥(vn + S)− (vm + S)∥ ≤ ϵ.

If the sequence of coset representatives {vk} were Cauchy, then its limit can be used to find
the limit coset. However, the difficulty illustrated in Figure 3.5a is that while the sequence
of cosets is Cauchy, one can choose a sequence of representatives that are not themselves
Cauchy. It is however easy to construct another sequence {wk} with distances no larger
than the coset distances, and therefore {wk} will indeed be Cauchy. The construction is
illustrated in Figure 3.5b

w0 := v0

choose wk s.t. d(wk, wk-1) ≤ d(vk + S, vk-1 + S) + γk (always possible) (3.12)

where {γk} is a sequence of positive numbers decaying to zero. Since the increments
{d(vk + S, vk-1 + S)} and {γk} are both Cauchy sequences, then so are the increments
{d(wk, wk-1)}, and therefore {wk} is a Cauchy sequence. Thus limk→∞ wk =: w̄ ∈ V exists
since V is complete, and the coset w̄ + S is the limit of the sequence {vk + S} in V/S.

The infimization problem (3.11) deserves some attention. It is a “minimum distance
problem” from a vector v to a subspace S. Such problems, and more general ones of finding
minimum distances to affine spaces, are important in applications. They are fundamentally
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V

0

x̄

v

e := v � x̄

z

e
e

S

Figure 3.6: The projection theorem in an inner product space. The point x̄ in a subspace S that is closest
to a point b outside of it is called the projection of v onto S. This point is characterized by the “error
vector” e := v − x̄ being orthogonal to all other vectors x ∈ S.

problems of approximation or error minimization. The reader should note that the proof of
Lemma 3.19 does not provide an algorithm or technique for actually finding this minimum
distance. We next consider minimum distance problems in inner product spaces, where the
solution is given by an “orthogonal projection”. Similar problems in Banach space are more
subtle since there is no inner product. None the less, we will be able to address minimum
distance problems using the concepts of duality and “orthogonal functionals” in Chapter 4.

3.4.1 The Projection Theorem in Hilbert Space

We begin with the projection theorem in an inner product space (though not necessarily
a complete, i.e. Hilbert, space). This theorem states an orthogonality condition that any
minimizer must satisfy, and thus it is a necessary condition for optimality. The proof is
typical of most arguments for such necessary conditions by the contrapositive, namely, if
the condition is not satisfied, then the objective can be improved by moving in a certain
direction.

Theorem 3.20 (Minimum distance to a subspace of an inner product space). Let S be a
subspace of a inner product space V, and consider the minimum distance problem between a
vector v ∈ V and the subspace S (see Figure 3.6)

J̄ := inf
x∈S
∥v − x∥. (3.13)

If x̄ ∈ S solves (3.13) (i.e. ∥v − x̄∥ = J̄), then it is unique, and the “optimal error” vector
(v − x̄) is orthogonal to S

∀x ∈ S, ⟨v − x̄ , x⟩ = 0. (3.14)

Proof. We will show that if x̄ does not satisfy the orthogonality condition, then we can find
another point in S whose distance to v is smaller. If x̄ doesn’t satisfy (3.14), then there is
some x̃ ∈ S with ⟨b− x̄ , x̃⟩ ̸= 0. x̃ can be chosen6 such that this number is positive, i.e.
⟨b− x̄ , x̃⟩ = c > 0. Now “move” from x̄ in the direction of x̃, and examine the distance to
v (see Figure 3.7)

∥v − (x̄+ ϵx̃)∥2 =
〈
v − (x̄+ ϵx̃) , v − (x̄+ ϵx̃)

〉
=
〈
(v − x̄) + ϵx̃ , (v − x̄) + ϵx̃

〉

=
〈
v − x̄ , v − x̄

〉
− 2ϵ ⟨v − x̄ , x̃⟩ + ϵ2 ⟨x̃ , x̃⟩

= ∥v − x̄∥2 − 2ϵ c + ϵ2 ∥x̃∥2.
6If ⟨b− x̄ , x̃⟩ = c < 0, then choose −x̃ instead of x̃.
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V

0 x̄

v

✏x̃
✓

S

v � (x̄ + ✏x̃)
v � x̄

Figure 3.7: The proof of the projection theorem in an inner product space. For any x̄ ∈ S, if b− x̄ is not
orthogonal to S, then we can select a x̃ ∈ S such that ⟨b− x̄ , x̃⟩ = c > 0 (i.e. the angle θ above is less than
90◦). We can then move in the direction of x̃ from x̄, and choose ϵ such that b− (x̄+ ϵx̃) has smaller length
than b− x̄ as shown in (3.15).

The idea is that now we can choose ϵ sufficiently small so that the ϵ term dominates (in
magnitude) the ϵ2 term. Since c > 0, the right hand side can be made strictly smaller than
the left hand side, i.e. ∃ϵ̄ > 0 such that for all ϵ < ϵ̄

∥v − (x̄+ ϵx̃)∥2 = ∥v − x̄∥2 − 2c ϵ + ∥x̃∥2ϵ2 < ∥v − x̄∥2, (3.15)

and therefore x̄ is not optimal.
The argument that a minimizer must be unique is simple. Suppose x̄1 and x̄2 are both

minimizers, then they each must satisfy (3.14), and therefore

∀z ∈ S, 0 = ⟨b− x̄1 , z⟩ − ⟨b− x̄2 , z⟩ = ⟨x̄2 − x̄1 , z⟩ .

The last statement says that x̄2 − x̄2 must be orthogonal to S, but since (x̄2 − x̄1) ∈ S, it
must be zero, and x̄2 = x̄1.

The previous theorem was stated in an inner product space because completeness plays
no role in the necessary conditions for a minimum. However, the theorem does not say
anything about the existence of a minimizer. We will show next that if S is a closed
subspace of a Hilbert space V, then a minimizer always exists (and therefore must be unique
by Theorem 3.20). While this is true in a Hilbert space, it is not true in a Banach space.
This fact is intimately tied to the special structure of the norm in an inner product space,
and is a consequence of the parallelogram law. Before stating and proving the minimizer
existence result, we re-examine the parallelogram law and its implications for distances and
the geometry in an inner product space. These observations are of interest in their own
right.

Recall the parallelogram law which was stated earlier as

∥v + v∥2 + ∥u− v∥2 = 2∥u∥2 + 2∥v∥2,

for any two vectors u and v in an inner product space. It can be restated as follows

∥u− v∥2 = 2∥u∥2 + 2∥v∥2 − 4∥(u+ v)/2∥2, (3.16)

which has an interesting geometric interpretation illustrated in Figure 3.8. The points u, v,
and (u+v)/2 are colinear, with the segment u−v bisected by (u+v)/2. The relation (3.16)
implies that if the vectors u, v, and (u + v)/2 are of equal length, then u − v must have
length zero! It also implies that if they were approximately equal, say to within order ϵ of
each other, then u − v will have length of order ϵ as well. This is in sharp contrast with
the geometry of a general normed space. Figure 3.8 shows an example from R2 with the
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1

1

1 2
x1

x2

n
kxk1 = 1

o
u

v

(u + v)/2

u� v

Figure 3.8: (Left) The restated parallelogram law (3.16) ∥u − v∥2 = 2∥u∥2 + 2∥v∥2 − 4∥(u + v)/2∥2
constrains the length of u− v in terms of the other three lengths. If u, v and (u+ v)/2 have equal lengths,
then u−v must have zero length and the three points coalesce. Also, if u, v and (u+v)/2 have approximately
equal lengths, then u − v is forced to have small length of the order of the differences between the three
lengths. (Right) This stands in sharp contrast to the geometry in a general normed space as this example
in R2 with the ∞-norm illustrates.

V v

S

v -xk+xl

2v -xlv -xk

xl xk

Figure 3.9: Due to the geometrical restrictions encoded in the parallelogram law in an inner product
space, a sequence minimizing the distance to a subspace must be Cauchy. When the lengths of v − xk and
v − xl are close to the optimum J̄ , and the length of the distance from v to the midpoint (xk + xl)/2 can’t
be smaller than J̄ , then the parallelogram law (3.19) implies that xk must be close to xl. Thus the sequence
{xn} is Cauchy.

∥.∥∞ norm where three co-linear points of the same configuration have equal lengths, but
the segment u − v between them has twice their length! We will see in the next theorem
that it is this geometry encoded in the parallelogram law that forces a minimizing sequence
to be a Cauchy sequence.

Theorem 3.21 (Projection Theorem). Let S be a closed subspace of a Hilbert space V. For
any element v ∈ V, there exists a unique minimizer x̄ of the distance between v and S

inf
x∈S
∥v − x∥ = ∥v − x̄∥.

This minimizer satisfies the orthogonality condition

∀x ∈ S, ⟨v − x̄ , x⟩ = 0. (3.17)

Proof. Uniqueness and the necessity of the orthogonality condition has already been shown
in Theorem 3.20. To show existence, let {zn} ⊂ S be a sequence that achieves the infimum

lim
n→∞

∥v − xn∥ = inf
x∈S
∥v − z∥ =: J̄ . (3.18)

We will show that {xn} is a Cauchy sequence. It will then follow that since S is closed, this
sequence must have a limit in S.

Now to show that {xn} is Cauchy, we apply version (3.16) of the parallelogram law to
the vectors joining v to two points xk and xl in the sequence respectively (see Figure 3.9)

∥xk − xl∥2 = 2 ∥v − xk∥2 + 2 ∥v − xl∥2 − 4
∥∥v − xk+xl

2

∥∥2 . (3.19)
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Now if those two points are chosen from the “tail” of the sequence, i.e. if ∥v − xk∥ and
∥v − xl∥ are within ϵ of the infimum J̄ , then ∥xk − xl∥ is forced to be of order ϵ by (3.19).
More precisely, given ϵ, there exists an N such that for all k, l ≥ N

∥b− zk∥ ≤ J̄ + ϵ
∥b− zl∥ ≤ J̄ + ϵ∥∥b− zk+zl

2

∥∥ ≥ J̄



 ⇒

{
∥zk − zl∥2 ≤ 2(J̄ + ϵ)2 + 2(J̄ + ϵ)2 − 4J̄2

= 8J̄ ϵ+ 4 ϵ2

The first two statements on the left follow from (3.18), and the third statement follows from
(xk+xl)/2 being in S, and again by (3.18), the distance ∥v− (xk+xl)/2∥ cannot be smaller
than J̄ . Thus ∥xk −xl∥ can be made as small as desired for all k, l ≥ N , which implies that
{xn} is a Cauchy sequence.

The Orthogonal Complement and Orthogonal Projection

Definition 3.22. Given any subspace S ⊂ V of an inner product space V, its orthogonal
complement S⊥ is

S⊥ := {v ∈ V; ∀x ∈ S, ⟨v , x⟩ = 0} ,
i.e. the set of vectors that are perpendicular to all vectors in S.

The fact that S⊥ is closed under additions and scalings, and therefore a subspace itself,
is immediate from the definitions. In fact, in a Hilbert space S⊥ is a closed subspace even
if S is not. Indeed, let {vk} be a Cauchy sequence in S⊥ ⊂ V, where V is a Hilbert space.
The sequence has a limit limk→∞ vk = v ∈ V (since V is complete), but this limit must also
belong to S⊥ since

∀x ∈ S, ⟨v , x⟩ = lim
k→∞

⟨vk , x⟩ = 0,

due to the continuity of the inner product.
The projection theorem 3.21 has the following important implication. Given a closed

subspace S ⊂ V, any vector v ∈ V can be uniquely written as the sum

v = v1 + v2, v1 ∈ S, v2 ⊥ S.

Indeed, v1 is the unique minimizer x̄ ∈ S of the minimum distance problem between v and
S, and v2 is the optimal error vector v2 := v − x̄ = v − v1 in Theorem 3.21. Furthermore,
orthogonality of v1 and v2 implies the Pythagorean identity ∥v∥2 = ∥v1∥2 + ∥v2∥2. This is
stated formally next.

Lemma 3.23. Let S ⊂ V be a closed subspace of a Hilbert space. Then its orthogonal
complement S⊥ is complementary to S in V, i.e. V = S⊕ S⊥ meaning every element v ∈ V
can be written uniquely as

v = v1 + v2, v1 ∈ S, v2 ∈ S⊥, with ∥v∥2 = ∥v1∥2 + ∥v2∥2 .
Recall that by Lemma 1.30, the decomposition V = S ⊕ S⊥ implies that there are

projection operators Π : V → S and (I − Π) : V → S⊥ onto S and S⊥ respectively. Since S
and S⊥ are orthogonal complements, we call those projections orthogonal projections.

What happens if we take orthogonal complements twice? For any subspace S ⊂ V,

denote
(
S⊥
)⊥

=: S⊥⊥, and observe that any vector in S is orthogonal to all of S⊥

x ∈ S ⇒ ∀w ∈ S⊥, ⟨w , x⟩ = 0 ⇒ x ∈ S⊥⊥.

This means that S ⊆ S⊥⊥. We can go one step further since orthogonal complements must
be closed, and thus conclude that S ⊆ S⊥⊥. In fact, the two subspaces are equal.

Draft: Notes on Linear Algebra and Functional Analysis © July 19, 2024, Bassam Bamieh



88 3.5. Continuity and Induced Norms of Linear Mappings

Lemma 3.24. Let S ⊂ V be a (not necessarily closed) subspace of a Hilbert space V . Then
S⊥⊥ = S.

Proof. It remains to show that S⊥⊥ ⊆ S, which we do by the contrapositive. If v /∈ S, then
it must be a non-zero distance away from it, and by the projection theorem, the optimal
error v − x̄ is such that

0 < inf
x∈S
∥v − x∥2 = ∥v − x̄∥2 = ⟨v − x̄ , v − x̄⟩ = ⟨v − x̄ , v⟩ − ⟨v − x̄ , x⟩

= ⟨v − x̄ , v⟩ (x ∈ S ⇒ ⟨v − x̄ , x⟩ = 0)

Thus we found one vector w̄ := v − x̄ ∈ S⊥ with ⟨w̄ , v⟩ ≠ 0. This implies v /∈
(
S⊥
)⊥

.

3.5 Continuity and Induced Norms of Linear Mappings

In previous chapters we dealt with linear operators in a purely algebraic manner. Now
that we have notions of topology, distances and convergence on vector spaces, we can study
further properties of operators. Those properties are induced from the norms on the vector
spaces. It turns out that since we are dealing with linear mappings, the superposition
property will have two important consequences. First that it suffices to check continuity
at the origin, and second, that continuity puts an upper bound on how much the operator
can “amplify” the norm of a vector. This last statement will be formalized in terms of the
induced norm of the operator.

A linear operator A : V → W between two normed spaces V and W is a mapping, and
we can define continuity of the mapping using the underlying norms in V and W. First we
define a stronger type of continuity than what we’ve already encountered

Definition 3.25. Let f : M1 → M2 be a mapping between two metric spaces. f is called
uniformly Lipschitz continuous (or simply Lipschitz continuous7) if there exists one constant
c̄ such that for all x1, x2 ∈ M1

d
(
f(x1), f(x2)

)
≤ c̄ d(x1, x2). (3.20)

Lipschitz continuity is stronger than notions of continuity in Definition 3.6. For example,
it is easy to see that (3.20) implies (3.3), but the reverse may not hold in general. However,
for linear mappings, the stronger Lipschitz continuity condition turns out to be equivalent to
continuity in the sense of Definition 3.6. Thus in a normed vector space, all four definitions
are equivalent. The proof of this equivalence is part of the next lemma.

Lemma 3.26. Let A : V→W be a linear operator between two normed spaces.

1. A is a continuous mapping iff it is continuous at 0 ∈ V.

2. A is continuous iff the following ratio is “uniformly bounded”

∥A∥i := sup
0̸=v∈V

∥Av∥
W

∥v∥
V

= c̄ < ∞. (3.21)

The quantity ∥A∥i is called the induced norm of A.

7The standard definition of Lipschitz continuity allows the constant c̄ (the so-called Lipschitz constant)
in (3.20) to vary with x1 and x2. We will not need this weaker concept of continuity here, and will simply
refer to (3.20) as Lipschitz continuity.
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A

WV

v1

v2

kAkiA(v1)

A(v2)

A(BV)

BV := {kvk  1}

Figure 3.10: An illustration of the induced norm ∥A∥i of an operator A : V → W between normed vector
spaces. The vectors v1 and v2 lie in the unit ball BV of V, and they are mapped to the vectors A(v1)
and A(v2) respectively. The operator A can amplify or shorten the length of these vectors depending on
which direction they are in. The highest “amplification” is given by the induced norm ∥A∥i, which gives
the tightest bound in the inequality ∥A(v)∥W ≤ ∥A∥i∥v∥V . The bound implies that the image A(BV ) of the
unit ball is contained inside a ball of radius ∥A∥i in W. In the diagram above, the vector v1 achieves this
bound with equality, thus it is the vector with the highest norm amplification, and achieves the supremum
in (3.21).

Before proving the lemma, we examine the ratio (3.21). The homogeneity properties of
both the norm and the linear operator A imply that this ratio can be written in several
equivalent forms

sup
0̸=v∈V

∥A(v)∥
∥v∥ = sup

0̸=v∈V

∥∥∥∥
1

∥v∥A(v)

∥∥∥∥ = sup
0 ̸=v∈V

∥∥∥∥A
(

v

∥v∥

)∥∥∥∥
1
= sup

∥u∥=1

∥Au∥

= sup
∥u∥≤1

∥Au∥ =
1

α
sup

∥w∥≤α

∥Aw∥. (3.22)

The equality
1
= follows by observing that u := v/∥v∥ is always a vector of unit norm. The

remaining equalities follow from the the homogeneity of the norm and the operator A.
Another consequence of (3.21) is a bound relating the norm of a vector to that of its

image under A

sup
0̸=v∈V

∥Av∥
W

∥v∥
V

=: ∥A∥i ⇒ ∀v ∈ V,
∥Av∥

W

∥v∥
V

≤ ∥A∥i

⇔ ∀v ∈ V, ∥Av∥
W
≤ ∥A∥i ∥v∥V . (3.23)

Note that Av ∈ W is the image of v ∈ V under the operator A. The last inequality means
that the induced operator norm ∥A∥i bounds how large the norm of any vector v can be
“amplified” by the operator A. Note the careful labeling of the norms in (3.23) to indicate
the respective spaces in which they are measured. Figure 3.10 gives a graphical illustration
of the concept of the induced norm of an operator as a measure of how it amplifies or shrinks
norms of vectors in different directions.

Proof of Lemma 3.26. The first clause is a consequence of the metric being translation in-
variant in a normed vector space. Since the metric is defined in terms of the norm, continuity
at zero has the following implications for the norm

(
d(0, ṽ) := ∥0− ṽ∥ = ∥ṽ∥ ≤ δ ⇒ d

(
A(0), A(ṽ)

)
:= ∥0−A(ṽ)∥ = ∥A(ṽ)∥ ≤ ϵ

)

⇔
(
∥ṽ∥ ≤ δ ⇒ ∥A(ṽ)∥ ≤ ϵ

)
. (3.24)

On the other hand, continuity at any other point v̄ ∈ V means

∥v̄ − v∥ ≤ δ ⇒ ∥A(v̄)−A(v)∥ ≤ ϵ. (3.25)
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Since A is linear, we have ∥A(v̄)− A(v)∥ = ∥A(v̄ − v)∥, and therefore (3.24) implies (3.25)
by choosing ṽ = v̄ − v.

To prove the second clause, we first point out that the uniform boundedness condition
is equivalent to uniform Lipschitz continuity. Indeed, since the metric is given by the norm,
(3.20) becomes

∥A(v1)−A(v2)∥ ≤ c̄ ∥v1 − v2∥ ⇔ ∥A(v1 − v2)∥ ≤ c̄ ∥v1 − v2∥

⇔ ∥A(v)∥ ≤ c̄ ∥v∥ ⇔ ∥Av∥
∥v∥ ≤ c̄,

which holds for any non-zero v ∈ V. Thus the norm ratio is uniformly bounded by the
Lipschitz constant c̄. The converse also follows since the bound ∥A∥i in (3.21) gives the
Lipschitz constant. Thus boundedness (3.21) implies Lipschitz continuity, which in turn
implies continuity.

For the converse, assume A is continuous, its continuity at v = 0 means that given ϵ > 0,
there exists a δ > 0 such that

(
∀∥v∥ ≤ δ, ∥Av∥ ≤ ϵ

)
⇒ ∥A∥i =

1

δ
sup

∥v∥≤δ

∥Av∥ ≤ ϵ

δ
,

where we have used the expression (3.22) for the induced norm. Therefore continuity at
zero implies that A has bounded induced norm.

For matrices, the supremum in (3.21) is always finite, thus linear mappings between
finite-dimensional vector spaces are always Lipschitz continuous. Any given matrix will have
different induced norms depending on the choice of vector norm in Rn. We will shortly see
several examples. On the other hand, not every operator on infinite-dimensional normed
spaces will have a bounded induced norm. In fact, many operators of interest, such as
differential operators, will typical have an unbounded supremum in (3.21). We will see
examples of this as well.

Example 3.27. Let A : Rm → Rn be an n ×m matrix. If A = diag(a1, . . . , an) is diagonal
and square8 (i.e. n = m), then its p-induced norm (written ∥A∥p-i) is the same for all p ∈ [1,∞],
and is the maximum modulus of all the diagonal entries

∥A∥p-i := sup
∥v∥p≤1

∥Av∥p = max
1≤k≤n

|ak| , p ∈ [1,∞]. (3.26)

This is easy to show from the definition. We illustrate the argument here as it is typical of most
induced norm calculations. First a bound is derived, and then one shows that the bound is tight
by exhibiting a vector that achieves (or almost achieves) this bound. Let v be any vector and
calculate that for a diagonal A

∥Av∥pp = ∥(a1v1, . . . , anvn)∥p =

n∑

k=1

|akvk|p ≤
(

max
1≤k≤n

|ak|p
) n∑

k=1

|vk|p

=

(
max

1≤k≤n
|ak|
)p

∥v∥pp. (3.27)

By taking the p’th root of both sides we see that the quantity (3.26) bounds the p-induced
norm of A. To find a vector that achieves this bound, let k̄ be an index where the maximum

8If A is not square, but rather a 2 × 1 or a 1 × 2 block matrix, with a diagonal block and a zero block,
then the same statement holds.
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in (3.26) is achieved, and choose v̄ to have all zero entries except for an entry of 1 at k̄. Note
that ∥v̄∥ = 1 for any p, and calculate

∥Av̄∥p = ∥(0, . . . , 0, ak̄1, 0, . . . , 0)∥p = |ak̄| := max
1≤k≤n

|ak|.

Thus the bound (3.27) is tight.

Example 3.28. The 1-induced and∞-induced norm of A are given by the “maximum column
sum” and “maximum row sum” respectively

∥A∥1-i = max
1≤l≤m

n∑

k=1

|akl| , ∥A∥∞-i = max
1≤k≤m

n∑

l=1

|akl| . (3.28)

This is a consequence of the 1 −∞ inequality of Exercise 2.5, and is itself left as an exercise.
In contrast to the 1 and ∞ induced norms, there is not such a simple expression for the other
p-induced norm in terms of the matrix entries.

Example 3.29. The 2-induced norm of A is its maximum singular value

∥A∥2-i = σmax(A) .

We will prove this statement when we introduce the singular value decomposition later on. Note
that in contrast to the direct computations required to obtain the 1 and∞ induced norms (3.28),
the 2-induced norm requires the more substantial calculation of the maximum sigular value.

Example 3.30. The bounds between p norms in Rn can be used to derive bounds between
the respective p-induced norms. Upper and lower bounds between two vector norms can be used
to bound the induced norms as follows

c ∥v∥b ≤ ∥v∥a ≤ c ∥v∥b ⇔ 1/ (c ∥v∥b) ≤ 1/∥v∥a ≤ 1/ (c ∥v∥b)
c

c
∥A∥b-i :=

c

c
sup
v ̸=0

∥Av∥b
∥v∥b

≤ ∥A∥a-i := sup
v ̸=0

∥Av∥a
∥v∥a

≤ c

c
sup
v ̸=0

∥Av∥b
∥v∥b

=:
c

c
∥A∥b-i

Applying this to the 1, 2 and ∞ induced norms using the inequalities (2.43) gives

∥v∥∞ ≤ ∥v∥2 ≤ ∥v∥1
1√
n
∥v∥1 ≤ ∥v∥2 ≤

√
n ∥v∥∞

}
⇒





1√
n
∥A∥∞-i ≤ ∥A∥2-i ≤

√
n ∥A∥∞-i

1√
n
∥A∥1-i ≤ ∥A∥2-i ≤

√
n ∥A∥1-i

1
n ∥A∥1-i ≤ ∥A∥∞-i ≤ n ∥A∥1-i

Example 3.31. Let A : V → W be an operator between two Banach spaces. If we have a
bases v := {vk}∞k=0 ⊂ V and v := {wk}∞k=0 ⊂W, then the representation of A in those bases is
a semi-infinite matrix. Indeed, for each basis element in the domain vl, its image Avl ∈ W has
a basis expansion in the co-domain, so label that expansion as follows

Avl =:

∞∑

k=0

akl wk. (3.29)

Consider y = Ax, with x ∈ V, y ∈ W, and their respective basis expansions x =
∑∞

k=0 xkvk,
y =

∑∞
k=0 ykwk. If x and y are represented by the semi-infinite vectors of their expansion

coefficients, then the relation between them is the semi-infinite matrix with coefficients akl


y0
y1
...


 =



a00 a01 · · ·
a10 a11 · · ·
...

...
. . .






x0

x1

...


 . (3.30)
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This is a simple consequence of the linearity of A. By the definition (3.29), the l’th column of
the matrix contains the basis coefficients of the vector Avl.

As specific examples, consider the spaces ℓp(N) with elements represented in the canonical
basis as column vectors. Then every linear operator A : ℓp1(N) → ℓp2(N) is represented by a
semi-infinite matrix. For the cases of ℓ1(N) and ℓ∞(N), it is possible to show (c.f. Examples 3.28
and 3.32) that the induced norms of an operator are obtained from its semi-infinite matrix
representation as “sup-column-sum” and “sup-row-sum” respectively

∥A∥1-i = sup
0≤l<∞

∞∑

k=0

|akl| , ∥A∥∞-i = sup
0≤k<∞

∞∑

l=0

|akl| . (3.31)

Note the similarity of these expressions with the finite dimensional case (3.28).

The attentive reader may have spotted a flaw in the previous argument. ℓ∞ does not
have a basis in the sense of Definition 3.12, so the bases argument leading to the semi-infinite
representation (3.30) does not apply. Thus for the case of ℓ∞, the statement in the previous
example should be understood in the following sense. If the operator is representable by a
semi-infinite matrix, then its induced norm is given by (3.31).

Example 3.32. Consider an operator A : L∞(R)→ L∞(R) with an integral representation

v = Au ⇔ v(x) =

∫

R
A(x, ξ) u(ξ) dξ. (3.32)

The two variable function A(., .) is called the kernel of the operator A, and the integral repre-
sentation (3.32) is called the kernel representation of the operator. These representations are
the continuum analogues of matrix representations and are studied further in Chapter 6.

Now calculate the L∞-induced norm of A in terms of its kernel function A(., .) as follows
(recall the 1-∞ inequality of Exercise 2.5)

|v(x)| =

∣∣∣∣
∫

R
A(x, ξ) u(ξ) dξ

∣∣∣∣ ≤
(∫

R
|A(x, ξ)| dξ

)(
sup
ξ∈R
|u(ξ)|

)

⇒ ∥v∥∞ = sup
x∈R
|v(x)| ≤

(
sup
x∈R

∫

R
|A(x, ξ)| dξ

)
∥u∥∞.

The upper bound obtained above is tight. Let x̄ be such that the supremum in

sup
x∈R

∫

R
|A(x, ξ)| dξ (3.33)

is almost achieved, then the function ū(ξ) := sign (A(x̄, ξ)) almost achieves the bound.
The expression (3.33) can be interpreted as the “sup-row-integral” of A(., .) by regarding

ξ and x as “column” and “row” indices respectively. The integral representation (3.32) is a
continuum analogue of a matrix representation. More on this in Chapter 6.

Example 3.33. Recall the space C1[a, b] of continuously differentiable functions of Exam-
ple 3.11

C1[a, b] :=
{
f : [a, b]→ R; f ′ continuous

}
, ∥f∥∞ := max

x∈[a,b]
|f(x)|.

Also recall that this is a normed, but incomplete space. Consider the differential operator

(
Df
)
(x) :=

d

dx
f(x), D : C1[a, b]→ C[a, b].
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@

(a) The derivative operator D acting on functions
of the same ∥.∥∞ norm produces functions with very
different ∥.∥∞ norms. Here the functions fω̄(x) :=
cos(ω̄x) have norm ∥fω̄∥∞ = 1 for any ω̄, but their
derivatives have norms ∥Dfω̄∥∞ = ω̄ that can be-
come arbitrarily large as ω̄ → ∞. The derivative
operator D is therefore an unbounded operator.

(b) A conceptual depiction of the discontinuity of the un-
bounded derivative operator D. Around zero, D acts on
the functions fω̄,ϵ(x) := ϵ cos(ω̄x) (which all have norm
ϵ) to produce functions with norm ∥f ′

ω̄,ϵ∥∞ = ϵω̄. We

can think of ω̄ as a “direction” in C1 of a vector fω̄,ϵ of
length ϵ around zero. Regardless of how small ϵ is, as the
direction ω̄ → ∞, the value of ∥Dfω̄,ϵ∥∞ becomes arbi-
trarily large.

Figure 3.11: The derivative operator D : C1[a, b] → C[a, b] of Example 3.33 is an unbounded operator on
continuously differentiable functions. Its unboundedness is equivalent to discontinuity at 0.

We can see that this is an unbounded operator by acting on the function (see Figure 3.11a)

fω̄(x) := cos(ω̄x) ⇒ f ′
ω̄(x) = −ω̄ sin(ω̄x) ⇒ ∥Dfω̄∥∞

∥fω̄∥∞
=

ω̄

1
.

This ratio is unbounded as ω̄ →∞.
We can interpret the unboundedness of the norm ratio as a discontinuity as follows. The

rescaled function fω̄,ϵ(x) := ϵ cos(ω̄x) is a distance ϵ away from the zero vector in C1[a, b]
regardless of the frequency ω̄. However, its image under D is f ′

ω̄,ϵ(x) = −ω̄ϵ sin(ω̄x), and can
be made arbitrarily far from 0 in C[a, b] by choosing ω̄ sufficiently large. If we think of ω̄ as
a “direction” in which the vector fω̄,ϵ is pointing, then the mapping D amplifies little in some
directions, and amplifies unboundedly as directions are changed near zero. This function is thus
discontinuous at zero as depicted in Figure 3.11b.

Inverses, Null and Image Spaces

Let A : V → W be a bounded (i.e. continuous) operator between Banach spaces. Its null
space Nu(A) ⊆ V is the inverse image of 0 ∈W. The inverse image of every closed set under
a continuous map is a closed set. The single point set 0 ∈ W is closed, therefore Nu(A)
must be closed in V. We therefore conclude that the null space of any bounded operator is
a closed subspace.

On the other hand, the image space of a bounded operator may or may not be closed.
Consider the following operator A : ℓ1 → ℓ1

A (u1, u2, u3, . . .) :=

(
u1,

1

2
u2,

1

3
u3, . . .

)
. (3.34)

If we represent elements of ℓ1 as semi-infinite vectors, then A is represented by the semi-
infinite diagonal matrix A = diag

(
1, 1

2 ,
1
3 , · · ·

)
. From Example 3.31 its induced norm is the

supremum of all diagonal elements, i.e. ∥A∥ = 1 and is therefore a bounded operator. The
null space is exactly 0 since there is no other vector mapped to zero. What about the image
space?
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First note that the subspace of all finite sequences is mapped to the subspace of all finite
sequences, and this subspace is dense in ℓ1. Thus Im(A) = ℓ1. However there are elements
in ℓ1 that are not in the image. For example the absolutely summable sequence

(
1,

1

22
, . . . ,

1

k2
, . . .

)
/∈ Im(A) ,

for if it were, then (1, 1/2, 1/3, . . .) would be in ℓ1, which it is not. Therefore Im(A) ̸= ℓ1,
but dense in it, therefore it is not closed.

The operator A = diag
(
1, 1

2 ,
1
3 , · · ·

)
is one-to-one, and if it has an inverse, it must be

A−1 = diag(1, 2, 3, . . .) . This inverse however does not map all of ℓ1 to ℓ1, but it maps
a dense subspace (namely Im(A)) to ℓ1. It is also unbounded on that subspace. A−1 is
one example of the class of densely-defined, unbounded operators which we will study in
Chapter ??. The previous example also serves to highlight the next result whose proof is
omitted.

Theorem 3.34 (Bounded Inverse Theorem). If a bounded operator A : V → W between
Banach spaces has an inverse A−1 (equivalently if A is one-to-one and onto), then A−1 is
a bounded operator.

The operator (3.34), while one-to-one, is not onto, otherwise its inverse would have to
be bounded by this theorem, and we calculated that its inverse is not bounded.

The Minimum Modulus

Recall the inequality (3.23) where the operator norm was interpreted as the “largest pos-
sible” amplification ∥Av∥/∥v∥ of the norm of a vector v when acted on by A. Similarly,
another useful notion is the “smallest possible” such amplification.

Definition 3.35. Given an operator A, its minimum modulus is defined by

σ(A) := inf
∥v∥=1

∥Av∥ = inf
v ̸=0

∥Av∥
∥v∥

Note that the second equality follows from the homogeneity property of norms in a similar
manner to the argument in (3.22).

If the operator is invertible, then the norm of its inverse and its minimum modulus are
reciprocals

∥A-1∥ := sup
v ̸=0

∥A-1v∥
∥v∥ =

1

infv ̸=0
∥v∥

∥A-1v∥
=

1

infw ̸=0
∥A-1w∥
∥w∥

=:
1

σ(A-1)
(3.35)

There are important examples where the operator inverse A-1 may exist, but is un-
bounded. Such cases are characterized by the minimum modulus being zero σ(A) = 0 and
equivalently

∥∥A-1
∥∥ = ∞. This is a special case of a more general fact that the minimum

modulus is a measure of “how close” an operator is to a non-invertible operator (in this
case the distance is zero since the operator itself is not boundedly invertible). This will be
a consequence of the Neumann series of Theorem 3.45.

Recall the operator defined by (3.34). This operator has a diagonal matrix representa-
tion, and therefore its minimum modulus is simply the infimum of the diagonal elements

σ

(
diag

(
1,

1

2
,
1

3
, . . .

))
= inf

k≥1

∣∣∣∣
1

k

∣∣∣∣ = 0.

Recall also that this operator’s inverse was a densely-defined, but unbounded operator on
ℓ1, i.e. ∥A-1∥ =∞. This is consistent with (3.35).
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3.6 Spaces of Linear Operators

Linear operators between two vector spaces themselves form a vector space by simply defin-
ing addition and scaling pointwise. The space of bounded linear operators is also equipped
with the induced norm, which we will show is actually a norm, and therefore the space of
all bounded linear operators between two Banach spaces is itself a Banach space. There are
other important metrics on spaces of (possibly unbounded) linear operators that are not
norms. Those are discussed in Chapter ??.

Another important property of the induced norm is submultiplicativity which bounds the
norm of the composition of two operators by the product of their respective norms. This
property is very useful for analysis of linear operators that are made up of several other
operators. Much of sensitivity analysis in Signals and Systems revolves around using this
property. We will also see that the space of linear operators from a Banach space to itself
has the additional structure of a so-called Banach Algebra to be discussed in Section 3.6.3.

3.6.1 The Space L(V,W) of Bounded Operators

The set of all linear operators between two vector spaces V and W is itself a vector space.
The vector space operations are point-wise additions and scalings

A,B : V→W
(
αA+ βB

)
(v) := α A(v) + β B(v).

It is an immediate exercise to show that the linear combination αA+βB is a linear operator
from V to W.

When V and W are equipped with norms, then bounded operators between them have
the naturally defined induced norm. The induced norm also satisfies the three properties
of a norm. Homogeneity and definiteness of ∥.∥i follows from those same properties of the
vector space norms9

∥αA∥i = sup
v∈V

∥αAv∥
∥v∥ = sup

v∈V

|α|∥Av∥
∥v∥ = |α| sup

v∈V

∥Av∥
∥v∥ = |α| ∥A∥i,

∥A∥i = 0 ⇒ sup
v∈V

∥Av∥
∥v∥ = 0 ⇒ ∀v∈V, ∥Av∥ = 0 ⇒ ∀v∈V, Av = 0 ⇒ A = 0.

The induced norm ∥.∥i also satisfies the triangle inequality because the vector norms in V
and W do

∥A+B∥i := sup
v∈V

∥∥(A+B
)
(v)
∥∥

∥v∥ = sup
v∈V

∥Av +Bv∥
∥v∥ ≤ sup

v∈V

∥Av∥+ ∥Bv∥
∥v∥

= sup
v∈V

(∥Av∥
∥v∥ +

∥Bv∥
∥v∥

)
≤ sup

v∈V

∥Av∥
∥v∥ + sup

v∈V

∥Bv∥
∥v∥ = ∥A∥i + ∥B∥i.

Thus the space of all bounded linear operators between two normed spaces V and W is
itself and normed vector space with the induced norm. It turns out that this space is also
complete if V and W are complete.

9For notational simplicity, from now on we drop the subscripts ∥.∥V on the vector space norm when no
confusion can occur, and we will also rewrite sup0 ̸=v∈V simply as supv∈V with the implicit assumption that
v ̸= 0 when used in such an expression.
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Lemma 3.36. Let V and W be Banach spaces. The set of all bounded linear operators
from V to W

L(V,W) :=

{
A : V→W; A linear, and ∥A∥i := sup

0̸=v∈V

∥Av∥W
∥v∥V

<∞
}

is itself a Banach space with the induced norm ∥.∥i.

Proof. It remains to show that L(V,W) is complete, i.e. to show that every Cauchy sequence
{Ak} (where the Cauchy property is measured by the induced norm) converges in L(V,W),
i.e. converges to a bounded linear operator. To find the operator Ā which is the limit of
such a sequence, we have to specify how it acts on each vector v. A reasonable guess is that
the limit operator Ā should act like

Āv := lim
k→∞

Akv. (3.36)

on each vector v ∈ V. To show that this limit exists, note that {Ak} being Cauchy means

lim
k,l→∞

∥Ak −Al∥i = 0. (3.37)

This shows that the sequence of vectors {Akv} is itself a Cauchy sequence in W since

∥Akv −Alv∥ ≤
∥∥(Ak −Al

)
v
∥∥ ≤ ∥Ak −Al∥i ∥v∥,

and when combined with the limit (3.37), this implies that limk,l→∞ ∥Akv −Alv∥ = 0. Now,
since {Akv} is a Cauchy sequence in a Banach space, it must have a unique limit and thus
the mapping (3.36) is well defined.

Finally it remains to show that A defined by (3.36) is linear and bounded. Linearity
follows from the linearity of each Ak

A(αv1 + βv2) = lim
k→∞

Ak(αv1 + βv2) = lim
k→∞

(
α Akv1 + β Akv2

)

= α lim
k→∞

Akv1 + β lim
k→∞

Akv2 = α Av1 + β Av2.

To establish the boundedness of A we first observe that the sequence {∥Ak∥} is itself a
Cauchy sequence of numbers. This follows from the triangle inequality

∣∣∣ ∥Ak∥i − ∥Al∥i
∣∣∣ ≤ ∥Ak −Al∥i

k,l→∞−→ 0.

Since every Cauchy sequence is bounded, then we have an upper bound supk ∥Ak∥i ≤ c <∞
for some constant c. This can be used to bound the induced norm of A as follows

∥Av∥ = lim
k→∞

∥Akv∥ ≤ lim
k→∞

∥Ak∥i ∥v∥ ≤ sup
k
∥Ak∥i ∥v∥ ≤ c ∥v∥

Therefore ∥A∥i ≤ c <∞, and A is a bounded operator.

Can L(V,W) Ever be a Hilbert Space?

Since Hilbert spaces are also Banach spaces, then the space of all bounded linear operators
between two Hilbert spaces is a Banach space. Could it also be a Hilbert space itself? The
answer is generally no, except for very simple cases.

First consider the space L(R,V) where V is a Hilbert space. This is the space of all linear
operators from R to V, and each operator maps R to a one-dimensional subspace of V. Each
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map can be uniquely identified by a single vector in V, namely the vector that the number
1 is mapped to, which means the induced norm of the map is the norm of that vector.
Therefore this identification is an isometry between L(R,V) and V, which is a Hilbert space.

Now consider the space L(V,R). This is the space of all linear functionals on V, which
is isometric to V itself by the Riesz representation theorem. Thus in this case L(V,R) is a
Hilbert space.

In general however, if dimV > 1 and dimW > 1, then the norm on L(V,W) (the induced
operator norm) can never arise from an inner product. A norm that comes from an inner
product must satisfy the parallelogram law (2.33), and we now show that this does not hold
if both dimV ≥ 2 and dimW ≥ 2. First consider the following two elements in L(R2,R2)

A1 :=

[
1 0
0 0

]

A2 :=

[
0 0
0 1

]





⇒
∥A1∥ = 1, ∥A1 +A2∥ =

∥∥∥∥
[
1 0
0 1

]∥∥∥∥ = 1,

∥A2∥ = 1, ∥A1 −A2∥ =

∥∥∥∥
[
1 0
0 -1

]∥∥∥∥ = 1,

(3.38)

where the matrix norm is the maximum singular value10. The parallelogram law

2 = ∥A1 +A2∥2 + ∥A1 −A2∥2 ̸= 2
(
∥A1∥2 + ∥A2∥2

)
= 4

is clearly violated in this case.
This counter-example can be generalized to any two Hilbert spaces that are not both one

dimensional. Indeed, in this case we can find unit vectors v1 ⊥ v2 in V and w1 ⊥ w2 in W
respectively. The two sets of vectors define 2-dimensional subspaces respectively, over which
we can imitate the above argument as follows. Define the two mappings A1, A2 : V→W

A1 : v 7→ ⟨v1 , v⟩ w1 A2 : v 7→ ⟨v2 , v⟩ w2. (3.39)

Note that if we restrict those operators to span{v1, v2} and project onto span{w1, w2}, then
in the bases {v1, v2} and {w1, w2} the matrix representations Â1 and Â2 of these operators
are given by

Â1 =

[
1
0

] [
1 0

]
, Â1 =

[
0
1

] [
0 1

]
.

The reader should observe here that the operation of multiplying by [1 0] in this basis is
equivalent to ⟨v1 , .⟩, and w1 is represented by the vector (1, 0). Similarly for Â2. This
correspondence guides how (3.38) was generalized to (3.39)

Since v1, v2, w1, w2 are all unit length vectors, we an easily calculate induced norms

∥A1v∥ = ∥⟨v1 , v⟩ w1∥ = |⟨v1 , v⟩| ∥w1∥ ≤ ∥v∥ ⇒ ∥A1∥ ≤ 1

∥A1v1∥ = | ⟨v1 , v1⟩ | = 1 ⇒ ∥A1∥ = 1

∥(A1 +A2) (v)∥2 = ∥A1v +A2v∥2 = ∥⟨v1 , v⟩w1 + ⟨v2 , v⟩w2∥2

= | ⟨v1 , v⟩ |2 + | ⟨v2 , v⟩ |2 (since w1 ⊥ w2)

≤ ∥v∥2 ⇒ ∥A1 +A2∥ ≤ 1

and similarly ∥A2∥ = 1 and ∥A1 −A2∥ ≤ 1. The parallelogram law is violated since

∥A1 +A2∥2 + ∥A1 −A2∥2 ≤ 2 < 2
(
∥A1∥2 + ∥A2∥2

)
= 4.

10Alternatively, the fact that all these induced norms are 1 can be quickly concluded from the basic
definition of the induced norm in these simples cases.
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W UV

BU := {kuk  1}

R(BU)BV

RT

kRki

T (BV)

TR(BU)

kTRki

kTkikRki

Figure 3.12: Illustration of the submultiplicativity property of the induced norm. BU and BV are the unit
balls of U and V respectively. The radii of the smallest ball containing their images R (BU) and T (BV) are
the induced norms ∥R∥i and ∥T∥i respectively. The induced norm ∥TR∥i of the composition is the radius
of the smallest ball containing the image TR (BU). This is always bounded from above by the product
∥R∥i ∥T∥i.

3.6.2 Submultiplicativity

Linear operators are mappings between sets, and mappings between sets can be composed
together. The induced operator norm has useful property under compositions which is
termed submultiplicativity.

Lemma 3.37. Let T : V → W and R : U → V be linear operators between normed vector
spaces. The induced norm of the composition TR is bounded by

∥TR∥i ≤ ∥T∥i ∥R∥i. (3.40)

Note that ∥R∥i is the norm induced as a mapping from U to V, while ∥T∥i is the norm
induced from V to W. Regardless of the choices of norms on those vector spaces, the
inequality holds when ∥T∥i and ∥R∥i are the corresponding induced norms. This lemma is
illustrated in Figure 3.12.

Proof. This follows from the basic definitions. First observe that for any u ∈ U

∥TR(u)∥
∥u∥ =

∥T (R(u))∥
∥u∥ ≤ ∥T (R(u))∥

∥R(u)∥
∥R(u)∥
∥u∥ ≤ ∥T∥i ∥R∥i.

∥TR∥i is the supremum of the quantity on the left (over all u ∈ U), and is therefore bounded
by the quantity on the right (which is independent of u).

Now we point out the special nature of a submultiplicative norm. First, we need to
be able to make sense of a composition like TR, and if both are linear operators with a
common space “in the middle”, then the composition is well defined. Second, the norms on
the operators need to be induced norms for (3.40) to hold. There are norms on operators
which are not induced norms, and therefore may not be submultiplicative. We next present
such an example for matrices.

Example 3.38. On the set of n × m matrices, we have seen several induced norms earlier,
namely the 1−, 2− and ∞-induced norms. All of those satisfy the submultiplicativity property.
There are other norms that can be put on matrices. For example, consider the maximum absolute
value of all entries

∥A∥m := max
i,j
|aij | . (3.41)

This is a norm on the space of matrices. Recall the operation vec : Rn×m → Rnm introduced
in Example 1.5 which takes a matrix and makes a vector out of it by stacking all the matrix
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columns together. This is a vector space isomorphism, and also an isometry since the norm
defined above is just the ∥.∥∞ norm of the resulting vector, i.e. ∥A∥m = ∥vec(A)∥∞. Thus the
norm defined in (3.41) makes the space of n×m matrices into a normed vector space.

The norm (3.41) however is not submultplicative as the following example shows

2 =

∥∥∥∥
[
2 1
1 1

]∥∥∥∥
m

=

∥∥∥∥
[
1 1
0 1

] [
1 0
1 1

]∥∥∥∥
m

⩽̸
∥∥∥∥
[
1 1
0 1

]∥∥∥∥
m

∥∥∥∥
[
1 0
1 1

]∥∥∥∥
m

= 1.

Since an induced norm must be submultiplicative, we conclude that the norm defined in (3.41)
cannot be an induced norm of the matrix as linear operator between two normed vector spaces.

Example 3.39. The Frobenius norm on matrices is not an induced norm. One way to see this
is that the identity operator should always have induced norm 1, but for an n×n identity matrix
In

∥In∥F =
√
n.

The Frobenius norm is none the less submultiplicative with respect to matrix products as the
following argument (using partitioned matrix notation) shows

∥AB∥2F =

∥∥∥∥∥∥




a∗1
...
a∗n




 b1 · · · bq



∥∥∥∥∥∥

2

F

=

∥∥∥∥∥∥∥




a∗1b1 · · · a∗1bq
...

...

a∗nb1 · · · a∗nbq




∥∥∥∥∥∥∥

2

F

=
∑

i,j

(a∗i bj)
2 ≤

∑

i,j

∥ai∥22 ∥bj∥
2
2 (Cauchy-Schwarz: ⟨ai , bj⟩ ≤ ∥ai∥2∥bj∥2)

=

(∑

i

∥ai∥22

)(∑

i

∥bj∥22

)
= ∥A∥2F ∥B∥2F.

Thus submultiplicativity is a necessary, but not sufficient condition for a norm to be an induced
norm.

We finally note that although the statement (3.40) involves only two operators, by re-
peated applications it can be applied to any number of operator compositions

∥A1A2A3∥ ≤ ∥A1A2∥ ∥A3∥ ≤ ∥A1∥ ∥A2∥ ∥A3∥ ,
similarly ∥A1 · · · Ak∥ ≤ ∥A1∥ · · · ∥Ak∥

3.6.3 The Algebra of Bounded Operators

We now consider the space L(V,V) of all bounded operators from a Banach space V to itself.
L(V) equipped with the induced norm is a Banach space as well, but also has a “product
operation”, namely operator composition. The norm in L(V,V) satisfies submultiplicativity
with respect to this product operation. These properties represent a very special structure
called a Banach Algebra. Before we define this structure, we define the preliminary structure
of an Algebra.

Recall that the structure of a vector space is that of additions and scalings of vectors. If
an operation of vector products is also defined, then we call such a space an algebra.

Definition 3.40. An algebra is a vector space with a product operation that is associative,
not necessarily commutative, and has the following additional properties of compatibility
with the vector space structure11

11Some references use the term “unital, associative algebra” for the definition given here since there exists
useful algebras that are not associative (e.g. Lie Algebras), or without a unit element. The analysis of
non-associative algebras is quite different from associative ones. Here we simply use the term “algebra” for
“unital, associative algebra”.
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1. Left and right distributivity over addition

(u+ v)w = uw + vw, w(u+ v) = wu+ wv.

2. Compatibility with scalings (αu) (βv) = (αβ) (uv).

3. Existence of a “unit” element I such that Iu = uI = u for all elements u of the algebra.

Note that although a product operation is defined, the existence of a multiplicative inverse
is not required for all elements of the algebra. Familiar examples of algebras include the
following.

• The space Rn×n of square n× n matrices is an algebra with the matrix-matrix product.
The unit element is the identity matrix. Some elements of this algebra have multiplicative
inverses and some do not.

• The space P of polynomials of any order is an algebra with polynomial multiplication.
Note that Pn (polynomials of degree n) is a vector space, but not an algebra since the
product of two such polynomials may have degree larger than n. To form an algebra,
we need to include polynomials of any (finite) degree. Thus P is an infinite-dimensional
vector space which is also an algebra.

• Any function space ΩA where the range A is a itself an algebra.

Now we layer another structure on top of an algebra. If we start with a Banach space
rather than just a vector space, we need the norm to “work nicely” with the product oper-
ation. This is where submultiplicativity comes in.

Definition 3.41. An algebra that is also a Banach space is called a Banach algebra if the
product operation satisfies the sub multiplicativity property

∥AB∥ ≤ ∥A∥ ∥B∥. (3.42)

The concept of Banach algebras was developed to study the most important example stated
next.

Example 3.42. Let V be a Banach space. The space L(V) := L(V,V) of all bounded linear
operators from V to itself is an algebra since any two operators A,B : V→ V can be composed
AB : V→ V. The submultiplicativity property of the induced norm implies that AB is bounded
if A and B are.

Example 3.43. Convolution of functions in L1(R) is a product operation which is associative,
distributive over additions, and compatible with scalings. The L1 norm is also submultiplicative
with convolution. Indeed, for any f, g ∈ L1(R)

∥f ⋆ g∥1 =

∫

R

∣∣∣∣
(∫

R
f(t− τ) g(τ) dτ

)∣∣∣∣ dt ≤
∫

R

∫

R
|f(t− τ)| |g(τ)| dτ dt

=

∫

R
|g(τ)|

(∫

R
|f(t− τ)| dt

)
dτ = ∥f∥1

∫

R
|g(τ)| dτ = ∥f∥1∥g∥1.

Thus L1(R) with convolution meets all the requirements to be a Banach algebra except for
the existence of a unit element. There is no function in L1(R) with the unit property (with
respect to convolution). The reader may suggest the Dirac delta function, but that is not an
element of L1(R). However, this is not a serious limitation as we now show.
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Given an algebra Ā without a unit, one can always formally “append” a unit element as
follows. Define the vector space A := R⊕ Ā, and products on it as follows

A :=
{
(α, f); α ∈ R, f ∈ Ā

}
, (α, a) (β, g) := (αβ, αg + βf + fg). (3.43)

Note that αβ is a product of real numbers, αg and βf are scalings of elements in Ā, while fg
is a product in the algebra Ā. This new product on A satisfies all the properties of an algebra
product. The unit in the algebra A is now (1, 0) since

(1, 0) (β, g) = (1β, 1g + β0 + 0g) = (β, g). (3.44)

The construction above is essentially what one does by appending a Dirac delta function to
L1(R) when we formally write

f(t) = αδ(t) + f̄(t), f̄ ∈ L1(R), (3.45)

for elements f ∈ R⊕L1(R). The unit element is δ(.), which corresponds to (1, 0) in (3.44). The
reader should verify that convolutions of elements of the form (3.45) behave like the product
defined in (3.43).

Thus the set R ⊕ L1(R), which is L1(R) with a unit element appended, is a Banach alge-
bra with convolution as the product operation. Since convolution of scalar-valued functions is
commutative, this is actually an example of a commutative Banach algebra.

Example 3.44. By arguments similar to those in the previous example, the space ℓ1(Z) is a
Banach algebra under convolutions. Since this space includes the Kronecker delta function as
an element, it already comes equipped with a unit.

The Neumann Series

One of the most important consequences of submultiplicativity is the way it characterizes
powers of a given operator A : V→ V

∥A2∥ = ∥A A∥ ≤ ∥A∥ ∥A∥ = ∥A∥2.
This clearly can be carried further to any power of A

∥Ak∥ = ∥A · · · A︸ ︷︷ ︸
k times

∥ ≤ ∥A∥ · · · ∥A∥︸ ︷︷ ︸
k times

= ∥A∥k.

Note that in particular if ∥A∥ < 1, then ∥A∥k is a decaying geometric sequence, and therefore
powers of A decay geometrically

∥Ak∥ ≤ αk, α = ∥A∥ < 1.

This bound allows us to develop one of the most useful series in applications, the convergence
of which is very simple to prove.

Theorem 3.45 (The Neumann Series). Let A be a bounded operator on a Banach space
V. If

∑∞
k=0

∥∥Ak
∥∥ < 0 (i.e. the series of norms is absolutely summable), then the inverse of

(I −A) exists as a bounded operator on V, and can be given by the following series

(I −A)
−1

= I +A+A2 + · · · =

∞∑

k=0

Ak (3.46)

which converges in L(V).
In the case when ∥A∥ < 1, the above series is absolutely summable and furthermore
∥∥∥(I −A)

−1
∥∥∥ ≤ 1

1− ∥A∥ . (3.47)
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Proof. By Exercise 3.3, if a series in a Banach space is absolutely summable, then it is
convergent in that Banach space (L(V) in this case). To show that the series indeed gives
the inverse of (I −A), look at the product of (I −A) and the partial sums of the series

(I −A)
(∑n

k=0 A
k
)
= (I −A)

(
I +A+A2 + · · ·+An

)

= I +A+A2 + · · ·+An

−A−A2 − · · · −An −An+1 = I −An+1.

The summability of the series implies that
∥∥An+1

∥∥ n→∞−→ 0, and therefore An+1 n→∞−→ 0, and
we conclude that

lim
n→∞

n∑

k=0

Ak = (I −A)−1.

Now if ∥A∥ < 1, we can make the stronger statement

∥∥∥∥∥
∞∑

k=∞
Ak

∥∥∥∥∥
1
≤

∞∑

k=0

∥∥Ak
∥∥ 2
≤

∞∑

k=0

∥A∥k 3
=

1

1− ∥A∥ ,

where
1
≤ follows from the triangle inequality,

2
≤ follows from submultiplicativity, and

3
=

follows from
∑∞

k=0 α
k = 1

1−|α| , which holds for any number with |α| < 1.

Remark 3.46. The condition ∥A∥ < 1 is sufficient for the existence of (I − A)−1 and the
convergence of the series, but it is far from necessary for either. Thinking about a real or
complex numbers α, the fraction 1

1−α is finite for all α ̸= 1, so clearly the condition |α| < 1

is sufficient but not necessary. While |α| < 1 is necessary for the series of numbers
∑∞

k=0 α
k

to absolutely converge, the condition ∥A∥ < 1 is not necessary when A is a matrix or an
operator. For example, a nilpotent matrix has the property that Ak = 0 for k > n for some
finite n, and thus clearly the Neumann series will converge if even if ∥A∥ ≥ 1 for such a
matrix. The next example is is an infinite-dimensional version of this phenomenon.

Example 3.47. Consider the so-called Volterra operator of indefinite integration

(Vf) (t) =

∫ t

0

f(τ) dτ.

This operator is well defined on a variety of function spaces. Here we can take for example
V : C[0, 1] → C[0, 1], and recall that C[0, 1] is equipped with the maximum norm of functions.
The induced norm of V is easy to calculate using the concept of kernel representations of
operators (Chapter 6). Here we just give the answer that the induced norms (on C[0, 1]) of all
powers of V are given by

∥∥Vk
∥∥ =

1

k!
. (3.48)

Thus although this operator is not nilpotent, the norms of its powers decay rapidly to zero,
and the operator could therefore be thought of as asymptotically nilpotent. The bounds (3.48)
certainly imply absolute summability

∑∞
k=0 ∥Vk∥ < ∞, and therefore the Neumann series is

convergent to (I − V)−1 which is a bounded operator on C[0, 1]

(I − V)−1 =

∞∑

k=0

Vk : C[0, 1]→ C[0, 1].
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This abstract example has a very concrete interpretation as follows. Consider the ordinary
differential equation over [0, 1]

ẋ(t) = x(t), x(0) = x̄. (3.49)

Integrating both sides of the equation converts it to an integral equation, which can then be
rewritten abstractly using the Volterra operator

∫ t

0

ẋ(τ) dτ =

∫ t

0

x(τ) dτ

⇔ x(t)− x̄ = (Vx) (t) ⇔ x(t) − (Vx) (t) = x̄, t ∈ [0, 1]

⇔ (I − V)x = hx̄,

where h is the unit-step (Heaviside) function h(t) = 1, t ∈ [0, 1], i.e. hx̄ is the constant function
on [0, 1] with value x̄. We can now use the Neumann series to give the solution as

x = (I − V)−1
h x̄ =

( ∞∑

k=0

Vk

)
h x̄ =

( ∞∑

k=0

Vkh

)
x̄

⇒ x(t) =

( ∞∑

k=0

1

k!
tk

)
x̄.

Note that each term Vkh is simply the k’th integral of the constant function 1, which gives tk/k!.
The reader should recognize that the last series is the definition of the exponential function et,
which is the well-known solution of the differential equation (3.49).

The argument jut presented can be readily generalized to yield the matrix exponential, the
Peano-Baker series, the Cauchy formula for repeated integration, as well as the so-called “varia-
tions of constants” formula. These seemingly distinct formulas can all be thought of as various
manifestations of the Neumann series involving the Volterra operator. This development is de-
tailed in Chapter ??, where in addition, the Picard iteration for nonlinear differential equations
is presented as a version of the Neumann series.

Remark 3.48. The Volterra operator example highlights the conservatism of the condition
∥A∥ < 1 in Theorem 3.45. Let α be any real scalar, then ∥αV∥ = |α|, which can be made
as large as desired. However, homogeneity of the norm and the bounds (3.48) imply that

∥∥∥(αV)k
∥∥∥ = |α|k

∥∥Vk
∥∥ ≤ |α|k/k!

Thus even though ∥αV∥ can be arbitrarily large, the Neumann series for αV is still absolutely
convergent.

We close this section with another application of the Neumann series to “operator per-
turbations”, an important topic discussed in later chapters.

Lemma 3.49. If A is an invertible element in a Banach algebra A, then all element of A
of the form

A+∆, ∥∆∥ <
1

∥A−1∥

are also invertible in A.
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Proof. This follows immediately from the Neumann series and submultiplicativity

A+∆ = A−1
(
I +A−1∆

)
invertible ⇐

∥∥A−1∆
∥∥ ≤

∥∥A−1
∥∥ ∥∆∥ < 1

⇑

∥∆∥ <
1

∥A−1∥ .

This lemma has several implications as well. The first is that the set of invertible elements in
A is an open set since for any invertible A, all elements of a ball of radius at least 1/∥A−1∥
around it are invertible. In other words, a sufficiently small perturbation of an invertible
element is also invertible.

Second, recall that for an operator 1/∥A−1∥ = σ(A), so the minimum modulus gives
a radius of a ball around an invertible operator made up of all invertible operators. It is
possible to show for a large class of operators that this estimate is tight, i.e. that there exist
an operator ∆ with norm ∥∆∥ = 1/∥A−1∥ such that A +∆ is not invertible. These issues
will be discussed when we study perturbation problems for linear operators, and are also
part of “robustness analysis” for dynamical systems.

3.6.4 Densely-Defined Operators

There are important applications where an operator can not be defined on an the entirety
of a Hilbert or a Banach space, but rather on a domain which is a dense subspace. There
are two types of such densely-defined operators. The first is when the operator norm has
a bound on the dense subspace. In this case, the operators can be easily extended to be
bounded operators on the whole space. In this section we show how this is done, and then
use this procedure to define the Fourier transform on L2(R).

The second case where the operator is unbounded is most commonly encountered with
differential operators, either ordinary or partial. Such cases require more care, and are
treated in Chapter ??.

Suppose we have a linear operator A : S → W between a (not necessarily complete)
normed vector space S and a Banach (i.e. complete) space W. If S ⊂ V is a dense subspace
of a Banach space V, and A is bounded, then we can extend the domain of A to all of V
with the same bound as follows

v ∈ V ⇒ ∃{vk} ⊂ S, vk −→ v then define Av := lim
k→∞

Avk.

The fact that the limit exists in W is guaranteed by the boundedness of A since

∥Avk −Avl∥ = ∥A(vk − vl)∥ ≤ ∥A∥i ∥vk − vl∥ .

This bound implies that {Avk} is a Cauchy sequence in W since {vk} is a Cauchy sequence
in V. Furthermore, the induced norm of this extension of A on V is the same as that of A
on S

∥Av∥ =

∥∥∥∥ lim
k→∞

Avk

∥∥∥∥
1
= lim

k→∞
∥Avk∥ ≤ lim

k→∞
∥A∥i ∥vk∥ = ∥A∥i lim

k→∞
∥vk∥ 2

= ∥A∥i ∥v∥ .

Note that
1
= and

2
= are justified since {Avk} and {vk} are Cauchy in W and V respectively,

and therefore the norm of the limit is equal to the limit of the norms.
One of the more useful applications of this technique is for defining the Fourier transform

for square integrable functions on the real line.
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Example 3.50. The Fourier Transform on L2(R). Consider the Fourier transform for functions
on the real line

(Fu)(ω) = û(ω) :=

∫ ∞

-∞
e−jωtu(t) dt. (3.50)

This is clearly a linear operator that maps functions on the real line to functions on the real line
u 7→ û. For what class of functions is this well defined? Note that if u is absolutely integrable
(i.e. in L1)12, then û is well-defined at each ω, and we can bound

|û(ω)| =

∣∣∣∣
∫ ∞

-∞
e−jωtu(t) dt

∣∣∣∣ ≤
∫ ∞

-∞

∣∣e−jωt
∣∣ |u(t)| dt =

∫ ∞

-∞
|u(t)| dt = ∥u∥L1

⇒ ∥û∥L∞ = sup
ω∈R
|û(ω)| ≤ ∥u∥L1

Thus the Fourier transform is a bounded linear operator F : L1 −→ L∞ with induced norm of 1.
In fact, with a little more care it is easy to show û is absolutely continuous if u is in L1, so we
can make the stronger statement that F : L1 −→ L∞ ∩ C, and note that L∞ ∩ C is the closed
subspace (i.e. a Banach space) of L∞ made up of continuous, bounded functions.

We would also like to define the Fourier transform for functions in L2. However, the in-
tegral (3.50) is not guaranteed to converge if u is only square integrable but not absolutely
integrable. Thus we can define the Fourier transform (3.50) only on the subspace L1 ∩ L2. This
subspace is however dense13 in L2, and if we can find an induced norm bound on the Fourier
transform as a mapping on L2, then the extension procedure described above extends the Fourier
transform from L1 ∩ L2 to all of L2.

The bound we need is given by Parseval’s theorem
∫ ∞

-∞
û2(ω) dω = 2π

∫ ∞

-∞
u2(t) dt.

Thus the Fourier transform regarded as a mapping F : L1 ∩ L2 −→ L∞ ∩ L2 has induced norm
of 2π (with respect to L2 norms on u and û), and its domain can therefore be extended to all
of L2.

Parseval’s theorem implies the even stronger conclusion that F : L2 −→ L2 is actually an
isometry (modulo the constant factor 2π), i.e. a norm-preserving isomorphism. For this reason,
Fourier analysis is most profitable in the L2 setting, but ironically, the definition (3.50) cannot
be directly used on L2 functions. The densely-defined-bounded-operator extension procedure
provides the simplest resolution of this technicality.

Finally we note that all the arguments above apply just as easily to the Fourier transform for
L2(Rn).

Appendix

3.A Completion using Cauchy Sequences

Definition 3.51. Two Cauchy sequences {xk}, {yl} in a metric space M, are said to be
equivalent if

{xk} ∼ {yl} ⇔ given ϵ > 0, ∃N , such that k, l ≥ N ⇒ d(xk, yl) ≤ ϵ, (3.51)

i.e. the tails of the sequences become arbitrarily close together.

12In this example, the notation L1, L∞ and L2 stand for L1(R), L∞(R) and L2(R). The domain R is
dropped for notational simplicity.

13For example, continuous, compactly supported functions are in L1 and L2, and are dense in both spaces.

Draft: Notes on Linear Algebra and Functional Analysis © July 19, 2024, Bassam Bamieh



106 3.A. Completion using Cauchy Sequences

Intuitively, equivalent Cauchy sequences should be converging to the same point, and that
can be used to define a completion of any incomplete metric space.

First we show that equivalent sequences form equivalence classes (pun intended). Sym-
metry is immediate since the metric d(., .) is itself symmetric. Transitivity follows from the
triangle inequality; If {xk} ∼ {yk} and {yk} ∼ {zk}, then for any ϵ > 0, choose N1 and N2

such that for k, l ≥ N1 and l, j ≥ N2

d(xk, yl) ≤ ϵ
d(yl, zj) ≤ ϵ

}
⇒ d(xk, zj) ≤ d(xk, yl) + d(yl, zj) ≤ 2ϵ,

and note that this holds for all k, j ≥ max {N1, N2}. Therefore {xk} ∼ {zk}

Lemma 3.52. Given any (not necessarily complete) metric space M, define its completion
M as the set of all equivalence classes of Cauchy sequences in M. Then

1. M ⊆ M by identifying x ∈ M with the “constant” Cauchy sequence xk := x.

2. On M, the following defines a metric

d̄
(
{xk} , {yk}

)
:= lim

k→∞
d(xk, yk), (3.52)

which coincides with d on M ⊆ M.

3. M is a complete metric space with the metric d̄.

Proof. 1. Clearly the constant sequence xk := x is a Cauchy sequence. Any other Cauchy
sequence that converges to x is in the same equivalence class as this constant sequence.
This equivalence class then represents the point x ∈ M in the completion M.

2. We need to show two things. First, (a) that this metric is well defined, i.e. the limit
in (3.52) exists, and its value is independent of the choice of equivalence class represen-
tative. Second, (b) that it satisfies all the properties of a metric.

(a) To show that the limit exists, given two Cauchy sequences {xk} and {yl} in M, we
show that the sequence of real numbers {d(xk, yk)} is itself a Cauchy sequence in
R. Indeed, given ϵ > 0, choose N so that for k, l ≥ N we have d(xk, xl) ≤ ϵ and
d(yk, yl) ≤ ϵ. We then compare

d(xk, yk) ≤ d(xk, xl) + d(xl, yk) ≤ d(xk, xl) + d(xl, yl) + d(yl, yk)
⇒ d(xk, yk) ≤ d(xl, yl) + 2ϵ

similarly d(xl, yl) ≤ d(xk, yk) + 2ϵ

⇒
∣∣d(xk, yk)− d(xl, yl)

∣∣ ≤ 2ϵ.

Since {d(xk, yk)} is Cauchy sequence in R, it has a limit since R is complete.

A parallel argument can be used on a given pair of equivalent sequences {xk} ∼ {x̄k}
and {yk} ∼ {ȳk}

d(xk, yk) ≤ d(xk, x̄k) + d(x̄k, yk) ≤ d(xk, x̄l) + d(x̄k, ȳk) + d(ȳk, yk)
⇒ d(xk, yk) ≤ d(x̄l, ȳk) + 2ϵ

similarly d(x̄k, ȳk) ≤ d(xk, yk) + 2ϵ

⇒
∣∣d(xk, yk)− d(x̄k, ȳk)

∣∣ ≤ 2ϵ.

Thus the two sequences of real numbers {d(xk, yk)} and {d(x̄k, ȳk)} converge to the
same number.
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(b) The three properties of a metric in Definition 2.1 hold for d̄ because they hold for
the original metric d. Symmetry is clear. The triangle inequality also follows

d̄
(
{xk} , {yk}

)
= lim

k→∞
d(xk, yk) ≤ lim

k→∞
(d(xk, zk) + d(zk, yk))

= lim
k→∞

d(xk, zk) + lim
k→∞

d(zk, yk)

= d̄({xk} , {zk}) + d̄({zk} , {yk}) .

The functional d̄ is clearly non-negative from its definition. Also from the defi-
nition (3.52), if d̄

(
{xk} , {yk}

)
= limk→∞ d(xk, yk) = 0, then by (3.51) the two

sequences belong to the same equivalence class {xk} ∼ {yk}, and therefore d̄ sepa-
rates distinct equivalence classes.

3. To show that M is complete, we must consider a Cauchy sequence in M (i.e. a Cauchy
sequence of Cauchy sequences from M), and show that its limit is in M. This is accom-
plished using a diagonal sequence argument as follows.

Let
{{

x
(n)
k

}
; n ∈ N

}
be a sequence of Cauchy sequences in M indexed by the integer

n (i.e. for each n,
{
x
(n)
k

}
⊂ M is a Cauchy sequence in M). Order all the sequence

elements in the following two-dimensional array

x
(1)
1 x

(1)
2 x

(1)
3

k→
x
(2)
1 x

(2)
2 x

(2)
3 · · ·

x
(3)
1 x

(3)
2 x

(3)
3 · · ·

n ↓
...

and define the diagonal sequence x̄k := x
(k)
k . We claim that this sequence {x̄k} is the

limit in M of the family of sequences.

The fact that the family
{{

x
(n)
k

}
; n ∈ N

}
is a Cauchy sequence in M means that given

ϵ1 > 0, ∃N1 such that n,m ≥ N1 implies

d̄
({

x
(n)
k

}
,
{
x
(m)
k

})
≤ ϵ1 ⇒ lim

k→∞
d
(
x
(n)
k , x

(m)
k

)
≤ ϵ1.

The limit statement implies that given ϵ2 > 0, ∃N2 such that k ≥ N2 implies

d
(
x
(n)
k , x

(m)
k

)
≤ ϵ1 + ϵ2.

Now comparing with the diagonal sequence we see that

k,m, n ≥ max {N1, N2} ⇒ d
(
x̄k, x

(n)
k

)
= d

(
x
(k)
k , x

(n)
k

)
≤ ϵ1 + ϵ2,

We therefore conclude that

lim
n→∞

d̄
(
{x̄k} ,

{
x
(n)
k

})
:= lim

n,k→∞
d
(
x̄k, x

(n)
k

)
= lim

n,k→∞
d
(
x
(k)
k , x

(n)
k

)
= 0,

and therefore {x̄k} is indeed the limit (inM) of the Cauchy sequence of Cauchy sequences.
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Exercises

Exercise 3.1 ℓ∞ is not separabale

Show that ℓ∞(N) is not separable using the following steps.

1. Consider the subset ℓ0,1 of ℓ∞(N) made up of sequences with entries of only 0 or 1. By
comparing with decimal expansions of numbers, show that this subset is in one-to-one
correspondence with the uncountable set of real numbers (0, 1).

2. Show that a ball of radius 1/2 around any element of ℓ0,1 cannot contain any other
element of ℓ0,1. The number of these non-intersecting balls is equal to the cardinality
of (0, 1).

3. Any dense subset of ℓ∞(N) must have an element in each of the these balls, and must
therefore be uncountable.

Exercise 3.2 Almost-periodic functions

Consider the sum of two oscillatory functions u(t) = αejω1t + βejω2t.

1. Show that u is periodic iff the two frequencies ω1 and ω2 are commensurate, i.e.
the ratio ω1/ω2 is rational. In this case show that the fundamental period of u is
T = 2π(m/ω1) = 2π(n/ω2), where ω1/ω2 = m/n with n and m coprime.

2. If the frequencies are incommensurate, show that there exists an ϵ-period, i.e a number
T such that

∀t ∈ R, |u(t)− u(t+ T)| < ϵ.

3. Show that the set T ⊂ R of ϵ-periods is relatively dense in R, i.e.

inf {d(T, x); T ∈ T, x ∈ R} = d < ∞.

In other words, the set T is “well dispersed” in R. There exists a finite number d such
that the distance between any real number and the set T is at most d. Compare this
with the commensurate frequencies case, where T = {kT ; k ∈ Z}.

Exercise 3.3

Using the fact that an absolutely summable series of real numbers is convergent, show that
if a series in a Banach space V is absolutely summable, i.e.

∞∑

k=0

∥vk∥ < ∞,

then the partial sums sequence {∑n
k=0 uk}∞n=0

is Cauchy, and therefore convergent in V.
Note that submultiplicativity of the norm is not required. Only the triangle inequality.
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Chapter 4

Duality and Adjoints

The concept of duality plays an important role in many aspects of linear algebra and func-
tional analysis. Linear functionals are scalar-valued linear operators, and they are considered
as objects dual to vectors. In the most basic setting, multiplying a column vector from the left
by a row vector is a linear operation that yields scalars, thus row vectors can be considered
as dual objects to column vectors. The space of all continuous linear functionals is the dual
space of a Banach space. Concepts of orthogonality and inner products can be generalized
from within inner product spaces to be considered as relations between vectors and function-
als instead of between vectors and vectors. This leads to generalizations of the projection
theorem and to a duality theory for minimum distance problems. Weak and strong duality,
and the Hahn-Banach theorem are part of this duality theory. The dual object to a linear
operator between vector spaces is the adjoint, which acts between their respective duals. Un-
derstanding the interplay between an operator and its adjoint usually provides significant
insight into the properties of that operator. The so-called fundamental theorem of linear
algebra relates the image and null spaces of an operator and its adjoint. Questions about
linear operators can be often more easily answered by understanding the interplay between
the actions of the operator and its adjoint.

Introduction

Recall that in Chapter 1 we defined Rn as the space of column vectors. We then generalized
form column vectors to vectors in abstract vector spaces. What about row vectors? What
role do they play, and what are the possible generalizations of row vectors?

To explore a bit, fix a particular real row vector y =
[
y1 · · · yn

]
(note that this

is not an n-tuple (y1, . . . , yn), but a row vector in the standard notation). Now consider
the operation of multiplying column vectors by this particular row vector, and call that
operation y(.), i.e.

y(v) := y v =
[
y1 · · · yn

]


v1
:
vn


 =

n∑

k=1

ykvk. (4.1)

The reader should note the deliberately pedantic choice of fonts in the notation above.
y is an operation on column vectors. This operation on any column vector v sums the
components of v against the components of a specific row vector y. (4.1) is a particular
representation of the operation y. We will have occasion to use different representations
such as y(v) := y∗v, where y is a column vector. Thus the careful distinction between an
operation and its representations.
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The operation (4.1) is a scalar-valued mapping, i.e. y : Rn → R. Since matrix and vector
products are distributive over additions, this mapping is linear

y (αv1 + βv2) = y (αv1 + βv2) = α yv1 + β yv2 = α y(v1) + β y(v2).

Thus y is a linear operator from Rn to R. Scalar-valued linear operators are special, so they
get their own name, they are called1 linear functionals. It is not difficult to show (Lemma 4.1)
that any linear functionals on Rn must be of the form (4.1) for some row vector y. Let’s
temporarily call the space of row n-vectors Rn∗

Rn∗ :=
{
y :=

[
y1 · · · yn

]
; yi ∈ R

}
.

Thus the space of all linear functionals on Rn is Rn∗. The space of all linear functionals on
a vector space V is called the dual space of V, and denoted by V∗, thus the notation Rn∗

above. Note that Rn∗ is a vector space with row vector addition. This is true for any vector
space V, its dual space V∗ is also a vector space.

In the example of Rn, its dual space Rn∗ is isomorphic to it. The isomorphism is given
by the “transpose map” ()∗ : Rn → Rn∗, w 7→ w∗, which takes a column vector w to a row
vector w∗. We will see that this is true for any inner product space, where linear functionals
can be generated from the vectors in that space by taking inner products, i.e. for any vector
w ∈ V in an inner product space V, a linear functional w is defined by

w(v) := ⟨w , v⟩ , v ∈ V. (4.2)

We will see that in a Hilbert space, all linear functionals are generated in this manner (this
is the Riesz representation theorem). Thus a Hilbert space is isomorphic to its dual, and
the isomorphism is given by the correspondence (4.2). This is the generalization to Hilbert
space of the transpose map that takes column vectors to row vectors. In the absence of an
inner product such as in a Banach space, the dual is typically different from the original
space, and more care is needed in treating such problems.

What does duality say about operators? A linear operator acting on vectors induces in
a natural way another linear operator, called the adjoint, acting on functionals. In the case
of Rn, if we act on a column vector v with a matrix A, and then apply a linear functional to
the result by multiplying it by a row vector w∗, the result produced is a scalar w∗Av. We
can now think about A acting on the row vector w∗ rather than the column vector v. The
mapping w∗ 7→ w∗A takes row vectors to row vectors, so it is a mapping on the dual space
Rn∗. This mapping is determined by the obvious condition

∀v ∈ Rn,
[

w∗ ] [
A

] [
v

]
=
[

w∗A
] [

v

]
=
[

w∗ ]
[
Av

]
. (4.3)

The way to read this is to pretend for the moment that we don’t know how to multiply a
row vector w∗ by a matrix, we only know how to multiply a column vector by a matrix.
This is the situation in an abstract vector space, the operator on vectors is specified, but
we have to do some work to figure out how it acts on functionals. Let’s continue with the
pretense that we don’t know how to multiply row vectors and matrices. Formula (4.3) gives
the recipe for finding w∗A from w. Starting from w∗ as a known functional on Rn, we need
to find the functional w∗A. If we know how this functional acts on all vectors v, then it is
determined. The formula (4.3) says that w∗A acts on v by first acting on v by Av, and then
acting on the result by the known functional w∗. This serves to define the adjoint more
abstractly as we now briefly outline.

1Any scalar-valued mapping, whether linear or not, is called a functional.
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Let A : V → W be a linear operator between vector spaces. The adjoint A† : W∗ →
V∗ maps their duals (i.e. maps linear functionals to linear functionals). The adjoint is
determined by the following condition which generalizes (4.3)

∀v ∈ V,
(
A†w

)
(v) := w (Av) . (4.4)

Let’s parse this carefully. w is a functional on W, i.e. its in W∗. It is mapped by A† to an
element in V∗, i.e. a functional on V. The definition above specifies how A†w acts on every
v ∈ V, and therefore is a mapping w 7→ A†w from W∗ to V∗.

The adjoint is a linear operator that is intimately related to the original operator. Con-
cepts like row rank and left null space of a matrix are best understood as statements about
the adjoint. Much of linear algebra and functional analysis involves the interplay between
an operator and its adjoint. We now turn to developing these concepts more precisely.

4.1 Dual Vectors: The Dual Space

Let V be any vector space and let w : V → R be a linear functional, i.e. a scalar-valued
linear operator on V

w
(
αv1 + βv2

)
= α w

(
v1
)

+ β w
(
v2
)
. (4.5)

We denote the set of all linear functionals on V with the symbol V∗. This set inherits a
vector space structure from V. Any two elements w1 and w2 in V∗ can be scaled and added
by the standard definition for functions (point-wise addition and scaling)

(
aw1 + bw2

)
(v) := a w1

(
v
)

+ b w2

(
v
)
. (4.6)

It is immediate that w1 +w2 thus defined is also a linear functional
(
aw1 + bw2

)(
αv1 + βv2

)
= a w1

(
αv1 + βv2

)
+ b w2

(
αv1 + βv2

)
(by (4.6))

= aα w1(v1) + aβ w1(v2) + bα w2(v1) + bβ w2(v2) (by (4.5))

= α
(
aw1 + bw2

)
(v1) + β

(
aw1 + bw2

)
(v2) (by (4.6))

Thus the set of all linear functionals V∗ is itself a vector space.
In finite-dimensional vector spaces, any basis representation gives a representation of

linear functionals as the product with row vectors as follows.

Lemma 4.1. Let V be a finite-dimensional vector space. Given a particular basis v =
{vk}nk=1 of V, the action of a linear functional w : V→ R on any vector u can be written as
a dot product of the vector [u]v =: (u1, . . . , un) of basis coefficients with a row vector w∗,
which we call the representation of w in the basis v

w(u) = w∗ [u]v =
[
w1 · · · wn

]


u1

:
un


 =

n∑

k=1

wkuk,

where for each k, wk = w (vk).

Proof. Consider the action of w on each of the basis elements

w(vk) =: wk, k = 1, . . . , n.

By linearity, the action of w on any vector is given by

w(v) = w

(
n∑

k=1

ukvk

)
=

n∑

k=1

uk w(vk) =

n∑

k=1

uk wk
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u

f

(a) Any integrable function f defines
a linear functional f on the space of
piece-wise constant (on the interval
[-1, 1]) functions by the integral f(u) :=∫ 1
-1

f(t)u(t)dt.

0

1

-1

1

11

1 1

v1 v2 v3

w3w1 w2

(b) Here f(t) = - sin((πt), and the basis representation of the func-
tional f (in either of the v or the w bases) is given by integrating the
function f against the respective bases elements.

Figure 4.1: Any (absolutely) integrable function f defines a linear functional f on a space of functions by
f(u) :=

∫
f(t)u(t)dt provided the integral converges. The basis representation of f in terms of any basis is

obtained by acting with f on each of the individual basis elements.

Note that the lemma above says nothing about inner products or norms. It is a purely
algebraic statement about vector spaces.

Example 4.2. Consider the vector space R{[-1,0),0,(0,1]} of functions on [-1, 1] that are constant
on the sets [-1, 0), 0, (0, 1] introduced in Example 1.4.

Given any (absolutely) integrable function f : [−1, 1] → R, we can use it to define a linear
functional f by defining its action on any u ∈ R{[-1,0),0,(0,1]} using the integral

f(u) :=

∫ 1

-1

f(t) u(t) dt. (4.7)

This is illustrated in Figure 4.1a. We say that that function f : [-1, 1] → R is the kernel
representation2 of the functional f : R{[-1,0),0,(0,1]} → R.

Now recall the two bases v and w used earlier for this function space, and depicted again in
Figure 4.1b. If we choose for example f(t) := - sin(πt), then as shown in the figure, the row
vectors f v and fw representing f in the bases v and w respectively are

f v =
[
f v
1 f v

2 f v
3

]
=
[
2
π 0 - 2π

]
, fw =

[
fw
1 fw

2 fw
3

]
=
[
0 0 4

π

]
, (4.8)

where each vector component is calculated by acting with f (4.7) on the respective basis element
as in Lemma 4.1. For example

f v
1 := f(v1) =

∫ 1

-1

f(t)v(t) dt = -

∫ 0

-1

sin(πt) dt =
1

π
cos(πt)

∣∣∣∣
0

-1

=
2

π
.

Remark 4.3. While for most function spaces, all linear functionals have a representation
like (4.7), this is not so in the above example. This is due to the peculiarity of the function
space R{[-1,0),0,(0,1]} where the value u(0) of an element at the single point t = 0 matters.
Note that in (4.8), both f v

2 and fw
2 are zero. This is actually true for any (regular) function

f that defines a linear functional by the integral (4.7)

f v
2 :=

∫ 1

-1

f(t)v2(t) dt =

∫ 0

0

f(t) dt = 0.

It turns out that while all functions f (provided they’re integrable) define linear func-
tionals by (4.7), not all linear functionals on this space are of that form. This problem is

2This is a special case of the kernel representation of linear operators discussed in Chapter 6.
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easy to fix as follows. Define a linear functional by

f(u) :=

∫ 1

-1

f(t) u(t) dt + f̄ u(0), (4.9)

where f̄ is some scalar. Thus the functional f requires specifying two pieces, a function
f : [-1, 1] → R, as well as a scalar f̄ . In this case the number f̄ would also be equal to f v

2

and fw
2 . We can now conclude (e.g. by counting dimensions) that all linear functionals on

R{[-1,0),0,(0,1]} are of the form (4.9). ■

Formal Definition and Further Examples

We now give a formal definition of the dual space. The examples we’ve seen so far are for
what is called the algberaic dual space since norms played no role in the discussion. However,
when a vector space is equipped with a norm, then the dual space also has a natural norm
given for each functional by its induced norm as a linear operator. This is sometimes called
the topological dual space, but we will simply refer to it as the dual space.

Definition 4.4. Let V be a Banach space. Its dual space V∗ is the space of bounded (con-
tinuous) linear functionals

V∗ :=

{
f : V→ R; f is linear and, ∥f∥ := sup

∥v∥=1

|f(v)| <∞
}
,

i.e. V∗ = L(V,R), and therefore is itself a Banach space with the induced norm.

Note that V∗ = L(V,R), and that we’ve already shown in Section 3.6 that L(V,W) is a
Banach space (i.e. complete) with the induced norm whenever V and W are Banach spaces.
R is a Banach space, and therefore V∗ = L(V,R) is a Banach space.

Example 4.5. Consider the vector space Rn. By Lemma 4.1 every linear functional w is of
the form

w(v) = w1v1 + · · ·+ wnvn = w∗v. (4.10)

If we endow Rn with the Euclidean ∥.∥2 norm (call the space Rn
2 ), what is the induced norm on

w? First observe that by the Cauchy-Schwartz inequality

|w(v)| = |w∗v| ≤ ∥w∥2∥v∥2.

Thus the Euclidean norm ∥w∥2 of the vector w is an upper bound on the induced norm of the
functional w. This upper bound is achieved by applying w to the vector w itself

w(w) = w2
1 + · · ·+ w2

n = ∥w∥22.

We therefore conclude that the induced norm on Rn
2 of the functional w in (4.10) is the Euclidean

norm of the row vector w representing it. Therefore the dual of Rn
2 is Rn∗

2 . Since Rn∗
2 and Rn

2 are
isometrically isomorphic, we will often just say that the dual of Rn

2 is Rn
2 when the isomorphism

is implicitly understood.
This example is a special case of a fact true in any Hilbert space. We say that the vector

w ∈ V “represents” the functional w ∈ V∗ by the inner product as w(v) = ⟨w , v⟩. The fact
that every element of V∗ in a Hilbert space is represented this way is the Riesz Representation
Theorem 4.10. This will imply that the dual of a Hilbert space V is itself, or more precisely,
isometrically isomorphic to V. More on this in the next subsection.
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Example 4.6. Consider Rn
∞ with the ∥.∥∞ norm and functionals acting by

w(v) = w1v1 + · · ·+ wnvn = w∗v. (4.11)

The induced norm can be calculated using the 1-∞ inequality (Exercise 2.5)

w(v) = sup
∥v∥∞=1

|w∗v| = sup
∥v∥∞=1

|w1v1 + · · ·+ wnvn|

≤ sup
∥v∥∞=1

|w1v1|+ · · ·+ |wnvn| ≤ sup
∥v∥∞=1

(
n∑

i=1

|wi|
)(

max
1≤j≤n

|vj |
)

= ∥w∥1,
with equality achieved by using vi = sign(wi).

Thus the dual of Rn
∞ is Rn

1 when the action of functionals is given by (4.11). We leave it
as an exercise (Exercise 4.1) to show that the dual of Rn

1 is Rn
∞, and more generally, the dual

of Rn
p is Rn

q when 1/p+ 1/q = 1.

Example 4.7. If a Banach space V has a basis v = {vk}∞k=0, then every linear functional w
must be of the form

w(u) =

∞∑

k=0

wkuk, where u =

∞∑

k=0

ukvk, wk := w(vk). (4.12)

Thus the sequence {wk} “represents” the functional w. The summability properties of the
sequence {wk} will depend on both the basis set v as well as the norm in the space V. The
statement (4.12) is a purely algebraic statement, and is the same as Lemma 4.1 irrespective of
whether the space is finite or infinite dimensional. In finite dimensions, the finite set of numbers
{wk} can be anything, while in infinite-dimensions, restrictions on the sequence have to imposed.
Those restrictions depend on the norm in V as well as the particular choice of basis v.

Example 4.8. Let’s calculate the dual of ℓ1(R), but while keeping the example of Rn
1 in mind

since the calculations are analogous. Write any element of ℓ1(R) in the canonical basis (i.e.
u = (u0, u1, . . .), then by (4.12) every linear functional is of the form

w(u) =

∞∑

k=0

wkuk,

for some sequence {wk}∞k=0. Now let’s see what the requirement (in Definition 4.4) that w be
a bounded linear functional imply about the sequence {wk}. A bound can be given using the
1-∞ inequality

∣∣∣∣∣
∞∑

k=0

wkuk

∣∣∣∣∣ ≤
∞∑

k=0

|wk| |uk| ≤
(
sup
k
|wk|

)( ∞∑

k=0

|uk|
)

= ∥w∥∞ ∥u∥1, (4.13)

from which we conclude that the induced norm is bounded by

sup
u̸=0

w(u)

∥u∥1
≤ ∥w∥∞.

To show that this bound is tight, consider two separate cases. The first is if the sequence
w achieves its supremum at some finite index k̄, we then choose ū = ek̄. With this choice
∥ū∥1 = ∥ek̄∥1 = 1 and

∣∣∣∣∣
∞∑

k=0

wkūk

∣∣∣∣∣ = |wk̄| = ∥w∥∞.
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The other case is when the supremum of w is not achieved, but from the definition of the
supremum we know that for any ϵ > 0, ∃k̄ such that |wk̄| ≤ ∥w∥∞ − ϵ. Choosing ū = ek̄ again

∣∣∣∣∣
∞∑

k=0

wkūk

∣∣∣∣∣ = |wk̄| = ∥w∥∞ − ϵ.

Since ϵ can be made arbitrarily small, the bound is tight and ∥w∥ = ∥w∥∞, i.e. the norm of the
functional w is given by the ∥.∥∞ norm of its representing sequence {wk}.

We therefore conclude that the dual of ℓ1(N) is ℓ∞(N).

Example 4.9. Recall that the dual of Rn
1 is Rn

∞ and vice versa. In light of the previous example
of ℓ1(N), we might suspect that the dual of ℓ∞(N) is ℓ1(N). However, this is not quite right.
Every element of ℓ1 defines a bounded linear functional on ℓ∞ by the same argument as (4.13),
but there are other bounded functionals on ℓ∞ that cannot be written in the form (4.12). This
form was premised on the Banach space having a basis, and recall that ℓ∞(N) is not separable,
and therefore cannot have a basis.

It is possible to show that the dual of ℓ∞(N) is strictly larger than ℓ1(N), i.e. ℓ1(N) ⊊
(ℓ∞(N))∗ using the so-called Hahn-Banach theorem. However, the argument is non-constructive
and one cannot exhibit those other elements (those not in ℓ1(N)) explicitly.

On the other hand, recall the closed subspace ℓ∞o (N) of ℓ∞(N) made up of sequences that
decay to zero. This is a Banach space in itself, and in fact we can show that (ℓ∞o (N))∗ = ℓ1(N).
The argument has essentially already been presented. Since {ek} is a basis for ℓ∞o (N), then any
linear functional is represented by summing against a sequence, and the argument (4.12) says
that the functionals induced norm (over ℓ∞i ) is precisely the ℓ1 norm of the sequence.

The take away from the above is that if the ∥.∥∞ norm of sequences is needed (e.g. in an
optimization problem), it is preferable whenever possible to set the problem up in ℓ∞o rather
than ℓ∞.

The Hilbert Dual

In a Hilbert space V every vector defines a functional by taking its inner product with other
vectors. Let w ∈ V be any vector. Define the functional w from w by

w(v) := ⟨w , v⟩ , v ∈ V. (4.14)

The functional w defined here is clearly linear. It is also bounded as follows from the
Cauchy-Schwartz inequality ∥w(v)∥ = | ⟨w , v⟩ | ≤ ∥w∥∥v∥. Thus w(.) defined above is a
bounded linear functional on V

Note that in (4.14) we are again using fonts to emphasize a distinction. w is a functional,
i.e. an element in V∗, while w is a vector in V, so they are different (but obviously related)
objects. Equation (4.14) says that every vector in V defines a functional in V∗. The question
is whether every functional in V∗ can be represented this way? In other words, given w ∈ V∗,
does there exist a vector v ∈ V such that w(.) = ⟨w , .⟩?

The answer is yes, and the construction is depicted geometrically in Figure 4.2. The
key idea is that every linear functional is uniquely (up to scaling) determined by its null
space. The reason is that a linear functional w is a mapping w : V → R. Its image
Im(w) = V/Nu(w) is isomorphic to R, and therefore Nu(w) is a co-dimension 1 subspace.
Such a subspace is uniquely determined by the direction of vectors orthogonal to it. To pick
the “size” of the orthogonal vector, we need an appropriate normalization as follows. Take
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Nu(w)

Nu(w)?

x

w

Figure 4.2: The construction of the Riesz representation theorem. Given an abstractly defined linear
functional w, we need to find a vector w that represents w through the inner product, i.e. w(v) = ⟨w , v⟩
for all v ∈ V. The key is that the null space of w (which is a co-dimension 1 subspace) uniquely defines
the direction of the vector w which must be orthogonal to it. Thus pick any vector x orthogonal to Nu(w),
renormalize it appropriately by (4.15) to find the representative w.

any vector x ∈ Nu(w)⊥ and normalize it by (note that it is unique after normalization)

w :=
w(x)

∥x∥2 x ⇒ ∥w∥ =
|w(x)|
∥x∥ (4.15)

w(w) = w

(
w(x)

∥x∥2 x

)
=

w(x)

∥x∥2 w(x) = ∥w∥2 = ⟨w , w⟩ . (4.16)

Now since ⟨w , Nu(w)⟩ = 0, ⟨w , w⟩ = w(w), and V = Nu(w)⊕ span{w}, then ⟨w , .⟩ = w(.)
on all of V, and therefore w is the representative of the functional w. We now state these
conclusions formally.

Theorem 4.10 (Riesz Representation). If V is a Hilbert space, then every bounded func-
tional w ∈ V∗ is represented by an inner product with a unique vector w ∈ V, i.e.

∀v ∈ V, w(v) = ⟨w , v⟩ . Furthermore ∥w∥ = ∥w∥.

Note that ∥w∥ is the induced norm of w as a functional on V, while ∥w∥ is the vector norm
in V of its representative w. Their equality follows from the Cauchy-Schwartz inequality

|w(v)| = |⟨w , v⟩| ≤ ∥w∥ ∥v∥ ⇒ sup
v ̸=0

|w(v)|
∥v∥ = sup

v ̸=0

|⟨w , v⟩|
∥v∥ ≤ ∥w∥,

and observing that this upper bound is achieved with v = w.
The Riesz representation theorem generalizes Example 4.5 which dealt with Rn when

equipped with the standard Euclidean norm. The next example considers Rn equipped with
a different inner product, so the above theorem still holds, but it needs to be interpreted
carefully as we will demonstrate.

Example 4.11. Consider Rn
Q, which is defined as Rn with a “weighted norm”

∥v∥2Q = ⟨v , v⟩Q := v∗Qv = v∗Q
1
2Q

1
2 v =:

〈
Q

1
2 v , Q

1
2 v
〉
2

= ∥Q 1
2 v∥22,

where Q is a symmetric positive definite matrix, ⟨ , ⟩2 is the Euclidean inner product and ∥.∥2
is the Euclidean norm.

The dual space is still isomorphic to Rn, but what is the norm on the dual space? We
have to be careful here with how we define linear functionals, because their resulting norms will
depend on that definition. First, since Rn

Q is n-dimensional, we can take the canonical basis and
Lemma 4.1 says (c.f. Example 4.5) that every linear functional w is represented by an n-vector
w so that

w(v) = w1v1 + · · ·+ wnvn = w∗v, v ∈ Rn
Q. (4.17)

Draft: Notes on Linear Algebra and Functional Analysis © July 19, 2024, Bassam Bamieh



Chapter 4. Duality and Adjoints 117

We can now calculate the induced norm as

∥w(v)∥2 := sup
v ̸=0

|w∗v|2
∥v∥2Q

= sup
v ̸=0

|w∗v|2

v∗ Q1/2Q
1
2 v

= sup
u̸=0

∣∣w∗Q-1/2 u
∣∣2

u∗u
(substituting u = Q1/2 v)

= sup
u̸=0

∣∣∣
(
Q-1/2 w

)∗
u
∣∣∣
2

u∗u
=

〈
Q-1/2w , u

〉
2

⟨u , u⟩2
=
∥∥∥Q-1/2 w

∥∥∥
2

2
, (4.18)

Thus if the norm on Rn is given by ∥Q1/2x∥2, and the functional action is given by v 7→ w∗v,
then the norm on this linear functional is given by

∥∥Q-1/2w
∥∥
2
. In other words, the dual of Rn

Q

is Rn
Q-1 .
At first glance this might seem to not be consistent with Thereom 4.10 which states that

∥w∥ = ∥w∥. However, there is no inconsistency if the theorem is interpreted correctly as follows.
In the space Rn

Q, the theorem says that any linear functional is given by

w1(v) = ⟨w , v⟩Q = w∗Qv = (Qw)
∗
v. (4.19)

This is a different functional w from w defined in (4.17)! This functional acts on a vector v
by summing its components against components of the vector Qw rather than the vector w.
According to the theorem, the induced norm of w1 must be

∥w1∥ = ∥w∥Q =
∥∥∥Q1/2w

∥∥∥
2
. (4.20)

The two functionals w1 and w can be related by defining another functional u

u := Qw, u(v) := u∗v = w1(v)

The norm of u calculated according to (4.18) is the same as the norm of w1 calculated according
to (4.20)

∥u∥ =
∥∥∥Q-1/2u

∥∥∥
2

(by (4.18) since u(v) := u ∗ v)

=
∥∥∥Q-1/2Qw

∥∥∥
2

=
∥∥∥Q1/2w

∥∥∥
2

(since u := Qw)

= ∥w1∥ (by (4.20))

Therefore the calculations are consistent provided we apply the Riesz representation theorem
correctly. This issue is a source of potential confusion whenever working with weighted norms
in Hilbert space.

4.2 Duality and Orthogonality

In this section we will generalize the notion of orthogonality to Banach spaces using duality.
It turns out that the best way to generalize the notion of orthogonality is to abandon the
idea that orthogonality is between vectors in the same space. Instead, and more generally,
orthogonality should be thought of as between a functional and a vector, which are ob-
jects that live in different spaces. It just happens that in Hilbert space, each functional is
represented by taking an inner product with a particular vector. Thus we were lured into
thinking of orthogonality as between vectors. A mental shift to a more general notion of
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orthogonality will have great benefits. Many useful constructions in Hilbert space (such
as the projection theorem) can generalize to a Banach space V, but now we have to think
about V and its dual V∗ simultaneously.

Before we begin, we make a note about a notational change. From this section on, linear
functionals will be denoted with brackets like

v ∈ V, w ∈ V∗, ⟨w , v⟩ := w(v),

which is the more traditional notation for functional action. To emphasize that this is not an
inner product, but rather functional action, we will denote functionals (like w) with roman
font, while vectors (like v) with italic font. In later chapters, after the reader has become
accustomed to the distinctions between vectors and functionals, we will drop the distinction
in fonts.

Orthogonality

In an inner product space, the two geometrical notions of orthogonality and alignment are
defined in terms of the inner product. Those two notions generalize to normed spaces, but
they are between vectors and functionals rather than between vectors and other vectors.

Definition 4.12. A vector v ∈ V in a Banach space V and a functional w ∈ V∗ are said to
be orthogonal if

⟨w , v⟩ = 0.

Given a subspace S ⊂ V, its orthogonal subspace3 S⊥ ⊂ V∗ is

S⊥ := {w ∈ V∗; ∀v ∈ S, ⟨w , v⟩ = 0}

The terminology and notation are suggestive, but should be parsed carefully. ⟨w , v⟩
is the functional w acting on the vector v rather than an inner product. We use the term
“orthogonal subspace” since S⊥ is in the dual space V, rather than “orthogonal complement”
where S⊥ in a Hilbert space is a complementary subspace to S. None the less, in Banach
spaces the orthogonal subspace S⊥ ⊂ V∗ plays a similar role to the orthogonal complement
S⊥ ⊂ V in Hilbert spaces. An easy, but important observation is that the orthogonal
subspace is alway closed even if the original subspace is not.

Lemma 4.13. If S ⊂ V is any subspace of a Banach space, then its orthogonal subspace
S⊥ ⊂ V∗ is a closed subspace in V∗.

Proof. If the sequence {wk} ⊂ S⊥ has a limit limk→∞ wk = w ∈ V∗, then

∀v ∈ S, ⟨w , v⟩ =

〈
lim
k→∞

wk , v

〉
= lim

k→∞
⟨wk , v⟩ = 0,

because the mapping ⟨. , v⟩ : V→ R is continuous. Thus w ∈ S⊥.

Definition 4.14. In a Banach space V, a vector v ∈ V and a functional w ∈ V∗ are said
to be aligned if

⟨w , v⟩ = ∥w∥ ∥v∥.

This is very similar to the definition of alignment in an inner product space where two
vector v, w are aligned if there is equality in the Cauchy-Schwartz inequality ⟨w , v⟩ =
∥w∥∥v∥. In a Banach space, we replace inner products with functional actions.

3This is alternatively termed “the annihilator” in many references.
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V

0

x̄

S

v

e := v � x̄

(a) Depiction of a minimum distance problem in a Hilbert space. The point x̄ ∈ S is the point in S closest
to v. The length of the optimal error vector v − x̄ is the minimum distance between v S. The projection
theorem says that the optimal error v − x̄ must be orthogonal to the subspace S.

S?

S

w

x̄

v

w̄
v-x̄

(b) Another geometrical interpretation of the projection theorem that is valid in either Hilbert or Banach
space. We can’t say that the optimal error vector v− x̄ is orthogonal to S, since now orthogonality is between
vectors and functionals, not between vectors and vectors. However, we can say that it must be “aligned” with
a functional w̄ ∈ S⊥ orthogonal to S, i.e. ⟨w̄ , v − x̄⟩ = ∥w̄∥∥v− x̄∥. This special functional w̄ is characterized

by a dual optimization problem in S⊥ ⊂ V∗.

Figure 4.3: A comparison of the projection theorem in a Hilbert space (top) with what might be its
counterpart in a Banach space (bottom).

Now recall the problem of minimum distance between a vector and a subspace. In Hilbert
space, such problems are addressed by the projection theorem. What would a counterpart of
the projection theorem be like in Banach space? Figure 4.3 gives some geometrical intuition
to help answer this question. The key point in the projection theorem is that an optimal
error vector v − x̄ (see Figure 4.3a) must be orthogonal to the subspace S. We can’t make
this statement in Banach space since orthogonality is between a functional and a vector.
The statement (v − x̄) ⊥ S does not make sense since v − x̄ is a vector, not a functional.
Now bring in the concept of alignment, and we can say that the error vector v − x̄ must be
aligned with a functional w ∈ S⊥. This is how we can say that v − x̄ is “orthogonal” to S.

Now the next question is which functional w ∈ S⊥ is the error vector v− x̄ aligned with?
It turns out that we have to solve an optimization problem in S⊥ ⊂ V∗ (i.e. in the dual
space) to find those special vectors. This is the subject of dual optimization problems to
which we now turn.

Minimum Distance Problems: Weak Duality

We begin by establishing an easy (but very useful) inequality usually referred to as weak
duality. First, let v, x ∈ V be vectors in a Banach space, and w ∈ V∗ be a functional, then
by definition of ∥w∥

∥w∥ ∥v − x∥ ≥ ⟨w , v − x⟩

Now let x ∈ S, a subspace of V, and v ∈ V a vector possibly outside of S. Furthermore,
restrict ∥w∥ ≤ 1 and to be in the subspace orthogonal to S. Then

x ∈ S, w ∈ S⊥, ∥w∥ ≤ 1 ⇒ ∥v−x∥ ≥ ⟨w , v − x⟩ = ⟨w , v⟩−����:0⟨w , x⟩ = ⟨w , v⟩ .
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(4.21)

Note that the right side of the inequality is now independent of x, while the left side is
independent of w. Now if we take the infimum on the left and supremum on the right, the
inequality is preserved

inf
x∈S
∥v − x∥ ≥ sup

w∈S⊥, ∥w∥≤1

⟨w , v⟩ . (4.22)

This is the so-called “weak duality” statement which relates a minimization problem (here
called the “primal problem”) to a dual, maximization problem in the dual space V∗. The
two problems may not always have equal optimal objectives, but the inequality above is
always valid.

In many cases (such as Theorem 4.20 below), equality in (4.22) is achieved. In fact, the
derivation above gives us a very useful criterion for equality of the two problems. Suppose
we find a vector x̄ and a functional w̄ such that equality in (4.21) is achieved, i.e.

∥w̄∥ ∥v − x̄∥ = ⟨w̄ , v⟩ .

Then x̄ and w̄ must be the solutions to the two problems in (4.22) respectively! Note that
this condition is an alignment condition (recall Definition 4.14), and can be very useful in
explicit calculations. These conclusions, while simple to derive, are important enough to
state precisely.

Theorem 4.15 (Weak Duality). Let S ⊂ V be a subspace of a Banach space V, and S⊥ ⊂ V∗

its orthogonal subspace. Then the primal and dual optimization problems are related by

dp := inf
x∈S
∥v − x∥ ≥ sup

w∈S⊥, ∥w∥≤1

⟨w , v⟩ =: dd. (4.23)

If there exists x̄ ∈ S and w̄ ∈ S⊥ such that the functional w̄ is “aligned” with the error v− x̄

∥w̄∥ ∥v − x̄∥ = ⟨w̄ , v⟩ , (4.24)

then x̄ and w̄ are optimal for the primal and dual problems respectively, and dp = dd.

The dual problems (4.23) can be given a geometrical interpretation as shown in Fig-
ure 4.4. In Hilbert space, the figure can be considered as a reinterpretation of the projection
theorem. ⟨w , v⟩ is the projection of v onto a unit vector w in the orthogonal complement.
This projection is maximized when w is aligned with the optimal error v − x̄. This inter-
pretation generalizes to Banach space by relabeling ⟨w , v⟩ from “projection” to functional
action, and S⊥ from orthogonal complement in V to orthogonal subspace in V∗.

The duality gap of (4.23) is defined as the difference dp − dd (always positive) between
the two optimal objectives. When they are equal, we say that the “duality gap is zero”.
There are many versions of duality theorems for various types of optimization problems.
Conditions can be derived for when the duality gap is guaranteed to be zero even in cases
where suprema and infima are not achieved (so optimal solutions do not exist). These
conditions can be quite technical. However, for problems for which optimal solutions exist,
the alignment condition (4.24) gives a much easier method to establish zero duality gap.

The result above was termed “weak duality”, and the reader may suspect that therefore
there must be a stronger version of the statement. Indeed, in Banach spaces, the dual
problem always has a solution. A maximizing functional w̄ ∈ S⊥ always exists even when
the infimum in the primal problem is not achieved. This fact is a consequence of methods of
constructing functionals that go by the name of Hahn-Banach theorems. This is the subject
of the next section.
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x̄

v

w̄
v-x̄ d(v, S)

Figure 4.4: Illustration of the minimum-distance duality theorem 4.15. In a Hilbert space, we project v
onto vectors w in S⊥ of unit length (along the dashed grey circle). The length of the projection ⟨w , v⟩ is the
length of thick blue line is shown above. The values of ⟨w , v⟩ for various directions w ∈ S⊥ are depicted as
the blue ellipses. The largest projection is achieved by a vector w̄ which is aligned with the optimal “error”
vector v − x̄. Parallel interpretations are valid in a Banach space with “projection” replaced by functional
action ⟨w , v⟩, and S⊥ ⊂ V∗ being the orthogonal subspace in V∗ rather than the orthogonal complement.

4.3 Construction of Linear Functionals

We will be concerned with constructing various types of functionals. The constructions
typically proceed by first defining a functional on a restricted subspace, and then “extending”
it to the whole space. The extension process should guarantee certain properties of the
functional, for example that the norm of the extension is not larger than the norm of the
initially defined, restricted functional. This is the subject of the Hahn-Banach theorem to
which we now turn.

Before formally stating the theorem, we motivate the important issues geometrically.
Suppose we are given a functional w : S → R defined on a proper subspace S ⊂ V of a
Banach space. How do we extend it to a functional W : V → R defined on the entire
space V? Extension here means that W is exactly w when restricted to the subspace, i.e.
W|S = w. You might imagine that if the norm of W is allowed to be larger than the norm
of w, then this process is easy. We will require that the norm of the extension be no larger
than the norm of the original restricted functional, i.e.

∥W∥ := sup
v∈V

⟨W , v⟩
∥v∥ = ∥w∥S := sup

v∈S

⟨w , v⟩
∥v∥

Let’s examine how this extension process might work “one additional dimension at a
time”. Starting from the subspace S, select a vector v outside of it, and consider how to
extend the functional to span{S, v}, which is of one dimension larger than S. First, since
any vector in span{S, v} can be written as x+ αv with x ∈ S, linearity of the functional W
implies

⟨W , x+ αv⟩ = ⟨W , x⟩+α ⟨W , v⟩ = ⟨w , x⟩+α ⟨W , v⟩ , x ∈ S, α ∈ R. (4.25)

The extension W is now completely determined by the single number ⟨W , v⟩. This number
needs to be chosen so that the norm of W is no larger than the norm of w.

At first, you might be tempted to select the trivial extension ⟨W , v⟩ = 0 based on
intuition. However, there is a subtlety here that should be appreciated. If v were orthogonal

Draft: Notes on Linear Algebra and Functional Analysis © July 19, 2024, Bassam Bamieh



122 4.3. Construction of Linear Functionals

to S (so this is only possible in a Hilbert space), then we can simply set ⟨W , v⟩ = 0, and
orthogonality implies

⟨W , x+ αv⟩2
∥x+ αv∥2 =

(⟨w , x⟩+ α ⟨W , v⟩)2
∥x+ αv∥2 =

⟨w , x⟩2
∥x∥2 + |α|2∥v∥2 ≤

⟨w , x⟩2
∥x∥2

⇒ ∥W∥span{S,v} := sup
x∈S, α∈R

⟨W , x+ αv⟩2
∥x+ αv∥2 = sup

x∈S

⟨w , x⟩2
∥x∥2 =: ∥w∥S.

However, without orthogonality, we might have ∥x + αv∥ ≤ ∥x∥ in the denominators, and
then the trivial extension will actually have a larger norm than the original functional.
Exercise 4.2 gives an example of such a situation. The point here is that a more elaborate
and careful construction of the extension W needs to be done.

Theorem 4.16 (Hahn-Banach, One Dimensional Extension). Let S ⊂ V be a subspace of a
Banach space V. Let w : S→ R be a bounded linear functional on S, i.e.

∥w∥S := sup
x∈S

⟨w , x⟩
∥x∥ = c < ∞.

Given any v ∈ V, there exists an extension W : span{S, v} → R of w (i.e. W|S = w) with
the same norm ∥W∥span{S,v} = c.

Proof. Let’s work backwards from the requirement |W(x+ αv)| ≤ c ∥x + αv∥, which we
can rewrite (after using (4.25) and substituting a := W(v) for notational simplicity)

∀ x ∈ S, 0 ̸= α ∈ R,
{

w(x) + α a ≤ c ∥x+ αv∥
−c ∥x+ αv∥ ≤ w(x) + α a

, (4.26)

(note that the case α = 0 is automatically satisfied so we exclude it). Rearranging and
dividing through4 by α gives a upper and a lower bound on the number a

∀ x ∈ S, 0 ̸= α ∈ R,
{

a ≤ c ∥x/α+ v∥ - w(x/α)
-c ∥x/α+ v∥ - w(x/α) ≤ a

(4.27)

Reparameterizing with y := x/α ∈ S gives slightly simpler conditions

∀ y ∈ S,

{
a ≤ c ∥y + v∥ − w(y)

−c ∥y + v∥ − w(y) ≤ a

Now, there exists a real number a that satisfies both inequalities iff

sup
y∈S

(
−c∥y + v∥ − w(y)

)
≤ inf

z∈S

(
c∥z + v∥ − w(z)

)
. (4.28)

The linearity of w, and x ∈ S ⇒ w(x) ≤ c∥x∥ gives a comparison of the two sides above
(
−c∥y + v∥ − w(y)

)
−
(
c∥z + v∥ − w(z)

)

= − c
(
∥z + v∥+ ∥y + v∥

)
+w(z − y)

≤ − c∥z + v − (y + v)∥+w(z − y) (triangle inequality)

≤ − c∥z − y∥+w(z − y) ≤ − c∥z − y∥+ c∥z − y∥ = 0

⇒
(
−c∥y + v∥ − w(y)

)
≤
(
c∥z + v∥ − w(z)

)
.

This last inequality implies (4.28), and therefore the existence of a real number a that
satisfies (4.26).

4The reader should check that dividing by a negative α maintains the equivalence. Indeed, the top
inequality in (4.26) becomes the bottom inequality in (4.27) and vice versa.
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Note that the proof is given for the case of a real Banach space. The proof for the
complex case is similar, but somewhat messier, and is therefore omitted.

Theorem 4.17 (Hahn-Banach). Let S ⊂ V be a subspace of a Banach space V. Let w :
S→ R be a bounded linear functional, i.e.

∥w∥S := sup
x∈S

⟨w , x⟩
∥x∥ = c < ∞.

Then there exists an extension W : V → R of w to all of V (i.e. W|S = w) with the same
norm ∥W∥ = c.

Proof. The proof is given for a finite-dimensional or separable Banach space V.
First, we might as well assume that S is closed. If it were not, we can immediately extend

w to the closure S by the procedure for densely-defined bounded operators of Section 3.6.4.
If the closure S = V, then we’re done. Thus from now on we assume that S is a proper, closed
subspace of V. This implies the existence of an element v1 /∈ S, and the one dimensional-
extension Theorem 4.16 extends w to S1 := span{S, v1} without enlarging its norm.

The above procedure can be repeated to get a sequence of nested, proper subspaces

S ⊊ S1 ⊊ S2 · · · .

If V or V/S are finite dimensional, then this sequence terminates and extension procedure
is complete. If neither are finite dimensional, we can take the union of these subspaces

S∞ =

∞⋃

k=0

Sk,

and ask whether that is all of S. If V is separable, then we can choose {v1, v2, . . .} to be a
total sequence in V/S. Since the span of this sequence is dense in V/S, then S∞ = V.

If V is not separable, one must use a non-constructive existence statement like Zorn’s
lemma. This argument is omitted.

The Hahn-Banach theorem has several immediate corollaries, useful in their own right.

Corollary 4.18. Given any vector v ∈ V in a Banach space V, there exists a functional
w̄ ∈ V∗ with ∥w̄∥ = 1 that solves the maximization problem

sup
∥w∥≤1

⟨w , v⟩ = ⟨w̄ , v⟩ = ∥v∥ (4.29)

Consequently, given any bounded operator A : V1 → V2 then

∥A∥ := sup
v∈V1, ∥v∥≤1

∥Av∥V2
= sup

v∈V1, ∥v∥≤1, w∈V∗
2 , ∥w∥≤1

⟨w , Av⟩ . (4.30)

Proof. Construct the functional first on the one dimensional subspace span{v} as

x = αv ⇒ ⟨w , x⟩ := α ∥v∥,

and therefore ⟨w , v⟩ = ∥v∥. The norm of the functional on this subspace is

sup
x∈span{v}

⟨w , x⟩
∥x∥ = sup

α∈R

⟨w , αv⟩
∥αv∥ = sup

α∈R

α∥v∥
|α|∥v∥ = 1.

Now extend this functional to all of V while keeping its norm as 1. Finally, (4.30) follows
immediately from (4.29).
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Note that the “flip side” of this corollary may not be true. That is, if we fix a functional
w and optimize over the unit ball of the primal space

sup
v∈V, ∥v∥≤1

⟨w , v⟩ , w ∈ V∗,

there may not exist a vector v̄ that achieves this supremum. There are cases however when
this is true, and we’ll discuss these when we cover “reflexive” spaces shortly.

Given a closed subspace S of a Hilbert space, one can always find a non-zero vector that is
orthogonal to it. We simply pick any vector v /∈ S, and use the projection theorem to “drop
a perpendicular” from v to the subspace S. Another corollary of the Hahn-Banach theorem
is that we can do something similar in a Banach space, but we construct a functional that
is orthogonal to S.

Corollary 4.19. Let S ⊂ V be a proper, closed subspace of a Banach space V. There exists
a non-zero linear functional w ∈ V∗ such that V ⊆ Nu(w).

Proof. Pick any vector v /∈ S, and define the following functional w on span{S, v} by

⟨w , x+ αv⟩ := α a, x ∈ S,

where a is any non-zero number. Note that w is exactly zero on S. Since a ̸= 0, then
∥w∥ ≠ 0. Is this functional bounded on span{S, v}? Let’s check

sup
x∈S, α∈R

⟨w̄ , x+ αv⟩
∥x+ αv∥ = sup

x∈S, α∈R

α a

∥x+ αv∥ = sup
x∈S, α∈R

|α| a
|α| ∥x/α+ v∥

= sup
y∈S

a

∥y + v∥ (y := x/α ∈ S ⇔ x ∈ S if α ̸= 0)

=
a

infy∈S ∥y + v∥ . (4.31)

Now the quantity infy∈S ∥y + v∥ is the distance between v and S. It must be positive since
S is closed. Therefore the functional is bounded on span{S, v}, and by Hahn-Banach can be
extend to all of V.

This corollary thus generates functionals in the orthogonal subspace S⊥. The preceding
proof can be significantly strengthened by picking the number a judiciously as the distance
between v and S. This allows us to show existence of a maximizing functional in the weak
duality theorem as we show next.

Minimum Distance Problems: Existence of Dual Solutions

We will now use the Hahn-Banach theorem to strengthen the weak duality Theorem 4.15
and show that a solution to the dual problem always exists.

Theorem 4.20 (Minimum-Distance Duality). Let S ⊂ V be a subspace of a Banach space
V, and S⊥ ⊂ V∗ its orthogonal subspace. The minimum distance from any v ∈ V satisfies

inf
x∈S
∥v − x∥ = max

w∈S⊥, ∥w∥≤1
⟨w , v⟩ = ⟨w̄ , v⟩ .

A vector x̄ is a solution to the primal problem iff the optimal error v − x̄ and the optimal
functional w̄ are aligned

⟨w̄ , v − x̄⟩ = ∥v − x̄∥ ∥w̄∥ = ∥v − x̄∥.
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Proof. The proof is greatly aided by the diagram in Figure 4.4, and by recalling the align-
ment condition (4.24) of weak duality. For unit norm functional w̄ to be optimal for the dual
problem it must (a) be orthogonal to S, and (b) ⟨w̄ , v⟩ = d(v,S). So construct a functional
on S and v with those properties, and then extend it to all of V∗ by Hahn-Banach.

Let x+ αv with x ∈ S be any element of span{S, v}, and define the functional w̄ by

⟨w̄ , x+ αv⟩ := α d, d := d(v,S) := inf
x∈S
∥v − x∥.

This is the same construction as in the proof of Corollary 4.19. Note that w̄ is exactly zero
on S, and therefore it is in S⊥. When evaluated on only v it gives ⟨w̄ , v⟩ = d, the distance
from v to S. The reader should now reexamine Figure 4.4 with this in mind.

The last thing to show is that the norm of w̄ on span{S, v} is one. This calculation is
exactly the same as (4.31) which here says

sup
x∈S, α∈R

⟨w̄ , x+ αv⟩
∥x+ αv∥ =

d

infy∈S ∥y + v∥ =
d

d
= 1.

Finally use Hahn-Banach to extend this functional from span{S, v} to all of V.

The Dual of the Dual: Reflexivity

Since the dual V∗ of a vector space V is itself a vector space, one can ask about the dual
of the dual space (V∗)∗ =: V∗∗. Every element of v ∈ V can act on all of V∗ as a linear
functional as follows

v(w) := w(v). (4.32)

For example, if v := (v0, v1, . . .) ∈ ℓ1 and w := (w0, w1, . . .) ∈ ℓ∞, then

w(v) :=

∞∑

k=0

wkvk.

We can consider this sum as w acting on v, or v acting on w (and in this case we label it as
v(w)). Either way, the sum is well defined.

This action (4.32) is linear since

(αv1 + βv2) (w) := w (αv1 + βv2) = αw(v1) + βw(v2) =: αv1(w) + βv2(w).

Furthermore, the norm of v ∈ V gives a bound on the induced norm of v ∈ V∗∗

∥v∥ := sup
0̸=w∈V∗

∥v(w)∥
∥w∥ := sup

0̸=w∈V∗

∥w(v)∥
∥w∥ ≤ sup

0̸=w∈V∗

∥w∥∥v∥
∥w∥ = ∥v∥ (4.33)

Therefore v defined by (4.32) is indeed a member of V ∗∗. This together with the linearity
of the action of v implies that the mapping v 7→ v in (4.32) is vector space isomorphism
from V to a subspace of V∗∗.

The mapping v 7→ v would also be an isometry if the inequality in (4.33) is an equality.
In a Hilbert space, we can simply choose w(v) = ⟨v , v⟩, which achieves the equality. In a
Banach space V, we need the statement that for every vector v ∈ V there exists a linear
functional that achieves its norm, i.e.

∃w ∈ V∗, w(v) = ∥v∥,

but this is precisely Corollary 4.18 of the Hahn-Banach theorem. We can then conclude the
following.
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Lemma 4.21. For any Banach space V, the mapping v 7→ v from V to V∗∗ defined by

v(w) := w(v)

is an isometric isomorphism from V to a subspace of V∗∗.

Note that in a Hilbert space V, the dual V∗ is isomorphic to V, and therefore so is the
double dual, i.e. V ∼ V∗ ∼ V∗∗. In a Banach space, V and V∗ are not generally isomorphic,
but we just saw that V is isomorphic to a subspace of V∗∗. There are cases however where
this subspace is actually all of V∗∗. Such spaces have special properties, so they’re given a
name.

Definition 4.22. A Banach space V is called reflexive if V ∼ V∗∗, i.e. if the isomorphic
isometry (4.32) embedding V into V∗∗ is onto.

Any Hilbert space is reflexive, but some important Banach spaces are not. Most famously
we have

(ℓ∞o )
∗

= ℓ1,
(
ℓ1
)∗

= ℓ∞.

Recall that ℓ∞o is a closed, proper subspace of ℓ∞, thus ℓ∞o is not reflexive. What about
ℓ1, if it were reflexive, then (ℓ∞)

∗
= ℓ1. This is not possible since if a dual V∗ is separable,

then necessarily V is separable (Exercise 4.3). Thus (ℓ∞)
∗
= ℓ1 would imply that ℓ∞ is

separable, which we know to be false.

Lemma 4.23. In a reflexive space, every linear functional attains its max on the unit ball.

Proof. If V is reflexive, we can regard V∗ as the primal space and V ∼ V∗∗ as the dual space.
In this case, Corollary 4.18 says that for every element w ∈ V∗ (the primal space), there is
an functional v̄ ∈ V∗∗ ∼ V that achieves its norm, i.e.

sup
v∈V∗∗, ∥v∥≤1

v(w) = v̄(w) = ∥w∥ ⇔ sup
v∈V, ∥v∥≤1

⟨w , v⟩ = ⟨w , v̄⟩ = ∥w∥

4.4 Dual Operators: The Adjoint

We have seen that the objects dual to vectors are linear functionals. What are the objects
dual to linear operators between vector spaces? Given a linear operator A : V1 −→ V2

between Banach spaces, there is a natural way to define an operator between their dual
spaces V∗

1 and V∗
2. Consider the composition of the mappings

V1
A−→ V2

w−→ R ⇔ v
A7−→ Av

w7−→ ⟨w , Av⟩ ,

where w ∈ V∗
2 is any linear functional. Since A and w are linear, the composition w ◦ A is

also a linear mapping, and in this case from V1 to R, i.e. it is a linear functional on V1.
Therefore, there must be a w1 ∈ V∗

1 that equals w ◦A, i.e. w1 should satisfy

w1 = w ◦A ⇔ ∀v ∈ V1 ⟨w1 , v⟩ = ⟨w , Av⟩ . (4.34)

This defines a natural mapping w 7→ w1 from V∗
2 to V∗

1. We call this mapping A†. Since
this mapping applies to any w ∈ V∗

2, we rewrite the above relation as

∀v ∈ V1, ∀w ∈ V∗
2,

〈
A†w , v

〉
= ⟨w , Av⟩

These relations are illustrated in Figure 4.5.
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v
A Av

R R
A†

A†w

A†w
w

V2

V⇤
2w

V⇤
1

V1

hw, Avi =
⌦
A†w, v

↵

Figure 4.5: For any operator A : V1 → V2, the adjoint operator A† : V∗
2 → V∗

1 maps linear functionals
in V∗

2 to linear functionals in V∗
1 . For any w ∈ V∗

2 , its image under the adjoint A†w is defined as the linear
functional equal to the composition (w ◦A) (v) = ⟨w , Av⟩. Therefore the defining relation for the adjoint
is

〈
A†w , v

〉
= ⟨w , Av⟩.

The next question is whether the mapping A† is well defined. Assume for now that A
is a bounded operator, then the composition w1 = w ◦ A is a bounded linear functional on
V1, and therefore there is a unique w1 ∈ V∗

1 that satisfies (4.34). Furthermore, A† must
be linear. Indeed, pick any w,u ∈ V∗

2, call their mappings under A† as w1 := A†w and
u1 := A†u, then (4.34) implies

∀v ∈ V1,
⟨w1 , v⟩ = ⟨w , Av⟩
⟨u1 , v⟩ = ⟨u , Av⟩

}
⇒ ⟨αw1 + βu1 , v⟩ = ⟨αw+ βu , Av⟩ .

Finally A† is a bounded operator if A is bounded as can be seen from

∥∥A†∥∥ := sup
w∈V∗

2 , ∥w∥≤1

∥∥A†w
∥∥ = sup

w∈V∗
2 , ∥w∥≤1, v∈V1, ∥v∥≤1

〈
A†w , v

〉

= sup
w∈V∗

2 , ∥w∥≤1, v∈V1, ∥v∥≤1

⟨w , Av⟩

= sup
v∈V1, ∥v∥≤1

∥Av∥ = ∥A∥ ,

where we have also shown that the two induced operator norms are actually equal. We now
summarize the conclusions from all the preceding arguments.

Lemma 4.24. Let A : V1 → V2 be a bounded operator between Banach spaces. Then there
exists a linear operator mapping functionals A† : V∗

2 → V∗
1 called the adjoint of A, which is

the unique operator satisfying the requirement

∀v ∈ V1, w ∈ V∗
2,

〈
A†w , v

〉
= ⟨w , Av⟩ (4.35)

Furthermore,
∥∥A†∥∥ = ∥A∥.

Remark 4.25. In calculations with adjoints, a typical step involves “moving” an operator
from one side of functional action to the other by replacing it with its adjoint. For example,
suppose two operators A and B can be composed as AB (i.e. the domains and co-domains
allow for this), then

⟨w , ABv⟩ = ⟨w , A (Bv)⟩ =
〈
A†w , Bv

〉
=
〈
B†A†w , v

〉
.

Since this holds for all functionals w and vectors v, this proves the identity (AB)
†
= B†A†.

Example 4.26. If a vector space is finite dimensional and we choose a basis, then each element
of that vector space is identified with the column vector of its basis coefficients. Given two vector
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spaces and choices of bases in each, every linear operator has a matrix representation with respect
to those bases where the action of the linear operator is given by the matrix times the column
vector. If we represent linear functionals with column vectors rather than row vectors, i.e. we
represent w(v) := w∗v with w rather than w∗, then the adjoint acting on column vector w is
the transpose of the matrix.

Indeed, let A be an n ×m matrix. It is a linear mapping A : Cm −→ Cn, and functional
action on Cn is given by a product w∗v. Now, equation (4.35) becomes

w∗Av = ⟨w , Av⟩ 1
=
〈
A†w , v

〉
=
(
A†w

)∗
v = w∗ (A†)∗ v

(proceeding outwards from the equality
1
=). The fact that the equality w∗Av = w∗ (A†)∗ v

holds for all vectors v and w implies that A =
(
A†)∗ or equivalently that

A† = A∗.

In other words, if A is the matrix representation of a linear operator, then the matrix represen-
tation of its adjoint is the complex conjugate transpose of A.

Example 4.27. Let A : L2[a, b] −→ L2[a, b] be the bounded operator defined by a continuous
kernel function A(., .). Specifically, A : f 7→ g is given by

g(x) =

∫ b

a

A(x, ξ) f(ξ) dξ.

Both f and g may be vector-valued, and in that case A(., .) would be a matrix-valued function.
This is the kernel representation of a linear operator discussed in Chapter 6, where the kernel
representation A† of the adjoint A† is derived (Equation (6.8) as the nicely intuitive expression

(
A†) (x, ξ) = A∗(ξ, x),

i.e. the kernel function of A† is obtained from that of A by “flipping” the arguments (x, ξ), and
at each point taking a complex-conjugate transpose of the matrix value. Flipping the argument
(x, ξ) 7→ (ξ, x) is akin to taking a transpose. This result is consistent with the interpretation of
kernel functions as continuum analogues of matrices as emphasized in Chapter 6

Example 4.28. Given a vector function f ∈ L∞n [0,∞) (i.e. an n-vector where each component
is an element of L∞[0,∞)), define the integral operator F : L1[0,∞)→ Rn

F (v) :=

∫ ∞

0

f(t) v(t) dt :=

∫ ∞

0



f1(t)
:

fn(t)


 v(t) dt :=



∫∞
0

f1(t)v(t)dt
:∫∞

0
fn(t)v(t)dt


 .

Note that F is really a “stacking” of n linear functionals on L1[0,∞) in an n-vector. The
operator F takes a function on [0,∞) and returns a vector in Rn. Its adjoint must then operate
by taking a vector and returning a function on [0,∞). We can calculate its action from the
requirement (4.35) as follows.

〈
F †w , v

〉
= ⟨w , Fv⟩

∫ ∞

0

(
F †w

)
(t) v(t) dt = w∗

∫ ∞

0

f(t) v(t) dt

↑ ↑
action of F †w as functional on v action of w as a vector on the vector Fv

∫ ∞

0

(
F †w

)
(t) v(t) dt =

∫ ∞

0

(f∗(t) w)∗ v(t) dt.
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For this equality to hold for all v ∈ L1[0,∞), the following two functions must be equal

(
F †w

)
(t) = f∗(t) w =

[
f1(t) · · · fn(t)

]


w1

:
wn


 = w1f1(t) + · · ·+wnfn(t).

Thus the operator F † takes the vector w and makes a scalar-valued function by taking a linear
combination of the n function {f1, . . . , fn} using the vector components {wk} as coefficients
for this linear combination.

It should be noted here that the setting of v ∈ L1 and f ∈ L∞n is not special. The calculations
above would be exactly the same if v ∈ Lp and f ∈ Lqn as dual spaces, in particular for the case
p = q = 2. We will return to this example again several times.

The following properties follow immediately from the definition of the adjoint and are
left as an exercise.

Lemma 4.29. Taking the adjoint of operators has the following properties.

1. For any two operators A and B on the same space (αA+ βB)
†
= α∗A† + β∗B†.

2. If A−1 exists, then so does
(
A†)−1

and it is equal to
(
A−1

)†
. We use the notation

A−† :=
(
A−1

)†
=
(
A†)−1

.

3. If the composition AB makes sense, then (AB)
†
= B†A†.

Adjoints in Hilbert Space

The dual of a Hilbert space is itself, or more precisely isometrically isomorphic to itself in
the sense that every vector w ∈ V defines a linear functional using the inner product ⟨w , .⟩.
This isomorphism allows us to identify any Hilber space V with its dual V∗, and therefore
the adjoint can now be defined as an operator on the Hilbert spaces themselves rather than
their duals.

Definition 4.30. Let A : V → W be a bounded operator between two Hilbert spaces. The
Hilbert adjoint A† : W→ V is the unique operator satisfying the requirement

∀v ∈ V, ∀w ∈W,
〈
A†w , v

〉
V

= ⟨w , Av⟩W . (4.36)

The notation ⟨. , .⟩V, ⟨. , .⟩W is used to emphasize the space where the inner product is taken.
Since the Banach adjoint of Lemma 4.24 makes sense for Hilbert spaces, the reader may

wonder why a separate definition is made for the Hilbert adjoint above. As far as calculations
are concerned, the two definitions are the same. The difference is conceptual. The Banach
adjoint is between dual spaces rather than the original spaces. For Hilbert spaces, the
Hilbert adjoint is the Banach adjoint if we identify the dual space with the original space
via w(.) := ⟨w , .⟩. The advantage of Definition 4.30 is that we can now compose an operator
and its adjoint by AA† or A†A. Note that this would not make sense for Banach adjoints. In
addition, we can make sense of the concept of “self-adjoint” operators. This has far reaching
implications as we will see below.

Another feature of the Hilbert adjoint is that taking the adjoint twice yields back the

same operator
(
A†)† = A. Let A : V→W, so A† : W→ V, and then A†† : V→W with the

requirement

∀v ∈ V, ∀w ∈W,
〈
A†w , v

〉
V

= ⟨w , Av⟩W ⇔
〈
v , A†w

〉
V

= ⟨Av , w⟩W ,

which follows by symmetry of the inner product. The last equation says that A is the adjoint
of A† as claimed.
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Remark 4.31. The fact that A†† = A means that in calculations, we can move operators
freely to either side of the inner product by taking adjoints, e.g.

⟨Aw , v⟩ =
〈
w , A†v

〉
.

This would not make sense in a Banach space since v is a vector, and A† acts on functionals,
so the action A†v would not make sense.

Example 4.32. Define the right-shift operator Sr on ℓ2(N) by

Sr (u0, u1, . . .) := (0, u0, u1, . . .) .

Now calculate its adjoint using the requirement (4.36)

〈
S†r v , u

〉
= ⟨v , Sru⟩〈

S†r v , (u0, u1, . . .)
〉

=
〈
(v0, v1, v2, . . .) , (0, u0, u1, . . .)

〉

〈
(v1, v2, . . .) , (u0, u1, . . .)

〉
=
〈
(v0, v1, v2, . . .) , (0, u0, u1, . . .)

〉
.

Therefore the adjoint of the right-shift operator is a left-shift operator Sl = S†r that drops
the leftmost element of the sequence

Sl (u0, u1, . . .) := (u1, u2, . . .) . ■

Example 4.33. Consider the following problem from linear systems theory where a linear
system with an input u is given

ẋ(t) = Ax(t) +Bu(t), t ∈ [0, T ], x(t) ∈ Rn, u(t) ∈ Rm, x(0) = 0.

The “variations-of-constants” formula says that the solution of the differential equations (with
x(0) = 0) is given by

x(T) =

∫ T

0

eA(T−t)B u(t) dt =: R (u) , (4.37)

where the integral defines the so-called reachability operator R. If we choose L2m[0, T ] as the
Hilbert space for u, then R : L2[0, T ]→ Rn is a bounded operator which describes how a signal
{u(t); t ∈ [0, T ]} is mapped to the state x(T) ∈ Rn at time T .

The adjoint is an operator R† : Rn → L2m[0, T ] which takes a vector to a function, and can
be calculated as follows

⟨v , R(u)⟩ =
〈
R†v , u

〉

v∗
∫ T

0

eA(T−t)B u(t) dt =

∫ T

0

(
R†v

)∗
(t) u(t) dt

∫ T

0

(
B∗eA

∗(T−t)v
)∗

u(t) dt =

∫ T

0

(
R†v

)∗
(t) u(t) dt.

Since this equality must hold for all u ∈ L2m[0, T ], the two functions of t are equal

(
R†v

)
(t) = B∗eA

∗(T−t) v. (4.38)

Thus the adjoint R† takes a vector v ∈ Rn, and then produces a vector-valued function of t by
multiplying v with the matrix-valued functions B∗eA

∗(T−t) of t.
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Example 4.34. Let {vk} be an orthonormal basis in a Hilbert space V. Every element u ∈ V
has a unique expansion u =

∑∞
k=0 αkvk. Define the mapping A : V → ℓ2(N) by u 7→ α :=

(α0, α1, . . .). This mapping takes a vector in V to the sequence of the coefficients of its basis
representation. Parseval’s theorem implies this is an isometric isomorphism from V to ℓ2(N). In
fact, calculating the adjoint in this case is basically the Plancherel identity (Theorem 3.15) since

u =
∑∞

k=0 αkvk
w =

∑∞
k=0 βkvk

}
⇒





〈
A†β , u

〉
V
= ⟨β , Au⟩ℓ2

⇔
〈
A†β , u

〉
V
= ⟨β , α⟩ℓ2 =

∑∞
k=0 β

∗
kαk

⇔ ⟨w , u⟩V =
∑∞

k=0 β
∗
kαk

where the last statement is the Plancherel identity. Thus A†β = w, i.e. it takes a sequence in
ℓ2 and forms an element in V by using this sequence as coefficients of the basis expansion. Note
that A does the opposite operation, but taking an element in V and finding its basis coefficients.
Note that in this example

A† = A−1, and, ∥Au∥ℓ2 = ∥u∥V,

i.e. the operator A is an isometry.

Operators whose inverses are their adjoints have the following special property.

Lemma 4.35. If the inverse of an operator A on a Hilbert space is equal to its adjoint, i.e.
A†A = AA† = I, then A and A† are isometries. Such operators are called unitary.

The proof is the very simple calculation

∥Au∥2 = ⟨Au , Au⟩ =
〈
AA†u , u

〉
= ⟨u , u⟩ = ∥u∥2

or =
〈
u , A†Au

〉
= ⟨u , u⟩ = ∥u∥2.

Another very special class of operators is the following.

Definition 4.36. An operator A : V → V on a Hilbert space V is called self adjoint if
A† = A.

One way to immediately generate self-adjoint operators is to compose any operator with
its adjoint since

(
AA†)† =

(
A†)† A† = AA†.

Thus for any operator A, the compositions AA† and A†A are both self adjoint. Self-adjoint
operators have extremely useful properties, many of which are related to their eigenvectors.
Those will be covered in Chapter 5. For now we list two other highlights.

Lemma 4.37. If A : V→ V is a self-adjoint operator on a Hilbert space, then

1. For any v ∈ V, ⟨v , Av⟩ ∈ R.

2. ∥A∥ = sup∥v∥≤1 ⟨v , Av⟩ .

Note that for a Hilbert space over complex scalars, the inner product ⟨v , Av⟩ can be a
complex number. For self-adjoint operators however, it is guaranteed to be a real number.
The second clause should be compared to formula (4.30) ∥A∥ = supw,v ⟨w , Av⟩, which
requires maximization over two parameters w and v. If A is self adjoint, then we have the
simpler maximization over a single parameter v.
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Proof. Of Lemma 4.37. The complex-conjugate symmetry of the inner product says ⟨w , v⟩∗ =
⟨v , w⟩. Therefore

⟨v , Av⟩∗ = ⟨Av , v⟩ =
〈
v , A†v

〉
= ⟨v , Av⟩ ,

where the last equality is due to A† = A. Thus the number ⟨v , Av⟩ must be real.
For the second clause, we need to compare the two quantities

c := sup
∥v∥≤1

|⟨v , Av⟩| ≤ sup
∥u∥≤1,∥w∥≤1

|⟨w , Au⟩| = ∥A∥. (4.39)

Cleary c ≤ ∥A∥ since c is a maximization of the same quantity over a smaller set. We need
to show the opposite inequality. If we can express ⟨w , Av⟩ using terms of the form ⟨v , Av⟩,
then we can make a comparison. Observe the following algebraic identity

〈
(u+ w) , A(u+ w)

〉
−
〈
(u− w) , A(u− w)

〉
= 2 ⟨w , Au⟩+ 2 ⟨u , Aw⟩
= 2 ⟨w , Au⟩+ 2 ⟨Aw , u⟩
= 2 ⟨w , Au⟩+ 2 ⟨w , Au⟩∗ = 4 R(⟨w , Au⟩)

The left hand side is in a form that can be bounded by the constant c

∣∣〈(u+ w) , A(u+ w)
〉
−
〈
(u− w) , A(u− w)

〉∣∣
≤
∣∣〈(u+ w) , A(u+ w)

〉∣∣+
∣∣〈(u− w) , A(u− w)

〉∣∣ ≤ c
(
∥u+ w∥2 + ∥u− w∥2

)

= 2c
(
∥u∥2 + ∥w∥2

)
,

where the last equality is the parallelogram law. This together with the algebraic identity
gives R(⟨w , Av⟩) ≤ (c/2)

(
∥u∥2 + ∥w∥2

)
. It then follows (Exercise 4.4) that

|⟨w , Av⟩| ≤ (c/2)
(
∥u∥2 + ∥w∥2

)
.

We can now compare the two maximization problems

∥A∥ = sup
∥u∥≤1,∥w∥≤1

|⟨w , Au⟩| ≤ sup
∥u∥≤1,∥w∥≤1

c

2

(
∥u∥2 + ∥w∥2

)
≤ c,

finally implying that ∥A∥ = c := sup∥v∥≤1 ⟨v , Av⟩.

To appreciate that ∥A∥ = sup∥v∥≤1 ⟨v , Av⟩ may not be true in general, consider the

90◦ counterclockwise rotation matrix in R2

A =

[
0 −1
1 0

]
⇒ ∀v ∈ R2, ⟨v , Av⟩ = −v1v2 + v2v1 = 0,

since (by design) Av is orthogonal to v. However, A is an isometry, so ∥A∥ = 1, and we
have a large gap in the inequality (4.39).

For any operator A, the composition AA† is not only self adjoint, but many properties
of the original operator A can be deduced from those of AA† or A†A. The following is one
example.

Lemma 4.38. If A : V→W is a bounded operator on Hilbert spaces, then

∥A∥2 =
∥∥AA†∥∥ =

∥∥A†A
∥∥ .
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Proof. This is a quick application of the previous Lemma 4.37. Since A†A is self adjoint,
its norm can be calculated from the “single parameter” maximization problem

∥∥A†A
∥∥ = sup

∥v∥≤1

〈
v , A†Av

〉
= sup

∥v∥≤1

⟨Av , Av⟩ = sup
∥v∥≤1

∥Av∥2 = ∥A∥2.

This fact can be immensely useful. Suppose A : V→ Rn, and V is an infinite-dimensional
space. Calculating ∥A∥ directly from the definition is generally difficult and one must resort
to approximation techniques. However, note that AA† : Rn → Rn, i.e. a matrix, which
is a finite-dimensional object whose norm calculation is much easier than that of A. Thus
the identity ∥A∥2 =

∥∥AA†∥∥ allows us to convert some infinite-dimensional problems to
finite-dimensional ones.

The lemma also highlights the special relationship between an operator and its adjoint.
Suppose B is any other operator where the composition AB makes sense, and ∥B∥ = ∥A∥.
Submultiplicativity implies

∥AB∥ ≤ ∥A∥ ∥B∥ = ∥A∥ ∥A∥ = ∥A∥2.

Thus in general, we only have the inequality ∥AB∥ ≤ ∥A∥2. Composition with the adjoint is
very special since we have equality in this inequality. Intuitively, one can say that the norm
of A is not “reduced” by composing it with its adjoint. Other, similarly special, properties
of the composition with the adjoint will be explored in the next section.

4.5 The Four Fundamental Subspaces

An operator and its adjoint each have image and null spaces, and there are easily established,
but fundamental, relations between them. Let A : V1 → V2 and A† : V∗

2 → V∗
1 as shown in

Figure 4.6 and examine each of their null and image spaces.
First begin with Im(A) and Nu

(
A†), which are illustrated on the right side of Figure 4.6

w ∈ Im(A)
⊥ ⇔ ∀v ∈ V1, ⟨w , Av⟩ = 0 ⇔ ∀v ∈ V1,

〈
A†w , v

〉
= 0

⇔ A†w = 0, i.e. w ∈ Nu
(
A†) ,

which means that Im(A)
⊥
= Nu

(
A†) as depicted in the figure. Now we examine the relation

between Nu(A) and Im
(
A†) (left side of figure)

v ∈ Nu(A) , i.e. Av = 0 ⇔ ∀w ∈ V∗
2, ⟨w , Av⟩ = 0 ⇔ ∀w ∈ V∗

2,
〈
A†w , v

〉
= 0

⇔ v ⊥ Im
(
A†) .

The last statement means that every element of Im
(
A†) is orthogonal to all of Nu(A), i.e.

Im
(
A†) ⊆ Nu(A)

⊥
, but it does not necessarily imply the opposite containment. One can

say a little bit more. Orthogonal subspaces like Nu(A)
⊥

are always closed, so we at least

have Im(A†) ⊆ Nu(A)
⊥
. However, for the two subspaces to be equal, we need an additional

condition.

Theorem 4.39. Let A : V1 → V2 be a bounded operator between Banach spaces with
A† : V∗

2 → V∗
1 its adjoint. Then their null and image spaces are related by

Im(A)
⊥
= Nu

(
A†) ,

Nu(A)
⊥ ⊇ Im(A†), Nu(A)

⊥
= Im

(
A†) if Im(A) is closed.
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A

0
0

V1

0
0

V2

A†

V⇤
1 V⇤

2

Nu(A)

Nu
�
A†�

Im(A)

Im
�
A†�

Figure 4.6: Depiction of the four fundamental subspaces. The null and image spaces of A and its adjoint A†

have special orthogonality relationships Im(A) ⊥ Nu
(
A†) and Im

(
A†) ⊥ Nu(A). For example, if v ∈ Nu(A),

then 0 = ⟨w , Av⟩ =
〈
A†w , v

〉
, which means A†w, which is in the image of A†, is orthogonal to v.

We have already shown all but the last statement of this theorem. We will not give
a proof5 of it, but give an example to demonstrate why it is needed. Consider the exam-
ple (3.34) of the operator A := diag(1, 1/2, 1/3, . . .) on ℓ1, whose image space was shown not

to be closed. The null space of A is 0, and therefore all of
(
ℓ1
)∗

= ℓ∞ is Nu(A)
⊥
. Now since

A is diagonal, its adjoint is also A† = diag(1, 1/2, 1/3, . . .) on ℓ∞. Any element in Im
(
A†)

must be a decaying sequence, i.e. in ℓ∞0 , which is the proper, closed subspace of ℓ∞ made

up of sequences that decay to zero asymptotically. Thus Im(A†) = ℓ∞0 ⊊ ℓ∞ = Nu(A)
⊥
.

If V2 is finite dimensional, then the image of A is closed, and we have equality in the
above theorem. An immediate application of Theorem 4.39 is to the concepts of column
rank and row rank of a matrix.

Definition 4.40. Let A : Cm → Cn be an n ×m matrix. Its column rank is the number
of linearly independent columns, or equivalently the dimension of Im(A). Its row rank is the
number of linearly independent rows, or equivalently the dimension of Im(A∗).

Now recall the Rank-Nullity Theorem 1.41 which in this case relates the dimensions of
the null and image spaces of A and A∗ to the dimensions of their domains

m = dim(Cm) = dim(Nu(A)) + dim(Im(A)) = nl(A) + rk(A) , (4.40)

n = dim(Cn) = dim(Nu(A∗)) + dim(Im(A∗)) = nl(A∗) + rk(A∗) . (4.41)

These relations, together with the orthogonality relations of Theorem 4.39, allow us to count
dimensions and prove the following fact.

Lemma 4.41. For any matrix, its column rank equals its row rank.

Proof. As already mentioned, let’s count dimensions. Theorem 4.39 says

Nu(A)
⊥
= Im(A∗) ⇒ Cm = Nu(A)⊕ Im(A∗) ⇒ m = nl(A) + rk(A∗) (4.42)

Combining this with (4.40) gives rk(A) = rk(A∗).

5The proof requires the Bounded Inverse Theorem 3.34.
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A
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Nu
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Figure 4.7: A graphical depiction of the four fundamental subspaces of an operator between Hilbert spaces.
Each subspace is depicted as a square, and orthogonal complements are depicted as being at right angles to
each other.

In addition, combining (4.42) with (4.41) gives a relation between the null spaces

nl(A)− nl(A∗) = m− n.

The null space of A∗ is sometimes called the left null space of A. This relation says that for
square matrices (n = m), the dimensions of the left and right null spaces are equal. For
non-square matrices, the difference in dimensions of the null spaces is precisely the difference
between the numbers of rows and columns.

The Four Subspaces in Hilbert Space

In Hilbert space, the picture of the four subspaces is somewhat simplified since we can now
think about orthogonal complements in the same space.

Theorem 4.42. Let A : V1 → V2 be a bounded operator between Hilbert spaces with A† :
V2 → V1 its Hilbert adjoint. Then their null and image spaces are related by

Im(A)
⊥
= Nu

(
A†) ⇔ Im

(
A†)⊥ = Nu(A) , (4.43)

Nu(A)
⊥
= Im(A†) ⇔ Nu

(
A†)⊥ = Im(A). (4.44)

A good way to remember the closures above is that Null spaces of bounded operators are
always closed, so Nu

(
A†) = Nu(A†). An orthogonal complement is also always closed, so

Nu(A)
⊥

must be a closed subspace, thus taking the closure Im(A†).

Proof. The equivalences in (4.43) and (4.44) follow by replacing A with A† and recalling
that A†† = A, e.g.

for any operator A, Im(A)
⊥
= Nu

(
A†) ⇒ Im

(
A†)⊥ = Nu

(
A††) = Nu(A) .

The first statement in (4.43) is the same as that in Theorem 4.39. The second state-
ment (4.44) follows from the first by recalling that for any subspace S ⊂ V, we have S⊥⊥ = S
(Lemma 3.24). Therefore

Nu(A) = Im
(
A†)⊥ ⇒ Nu(A)

⊥
= Im

(
A†)⊥⊥

= Im(A†).

The theorem is depicted graphically in Figure 4.7. These orthogonality relations have
many consequences, and we now describe one of the important ones about the relationships
between the image and null spaces of the compositions AA† and A†A. To provide a larger
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BA Nu(B)

Nu(AB)

Nu(A)

Im(A) Im(B)

Im(AB)

UVW

(a) When two operators A and B are composed as AB, the null space of B is contained in that of
AB (shown in red). If a vector is nulled by B, it must also be nulled by AB, thus the containment
Nu(B) ⊆ Nu(AB). On the other hand, any element w = ABu in the image space of AB must also be
in the image space of A since w = A(Bu), thus the containment Im(AB) ⊆ Im(A). The containments
may be strict. If an element is mapped to a non-zero element in Im(B) ∩ Nu(A) (shown as the dashed
red arrow), then it is in Nu(AB), but not in Nu(B). Similarly, an element not in Im(B) is mapped to
Im(A) but not in Im(AB) (shown as the dashed blue arrow), for otherwise it would have been in Im(B).

A Nu(A) A†

Nu
�
AA†� = Nu

�
A†�Im

�
AA†� = Im(A) v

v1

v2

Im
�
A†�

W WV

(b) When an operator is composed with its adjoint the strict containment situation described in part

(a) above cannot occur since Nu(A) ⊥ Im
(
A⊥

)
. Nothing in Im

(
A†

)
can be nulled by A.

Figure 4.8: Depiction of null and image spaces containments for operator compositions. When an operator
is composed with its adjoint, the geometry becomes very special and we get the above equalities of spaces
as described in Lemma 4.43.

context consider the composition AB of two operators U
B−→ V

A−→ W depicted in Fig-
ure 4.8a. The null spaces of B and AB are in U, while the image spaces of A and AB are
in W. The subspaces obey the following containment relations

u ∈ Nu(B) ⇒ ABu = A0 = 0 ⇒ u ∈ Nu(AB) ⇒ Nu(B) ⊆ Nu(AB)

w ∈ Im(AB) ⇒ ∃u, w = ABu ⇒ ∃v (v = Bu), w = Av ⇒ w ∈ Im(A)

⇒ Im(AB) ⊆ Im(A)

Figure 4.8a illustrates these relations and gives an example of how these containments can
be strict. A non-zero element v = Bu which is in Im(B), but happens to be in Nu(A) will
have 0 = Av = ABu. Thus u /∈ Nu(B), but u ∈ Nu(AB). An example is also shown for
strict containment of the image spaces.

Now if we compose an operator with its adjoint, say AA†, the situation just described
can not happen since Im

(
A†) ⊥ Nu(A) (see Figure 4.8b), which can be interpreted as saying

that nothing in the image space of A† can be nulled by A, so we have an unobstructed “pass
through” by A. The precise statement is as follows.

Lemma 4.43. Let A : V→W be a bounded operator between Hilbert spaces. Then

Im
(
AA†) = Im(A) ⇔ Im

(
A†A

)
= Im

(
A†)

Nu
(
AA†) = Nu

(
A†) ⇔ Nu

(
A†A

)
= Nu(A)

Note that the equivalences follow by replacing A by A⊥.

Draft: Notes on Linear Algebra and Functional Analysis © July 19, 2024, Bassam Bamieh



Chapter 4. Duality and Adjoints 137

Proof. The proof is illustrated in Figure 4.8b. Consider Im
(
AA†) = Im(A) first. Let w = Av

be in Im(A), and consider the orthogonal decomposition of v ∈ V

v = v1 + v2,

{
v1 ∈ Im

(
A†) ⇒ ∃u, v1 = A†u

v2 ∈ Nu(A) ⇒ Av2 = 0

⇒ w = Av = Av1 +Av2 = Av1 = AA†u ⇒ w ∈ Im
(
AA†) .

For the null spaces, suppose u ∈ W is such that AA†u = 0. Consider v := A†u, then
Av = 0 and therefore v ∈ Im

(
A†) ∩ Nu(A) = 0. This means Nu

(
AA†) ⊆ Nu

(
A†), and since

Nu
(
A†) ⊆ Nu

(
AA†) always, the two subspaces must be equal.

The preceding lemma should be considered in concert with Lemma 4.38, which stated
that ∥AA†∥ = ∥A∥∥A†∥ = ∥A∥2. This last statement was compared with the generally valid
bound ∥AB∥ ≤ ∥A∥∥B∥, and the comment was made that composing with the adjoint does
not “reduce” the norm. Lemma 4.43 is similar in spirit. When composing an operator with
its adjoint, null and image spaces are not “distorted”.

Operators like AA† or A†A are sometimes called “Grammians” and occur in many prob-
lems that involve solvability of linear equations exactly or approximately. The next set of
examples highlight this. They can all be described as “least-squares problems” in Hilbert
space.

Least-Squares Problems in Hilbert Space

Example 4.44. Given an overdetermined linear system of equations like Ax = b where the
dimension of b is higher (perhaps infinite) than that of x. In this case, exact solutions generally
do not exist, and a typical approach is to try to find a solution that minimizes the equation error
∥Ax− b∥, i.e.

inf
x
∥Ax− b∥.

If this problem is set up in Hilbert spaces with A : V→W, then it is really a minimum distance
to a subspace problem

inf
x
∥Ax− b∥ = inf

y∈Im(A)
∥y − b∥ = inf

y∈Im(A)
∥y − b∥.

If Im(A) is closed, a solution exists and the projection theorem says that the optimal error ȳ− b

must be orthogonal to the subspace, i.e. (ȳ − b) ∈ Im(A)
⊥. We know that Im(A)

⊥
= Nu

(
A†),

therefore the optimal error satisfies

A†(ȳ − b) = 0

If Im(A) is closed, there exists x̄ such that Ax̄ = ȳ. Putting this all together gives

A† (Ax̄− b) = 0 ⇒ A†A x̄ = A†b (4.45)

⇒ x̄ =
(
A†A

)−1
A†b. (if A†A invertible)

The last expression is precisely the Moore-Penrose pseudo-inverse formula for the solution of
overdetermined least squares problems. The equation (4.45) is a necessary condition for opti-
mality of x̄ regardless of whether A†A is invertible or not.

Example 4.45. Now consider an operator A : V → W between Hilbert spaces, and the
underdetermined system Ax = b where the dimension of x is higher (possibly infinite) than that
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of b. Such equations generally have many solutions parameterized by the null space of A. One
approach is to seek a solution of minimum norm

inf
x, Ax=b

∥x∥.

Since the set {x; Ax = b} is an affine space, this is minimum distance problem from zero to
the an affine space. The projection theorem gives the answer that the optimal solution6 x̄ must
be orthogonal to the affine space, i.e. orthogonal to Nu(A)

x̄ ∈ Nu(A)
⊥
= Im

(
A†) ⇒ x̄ = A†v, v ∈W. (4.46)

If we substitute this last condition in the “constraint”

Ax̄ = b and x̄ = A†v ⇒
{
AA†v = b

x̄ = A†v
(4.47)

⇒ x̄ = A† (AA†)−1
b (if AA† invertible)

Again, (4.47) is a necessary condition for optimality, while the last expression is the Moore-
Penrose pseudo-inverse formula. We note that in some derivations, the vector v in (4.47) is
introduced as a Lagrange multiplier.

Example 4.46. Consider again the linear system of Example 4.33

ẋ(t) = Ax(t) +Bu(t), t ∈ [0, T ], x(t) ∈ Rn, u(t) ∈ Rm.

The “reachability problem” is the following. Given a “target state ”x̄ ∈ Rn, does there exist
an input signal u[0,T ] := {u(t); t ∈ [0, T ]} such that the solution of the system starting from
x(0) = 0 satisfies x(T) = x̄? i.e. can the target state x̄ be “reached” from the zero state by
applying an input over the time interval [0, T ].

Recall the “reachability operator” R : L2m[0, T ] → Rn defined by the variations of constant
formula (4.37)

x(T) =

∫ T

0

eA(T−t)B u(t) dt =: R (u) .

In terms of this operator, the reachability problem is feasible iff x̄ ∈ Im(R). This is an
infinite-dimensional problem, but since Im(R) = Im

(
RR†), and the adjoint maps from a finite-

dimensional space R† : Rn → L2m[0, T ], then the composition RR† : Rn → Rn is a matrix, and
we can reduce this problem to a finite-dimensional one!

The adjoint R† has already been calculated in (4.38). To calculate the composition RR†,
let it act on a vector v

RR†v = R
(
R†v

)
=

∫ T

0

eA(T−t)B
(
B∗eA

∗(T−t)v
)

dt (from (4.38))

=

(∫ T

0

eA(T−t)BB∗eA
∗(T−t) dt

)
v =

(∫ T

0

eAτBB∗eA
∗τ dt

)
v

=: WT v

where the expression is simplified by the change of integration variable τ := T − t.
The n × n matrix WT := RR† is known as the “reachability Grammian” (over the time

horizon [0, T ]). The fact that Im(R) = Im
(
RR†) says that any target states x̄ ∈ Rn is

6If A is a bounded operator, then the affine space {x; Ax = b} is a translation of Nu(A). It is therefore
closed, and a unique solution to the minimum distance problem exists.
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reachable from zero iff the reachability Grammian WT := RR† is full rank. We can in fact say
more. Note that this is an underdetermined linear problem in the sense of Example 4.45, and
therefore the optimal (minimum L2 norm) input ū is given by

ū = R† (RR†)−1
x̄

⇒ ū(t) = B∗eA
∗(T−t) W−1

T x̄, t ∈ [0, T ]. (4.48)

Note that W−1
T x̄ ∈ Rn is a vector, and therefore this formula gives the optimal input as linear

combinations of the entries of the matrix-valued function B∗eA
∗(T−t) of t.

The calculation (4.48) of optimal inputs is ultimately a consequence of the projection theo-
rem. When adjoint calculations can be made, explicit expressions for optimal solutions like (4.48)
can be obtained.

4.6 Geometric Interpretations of Adjoints

In a Hilbert space, any functional is represented by a vector in the same space and this
enables geometric interpretations such as orthogonality and alignment in terms of vectors.
In a Banach space, it is possible to give functionals a geometric interpretation in terms of
objects in the primal, rather than the dual space. The key idea is that (after a normalization)
each functional is associated with a hyperplane, i.e. a co-dimension 1 subspace. First, some
terminology.

Definition 4.47. Let S ⊂ V be a subspace of a vector space V. Any coset v + S of S is
called an affine space. The dimension of V/S is called the co-dimension of the affine space
v + S. An affine space of co-dimension 1 is called a hyperplane.

Linear functionals and the notion of duality is more general than that for an inner
product space, and can be defined for any vector space without an inner product. Inner
products however make it easy to visualize linear functionals since any linear functional is
expressed as the inner product with a particular vector. A natural question is whether there
is a similar geometrical view of linear functionals without inner products. Figure 4.9 depicts
such a visualization using level sets.

For any linear functional w : V→ R and any real number α, the α-level set Swα of w is

Swα := {v ∈ V; ⟨w , v⟩ = α} .

Note that with this terminology, the null space is the 0-level set (Nu(w) = Sw0 ). Level sets of
different levels are disjoint, and each element of V belongs to one and only one level set. All
level sets are co-sets of the Null space Sw0 , and therefore the set of all level sets is isomorphic
to the quotient space V/Nu(w). Recall (Figure 1.9 of Chapter 1) that the quotient space is
isomorphic to the image V/Nu(w) ∼ Im(w) = R, which in this case is just R (unless w is the
zero functional). Therefore each level set of a functional is a co-dimension 1 affine space,
i.e. a hyperplane.

Figure 4.9 depicts a visualization of functionals. The level sets of each functional form
a family of parallel hyperplanes in V. The value of w(v) is determined by which level set
the vector v is in. In an inner product space V, the functional w is represented by an
inner product with a particular element w ∈ V, i.e. w(v) = ⟨w , v⟩, and thus the level-sets
hyperplanes are all orthogonal to the vector w. In a vector space which is not an inner-
product space, the functional w can not in general be represented by a vector in V. However,
its level sets are in V, and can thus provide a visualization of w using objects (the level sets)
that are in V.
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10-1-2 2 3

V

V⇤
w

v
w

V

V⇤

w1
w2

Figure 4.9: (Left) A linear functional w : V −→ R can be visualized in V using its level sets, shown here
labeled with integer level values. The level sets are hyperplanes (translates of a co-dimension-1 subspace)
in V. If V is an inner-product space, the functional w can be represented by a vector w ∈ V (shown as the
dashed arrow) so that w(v) = ⟨w , v⟩. (Right) Note that the longer a vector w ∈ V∗ is, the tighter is the
spacing between its level sets.
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V1

Figure 4.10: Geometric interpretation of the adjoint A†. Each linear functional is identified with its unit
hyperplane. The inverse image of the hyperplane of w ∈ V∗

2 is precisely the hyperplane of A†w ∈ V∗
1 . In

other words, if A is viewed as mapping hyperplanes to hyperplanes (i.e. as sets), then A† is the inverse of
A viewed as mapping hyperplane sets (but not the inverse as mapping individual elements).

The interpretation of functionals as hyperplanes makes it possible to give a geometric
interpretation to the operator adjoint as well. Let w be a functional on a Banach space V,
and consider the hyperplane which is the 1-level set7

Sw := {v ∈ V; ⟨w , v⟩ = 1} .

We will call Sw the unit hyperplane of w. Each functional in w ∈ V∗ is uniquely identified with
its unit hyperplane. Since adjoints map functionals to functionals, we can give geometric
interpretations to adjoints by understanding how they map hyperplanes to hyperplanes.
This is illustrated in Figure 4.10. Let A : V1 → V2 be a bounded operator, and let w ∈ V∗

2

be a linear functional on V2. Its unit hyperplane is the set

Sw =
{
v2 ∈ V2; ⟨w , v⟩ = 1

}
.

The inverse image under A of this set is

{
v1 ∈ V1; ⟨w , Av1⟩ = 1

}
=
{
v1 ∈ V1;

〈
A†w , v1

〉
= 1
}

= SA
†w,

i.e. the unit hyperplane of the functional A†w ∈ V∗
1.

This has an interesting interpretation as depicted in Figure 4.10 in the case when A is
invertible. The operator A : V1 → V2 maps hyperplanes in V1 to hyperplanes in V2. It can
therefore be also viewed as mapping hyperplane sets to hyperplane sets. The adjoint A† also
maps hyperplane sets to hyperplane sets, and as such “set mappings”, A† is the inverse of
A. They are however not inverses as mappings of individual elements of the vector spaces.

7The number 1 is chosen arbitrarily here. We could choose any other number α provided we use the
same level for all functionals.
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Appendix

4.A Riesz Lemma

In Rn, any proper subspace has non-zero vectors orthogonal to it. In fact, any hyperplane
passing through the origin (co-dimension 1 subspace) is uniquely determined by the direc-
tion of a vector perpendicular to it. Thus there is a one-to-one correspondence between
hyperplanes and (unit-length) vectors, and this facilitates working with hyperplanes. Now
let S be a proper, closed subspace of a Hilbert space V. How do we construct a vector e ∈ V
orthogonal to S? Well, since S has an orthogonal complement, we can simply pick any vector
in S⊥. However, we will instead use an argument illustrated in Figure 4.11 that generalizes
to Banach spaces. We first note another equivalent characterization of orthogonality to a
subspace in a Hilbert space.

Lemma 4.48. Let S ⊂ V be a subspace of an inner product space V. For any vector e ∈ V

∀w ∈ S, ⟨e , w⟩ = 0 (i.e. e ⊥ S) (4.49)

⇔ ∀w ∈ S, ∥e− w∥ ≥ ∥e∥. (4.50)

Proof. The direction (⇒) is immediate by Pythagoras. Since w and e are orthogonal,
∥e − w∥2 = ∥e∥2 + ∥w∥2, and therefore ∥e∥ is a lower bound on ∥e − w∥ for all choices of
w ∈ S. For the converse (⇐), note that ∥e− w∥ ≥ ∥e∥ implies that

∥e− w∥2 = ⟨e− w , e− w⟩ = ∥e∥2 + ∥w∥2 − 2 ⟨e , w⟩ ≥ ∥e∥2

⇒ ∥w∥2 ≥ 2 ⟨e , w⟩ .
Now replace w ∈ S in the last expression by any scaling of it αw ∈ S and observe

∥αw∥2 ≥ 2 ⟨e , αw⟩ ⇔ α2 ∥w∥2 ≥ 2 |α| ⟨e , w⟩ ⇔ |α| ∥w∥2 ≥ 2 ⟨e , w⟩ .
The only way this inequality holds for all α ∈ R is if ⟨e , w⟩ = 0. Therefore e ⊥ S.

The interesting feature of the above lemma is that the criterion (4.49) is only applicable
in an inner product space, but the criterion (4.50) is applicable in any normed space. We
can therefore attempt to use the latter to characterize a type of “orthogonality” in a normed
space without an inner product. This is the context of the Riesz lemma.

Lemma 4.49 (Riesz Lemma). Let S ⊂ V be a closed proper subspace of a Banach space V.
Then for any ϵ > 0, there exists a vector e such that

∀y ∈ S, ∥e− y∥ > (1− ϵ)∥e∥. (4.51)

If V is reflexive, ϵ = 0 can be taken in the above.

Before proving this theorem, we give some geometrical intuition. Since S ⊂ V is a proper
closed subspace, then there exists v /∈ S. In a Hilbert space, we can use the orthogonal
projection x̄ of v onto S (see Figure 4.11a), and recall that x̄ solves the minimum distance
problem

inf
x∈S
∥v − x∥ = ∥v − x̄∥.

The projection theorem states that e := v − x̄ is orthogonal to all of S. To generalize this
to Banach spaces, the key is not to use an orthogonal projection (which is not applicable),
but rather the minimum distance problem itself. The infimum of this problem may not be
achieved, but we can always construct “almost solutions” and those will provide “almost
orthogonal” vectors in the sense of criterion (4.50).
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0
x̄

e
S

v
e := v � x̄

(a) in a Hilbert space, we can take any
vector v /∈ S, project v onto S, and ob-
tain e := v − x̄ := v − Πv. The vector e
is then orthogonal to the subspace S.

0 x̄ S

v

d(v, S)
ke := v-x̄k > d(v, S)� ✏

(b) In a Banach space, we can take any vector v /∈ S, but then for any
ϵ, we can always find a vector x̄ such that ∥e∥ = ∥v − x̄∥ is slightly
larger than the distance d(v, S). This vector has the property that
for any w ∈ S, ∥e − w∥ > (1 − ϵ)∥e∥, and this can be interpreted as
“almost orthogonality”.

Figure 4.11: Find a vector that is orthogonal in a Hilbert space to a closed, proper subspace S, as well as
finding a vector that has an “almost orthogonal” property in a Banach space (Riesz Lemma 4.49).

Proof. Since S is a closed, proper subspace, there exists a vector v /∈ S. Consider the
minimum distance problem to v, for which a minimum may not exist, but for any δ > 0 we
can find x̄ ∈ S such that (see Figure 4.11b)

∥v − x̄∥ < d(v,S) + δ, d(v,S) := inf
x∈S
∥v − x∥. (4.52)

The “error vector” e := v − x̄ provides the answer since for any y ∈ S

∥e− y∥
∥e∥ =

∥(v − x̄)− y∥
∥v − x̄∥

1
>
∥v − (x̄+ y)∥
d(v,S) + δ

2
≥ d(v,S)

d(v,S) + δ
,

where
1
> follows from (4.52), and

2
≥ follows from (x̄ + y) ∈ S. Finally, given ϵ > 0, choose

δ > 0 such that

d(v,S)

d(v,S) + δ
≥ (1− ϵ) ⇒ ∥e− y∥

∥e∥ ≥ (1− ϵ).

Exercises

Exercise 4.1

Show by a similar argument to that of Example 4.6 that the dual of Rn
1 is Rn

∞. More
generally, show by using the Minkowski inequality that for 1/p+ 1/q = 1, the dual of Rn

p is
Rn

q .

Exercise 4.2

Show by counterexample that setting we
1(x) = 0 in the one step extension (4.25) in the

proof of the Hahn-Banach theorem does not work. Take R2 with the ∥.∥∞ norm. Consider
the horizontal axis as S and w(x1, 0) = x1, so the norm of w restricted to the horizontal
axis is 1. If x = (1, 1) is chosen, show that the extension with we

1(x) = 0 will actually have
∥we

1∥ = 2.

Exercise 4.3

Show that for a Banach space V, if V∗ is separable, then so is V.
Hint: Take a countable dense set {wk} in the unit sphere of V∗. For each functional, find
vk ∈ V such that wk(vk) ≥ 1/2. Show that the span of {vk} is dense in V.
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Exercise 4.4

In a vector space over the complex scalars, suppose [w, u] is any bilinear complex-valued
form on two vectors w and u. Show that

R([u, v]) ≤ f
(
∥u∥, ∥v∥

)
⇒

∣∣∣ [u, v]
∣∣∣ ≤ f

(
∥u∥, ∥v∥

)
,

where f is any function of two real variables.
Hint: Try “rotating” the vector v to ejθv.
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Chapter 5

Eigenvectors, Invariant Subspaces and
the Spectrum

Finding a subspace that is invariant to a matrix or an operator enables a decomposition of the
operator into simpler pieces. The simplest invariant subspaces are spanned by eigenvectors,
and those are one-dimensional invariant subspaces. A matrix or operator whose eigenvectors
span the entire space are diagonalizable. When this is not possible, higher dimensional
invariant subspaces lead to the Jordan form for matrices. For general operators, the concept
of eigenvalues is generalized to that of the spectrum which is a subset of the complex plane.
The resolvent of an operator is an operator-valued function on the complex plane. The
behavior of this function encodes many of the properties of the operator.

Introduction

You have probably heard that an eigenvector v of a (square) matrix A is such that Av = λv
for some (possibly) complex number λ, which we call its corresponding eigenvalue. Geo-
metrically, this means that when A acts on the vector v, it does not rotate or change its
direction, but simply scales it by λ.

It is important to notice that eigenvectors are not uniquely defined because if v is an
eigenvector, then so is any non-zero scaling αv of it since A(αv) = αAv = α λv = λ(αv).
Thus it maybe more accurate to speak of an “eigendirection” or to say that the one-
dimensional subspace span{v} is A-invariant, i.e.

A (span{v}) ⊆ span{v} , (5.1)

where A (span{v}) is the image of the one-dimensional subspace span{v} (as a set) when
acted on by A. The image of a subspace is also a subspaces of dimension no larger than
the original subspace, so A (span{v}) is either of dimension 1 (in which case A (span{v}) =
span{v}) or 0.

The statement (5.1) is equivalent to Av = λv, but can be generalized to higher dimen-
sional spaces, where we say that a subspace S is A-invariant if

AS ⊆ S.

Eigenvectors (or more accurately their spans) are one-dimensional invariant subspaces. How-
ever, other types of (higher dimensional) invariant subspaces are useful because they allow
for decomposing the matrix or operator into simpler forms as we will see in the next section.
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Yet another way understand the relation Av = λv is to rewrite it equivalently as

(λI −A) v = 0.

Thus for a matrix, λ is an eigenvalue iff (λI − A) is singular, and all the corresponding
eigenvectors are the null space of (λI −A). We can therefore think of RA(λ) := (λI −A)−1

as a function defined everywhere on the complex plane except at the eigenvalues of A. This
function is called the resolvent of A and its behavior (as a function) says much more about
the operator A than its eigenvalues. For operators, the spectrum is the set of points in the
complex plane where RA(.) is not a bounded operator, and can be either isolated points or
other types of sets.

5.1 Invariant Subspaces and Eigenvectors

Eigenvalues and invariant subspaces are defined only for square matrices, or more generally
operators between a vector space and itself. The simplest square matrices to study are the
diagonal matrices since they are basically a decoupled system of scalar relations

y = Ax ⇔



y1
...
yn


 =



a1

. . .

an






x1

...
xn


 ⇔

y1 = a1 x1,
...

yn = an xn.

There is another way to see how special diagonal matrices are. Let A = diag(a1, . . . , an) be
a diagonal matrix, and consider the n subspaces span{ei} =: Ei ⊂ Rn that are spanned by
the canonical basis vectors ei

ei := (0, · · · , 0, 1, 0, · · · , 0)
↑ i’th position

⇒ Aei = aiei ⇔ AEi ⊆ Ei,

The statement Aei = aiei means that when A acts on ei, it returns a vector in the same
direction as ei, but scaled by the factor ai. In other words, A does not change the direction
of ei when it acts on it. Since Ei = span{ei} is a one-dimensional subspace, this statement
is equivalent to saying that when A acts on the entire subspace Ei, all the resulting vectors
remain in Ei. We write this as AEi ⊆ Ei, and we say that Ei is an invariant subspace for A.

Now consider the “next best thing” to a diagonal matrix, namely a block-diagonal matrix.
Consider for example the 3× 3 matrix A and the canonical vectors

A :=



1 2 0
3 4 0
0 0 5


 , e1 =



1
0
0


 , e2 =



0
1
0


 , e3 =



0
0
1


 .

It is clear that we have Ae3 = 5e3, so E3 is invariant, but Ae1 /∈ E1 and Ae2 /∈ E2. However,
we do have Ae1 ∈ E1 ⊕ E2 and Ae2 ∈ E1 ⊕ E2 (all vectors with zero entries in the third
component), and therefore A (E1 ⊕ E2) ⊆ E1 ⊕ E2. Thus E1 ⊕ E2 is an invariant subspace,
but its dimension is higher than 1.

The key insight to take from the previous paragraphs is to actually go in reverse. Given
a not necessarily diagonal (or block-diagonal) matrix, if we can find invariant subspaces,
then we can find a new basis so that the representation in that basis is diagonal (or block
diagonal). This leads to the following fundamental concepts.

Definition 5.1. Consider a linear operator A : V→ V on a vector space V.

1. A subspace S ⊆ V is called A-invariant if AS ⊆ S.
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2. An invariant subspace is called minimal if it does not contain any other invariant
subspaces (other than 0 and itself).

3. An eigenvector of A is a non-zero vector v such that Av = λv for some λ ∈ C. The
number λ is called the eigenvalue of A associated with the eigenvector v.

In particular, an eigenvector of A spans a 1-dimensional (and therefore minimal) A-
invariant subspace.

The set of all eigenvectors with eigenvalue λ is precisely Nu(λI −A).

The ultimate goal in analysis of any linear operator is to find all of its minimal invariant
subspaces. Once those are found, the operator can be “decomposed” into its simplest
possible form. To illustrate, we begin with the case of square matrices that have a sufficient
number of linearly independent eigenvectors.

Given an n× n matrix A, assume it has n linearly independent eigenvectors

A vi = λi vi, i = 1, . . . , n. (5.2)

It is an elementary, but powerful observation that these n matrix-vector relations can be
rewritten as the following single matrix equation

[
Av1 · · · Avn

]
=

[
λ1v1 · · · λnvn

]

⇕

 A



[
v1 · · · vn

]
=

[
v1 · · · vn

]

λ1

. . .
λn


 ⇔ AV = V Λ, (5.3)

where V is a matrix whose columns are the eigenvectors of A, and Λ is the diagonal matrix
made up of the eigenvalues of A. Equation (5.3) states that V is the similarity transformation
that diagonalizes A

Λ := diag(λ1, . . . , λn) = V −1AV. (5.4)

Note that V is non-singular since its columns were assumed to be linearly independent. We
have therefore obtained the following criterion for a matrix to be diagonalizable.

Lemma 5.2. Let A be n× n matrix. A is diagonalizable with a similarity transformation
iff it has a full set of eigenvectors, i.e. n linearly independent vectors with Avi = λivi,
i = 1, . . . , n.

In this case, the diagonalizing similarity transformation (5.3) V is made up of the eigen-
vectors as its columns, and

V −1AV = diag(λ1, . . . , λn) .

Higher Dimensional Invariant Subspaces

We now consider invariant subspaces that are of dimension possibly larger than 1 (i.e., they
don’t correspond to eigenvectors). First we point out a very useful observation about the
connection between invariant subspaces and “block-triangular” matrix forms. Let A be
a linear operator on a vector space S. Suppose we find an A-invariant subspace S ⊊ V,
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and a complement of it Sc (Sc does not itself have to be A-invariant). The decomposition
V = S⊕ Sc induced a 2× 2 block partitioning of A as follows

A =

[
A11 A12

0 A22

]
:
S
⊕
Sc
−→

S
⊕
Sc
.

The {21}-block is ΠScA|S, and must be zero because A maps any vector in S to a vector
whose Sc component is zero (since A (S1) ⊆ S1). Thus having an invariant subspace is
equivalent to finding a representation that is in block-triangular form.

Now we turn to the question of existence of eigenvectors. Not every matrix has a full
set of eigenvectors. We have already seen one extreme example, namely diagonal matrices
where every canonical basis vector ei is an eigenvector. Another extreme example is any
multiple αI of the identity, where every vector is an eigenvector! At the other extreme is
the n× n “Jordan block”

J :=




λ 1

1
λ


,




λ 1

1
λ







1
0
...
0


 = λ




1
0
...
0


 ,

which has e1 as an eigenvector with eigenvalue λ. This matrix however has no other eigen-
vectors (Exercise 5.2) regardless of its size n! It does however have higher-dimensional
invariant subspaces as can be seen from the following

[
Jr ∗
0 Jn-r

] [
∗
0

]
=

[
∗
0

]
, (5.5)

where we have partitioned Jn into smaller pieces, and ∗ indicates possibly non-zero entries.
Note that the block-diagonal portions are also Jordan block matrices of dimensions r and
n − r respectively, where 1 ≤ r ≤ n − 1. The “block-upper-triangular” structure of (5.5)
implies that for any such r

J (E1 ⊕ · · · ⊕ Er) ⊆ E1 ⊕ · · · ⊕ Er,

i.e. that E1⊕· · ·⊕Er is a nested sequence of invariant subspace, each of dimension r. Thus,
even though a Jordan block has only one eigenvector, it does have invariant subspaces of
higher dimension, all arranged in a nested sequence. In fact, having a nested sequence of
invariant subspaces implies an “upper-triangular” form.

Theorem 5.3. Let A be a linear operator on a n-dimensional vector space V.

1. A has at least one eigenvector.

2. If S is an A-invariant subspace, then there exists at least one eigenvector of A in S.

3. There exists a basis {vi} of V such that the matrix representation of A in that basis is
upper (or lower) triangular. The eigenvalues of A are the diagonal entries in either
triangular form.

We have already seen from the Jordan block example that a matrix can have only one
eigenvector regardless of the dimension of the matrix. The fact that any matrix must have
at least one eigenvector follows from the fact that any polynomial has (possibly complex)
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roots, and the following construction1 of a sequence of vectors from powers of A. Start with
any non-zero vector v ∈ S and consider the set of vectors

{
v,Av,A2v, . . . ,Anv

}
.

This is a set of n + 1 vectors in an n-dimensional vector space, so it must be a linearly
dependent set, i.e. there is a non-trivial linear combination such that

0 = a0v + a1Av + . . .+ anAnv = (a0I + a1A+ . . .+ anAn) v =: p(A) v.

Let m ≤ n be the integer of the highest nonzero coefficient above. Note that we can always
find a v such that m ≥ 1 (otherwise Av = 0 for all vector v). The polynomial p then has
m roots, and can be factored as p(x) = am(x− z1) · · · (x− zm), where {zi} are the zeros of
the polynomial. It then follows (Exercise 5.3) that p(A) is also factored as

0 = p(A) v = am (A− z1I) · · · (A− zmI) v.

Thus the action of a sequence of matrix products on v produces zero, so that must happen
for some index (call it r) and we have

0 = (A− zrI) (A− zr+1I) · · · (A− zmI) v︸ ︷︷ ︸
w

= (A− zrI) w.

Therefore w is an eigenvector of A with eigenvalue zr.
It is tempting to think about the preceding construction as a numerical algorithm for

finding eigenvalues/vectors. However, the step of finding the roots of a polynomial given
its coefficients has increasing (with polynomial order, thus with matrix size) sensitivity to
small perturbations in the polynomial’s coefficients, and therefore will not produce reliable
results for large matrices.

The second clause of Theorem 5.3 follows from the first. If S is A-invariant, choose a
subspace Sc complementary to S, then the decomposition V = S ⊕ Sc induces an upper
triangular block partitioning of the operator A

[
A11 A12

0 A22

]
.

Now A11 is a linear operator on a finite dimensional vector space S, and therefore has at
least one eigenvector in S.

The final clause of the theorem follows by repeated applications of the above decom-
position. Given A, we find one eigenvector, call it v1 with eigenvalue λ1, and complete
it to a basis {v1, v2, . . . , vn} of V. The fact that v1 is an eigenvector means that it spans
an invariant subspace, and the matrix representation An of A in that basis is block upper
triangular

An =

[
λ1 ∗
0 An-1

]
,

where An-1 is an (n-1)× (n-1) matrix. Now An-1 has at least one eigenvector as it acts on
the n-1-dimensional subspace span{v2, . . . , vn}, and therefore we can now find a different
basis for that subspace in which An-1 is also block lower triangular. Clearly this process

1This is the construction of a so-called Krylov subspace, and is very common in many problems in linear
algebra (numerical and theoretical) and functional analysis.
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can be repeated until we finally find a basis in which the matrix representation A1 of A is
upper triangular

A1 =



λ1 ∗

. . .

λn


 . (5.6)

It is useful to contrast this conclusion with that of Lemma 5.2. The latter says that an
n × n matrix is diagonalizable iff it has n linearly independent eigenvectors, which is not
always the case for any matrix. However, Theorem 5.3 says that any n × n matrix can be
brought into upper (or lower) triangular form. This very useful form, especially when the
new basis is selected to be orthonormal, is referred to as the Schur form of a matrix.

Geometrically, the fact that any matrix can be brought into the upper triangular form (5.6)
is equivalent to finding n properly nested A-invariant subspaces

0 ⊊ S1 ⊊ S2 ⊊ · · · ⊊ Sn = V, A (Si) ⊆ Si. (5.7)

In the basis that produces the form (5.6) those nested subspaces are simply the sum of the
canonical subspaces

Sr = E1 ⊕ · · · ⊕ Er =
{
x ∈ Rn; x = (x1, . . . , xr, 0, . . . , 0)

}
.

Thus Theorem 5.3 is equivalent to the statement that any linear operator on an n-dimensional
space has a sequence of properly nested invariant subspaces (5.7).

Example 5.4. This simple example is useful to summarize the results of this section

A =




λ1 0 0 0 0
0 λ1 0 0 0
0 0 λ2 0 0
0 0 0 λ3 1
0 0 0 0 λ3



:

S1
⊕
S2
⊕
S3

−→

S1
⊕
S2
⊕
S3

,

where we assume that λ1 is distinct from either λ2 or λ3.
S2 is a 1-dimensional invariant subspace corresponding to the eigenvalue λ2, and therefore

there is a single eigenvector for λ2. On the other hand S3 is a 2-dimensional invariant
subspace corresponding to the eigenvalue λ3. In this case however, there is only a single
eigenvector although the invariant subspace is 2-dimensional (this is a Jordan block of size
2). S1 is a 2-dimensional invariant subspace corresponding to the eigenvalue λ1. In this
case, every vector in S2 is actually an eigenvector. This happens because the {11}-block of
A is λ1I, where I is the 2× 2 identity matrix. Thus S1 is an invariant subspace made up of
vectors all of which are eigenvectors for the same eigenvalue. Therefore S1 is not a minimal
invariant subspace since it has lower dimensional subspaces that are also invariant. Note
that if we chose another basis for S1, the matrix form above would remain the same, i.e.
we can choose any two linearly independent vectors in S1 as a basis, and the matrix form
remains as above.

5.2 The Spectrum of an Operator

In the finite dimensional case, a complex number λ is an eigenvalue of an operator A if
Nu(λI −A) ̸= 0. The fact that λI −A is not invertible is equivalent to Nu(λI −A) having
non-trivial elements, which are precisely the eigenvectors of A associated with the eigenvalue
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λ. In the more general case, the key object will still be the operator λI − A, but it will
fail to be invertible in several different ways, each of which will characterize a different part
of the spectrum of the operator. To begin with however, we will first formally define and
establish some general properties of the spectrum.

Definition 5.5. Let A : V→ V be a (possibly unbounded) operator on a Banach space V.

1. The spectrum λ(A) of A is the set of all points λ ∈ C such that λI−A is not boundedly
invertible.

The spectral radius |λ(A)| is the supremum of the moduli of all points in the spectrum

|λ(A)| := sup
λ∈λ(A)

|λ|.

2. The resolvent set ρ(A) of A is the complement of the spectrum, i.e. all λ ∈ C such
that (λI −A)−1 exists and is a bounded operator on V, thus ρ(A) = C \ λ(A).

The resolvent RA(.) of A is the function RA(λ) := (λI − A)−1, which is a function
from the resolvent set ρ(A) ⊂ C to the algebra B(V) of all bounded operators on V.

5.2.1 Bounded Operators

In the case of bounded operators, there are some easily established properties of its spectrum
which we briefly cover.

Lemma 5.6. Let A : V → V be a bounded operator on a Banach space V. The spectrum
of A is bounded in the complex plane by its norm. Equivalently, the spectral radius of an
operator is bounded by its norm

λ(A) ⊆
{
λ ∈ C; |λ| ≤ ∥A∥

}
⇔ |λ(A)| ≤ ∥A∥.

This means that the spectrum is confined within the disk of radius ∥A∥ in the complex plane.
This lemma is an easy consequence of the Neumann series. If λ > ∥A∥, then ∥A/λ∥ < 1 and

(λI −A) = λ (I −A/λ)

is boundedly invertible since its Neumann series converges in B(V).
The spectrum of any bounded operator on a Banach space V has certain properties that

follow from understanding the structure of the Banach algebra B(V) of all bounded operators
on V. The first important property is that the set of all invertible elements in B(V) is open.
In other words, given A invertible, then A+∆ is invertible for all “perturbations” such that
∥∆∥ < ϵ for sufficiently small norm ϵ. This is again a consequence of the Neumann series
formula which implies

A invertible in B(V) ⇒ A+∆ = A
(
I +A-1∆

)

∥∆∥ <
1

∥A-1∥ ⇒
∥∥A-1∆

∥∥ ≤
∥∥A-1

∥∥ ∥∆∥ < 1

⇒
∥∥∥(A+∆)

-1
∥∥∥ =

∥∥∥
(
I +A-1∆

)-1
A-1
∥∥∥ ≤

∥∥A-1
∥∥

1− ∥A-1∆∥ .

Thus for all ∆ ∈ B(V) with ∥∆∥ < 1/
∥∥A−1

∥∥, the element A+∆ is invertible with the above
bound on the norm of its inverse. We now state this together with other corollaries.
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Lemma 5.7. Let B(V) be the Banach algebra of all bounded linear operators on the Banach
space V. Given any A ∈ B(V)

1. If A is invertible in B(V), then for any ∆ ∈ B(V) with ∥∆∥ < 1/∥A−1∥, the operator
A+∆ is invertible in B(V) with norm bound ∥(A+∆)−1∥ ≤ 1/(1− ∥∆∥∥A−1∥).
Thus the set of invertible elements is open in B(V).

2. The resolvent set ρ(A) of A is an open set in C.

3. The spectrum λ(A) of A is closed in C.

The second clause follows from the first by observing that if λ̄ is in the resolvent set,
then λ̄I −A is an invertible element, and for λ = λ̄+ ϵ

λI −A = (λ̄+ ϵ)I −A =
(
λ̄I −A

)
+ ϵI.

Since ∥ϵI∥ = |ϵ|, then the first clause implies that λI − A is boundedly invertible for all

|ϵ| < 1/∥
(
λ̄I −A

)−1 ∥. The last clause follows from the second since the spectrum is the
complement of the resolvent set, and is therefore closed in C.

The next characterization is the same as the matrix case. If we know the spectrum of
an operator, we also know the spectrum of its powers and its inverse (if it exists).

Lemma 5.8. Given a bounded operator A : V → V on a Banach space V with spectrum
λ(A) ⊆ C. Then

λ(An) =
(
λ(A)

)n
, and λ

(
A−1

)
= 1/λ(A) ,

if A is invertible in B(V).

The first statement is the subject of Exercise 5.5. For the second statement, if A is invertible,
then 0 /∈ λ(A), and rewrite

(λI −A) = λ
(
A−1 − λ−1I

)
A.

Then (λI −A) is boundedly invertible iff
(
λ−1I −A−1

)
is boundedly invertible. Thus λ ∈

λ(A) iff λ−1 ∈ λ
(
A−1

)
.

We note that this lemma is a special case of the so-called spectral mapping theorem,
which says that λ(f(A)) = (λ(A)) for any function f analytic in a neighborhood of the
spectrum of A. In the lemma above, the functions f(x) := xn are analytic everywhere, and
thus the spectral mapping works for any operator. For the case of f(x) = 1/x, this function
is analytic outside of x = 0, and we assumed that A was invertible, so the spectrum of A (a
closed set) does not contain the point λ = 0.

5.2.2 The Components of the Spectrum

Before we give the formal definitions, it will be useful to categorize the different ways an
operator can fail to be invertible. Given a bounded operator A : V→ V on a Banach space
V, we will be interested in the following three categories.

1. If Nu(A) ̸= 0, then the operator A is not one-to-one, and therefore not invertible.

2. If Nu(A) = 0 but Im(A) ̸= V, then this operator is also not invertible. This case can
be further classified into two possible categories.

(a) Im(A) ̸= V but Im(A) is dense in V. In this case, the inverse A−1 is defined only
on a dense subspace of V, and A−1 is an unbounded operator.
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(b) Im(A) ̸= V and Im(A) ̸= V. Thus the closure Im(A) has a non-zero co-dimension
in the space V. In this case, there is no way to define A−1.

It is useful to contrast these possibilities with the finite-dimensional case, which is con-
strained by the rank-nullity theorem statement (1.29) dim(Nu(A)) + dim(Im(A)) = dim(V),
from which we can state that

Nu(A) ̸= 0 ⇔ Im(A) ̸= V.

Thus the three categories listed above collapse to a single category in finite dimensions.

Example 5.9. To understand the different possibilities in the general case, the following
examples are useful. Consider the “bilateral” and “unilateral” shift operators on ℓ2(Z) and
ℓ2(N) respectively

S (. . . , u-1, uo, u1, . . .) := (. . . , u-2, u-1, u0, . . .) ,

S-1(. . . , u-1, uo, u1, . . .) := (. . . , u0, u1, u2, . . .) ,

Sr (uo, u1, . . .) := (0, u0, u1, . . .) , Sl (uo, u1, . . .) := (u1, u2, . . .) .

On ℓ2(Z), S and S-1 are the right and left shift operators respectively. They are clearly
inverses of each other. On ℓ2(N) on the other hand, Sr shifts a sequence to the right and
“pads” with a zero, while Sl shifts to the left and discards2 the first element u0. The latter
two are not inverses of each other, but we do have SlSr = I, i.e. Sr is a right inverse of Sl.
Now consider the following observations.

• Note that if Sl (u0, u1, . . .) = (u1, u2, . . .) = (0, 0, . . .), then uk = 0 for k ≥ 1. Thus Nu(Sl)
is the one-dimensional subspace span{(1, 0, . . .)}.

• On the other hand Nu(Sr) = 0. Note that Sr is actually an isometry (∥Srv∥ = ∥v∥), so
clearly its null space is trivial. The same statements hold for S and S-1 on ℓ2(Z), i.e. they
are both invertible and are isometries.

• Even though Sl has a non-trivial null space, it has a right inverse since SlSr = I, but not
an actual inverse (again because its null space is not trivial). The fact that it has a right
inverse means that it is onto Im(Sl) = V = ℓ2(N).

• Im(Sr) is clearly missing the subspace span{(1, 0, . . .)}, which is of dimension one. Thus
Im(Sr) ̸= ℓ2(N), and is in fact of co-dimension one in ℓ2(N).

The above examples do not exhibit the case where Im(M) is not all of V, but rather dense
in V. We will see this case once we consider λI −Sr. We are now ready to state the formal
definitions.

Definition 5.10. Let A : V→ V be a bounded operator on a Banach space V. The spectrum
can be divided into the following disjoint components

1. If Nu(λI −A) ̸= 0, then λ is called an eigenvalue of A, and elements of Nu(λI −A)
are its associated eigenvectors. The set eigs(A) of eigenvalues of A is a subset of the
spectrum λ(A). The set eigs(A) is also called the point spectrum.

2. If Nu(λI −A) = 0 and Im(λI −A) ̸= V, but is dense in V, then λ is said to belong to
the continuous spectrum λc(A).

2The operators Sr and Sl are sometimes called “ladder operators”, or “creation” and “annihilation”
operators respectively, since the right shift creates a new empty slot, while the left shift “annihilates” the
left-most element. This terminology reflects the Physicists’ flare for dramatic language and overbearing
metaphors. A more precise interpretation is the given in Exercise 5.7.
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3. If Nu(λI −A) = 0 and Im(λI −A) ̸= V, then λ is said to belong to the residual
spectrum λr(A).

Thus the spectrum is the union of the three disjoint sets λ(A) = eigs(A) ∪ λc(A) ∪ λr(A).

The reader should be aware that the above classificationa are not the only possible
ones. There are other categories, or subdivisions3, of the spectrum that may be more
relevant depending on the application. For example, another possible decomposition of the
spectrum is that of the discrete spectrum (which roughly are isolated eigenvalues), and the
remainder. For our purposes, the most important portions are the eigenvalues eigs(A) (the
point spectrum), and the continuous spectrum. We begin with an example of calculating
the points spectrum.

Example 5.11. Consider the left-shift operator Sl : ℓ2(N) → ℓ2(N). A vector u is in the
null space of λI − Sl iff

(λI − Sl) (u0, u1, . . .) = (λu0 − u1, λu1 − u2, . . .) = (0, 0, . . .) .

Thus the components of u satisfy the recursion

ut+1 = λ ut, t ≥ 0.

The solution of this recursion is the sequence ut = u0λ
t, which is in ℓ2 iff |λ| < 1. Thus the

open unit disk of the complex plane is the set of eigenvalues (the point spectrum)

eigs(Sl) = {λ ∈ C; |λ| < 1} .

A natural question now is what about the case when |λ| = 1. The vector ut = λtu0 is no
longer in ℓ2 (it does not decay), but it looks like it “almost” is an eigenvector. This notion
of “almost eignvector/value” is actually how the continuous spectrum can be characterized.
The precise statement is as follows.

Lemma 5.12. A point λ ∈ C is in the continuous spectrum of an operator A : V → V iff
it is not an eigenvalue, and the minimum modulus σ(λI −A) = 0. The latter condition is
equivalent to the existence of a sequence

{
v(k)

}
of vectors that satisfy either of the following

two conditions
∥∥∥v(k)

∥∥∥ = c <∞, and
∥∥∥(λI −A) v(k)

∥∥∥ k→∞−→ 0 (5.8)
∥∥∥v(k)

∥∥∥ k→∞−→ ∞, and
∥∥∥(λI −A) v(k)

∥∥∥ ≤ c <∞. (5.9)

The first condition can be understood intuitively as follows. Although the sequence
{
v(k)

}

is not made up of eigenvectors, and may not even be convergent in V, it “wants to” limit
to an eigenvector since (λI − A) v(k) is limiting to zero (recall that (λI − A)v = 0 is the
condition for an eigenvector). The difficulty is that usually the sequence is “converging” to
something that is not in V. Before we prove this lemma, we work through an example of
how it can be applied to the left shift operator of Example 5.11,

Example 5.13. Consider the “almost eigenvectors” of Example 5.11, namely the functions
λt for |λ| = 1, and their truncations

u
(k)
t =

{
λt, t ≤ k,
0, t > k.

(5.10)

3To mention just a few, there is the compression spectrum, the peripheral spectrum, and various species
of the essential spectrum.
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Figure 5.1: For |λ| = 1, the functions
{
λt

}
are candidates as eigenvectors of the left-shift operator

Sl on ℓ2(N). However, the functions are not square summable, and thus not actual eigenvectors. Their
truncations (5.10) over [0, k] shown above as v(k) are indeed in ℓ2(N), and satisfy the criterion (5.9) of
Lemma 5.12 for the continuous spectrum. Shown here is λv(k) (in blue), Slv

(k) (in red), and their difference

(λI − Sl) v
(k). The norm of v(k) is

√
k, and thus grows unboundedly with k, while the norm of (λI − Sl) v

(k)

remains at 1 for all truncations k. This means that any |λ| = 1 is in the continuous spectrum.

Note that since |λ| = 1, the ℓ2(N) norms of these function are
∥∥u(k)

∥∥ =
√
k. Now consider

the action of λI − Sl on u(k) (note that this λ is the same as that in (5.10))

(
(λI − Sl)u

(k)
)
t

= λ u
(k)
t − u

(k)
t+1 =





λλt − λt+1 = 0 t ≤ k − 1,
λλk − 0 t = k,
0 t > k.

The result is a function that is zero everywhere except at t = k, and the norm of this
function is 1. See Figure 5.1.

We have thus found a sequence of functions u(k) of growing norms such that the action
of λI − Sl on them has bounded norms

∥∥∥uk)
∥∥∥ =

√
k

k→∞−→ ∞,
∥∥∥(λI − Sl)u

(k)
∥∥∥ = 1.

This fulfills criterion (5.9) of Lemma 5.12, and thus every |λ| = 1 is in the continuous
spectrum of Sl. We have so far established that the point spectrum of Sl is the open unit
disk, and the continuous spectrum contains the unit circle. Are there other portions of
the spectrum that we missed? The answer is no. Recall that the spectrum is a closed set
bounded by the operator norm, which in this case is ∥Sl∥ = 1, thus the entire spectrum
must be contained in the closed unit disk. We can finally conclude

λ(Sl) = eigs(Sl) ∪ λc(Sl)= = =

{|λ| ≤ 1} = {|λ| < 1} ∪ {|λ| = 1}

We established that λc(Sl) ⊆ {|λ| = 1}, but those two sets are equal because the whole
spectrum must be contained in the closed unit disk. Note that we have also shown that the
residual spectrum of Sl must be empty.

Proof of Lemma 5.12. The two conditions (5.8) and (5.9) are equivalent. If (5.8) is satisfied
then the sequence w(k) := v(k)/

∥∥(λI −A) v(k)
∥∥ satisfies (5.9). Conversely if (5.9) is satisfied,

then the sequence w(k) := v(k)/
∥∥v(k)

∥∥ satisfies (5.8).
The proof of Lemma 5.12 relies on the following observation. For λ ∈ λc(A), λI − A

is one-to-one (since it has trivial kernel), and since its image is dense in V, then its inverse
(λI − A)−1 is a densely defined operator. It is necessarily unbounded, for otherwise it can
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be extended to a bounded operator on all of V (and then λ would be in the resolvent set).
Since it is unbounded, there exists a sequence of vectors

{
w(k)

}
with

∥w(k)∥ = 1, lim
k→∞

∥∥∥(λI −A)−1w(k)
∥∥∥ = ∞.

Now define v(k) := (λI − A)−1w(k), which then implies w(k) = (λI − A)v(k). The sequence{
v(k)

}
then satisfies condition (5.9).

We can now generalize the truncation construction of the previous example to devise
a method for calculating the continuous spectrum without having to examine truncations
in every specific case. The important ingredients of this construction were (a) defining a
sequence of truncations, (b) finding an eigenfunctions Av = λv, where v is not in the Banach
space, but any truncation of it is, and (c) the operator A is such that the difference between
truncating then acting with the operator compared to acting first and truncating second
can be bounded. This can be formalized for the function spaces Lp as follows.

Definition 5.14. Consider Ω ⊆ Rn (or Zn), and the nested sequence of subsets

Ωk :=
{
x ∈ Ω; ∥x∥ ≤ k

}
.

Note that
⋃∞

k=1 Ωk = Ω. The sequence of projections

(
Πkv

)
(x) :=

{
v(x) x ∈ Ωk

0 x /∈ Ωk

is called an increasing sequence of truncations.

Note that the difference v−Πkv is the “tail” of the function v, and in Lp(Ω) for p ∈ [1,∞),
the norm of the tail converges to zero

∥v −Πkv∥Lp(Ω)
k→∞−→ 0.

We also have that the truncation of any L∞(Ω) function is in Lp(Ω)

Πk

(
L∞(Ω)

)
⊆ Lp(Ω) for any p ∈ [1,∞].

Lemma 5.15. Consider Lp(Ω) (where Ω ⊆ Rn or Zn, and p ∈ [1,∞)), together with
a nested sequence of truncations {Πk} as in Definition 5.14. Consider also an operator
A : Lp(Ω) → Lp(Ω), which is also defined4 on L∞(Ω), such that

∥∥(ΠkA−AΠk

)
v
∥∥
p
are

uniformly (in k) bounded as follows

∀k,
∥∥(ΠkA−AΠk

)
v
∥∥
p
≤ c ∥v∥∞ < ∞. (5.11)

If there exists a vector v ∈ L∞(Ω) with v /∈ Lp(Ω) such that Av = λv, then λ is in the
continuous spectrum of A.

This lemma formalizes the intuition that when we find bounded functions v with Av = λv,
the corresponding λ should be part of the spectrum. The lemma states that such λ’s are
indeed in the continuous spectrum.

4More precisely, there is another operator A∞ : L∞(Ω) → L∞(Ω) such that A = A∞ on the intersection
Lp(Ω) ∩ L∞(Ω).
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Proof. Given such a function v, the truncations v(k) := Πkv are candidates for the sequence
that satisfies criterion (5.9) of Lemma 5.12. Indeed, the fact that v ∈ L∞(Ω) but not in
Lp(Ω) implies that truncations of v have unbounded Lp norms

∥Πkv∥p
k→∞−→ ∞.

The fact that Av = λv and the bound (5.11) together imply

∥(λI −A) Πkv∥p = ∥λ Πkv − AΠkv∥p = ∥Πk λv − ΠkAv +ΠkAv −AΠkv∥p
≤
∥∥Πk

(
λv − Av

)∥∥
p
+
∥∥(ΠkA−AΠk

)
v
∥∥
p
≤ 0 + c ∥v∥∞.

Note that since v is an eigenfunction Av = λv, it can always be chosen such that ∥v∥∞ = 1.
Therefore the truncations Πkv satisfy criterion (5.9) of Lemma 5.12.

We now apply Lemma 5.15 to the bilateral shift operator, which will turn out to have
only a continuous spectrum.

Example 5.16. Consider the bilateral shift operator on ℓ2(Z). Since it is norm preserving,
its induced norm is ∥S∥ = 1, and therefore by Lemma 5.6 its spectrum must be inside
the unit disk of the complex plane. Furthermore, S-1 is also an isometry and therefore its
spectrum must be inside the unit disk. However, since λ(S) = 1/λ

(
S-1
)
we conclude

λ(S) ⊆
{
|λ| ≤ 1

}

1/λ(S) = λ
(
S-1
)
⊆

{
|λ| ≤ 1

}


 ⇒ λ(S) ⊆

{
|λ| = 1

}
. (5.12)

We have thus established that the spectrum of S is confined to the unit circle. Now
investigate the eigenvector equation for S
(λI − S) v = 0 ⇔ λvt−vt−1 = 0 ⇔ vt = λ-1vt−1 ⇔ vt = λ-tv0.

For |λ| = 1, the function {λ-t} is not in ℓ2(Z), and we therefore conclude that the point
spectrum is empty (there are no eigenvectors).

For |λ| = 1, the function {λ-t} is in ℓ∞(Z), and therefore a candidate for application of
Lemma 5.15. It remains to check the condition (5.11) for the shift operator S. First note
that the truncation Πk can be expressed as point-wise multiplication by 1[-k,k], the indicator
function of the set [-k, k]

(
Πkv

)
(t) = 1[-k,k](t) v(t).

Now This can be used to express ΠkS − SΠk as follows
(
(ΠkS − SΠk)v

)
(t) =

(
ΠkSv

)
(t)−

(
SΠkv

)
(t) = 1[-k,k](t)v(t-1)− 1[-k,k](t-1)v(t-1)

=
(
1[-k,k](t)− 1[-k,k](t-1)

)
v(t-1) =

(
δ(t+ k)− δ(t-k)

)
v(t-1),

where δ(.) is the Kronecker delta. Each of the two functions on the right hand side are
non-zero only at a single point, and thus have ℓp norms bounded by the ℓ∞ norm of v. This
gives the bound

∥(ΠkS − SΠk)v∥p ≤ 2 ∥v∥∞,

which fulfills the requirements of Lemma 5.15.
The previous argument shows that the unit circle is contained in the continuous spec-

trum. Since the entire spectrum must be contained in the unit circle by (5.12), the two sets
are equal, and we conclude that on ℓ2(Z)

λc(S) = {λ ∈ C; |λ| = 1} ,
and the remaining portions of the spectrum are empty, i.e. S does not have eigenvalues or
a residual spectrum.

Draft: Notes on Linear Algebra and Functional Analysis © July 19, 2024, Bassam Bamieh



158 5.2. The Spectrum of an Operator

5.2.3 Adjoint Relations and the Residual Spectrum

As already seen, the points spectrum is usually the easiest to compute, and the continuous
spectrum has to be deduced from further considerations. The third portion of the spectrum,
namely the residual spectrum, would be even more difficult to compute directly since there
isn’t even a characterization like that of the approximate eigenvalues. However, the residual
spectrum of an operator is easily related to the eigenvalues of its adjoint. These relations
are summarized in the following statement.

Lemma 5.17. Let A be an operator on a Banach space V, and denote its adjoint by A∗.
The full spectrum, and its point and residual subsets for both A and A∗ are related by

λ(A∗) =∗ λ(A) ,
λr(A) ⊆∗ eigs(A∗) ,

eigs(A) ⊆∗ λr(A∗) ∪ eigs(A∗) ,

where the notation =∗ and ⊆∗ between sets means equality and subset after complex conju-
gation respectively.

Proof. The first relation is a consequence of the fact that the inverse of the adjoint (when
it exists) is the adjoint of the inverse, and therefore

(
(λI −A)−1

)∗
=
(
(λI −A)∗

)−1
= (λ∗I −A∗)−1

.

This means that λI −A is boundedly invertible iff λ∗ −A∗ is boundedly invertible.
The remaining two relations are a consequence of the fundamental theorem of linear

algebra which states that for any bounded operator B

Im(B)⊥ = Nu(B∗) ⇔ Im(λI −A)⊥ = Nu(λ∗I −A∗) .

Also recall that a subspace S ⊆ V is dense iff S⊥ = 0. Now recall the definition of the
residual spectrum

λ ∈ λr(A) ⇒ Im(λI −A) ̸= V ⇔ Nu(λ∗I −A∗) ̸= 0 ⇔ λ∗ ∈ eigs(A∗) .

This gives the containment λr(A) ⊆∗ eigs(A∗). Conversely we can attempt to reverse the
implications above

λ ∈ eigs(A) ⇔ Nu(λI −A) ̸= 0 ⇔ Im(λ∗I −A∗) ̸= V ⇒
{

λ∗ ∈ λr(A∗)
or λ∗ ∈ eigs(A∗)

The reason for that last statement is that by definition, λ∗ ∈ λr(A∗) iff Im(λ∗I −A∗) ̸= V
and Nu(λ∗I −A∗) = 0. If the latter statement is not true, then λ∗ ∈ eigs(A∗).

Example 5.18. Consider the right shift operator Sr on unilateral sequences ℓ2(N). The
null space of λI − Sr

(λI − Sr) (u0, u1, . . .) = (λu0, λu1 − u0, λu2 − u1, . . .) = (0, 0, . . .) .

If λ = 0, the 2nd component states that u0 = 0, the 3rd component states that u1 = 0,
and so on. Thus the null space is trivial. If λ ̸= 0, then the 1st component above states
that u0 = 0, which then implies from the 2nd component that u1 = 0, and so on. Thus
again, the null space is trivial. We therefore conclude that there is no λ ∈ C such that
Nu(λI − Sr) ̸= 0. in other words, Sr has no eigenvalues and its point spectrum is empty.
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eig(Sl) : point spectrum

�c(Sl) : continuous spectrum �c(Sr) : continuous spectrum

�c(Sr) : residual spectrum

�c(Sl) : residual spectrum = ?

eig(Sr) : point spectrum = ?

Figure 5.2: The decomposition of the spectra of the left and right shift operators Sl and Sr respectively
on unilateral sequences in ℓ2(N). Because they are adjoints S∗

l = Sr, their spectra are equal, and are equal
to the closed unit disk. However, the decomposition of their spectra into their individual components of
point, continuous, and residual spectra is different in each case. These decompositions are however related
by (5.13), which is partially derived from the adjoint relations of Lemma 5.17.

It is easy to establish that Sr = S∗l on ℓ2(N), i.e. the adjoint of the left-shift operator.
We have already calculated parts of the spectrum of Sl in a previous example. Lemma 5.17
provides relationships between the various portions of the spectra of Sl and Sr = S∗l . They
are summarized in the following diagram

{
|λ| < 1

}
∪ ∅ ∪

{
|λ| = 1

}

=
=

1○

=

3○

{|λ| ≤ 1} ⊇ λ(Sl) = eigs(Sl) ∪ λr(Sl) ∪ λc(Sl)

=
∗

⊆
∗ ⊆

∗

{|λ| ≤ 1} ⊇ λ(Sr) = λr(Sr) ∪ eigs(Sr) ∪ λc(Sr)

=

2○ =

=

3○{
|λ| < 1

}
∪ ∅ ∪

{
|λ| = 1

}

(5.13)

The relations in blue are those of Lemma 5.17, which are valid in general for any operator
(e.g. λ(A) =∗ λ(A∗)). The sets in red are the explicit calculations we did earlier in this
example and in Example 5.11. The remaining relations are due to the following observations.

1○ Sr = S∗l , and therefore λr(Sl) ⊆∗ eigs(Sr). The latter is empty, then so is λr(Sl).
2○ Again, Sr = S∗l , and therefore eigs(Sl) ⊆ λr(Sr)∪eigs(Sr). However, we already know

that eigs(Sr) is empty, so we must have λr(Sr) = eigs(Sl), which has been calculated
to be the set {|λ| < 1}.

3○ Now we know that eigs(.) ∪ λr(.) is the open unit disk for both operators. The
entire spectrum is a closed set that must be contained inside the closed unit disk, and
the difference between the closure and the open disk is simply the unit circle. This
remainder must be the continuous spectrum λc(.)

These relations are depicted in Figure 5.2.

5.3 The Resolvent and the Pseudospectrum

Example 5.19. Consider the right-shift operator Sr on ℓ1(N). We want to compute the

norm of its resolvent ∥ (λI − Sr)−1 ∥ as a function of λ. The easiest way to do this is from
the matrix representations

Sr =

[ 0

1
. . .
. . .

]
, λI-Sr =

[
λ

-1
. . .
. . .

]
, (λI-Sr)-1 =

[
λ-1

λ-2
. . .
. . .

]
.
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(a) The norm of the resolvent of the infi-
nite shift operator. The resolvent has infi-
nite norm on its spectrum (the unit disk,
shown in red), while outside the unit disk,
its value is the minimum distance to the
unit disk.

(b) The logarithm of the norm of the resolvent of the truncated
shift operator Sn for n = 4 and n = 10. In each case, the spectrum
is the point 0 ∈ C (red dot), but the resolvent grows exponentially
(with n) inside the unit circle (shown in blue). Outside the unit
circle the resolvent converges (as n → ∞) to that of the infinite
shift operator S.

Figure 5.3: Surface and contour plots of the norm of the resolvents of the infinite shift operator S, as
well as its truncations Sn, each of which is a Jordan block of size n. The spectrum of S is the entire unit
disk, while the spectrum of Sn for any n is just the point 0 ∈ C. Thus, while the spectrum is “fragile”
in the sense that λ(Sn) ̸−→ λ(S), the resolvent is “robust” in the sense that for any λ ∈ C, we have

∥ (λI − Sn)
-1 ∥ n→∞−→ ∥ (λI − S)-1 ∥.

The last expression can be verified directly by multiplying (λI-Sr) with (λI-Sr)-1 and show-
ing that the product is the identity matrix. Note that due to the lower triangular structure,
each entry in the product involves a finite sum, and thus issues of convergence do not arise.
Alternatively a detailed calculation is presented in Exercise 5.6

Recall that the ℓ1-induced norm is supremum of absolute sums of columns. For this
operator, which is a lower triangular Toeplitz matrix, each column has the same sum. We
therefore compute

∥∥(λI − S)-1
∥∥
1−i

=

∞∑

k=0

|λ|-k-1 = |λ|-1
∞∑

k=0

|λ|-k =

{ |λ|-1 1
1−|λ|-1 = 1

|λ|−1 |λ| > 1,

∞ |λ| ≤ 1.

Therefore the resolvent’s norm is infinite on the closed unit disk, which is to be expected
since that set is the spectrum of S. The norm is finite outside the unit disk and equal to
1/(|λ| − 1), i.e. the reciprocal of the distance between λ and the unit disk. This is plotted
in Figure 5.3a.

It is insightful to repeat these calculations for the truncated shift operator Sn, and then
compare to those for S.
Example 5.20. The truncated shift operator and its resolvent are given by

Sn =




0 1
. . .

. . .

. . . 1
0


 , (λI − Sn)−1 =




λ-1 λ-2 ··· λ-n

. . .
. . .

...
. . . λ-2

λ-1


 .

The ∥.∥1-induced norm is the maximum column sum, which in this case is the sum of the
last column

∥∥(λI − Sn)-1
∥∥
1−i

=

n−1∑

k=0

|λ|-k-1 = |λ|-1
n−1∑

k=0

|λ|-k =





|λ|-1 1−|λ|-n
1−|λ|-1 = 1−|λ|-n

|λ|−1 , |λ| > 1,

n, |λ| = 1,

1−|λ|-n
|λ|−1 = |λ|-n |λ|n−1

|λ|−1 , |λ| < 1.

This resolvent norm is finite for all λ ̸= 0. Around λ = 0, it behaves like 1/λn, i.e. a pole
of n’th order. That is consistent with λ = 0 being an eigenvalue of Sn with multiplicity n.
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We analyze the asymptotic behavior (as n→∞) in each of the three regions

∥∥(λI − Sn)-1
∥∥
1−i
∼





1
|λ|−1 , |λ| > 1,

n, |λ| = 1,

|λ|-n |λ|n−1
|λ|−1 , |λ| < 1.

• For |λ| = 1, the norm of the resolvent grows linearly with n and is unbounded.

• For |λ| > 1, |λ|-n → 0, and therefore for large n, the norm of RSn
behaves just like the

norm of the infinite case RS .

• For |λ| < 1 the norm is

∥∥(λI − Sn)-1
∥∥
1−i

=
∣∣λ-1

∣∣n 1− |λ|n
1− |λ| , |λ| < 1.

Thus for each |λ| < 1, the norm grows exponentially in n. L’Hopital’s rule shows that the
limit as |λ| → 1 is n, thus agreeing with the case |λ = 1 above.

Plots of the resolvent’s norm for finite n are shown in Figure 5.3b.

Plots of the resolvents’ norms for both S and Sn are shown in Figure 5.3 for comparison.
These plots and the above calculations lead to the following observation, whose importance
cannot be overemphasized. Intuitively, we want to think of S somehow as the limit of Sn
(as n→∞). However, we are faced with the fact that the spectrum of Sn is λ = 0 for each
n, while the spectrum of S is the entire unit disk. The spectra clearly don’t limit, i.e.

lim
n→∞

λ(Sn) ̸= λ(S) .

This is often given as an example of a “discontinuity” at infinity (i.e. as n → ∞), and
that Sn cannot be considered as an approximation to S even for arbitrarily large n. The
calculations above however, show that the resolvents’ norms do limit correctly, i.e. for each
λ ∈ C

lim
n→∞

∥∥∥(λI − Sn)−1
∥∥∥ =

∥∥∥(λI − S)−1
∥∥∥ .

Here we make an important, but rather philosophical observation. One would always
want to develop a theory where conclusions for large n truncations approximate the conclu-
sions for n infinite. In other words, we want “continuity at infinity”. The example above
shows that the spectrum does not have this “continuity”. However, the difficulty should not
be viewed as a fundamental difference between infinite versus finite dimensions, but rather
that the spectrum is a “fragile” object, i.e. if we change n from infinity to a large number,
the spectrum abruptly changes. The resolvent norms do not appear to have this disconti-
nuity at infinity, and therefore the resolvent can be regarded as a robust object, unlike the
fragile spectrum.

The fragility of the spectrum is most dramatically exhibited by some non-normal oper-
ators. This fragility has had far reaching implications historically in many fields such as
fluid turbulence, condensed matter physics, numerical analysis, and control theory. In the
remainder of this section, we introduce the pseudospectrum, which captures the level sets
of the resolvent’s norm. The pseudospectrum provides one particular framework to under-
stand fragility/robustness of a spectrum. In particular, robustness analysis in control theory
generalizes the notion of the pseudospectrum using more detailed descriptions of operator
perturbations than an additive, unstructured perturbation.
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The Pseudospectrum

Definition 5.21. Given an (possibly unbouded) operator A : V→ V on a Banach space V,
its ϵ-pseudospectrum is a super-level set of its resolvent’s norm

λϵ(A) :=

{
λ ∈ C;

∥∥∥(λI −A)−1
∥∥∥ ≥ 1

ϵ

}
=

{
λ ∈ C; inf

∥v∥=1
∥(λI −A) v∥ ≤ ϵ

}
.

By definition, the actual spectrum is a subset of the ϵ-pseudospectrum for any ϵ > 0. The
second characterization follows from the first by the definition of the induced norm.

For matrices with the 2-induced norm, recall that a number λ is an eigenvalue iff the
minimum singular value of λI −A is zero. For this case, the second characterization above
states that λ is in the ϵ-pseudospectrum iff the minimum singular value of λI − A is less
than ϵ. Thus if we think of the spectrum as the set of λ’s in C such that λI −A fails to be
invertible, then the ϵ-pseudospectrum is the set such that λI − A is within a “distance” ϵ
of failing to be invertible. This is stated precisely in the following “robustness criterion”.

Lemma 5.22. A complex number is in the ϵ-psuedospectrum of an operator A iff it is in
the spectrum of a “nearby” operator A+∆, with ∥∆∥ ≤ ϵ

λϵ(A) =
{
λ ∈ C; λ ∈ λ(A+∆) , ∥∆∥ ≤ ϵ

}

For normal operators, the pseudospectrum does not have surprising behavior. To see
this, let A be a normal matrix. Its eigenvectors {vk}nk=1 form an orthonormal basis of Rn. If
we write A in terms of its dyadic decomposition, we can get a nice formula for the resolvent’s
norm as follows

A =

n∑

k=1

λk vkv
∗
k ⇒

∥∥∥(λI −A)
−1
∥∥∥ =

∥∥∥∥∥
n∑

k=1

1

λ− λk
vkv

∗
k

∥∥∥∥∥ = max
1≤k≤n

1

|λ− λk|
,

where the last inequality follows from {vk} being a mutually orthonormal set. This quantity
has a geometric interpretation

∥∥∥(λI −A)
−1
∥∥∥ =

1

min1≤k≤n |λ− λk|
,

which is the reciprocal of the distance from λ to the closest eigenvalue. Therefore the
ϵ-pseudospectrum

λϵ(A) :=
{
λ ∈ C;

∥∥∥(λI −A)−1
∥∥∥ ≥ 1

ϵ

}
=

{
λ ∈ C; min

1≤k≤n
|λ− λk| ≤ ϵ

}

=
{
λ ∈ C; |λ− λk| ≤ ϵ, for any k = 1, .., n

}
. (5.14)

This means that the ϵ-pseudospectrum is the union of disks of radius ϵ around each eigen-
value. This is illustrated in Figure 5.4 and Example 5.23 below.

When a matrix or operator is not normal, the expression (5.14) is no longer valid, and the
pseudospectrum can be quite unpredictable from the spectrum itself. This can have many
interpretations. In particular if the ϵ-pseudospectrum for very small ϵ is very different from
the actual spectrum, it implies that the matrix or operator’s eigenvalues are very sensitive
to small perturbations in the matrix entries. In the shift operator example of the previous
section, we argued that this sensitivity is due to the presence of large Jordan blocks, i.e.
eigenvalues with high algebraic multiplicity and low geometric multiplicity. Another cause
of sensitivity is when a matrix or operator has nearly aligned eigenvectors, even though
there are no eigenvalue multiplicities. This is given in the next example.
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Figure 5.4: ϵ-pseudospectrum boundaries for the two matrices in Example 5.23. (Left) A normal matrix
has pseudospectrum which is simply the union of disks around each eigenvalue of radius ϵ. (Right) For a
non-normal matrix, the ϵ pseudospectrum is not easily predicable from the location of the eigenvalues.

Example 5.23. Figure 5.4 shows two examples of 50 × 50 matrices, their eigenvalues and
examples of their pseudospectra. The first example in Figure 5.4 (left) is a normal matrix
constructed with random eigenvalues and vectors such that the eigenvectors are mutually or-
thogonal. The fact that the pseudospectrum is a union of disks centered at the eigenvalues as
predicted by (5.14) is clearly seen in this plot.

The second example in Figure 5.4 (right) is matrix constructed with random eigenvalues,
and random eigenvectors but chosen to be nearly aligned. The behavior of the pseudospectrum
is very different from the normal example. The pseudospectrum deviates significantly from the
eigenvalues even for very small ϵ. Furthermore, the “shape” of the pseudospectrum is not very
predictable from the location of the eigenvalues. Note in particular how it bulges far away from
some eigenvalues, while it has “voids” very close to other eigenvalues.

Appendix

5.A Analyticity of the Resolvent

Many important calculations involving resolvents utilize the following (very useful) resolvent
formulas

RA(λ1)− RA(λ2) = (λ1I −A)−1 − (λ2I −A)−1

= (λ1I −A)−1
(
(λ2I −A)− (λ1I −A)

)
(λ2I −A)−1

(λ1I −A)−1 − (λ2I −A)−1 = (λ1I −A)−1(λ2I −A)−1 (λ2 − λ1) . (5.15)

RA(λ)− RB(λ) = (λI −A)−1 − (λI −B)−1

= (λI −A)−1 (A−B) (λI −B)−1

(λI −A)−1 − (λI −B)−1 = (λI −A)−1 (A−B) (λI −B)−1. (5.16)

The first compares the resolvent of one operator at two different points in the complex plane,
while the second compares the resolvent of two different operators at the same point in the
complex plane. As an illustration of one use of these formulas, we investigate the concept of
analyticity of a Banach-space-valued function of a complex variable. It turns out that much
of the theory is the same as standard complex analytic functions, except that the complex
absolute magnitude |.| is replaced by the Banach space norm ∥.∥.
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Definition 5.24. Let Ω ⊆ C be an open set. A Banach-space-valued function f : Ω→ V is
called analytic (or holomorphic) if for each z ∈ Ω the limit

lim
h→0

1

h

(
f(z + h)− f(z)

)

exists in V. In other words, if at each z ∈ Ω there exists f ′(z) ∈ V such that

lim
ϵ↘0

sup
h∈C, |h|≤ϵ

∥∥∥∥
f(z + h)− f(z)

h
− f ′(z)

∥∥∥∥ = 0. (5.17)

Note that analyticity is “complex differentiability”, so it is important in the above definition
that the limit be the same as z + h→ z from all possible directions in C.

Lemma 5.25. Given a bounded operator A on a Banach space V, its resolvent RA : ρ(A)→
B(V) is an analytic function over the resolvent set ρ(A) ⊂ C.

Proof. We can first guess at what the derivative might be (in analogy with the matrix case),
and then verify with the definition (5.17). If A were a matrix, then

R′
A(z) :=

d

dz
(zI −A)

−1
= − (zI −A)

−2
.

Now checking the condition (5.17)

RA(z + h)− RA(z)

h
− R′(z)

1
=

(
(z + h)I −A

)−1
(zI −A)

−1
(−h)

h
+ (zI −A)

−2

= −
(
(z + h)I −A

)−1
(zI −A)

−1
+ (zI −A)

−2

=
(
−
(
(z + h)I −A

)−1
+ (zI −A)

−1
)
(zI −A)

−1

2
= h

(
(z + h)I −A

)−1
(zI −A)

−1
(zI −A)

−1
,

where we have used the resolvent formula (5.15) in
1
= and again in

2
=.

Finally, we can bound the norms by

sup
h∈C, |h|≤ϵ

∥∥∥∥
RA(z + h)− RA(z)

h
− R′(z)

∥∥∥∥ ≤ sup
|h|≤ϵ

∥∥∥h
(
(z + h)I −A

)−1
(zI −A)

−2
∥∥∥

≤ ϵ
∥∥∥(zI −A)

−2
∥∥∥ sup

|h|≤ϵ

∥∥∥
(
(z + h)I −A

)−1
∥∥∥ .

The fact that the last quantity is finite for sufficiently small ϵ follows from the bound

∥∥∥
(
(z + h)I −A

)−1
∥∥∥ =

∥∥∥
(
(zI −A) + hI

)−1
∥∥∥ =

∥∥∥(zI −A)−1
(
I + h(zI −A)−1

)−1
∥∥∥

≤
∥∥(zI −A)−1

∥∥ 1

1− |h| ∥(zI −A)−1∥ ,

where the last bound follows from the Neumann series provided |h| <
∥∥(zI −A)−1

∥∥. Taking
the limit as ϵ↘ 0 shows that the resolvent is complex differentiable with derivative −(zI −
A)−2.

Draft: Notes on Linear Algebra and Functional Analysis © July 19, 2024, Bassam Bamieh



Chapter 5. Eigenvectors, Invariant Subspaces and the Spectrum 165

Exercises

Exercise 5.1

Show that for any upper-triangular (or lower-triangular) matrix, its eigenvalues are precisely
the entries on the diagonal of the matrix.

Hint: Use the recursive formula for the determinant of λI −A.

Exercise 5.2

Show that the n× n Jordan block Jn has no eigenvectors other than e1.
Hint: Since J is upper triangular, any eigenvalue of J is a diagonal entry (Exercise 5.1),

i.e. any eigenvalue of J is λ. Given the structure of J , the components {xk} of any
eigenvector x must satisfy the recursion λx(k) + x(k + 1) = λx(k), k = 1, . . . , n− 1. Show
that e1 is the only possible solution to this recursion.

Exercise 5.3

Let A be an n× n square matrix, and p(x) := xm + am-1x
m-1 + · · ·+ a0 a polynomial with

roots z1, . . . , zm. Show that

p(A) := Am + am-1A
m-1 + · · ·+ a0I = (A− z1I) · · · (A− zmI) .

Exercise 5.4

Show that for any n× n matrix M

∥∥M−1
∥∥ ≤ c∥M∥n−1 1

|detM | ,

where the constant c is independent of M . The formula M−1 = Adj(M)/detM will be
useful.

To put this result in context, recall that in general there need not be a relationship
between σmax(M) and the eigenvalues other than the bound ρ(M) ≤ σmax(M), which may
be arbitrarily conservative. On the other hand, the result above does give a lower bound
on σmin(M) = 1/∥M−1∥ ≥ detM/c∥M∥n−1. Recalling that detM is the product of the
eigenvalues of M , this can be thought of as a lower bound on σmin(M) in terms of the
eigenvalues.

Solution 5.4

First observe that for any n× n matrix M with entries mij , we have the following bounds
between the norm of M and its entries

max
i,j
|mij | ≤ ∥M∥ ≤ n max

i,j
|mij |. (5.18)

The first inequality is trivial, and the second one follows from standard matrix norm bounds.
Now starting from

∥∥M−1
∥∥ = ∥Adj(M)/ detM∥ = ∥Adj(M)∥ 1

detM
,

we see that a bound for ∥Adj(M)∥ is required. Recall that the entries of Adj(M) are the
(n− 1)× (n− 1) minors of M , and each of these entries is a polynomial, with each term a
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homogenous, degree n− 1 monomial of the entries of M . This fact gives the first inequality
in

∣∣∣
(
Adj (M)

)
ij

∣∣∣ ≤ n

(
max
i,j
|mij |

)n−1

≤ n ∥M∥n−1,

while the second inequality follows from the lower bound in (5.18). We can now bound
∥Adj(M)∥ using the upper bound in (5.18) and conclude

∥∥M−1
∥∥ = ∥Adj(M)∥ 1

|detM | ≤ n2∥M∥n−1 1

|detM | .

Exercise 5.5

Prove the first part of Lemma 5.8 which states that for any bounded operator A

λ(An) =
(
λ(A)

)n
.

The following fact will be useful. Let α be any complex number and consider the polynomial
factorization

(xn − αn) = (x− α ρ0) · · · (x− α ρn-1) , (5.19)

where {ρl} are the n, n’th roots of unity (ρl := ej
2π
n l).

Solution 5.5

Substitute the operator A in the polynomial (5.19)

(An − λI) =
(
A− λ1/nρ0 I

)
· · ·

(
A− λ1/n ρn-1 I

)
,

where λ1/n is any n’th root of λ. Now this product is not boundedly invertible iff λ1/nρl ∈
λ(A) for some l = 0, . . . , n− 1. Note that for any set C in the complex plane

∃l ∈ {0, 1, . . . , n− 1} , s.t. λ1/nρl ∈ C ⇔ λ ∈ Cn.

We therefore conclude that λ ∈ λ(An) iff one of its n’th roots is in λ(A), which implies that
λ(An) = (λ(A))

n
.

Exercise 5.6

The resolvent equations for the right-shift operator are v =
(
λI−Sr

)−1
w ⇔

(
λI−Sr

)
v = w.

Show that these equations are equivalent to the following recursion, and the solution shown
on the second line.

λv0 = w0

λvt − vt−1 = wt

t ≥ 1
⇔

v0 = 1
λw0

vt+1 = 1
λvt +

1
λwt+1

t ≥ 0
⇔

x0 = 0
xt+1 = 1

λxt + 1
λ2wt

vt = xt +
1
λwt

vt =

t−1∑

l=0

(
1
λ

)t−l (
1
λ2wl

)
+ 1

λwt
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Exercise 5.7

The right and left shift operators on ℓ2(N) are sometimes referred to as “ladder operators”,
or “creation” and “annihilation” operators respectively. To see the justification for this
terminology, consider two operators A and S on a Hilbert space H whose commutator is

[A,S] := AS − SA = αS,

where α ∈ C.

1. Show that if λ is an eigenvalue of A (resp. A∗), then so is λ+ α (resp. λ− α∗).

2. Now suppose α > 0 is real, A > 0 is self-adjoint and is such that its countable eigenvec-
tors {vk} span the Hilbert space H. Arrange the mutually orthonormal eigenvectors
{vk}∞k=0 in ascending order of corresponding eigenvalues. Since they form a basis,
there is an isometric isomorphism V : H → ℓ2(N) which takes any vector in H to the
sequence of its coefficients in the basis.

Show that the right and left shift operators on ℓ2(N) are the representations of S and
S∗ in that basis, i.e.

V SV −1 = Sr, V S∗V −1 = Sl.

Draft: Notes on Linear Algebra and Functional Analysis © July 19, 2024, Bassam Bamieh



168 5.A. Analyticity of the Resolvent

Draft: Notes on Linear Algebra and Functional Analysis © July 19, 2024, Bassam Bamieh



Chapter 6

The Kernel Representation of Linear
Operators

Linear operators on function spaces are abstractions of matrices. They are often defined
abstractly or in terms of their action on functions. For a large class of linear operators
there is also an integral representation, called the kernel representation which often provides
considerable insight into the structure of the operator. The kernel representation can be con-
sidered to be the continuum limit of a matrix representation. Thus, this representation is the
natural generalization of matrix-vector and matrix-matrix multiplication. In the same way
that certain matrix structures (e.g. symmetric, diagonal, rank-one, Toeplitz, etc.) provide
useful insight, the structure of the operator kernel provides similar insights into operators
on function spaces. Several operator norms, such as induced L1 and L∞ norms, as well as
the Hilbert-Schmidt norm have simple expressions in terms of the kernel representation.

6.1 Motivation: Kernels as Continuum Matrices

Recall the basic definition of matrix-vector multiplication. A matrix A : Rn → Rm acting
on a vector u to produce a vector v operates as

vi =

n∑

j=1

Aijuj , i = 1, . . . ,m. ⇔



v1
...
vm


 =



A11 · · · A1n

...
...

Am1 · · · Amn






u1

...
un


 (6.1)

The summation on the left is expressed graphically on the right as each vi obtained from
multiplying each element of the i’th row of A with the corresponding elements of u and then
adding the result up. A matrix is a two dimensional array of numbers which defines a linear
operator on Rn by the operation described above. Similarly we will see that a function of
two variables A(x, ξ) also defines a linear operator on a function space.

Recall that real vectors in Rn can be viewed as real-valued functions (Figure 1.1) on
the set {1, . . . , n}, i.e. as elements of the function space R{1,...,n}. To generalize the oper-
ation (6.1) to a function space RI over any index set I, we need the ability to “sum” over
this index. Assume for the moment that I ⊆ R so we can integrate over it. The counterpart
of (6.1) would be

v(x) =

∫

I

A(x, ξ) u(ξ) dξ, (6.2)
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Figure 6.1: Graphical depiction of the integral operator (6.2) as an abstraction of matrix-vector multipli-
cation. The two-variable kernel function A(x, ξ) is the counterpart of matrix entries, with the coordinate x

as “row index” and ξ as “column index”. The operation v(x) =
∫ 1
-1 A(x, ξ) u(ξ) dξ gives the value of v(x)

at any x (an instance above is depicted by the dashed lines at x = −0.5) as the multiply-then-integrate of
the x’th row of A(., .) with the all the values of u(ξ) viewed as a “column vector”. The case shown above
is for an integral operator on functions defined over the interval [−1, 1]. The unusual choice of the vertical
axis positive direction as downwards is made to be in analogy with matrix rows being indexed from top to
bottom.

where the integration variable ξ plays the same role as the column index j over which
the summation in (6.1) is performed. The two variable function A(., .) is called the kernel
function of the operator A, and the formula (6.2) is called the kernel representation1 of A.

The operation in (6.2) can be regarded as a linear operator A : u 7→ v on some subspace
of the function space RI provided the type of functions u(.) and A(., .) ensure convergence of
the integral. Linearity of the integral operator (6.2) follows immediately from the linearity
of integration

(
A
(
α1u1 + α2u2

))
(x) =

∫

I

A(x, ξ)
(
α1u1(ξ) + α2u2(ξ)

)
dξ

= α1

∫

I

A(x, ξ) u1(ξ) dξ + α2

∫

I

A(x, ξ) u2(ξ) dξ

= α1

(
A
(
u1

))
(x) + α2

(
A
(
u2

))
(x).

The operation (6.2) is depicted in Figure 6.1. The one-variable functions u(ξ) and
v(x) are analogous to “column vectors”, while the two-variable kernel function A(x, ξ) is
analogous to a matrix, i.e. a two-dimensional array. For each x, the value of v(x) is given
by the operation of multiply-then-integrate of the corresponding “row” of A(x, ξ) with the
function u(ξ) in an analogous manner to matrix-vector multiplication.

Just like certain matrix structures encode certain symmetries or properties of the linear
operations they represent, the structure of a kernel encodes important properties of the
operators they represent. Figure 6.2 illustrates the four examples we examine below.

• Toeplitz Operators

A kernel defined from a single variable function a by A(x, ξ) := a(x− ξ) is called Toeplitz.
This is depicted in Figure 6.2a, where the kernel function appears as “constant along
diagonals”. Such a kernel defines a convolution operator as follows

v(x) =

∫
A(x, ξ) u(ξ) dξ =

∫
a(x− ξ) u(ξ) dξ.

1The reader should be careful not to confuse this with the null space of the operator, which is sometimes
referred to as the kernel of the operator. The two concepts are unrelated. To avoid confusion, we will always
use the phrase null space instead of kernel space, and the word “kernel” will only be used to refer to the
above kernel representation.
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(a) A Toeplitz kernel A(., .) is generated from a func-
tion a(.) of a single variable such that A(x, ξ) =
a(x − ξ). This kernel is “constant along diagonals”
in a similar manner to a Toeplitz matrix. Integrat-
ing against this kernel amounts to convolution.

(b) A lower-triangular kernel is such that A(t, τ) =
0 for τ ≥ t. If it operates on time signals, a lower-
triangular kernel is a causal system, i.e. past values
of the output do not depend on future values of the
input.

(c) A diagonal kernel has a “modulated impulse
sheet” A(x, ξ) = δ(x − ξ)a(x) along the diagonal.
This kernel arises in the integral representation of a
multiplication operator so that the expression (6.2)
amounts to v(x) = a(x)u(x).

(d) A rank-1 kernel (also called a tensor product
kernel) is formed from the product of two functions
A(x, ξ) = a(x)b(ξ) (and thus is separable). It is akin
to the outer product of two vectors, and is written
as a tensor product A = a⊗ b of the two functions.

Figure 6.2: Examples and visualizations of integral kernels (6.2) of various operators. A Toeplitz kernel
represents a convolution operator. A lower triangular kernel arises when a time-varying, causal system acts
on temporal signals. Diagonal kernels represent multiplication operators and generalize diagonal matrices.
In particular, the identity operator v(x) = u(x) has an impulse sheet A(x, ξ) = δ(x − ξ) of unit strength
along the diagonal. Rank-1 kernels are formed from the product of two functions and are analogous to
rank-1 matrices formed from the outer product of two vectors.

Thus Toeplitz operators are convolution operators. They have special symmetry proper-
ties where on certain domains they can be characterized by shift invariance.

• Lower-Triangular Operators

Such operators arise when modeling time-varying causal systems. The lower-triangular
property is illustrated in Figure 6.2b, where the kernel is restricted to be zero in the
“upper triangular part” of the (τ, t) plane

A(t, τ) = 0, for τ ≥ t. (6.3)

If u and y are temporal signals over the entire real line, then the lower-triangular property
of the kernel implies that the integral (6.2) has the following limits

y(t) =

∫ ∞

−∞
A(t, τ) u(τ) dτ =

∫ t

−∞
A(t, τ) u(τ) dτ. (6.4)

When t and τ are interpreted as time, then (6.4) is the description of a general time-
varying system mapping u to y that has the causality property, i.e. for any given time
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T , current and past values of the output {y(t); t ≤ T} do not depend on future values of
the input {u(τ); τ > T}.
An alternative way of imposing the lower-triangular condition (6.3) is by using the unit
Heaviside step function h as follows. Given any kernel function A(x, ξ), observe that the
product A(x, ξ)h(x− ξ) becomes a lower triangular kernel

∫ ξ

ξ

(
A(x, ξ)h(x− ξ)

)
u(ξ) dξ =

∫ x

ξ

A(x, ξ) u(ξ) dξ,

since h(x− ξ) = 0 when ξ > x. The above holds regardless of the original upper and
lower integration limits ξ and ξ respectively.

Operators with a lower triangular kernel are sometimes called Volterra operators if the
kernel function is bounded. For Volterra operators acting on function spaces Lp(Ω) where
Ω is compact, these operators have the important property that the Neumann series
converges even if the operator norm is greater than one (Exercise 6.2). This property gives
an iterative scheme for solving certain integral equations involving Volterra operators.

• Diagonal Operators

Operators with diagonal kernels are really multiplication operators. First we should ob-
serve that to implement the identity operator v(x) = u(x) with the operation (6.2), we
must allow the kernel function A(., .) to contain distributions (Dirac delta functions).
Observe that

v(x) =

∫
δ(x− ξ) u(ξ) dξ = u(x).

Any distribution that is supported on the diagonal x = ξ of the (ξ, x) plane represents a
multiplication operator. Such kernels are depicted in Figure 6.2c, where

v(x) =

∫
A(x, ξ) u(ξ) dξ =

∫ (
δ(x− ξ) a(x)

)
u(ξ) dξ = a(x) u(x).

This kernel is visualized as a diagonal impulse sheet that is modulated by the function
a(.). This is a generalization of a diagonal matrix. Multiplication operators are discussed
in detail in Chapter ??.

• Rank-1 (Tensor Product) Operators

Given any function space, and two functions a and b in that space, we can form an
operator from the “separable product” of those functions as follows

A(x, ξ) := a(x) b(ξ). (6.5)

This is akin to the outer product of two vectors. If a and b were vectors in Rn, then the
rank-1 matrix A = ab∗ has as its ij’th entry

Aij = ai bj .

This expression should be compared with (6.5) where the role of the row index i is played
by the variable x, while the column index j is analogous to ξ.

If the function space is also an inner product space (with the usual inner product), then
the action of this operator v = Au can be expressed as follows

v(x) =

∫
A(x, ξ) u(ξ) dξ ⇔ v(x) =

∫
a(x) b(ξ) u(ξ) dξ = a(x)

∫
b(ξ) u(ξ) dξ

⇔ v = a ⟨b , u⟩ .
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Thus the image space of A is the one-dimensional subspace spanned by the vector a. This
justifies calling this a rank-1 kernel. We note here that in a general Hilbert space, we can
define the tensor product of two vectors a and b as a linear operator on that same Hilbert
space as follows

(a⊗ b)u := a ⟨b , u⟩ .
This is an abstract definition in terms of the inner product. For function spaces, this
definition amounts to the expression (6.5) for the kernel of the operator.

Figure 6.2d shows an example of a rank-1 kernel. It is often not easy to visually discern
from the shape of the kernel whether it is a rank-1 kernel or not.

Kernel representations of linear dynamical systems will be examined in some detail later
in Chapter ?? where causality, time invariance, and time periodicity properties of such
systems will be studied.

6.2 Basic Properties: Compositions and Adjoints

Let Ωm ⊆ Rm and Ωn ⊆ Rn be two domains over which function spaces are defined. For
simplicity, assume the functions to be real valued, i.e. the function spaces are RΩm and RΩn .
Consider a linear operator A : RΩm −→ RΩn defined in terms of its kernel representation

v = A u ⇔ v(x) =

∫

Ωm

A(x, ξ) u(ξ) dξ, x ∈ Ωn. (6.6)

The type of functions A(., .) that produce well-defined operators will be discussed later as it
depends on which class of functions u and v belong to. For now, we examine structural prop-
erties, and assume the function classes have been chosen so that all integrals are convergent
and all manipulations are allowed.

Addition and Composition of Operators

Given two operators A and B in terms of their respective kernel functions, it is easy to see
that the operator sum C := A+B has as its kernel function C(x, ξ) = A(x, ξ) +B(x, ξ)

v =
(
A+B

)
u = Au + Bu

v(x) =

∫
A(x, ξ) u(ξ) dξ +

∫
B(x, ξ) u(ξ) dξ =

∫ (
A(x, ξ) +B(x, ξ)

)
u(ξ) dξ.

Therefore, under addition, kernel functions behave just like matrix-matrix addition which
is element-by-element.

Another intuitive property of kernel representations is that they can be composed in a
manner similar to matrix-matrix multiplication. Let A : u 7→ v and B : v 7→ w be two
operators with kernel representations

v(x) =

∫
A(x, ξ) u(ξ) dξ, w(x) =

∫
B(x, ξ) v(ξ) dξ.

Define a third operator as the composition C := BA : u 7→ w, and calculate its kernel
representation from those of A and B as follows

w(x) =

∫
B(x, ξ) v(ξ) dξ =

∫
B(x, ξ)

(∫
A(ξ, r) u(r) dr

)
dξ

=

∫ (∫
B(x, ξ) A(ξ, r) dξ

)
u(r) dr =

∫
C(x, r) u(r) dr.
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Figure 6.3: A graphical depiction of the composition of two operators C = BA as the integral oper-
ation (6.7) on their respective kernels. This operation is akin to matrix-matrix multiplication as shown
above. The value of the kernel C at a point (x̄, r̄) is obtained from integrating the “row” B(x̄, .) against the
“column” A(., r̄).

Thus the kernel of the composition C = BA is obtained from the formula

C(x, r) =

∫
B(x, ξ) A(ξ, r) dξ, (6.7)

which looks like matrix-matrix multiplication except for integration instead of summation.
Each “row” B(x, .) of the kernel of B is integrated against each “column” A(., r) of the
kernel of A. The composition operation (6.7) is depicted graphically in Figure 6.3. The
reader should compare this visually with the usual matrix-matrix multiplication.

Matrix-valued Kernels

The notation we are using applies without modification to the case of operators acting
on vector-valued functions. Let u : Ω → Rn be a vector-valued function. The space of all
such functions is (Rn)

Ω
. An operator mapping m-vector-valued functions to n-vector-valued

functions A : (Rm)
Ω → (Rn)

Ω
(here we assumed the functions to have the same domain Ω

so as not to clutter the notation) has a kernel representation

v(x) =

∫

Ω

A(x, ξ) u(ξ) dξ, x ∈ Ω,

where for each (x, ξ), A(x, ξ) is an n×m matrix. We call such a function A(., .) a matrix-
valued function for the obvious reason. Notice that at each ξ, the n-vector A(x, ξ)u(ξ)
is obtained by multiplying the m-vector u(ξ) with the n × m matrix A(x, ξ). Thus, we
can use the same notation for scalar-valued and vector-valued functions without explicitly
indicating the vector dimensions. The reader should verify that the addition and composition
properties verified in the previous paragraphs are valid for vector-valued functions and
matrix-valued kernels provided all the dimensions are compatible.

Adjoints

The adjoint of an operator is the generalization of the concept of the matrix transpose. If
the reader is not familiar with this notion, then the following two paragraphs should be
read after becoming familiar with adjoints as described in Chapter 4. For readers with
some familiarity with the concept, recall that the adjoint of a matrix is its transpose (or
complex conjugate transpose in the case of complex matrices). If a linear operator A has
kernel A(x, ξ), we will show that the kernel of its adjoint A† is simply A†(x, ξ) = A∗(ξ, x).
Thus, if the kernel is real-valued, then the kernel of the adjoint is obtained from the original
kernel by “flipping” the two arguments x and ξ. This is analogous to transposing a matrix
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by flipping the row and column index. If the kernel is matrix-valued, then in addition to
flipping the arguments, we also take complex-conjugate transpose at each (x, ξ) as well.
This is analogous to transposing block-structured matrices.

To demonstrate the previous statement, we start from the definition of the adjoint of an
operator on a function space and work through the kernel representation. Starting from the

definition
1
= below and working outwards

∫

Ωn

v∗(x)

(∫

Ωm

A(x, ξ) u(ξ) dξ

)
dx = ⟨v , Au⟩ 1

=
〈
A†v , u

〉
=

∫

Ωm

(
A†v

)∗
(x) u(x) dx

=

∫

Ωm

(∫

Ωn

A∗(x, ξ) v(x) dx

)∗
u(ξ) dξ

In order for the two expressions to be equal for all test functions u, we see that (after
relabeling the integration variables) the action of A† is given by

(
A†v

)
(x) =

∫
A∗(ξ, x) v(ξ) dξ ⇒ A†(x, ξ) = A∗(ξ, x). (6.8)

Dyadic Decompositions

Recall that the diagonalization of a (diagonalizable) matrix A can be expressed as the
“dyadic decomposition” (7.8)

Au =

n∑

i=1

λi ⟨wi , u⟩ vi ⇔ A =

n∑

i=1

λi viw
∗
i (6.9)

where v and w are the eigenvectors of A and A∗ respectively. The expression on the right
is the same as that on the left, but expressed in terms of the outer products viw

∗
i , each of

which is a rank-1 square matrix. A dyadic decomposition therefore expresses a diagonalizable
matrix as a linear combination of rank-1 matrices.

As already seen in the rank-1 kernel example (6.5), the counterpart of rank-1 operators
are given by the tensor product of two vectors. Assume for simplicity that we are in the
setting of a Hilbert space H which is also a function space. The tensor product of two
elements a, b ∈ H is a bounded operator on H defined by

(a⊗ b)u := a ⟨b , u⟩ ⇔
(
(a⊗ b)u

)
(x) :=

(∫
b(ξ) u(ξ) dξ

)
a(x).

Thus the kernel function of the rank-1 operator a⊗ b is given by the “outer product” of the
two functions

(
a⊗ b

)
(x, ξ) = a(x) b(ξ). (6.10)

Recall that an operator A on a Hilbert space with a purely discrete spectrum can be
decomposed similarly to (6.9), but with a potentially infinite sum

A =

∞∑

k=1

λk

(
vk ⊗ wk

)
, (6.11)

where λk are the eigenvalues of A, and vk and wk are the eigenfunctions of A and A∗

respectively. Thus the outer product of two eigenvectors in (6.9) is replaced by the tensor
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Figure 6.4: (Left) The first four eigenfunctions of the second derivative operator ∂2x on L2[−1, 1] with zero
Dirichlet boundary conditions (ψ(±1) = 0). (Right) The kernel function of the inverse of ∂2x (with those
boundary conditions) generated from the dyadic expansion (6.13).

product of two eigenfunctions here. From the explicit expression (6.10) for a rank-1 kernel,
we can write a summation formula for the kernel of A based on the expansion (6.11)

A(x, ξ) =

∞∑

k=1

λk vk(x)wk(ξ). (6.12)

Thus the kernel of A is a weighted sum of rank-1 kernels made up of the outer products of
eigenfunctions of A and A∗.

As an example, consider the differential operator A = ∂2
x on L2[−1, 1] with zero Dirichlet

boundary conditions. Its eigenfunctions and eigenvalues are known to be

vk(x) =

√
3

2

1

πk
sin
(
k
π

2
(x+ 1)

)
, λk = −π2

4
k2, k = 1, 2, . . .

It can be shown that this is a self-adjoint operator, and thus the eigenfunctions w of its
adjoint are the same as those shown above, and the expression for its kernel would be

A(x, ξ) =

∞∑

k=1

λk vk(x)vk(ξ).

However, this series is not convergent since λk is unbounded. This was to be expected
since ∂2

x is an unbounded operator. It is also a differential operator and its kernel function
contains distributions. We therefore would not expect this series expansion to be convergent
in a standard sense.

On the other had, the inverse of this operator is indeed a bounded operator with eigen-
values of 1/λk, and with the same eigenfunctions. Let A-1(x, ξ) be the kernel function of
the inverse of ∂2

x with the given boundary conditions. The expansion for this kernel is

A-1(x, ξ) =

∞∑

k=1

1

λk
vk(x)vk(ξ) = −

∞∑

k=1

4
π2k2

3
2π2k2 sin(πk

2 (x+1)) sin(πk
2 (ξ+1)), (6.13)

which is a convergent series. Figure 6.4 illustrates the shape of this kernel.
The above construction can be used to derive the kernel representation of many operators

(and functions of those operators) for which the eigenfunctions can be calculated either
analytically or numerically.

6.3 Boundedness and Operator Norms

Recall that certain matrix norms are easy to express in terms of the matrix entries. For
example, the ℓ1 and ℓ∞ induced norms are the “max column sum” and “max row sum”
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respectively, while the Frobenius norm is the sum of the squares of all entries. These
norms stand in contrast with the ℓ2 (Euclidean) induced norm. The latter is the maximum
singular value and cannot be immediately calculated from the entries. Similarly, on function
spaces, the L1 and L∞ induced norms can be calculated from the kernel as max column and
row integrals respectively. The counterpart of the Frobenius norm is the so-called Hilbert-
Schmidt norm, which is simply the squared integral of the kernel in analogy with the sum
of the squares of matrix entries.

6.3.1 Lp-induced Norms

Consider again the setting (6.6) of function spaces over subsets of Rn and Rm

v(x) =

∫

Ωm

A(x, ξ) u(ξ) dξ, x ∈ Ωn. (6.14)

where the functions u and v are in Lp(Ωm) and Lp(Ωn) respectively for p ∈ [1,∞]. We want
to find conditions on the kernel A(., .) to ensure that the operator has bounded Lp-induced
norm. It is not difficult to show that if the domains Ωm and Ωn are compact, and if A(., .)
is bounded, then the operation (6.14) defines a bounded operator on any of the Lp spaces.
However, we would like a more detailed condition which gives the actual induced norms.
For this, we first consider the two extreme cases of the L∞-induced and L1-induced norms.
In the calculations below, the key step is the following bound for any two functions f and g

∫ ∣∣∣f(x)
∣∣∣
∣∣∣g(x)

∣∣∣ dx ≤
∫ ∣∣∣f(x)

∣∣∣
(
sup
x

∣∣∣g(x)
∣∣∣
)
dx =

∫ ∣∣∣f(x)
∣∣∣ dx

(
sup
x

∣∣∣g(x)
∣∣∣
)

⇒ ∥fg∥1 ≤ ∥f∥1∥g∥∞,

and note that the roles of f and g can be reversed if the respective norms are finite.
In the case of L∞ norms on u and v, we can calculate the following bound2

|v(x)| =
∣∣∣∣
∫

Ωm

A(x, ξ) u(ξ) dξ

∣∣∣∣ ≤
∫

Ωm

|A(x, ξ)| |u(ξ)| dξ

≤
∫

Ωm

|A(x, ξ)|
(

sup
ξ∈Ωm

|u(ξ)|
)

dξ =

(∫

Ωm

|A(x, ξ)| dξ
)(

sup
ξ∈Ωm

|u(ξ)|
)

⇒ ∥v∥∞ = sup
x∈Ωn

|v(x)| ≤
(

sup
x∈Ωn

∫

Ωm

|A(x, ξ)| dξ
)
∥u∥∞. (6.15)

This bound can be interpreted as the “max-row-integral” of A(., .) by regarding ξ and x as
the “column” and “row” indices respectively. The fact that this bound is tight follows from
a standard argument; the function ū that almost achieves this upper bound is

ū(ξ) = sign (A(x̄, ξ)) ,

with x̄ chosen where the supremum in (6.15) is almost achieved.
The calculation for the L1-induced norm proceeds as follows

∥v∥1 =

∫

Ωn

|v(x)| dx =

∫

Ωn

∣∣∣∣
∫

Ωm

A(x, ξ) u(ξ) dξ

∣∣∣∣ dx

≤
∫

Ωn

∫

Ωm

|A(x, ξ)| |u(ξ)| dξ dx =

∫

Ωm

(∫

Ωn

|A(x, ξ)| dx
)
|u(ξ)| dξ

≤
(

sup
ξ∈Ωm

∫

Ωn

|A(x, ξ)| dx
)∫

Ωm

|u(ξ)| dξ =

(
sup
ξ∈Ωm

∫

Ωn

|A(x, ξ)| dx
)
∥u∥1. (6.16)

2The term “bounded” here means “essentially bounded”, and “supremum” means “essential supremum”.
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This bound can be interpreted as “max-column-integral” of A(., .). The tightness of the
bound can be ascertained as follows; the function ū that almost achieves the bound is an
approximation to the dirac delta function δ(ξ−ξ̄) centered at ξ̄ where the supremum in (6.16)
is almost achieved.

The above calculations show that the L1- and L∞-induced norms can be directly com-
puted from the kernel representation of the operator. For other Lp-induced norms, such a
direct calculation is not typically possible, but one can bound the Lp-induced norms using
the two extreme cases of p = 1 and p = ∞. For this we need the so-called Riesz-Thorin
Convexity Theorem which we state for the special case of Ωm = Ωn = Ω for simplicity.

Theorem 6.1 (Riesz-Thorin). Let Ω be a measure space and let A be a bounded linear
operator on L1(Ω) and L∞(Ω) with induced norms ∥A∥1-i and ∥A∥∞-i respectively. Then A
is bounded on Lp(Ω) for all p ∈ [1,∞]. Furthermore

∥A∥p-i ≤ ∥A∥1/p1-i ∥A∥
1−1/p
∞-i .

In particular

∥A∥2-i ≤
√
∥A∥1-i ∥A∥∞-i.

Combining this theorem with the calculations above, we arrive at the following.

Theorem 6.2. Consider the kernel representation (6.14) of an operator A defined on the
function spaces Lp(Ω).

1. The L∞-induced norm of A is the “max-row-integral” of A:

∥A∥∞-i = sup
x∈Ω

∫

Ω

∣∣∣A(x, ξ)
∣∣∣ dξ =: ∥A∥mri.

2. The L1-induced norm of A is the “max-column-integral” of A:

∥A∥1-i = sup
ξ∈Ω

∫

Ω

∣∣∣A(x, ξ)
∣∣∣ dx =: ∥A∥mci.

3. If the above two quantities are finite, then A is also bounded on Lp for all p ∈ [1,∞]
with induced norm

∥A∥p-i ≤ ∥A∥1/p1-i ∥A∥
1−1/p
∞-i .

In particular, the above theorem gives a condition for L2 boundedness. We refer the
reader to Exercise 6.3 for an alternative condition for L2 boundedness which uses a more
direct argument for that particular case.

Finally we point out that all of the above is equally true for the sequence spaces ℓp(Ω),
where Ω ⊆ Zn is a subset of the integer lattice. All of the calculations above hold for this
case by simply replacing dx and dξ with counting measure on Ω ⊆ Zn, and the integrals
become sums.

Application to LTI Systems (Toeplitz Kernels)

It is illuminating to see the implications of the above result to the kernel representation of
an LTI system. Let G(., .) be the kernel function of a general linear time varying system.
Theorem 6.2 gives conditions for the Lp boundedness (aka Lp-stability) of the system G.
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Note that the standard definition of Bounded Input Bounded Output (BIBO) stability is
exactly L∞-stability.

In the special case that G is time invariant, the kernel G(., .) is Toeplitz. For Toeplitz
kernels, the “max-row-integral” and “max-column-integral” are equal, and are in fact equal
to the L1 norm of the impulse response. More precisely, when G is Toeplitz, then

G(t, τ) = g(t− τ),

and we can easily show that

∥G∥∞-i = sup
-∞<t<∞

∫ ∞

-∞

∣∣∣G(t, τ)
∣∣∣ dτ = sup

-∞<t<∞

∫ ∞

-∞

∣∣∣g(t-τ)
∣∣∣ dτ =

∫ ∞

-∞

∣∣∣g(τ)
∣∣∣ dτ

∥G∥1-i = sup
-∞<τ<∞

∫ ∞

-∞

∣∣∣G(t, τ)
∣∣∣ dt = sup

-∞<τ<∞

∫ ∞

-∞

∣∣∣g(t-τ)
∣∣∣ dt =

∫ ∞

-∞

∣∣∣g(t)
∣∣∣ dt

The convexity theorem then implies that for LTI systems, the finiteness of the L1 norm of
the impulse response is a sufficient condition for Lp-stability for all p ∈ [0,∞]. This is the
often stated condition for BIBO (i.e. L∞-) stability. The above calculations shows that
BIBO stability is equivalent to L1-stability, and is a sufficient (but not necessary) condition
for Lp-stability for all p ∈ [1,∞].

The above calculation also gives a bound on the Lp-induced norm (for any p ∈ [1,∞]) in
terms of the L1 norm of the impulse response

∥G∥p-i ≤ ∥G∥1/p1-i ∥G∥
1−1/p
∞-i = ∥g∥1/p1 ∥g∥1−1/p

1 = ∥g∥1. (6.17)

At this point it is important for the reader not to confuse the induced norms of systems,
the norms of signals, and the norms of the impulse response representations of systems. For
example, ∥G∥∞-i above is the L∞-induced norm of the system G. It turns out to be equal
to the L1 norm ∥g∥1 of its impulse response when regarded as a signal. Those two are also
distinct from norms of signals that the system G operates on.

6.3.2 The Trace and the Hilbert-Schmidt Norm

The trace of a square matrix is easily computed from its entries as the sum of the diagonal
entries. It is also the sum of the eigenvalues. Thus, while each individual eigenvalue may
not be easily computable from the matrix entries, the sum of the eigenvalues is. Given a
linear operator A on a function space RΩ and its kernel representation A(., .), we define the
trace in an analogous manner to matrices by integrating the kernel along its “diagonal”

tr(A) :=

∫

Ω

A(x.x) dx. (6.18)

Unlike the matrix trace however, this quantity may be infinite for some operators. An
operator with finite trace is called a trace class operator. When the kernel is matrix valued,
we adopt the following natural definition

tr(A) :=

∫

Ω

tr
(
A(x.x)

)
dx, (6.19)

where the trace of the integrand is the usual matrix trace.
An important property of the matrix trace is that tr(AB) = tr(BA). A similar formula

holds for operators whose kernels can be integrated as below with convergent integrals

tr(AB) =

∫

Ω

tr
((

AB
)
(x, x)

)
dx =

∫

Ω

tr

(∫

Ω

A(x, r)B(r, x) dr

)
dx,

tr(BA) =

∫

Ω

tr
((

BA
)
(x, x)

)
dx =

∫

Ω

tr

(∫

Ω

B(x, r)A(r, x) dr

)
dx.
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These two quantities are equal as can be seen by interchanging the matrix trace with inte-
gration, and applying the matrix result tr(A(x, r)B(x, r)) = tr(B(x, r)A(x, r)).

To see that the operator trace is also the sum of the eigenvalues, assume for simplic-
ity that an operator A has a discrete spectrum and the expansion (6.12). Applying the
integration formula (6.18) to (6.12) we see that

tr(A) =

∫

Ω

∞∑

k=1

λk vk(x)wk(x) dx =

∞∑

k=1

λk

∫

Ω

vk(x)wk(x) dx =

∞∑

k=1

λk. (6.20)

Note that the product vkwk integrates to 1 since {vk} and {wk} are dual bases. Since the
trace is the sum of the eigenvalues, we see that for some operators, the series (6.20) may
not be summable, and this corresponds to when the kernel function is not integrable (6.19)
along the diagonal.

The Hilber-Schmidt Norm

Now recall that the Frobenius norm (squared) of a matrix A is the sum of squares of its
entries, which is also the trace of AA∗, which in turn is the sum of squares of the singular
values of A

∥A∥2F :=
∑

ij

|Aij | = tr(AA∗) =
∑

k

λk (AA∗) =
∑

k

σ2
k (A) . (6.21)

Consider an operator A on a function space RΩ with a kernel representation A(., .). We can
similarly define the generalization of the Frobenius norm as the Hilbert-Schmidt (HS) norm
of the kernel

∥A∥2HS :=

∫

Ω

∫

Ω

∥A(x, ξ)∥2F dx dξ =

∫

Ω

∫

Ω

tr
(
A(x, ξ)A∗(x, ξ)

)
dx dξ. (6.22)

Note that this formula is written for the general case of a matrix-valued kernel, where the
trace in the integrand is the matrix trace.

The HS norm is also equal to tr
(
AA†) as can be seen from applying the composition

formula for kernels

tr
(
AA†) =

∫

Ω

tr
( (

AA†) (x, x)
)

dx =

∫

Ω

tr

(∫

Ω

A(x, r)A†(r, x) dr

)
dx

=

∫

Ω

∫

Ω

tr
(
A(x, r)A∗(x, r)

)
dr dx = ∥A∥2HS .

Note that the value of the kernel
(
AA†) (x, x) at each point (x, x) on the diagonal is equal

to the integral of the kernel A (squared) over the x’th row. Thus integrating
(
AA†) (x, x)

over x integrates the kernel A (squared) over all rows and columns. Alternatively, the
value

(
A†A

)
(x, x) is the integral of the kernel A (squared) over the x’th column, and then

integrating that over x yields the HS norm. The reader should recall that tr
(
AA†) =

tr
(
A†A

)
.

Since the operator trace is also the sum of the eigenvalues for an operator with a discrete
spectrum, we can now make a similar conclusion to (6.21) for such operators

∥A∥2HS :=

∫

Ω

∫

Ω

∥A(x, ξ)∥2F dx dξ = tr
(
AA†) =

∑

k

λk

(
AA†) =

∑

k

σ2
k (A) . (6.23)

Thus we see that an operator has finite Hilbert-Schmidt norm iff its singular values (the
square roots of the eigenvalues of AA†) form an ℓ2 sequence, or equivalently, when the
eigenvalue sequence of AA† is an ℓ1 sequence.
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Finally we recall that the space of n×n matrices is an inner product space (of dimension
n2) with the inner product

⟨A , B⟩ := tr(A∗B) .

This inner product induces the Frobenius norm since ∥A∥2F = ⟨A , A⟩. Similarly, observe
that the expression (6.22) is the square of the L2(Ω×Ω) norm3 of the two-variable function
A(., .). Thus we can identify the set of all HS operators with the function space L2(Ω× Ω)
which has the inner product

⟨A , B⟩HS :=

∫

Ω

∫

Ω

tr
(
A∗(x, ξ) B(x, ξ)

)
dx dξ = tr

(
A†B

)
.

This inner product induces the HS norm since ⟨A , A⟩HS = ∥A∥2HS. In addition, the Cauchy-
Schwartz inequality for L2(Ω× Ω) implies the following inequality

⟨A , B⟩HS = tr
(
A†B

)
≤ ∥A∥HS ∥B∥HS .

Thus the composition A†B of two HS operators A† and B is a trace class operator, with its
trace bounded by the product of the two HS norms. Note that the composition of two HS
operators, while is trace class, is not necessarily HS. This is similar to the the product of
two L2 functions being in L1, but not necessarily in L2.

The reader should recall that the set of bounded operators on a Hilbert space (or any
Banach space) is itself a Banach space with the induced norm. Hilbert-Schmidt operators
are special in the sense that they can be endowed with an inner product, and thus be made
into a Hilbert space, which has much more structure than a general Banach space. The
Hilber-Schmidt norm however is not an induced operator norm, and therefore has limited
utility especially when it comes to norm bounds and sensitivity and robustness calculations.

Exercises

Exercise 6.1

Consider the following two differential operators

(Au)(x) := a2(x) u
′′(x) + a1(x) u

′(x) + a0(x) u(x),

(Bu)(x) :=
(
a2(x) u(x)

)′′
+
(
a1(x) u(x)

)′
+ a0(x) u(x).

Show that their kernel representations are

A(x, ξ) = a2(x) δ
′′(x− ξ) + a1(x) δ

′(x− ξ) + a0(x) δ(x− ξ),

B(x, ξ) = a2(ξ) δ
′′(x− ξ) + a1(ξ) δ

′(x− ξ) + a0(x) δ(x− ξ).

Exercise 6.2

Consider a Volterra (lower triangular) operator on Lp([a, b]) of the form

y = Au ⇔ y(t) =

∫ b

a

A(t, τ) u(τ) dτ, t, τ ∈ [a, b],

where A(., ., ) is lower triangular (i.e. A(t, τ) = 0 for τ > t), and uniformly bounded

sup
t,τ∈[a,b]

|A(t, τ)| = Ā < ∞.

3More explicitly, we should write LRn×n (Ω×Ω) when the kernelA(., .) is matrix valued. This is suppressed
for simplicity of notation.
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1. Show that A is a bounded operator on L1([a, b]), on L∞([a, b]) and on Lp([a, b]) for all
p ∈ [1,∞].

2. Let Ak(., .) be the kernel function of the operator Ak (A composed with itself k times).
Show by induction (on k) that the following bound holds

∣∣Ak(t, τ)
∣∣ ≤ Āk 1

(k − 1)!
|t− τ |k−1

, t, τ ∈ [a, b].

3. Show that the Lp-induced norms of Ak (for p ∈ [1,∞]) are all bounded by

∥∥Ak
∥∥
p−i

≤ Ā

(
|b− a| Ā

)k−1

(k − 1)!

4. By recalling the fact that the sequence αk/k! converges to zero for any number α,
show that the Neumann series (I −A)−1 =

∑∞
k=0 A

k converges (in Lp-induced norm)
for the Volterra operator described above.

5. Find a bound on
∥∥(I −A)−1

∥∥.
Hint: It will involve the exponential function.

Exercise 6.3

Provide a direct proof that when Ω is compact, the boundedness of the kernel function
A(., .) on Ω is sufficient to ensure the boundedness of the operator A it represents on L2(Ω).
This can be done with a similar set of bounds (though not tight) to those in the calculations
for (6.15) and (6.16).

Solution 6.3

L2-induced norm bounds in terms of the kernel function A(., .) can be derived as follows

∥v∥2 =

∫

Ω

|v(x)|2dx =

∫

Ω

∣∣∣∣
∫

Ω

A(x, ξ) u(ξ) dξ

∣∣∣∣
2

dx

≤
∫

Ω

∫

Ω

|A(x, ξ)|2|u(ξ)|2 dξ dx ≤
∫

Ω

(
sup
ξ∈Ω
|A(x, ξ)|2

)(∫

Ω

|u(ξ)|2dξ
)
dx

≤ |Ω| sup
x,ξ∈Ω

|A(x, ξ)|2 ∥u∥2, (6.24)

where |Ω| is the measure of Ω (which is finite by the compactness assumption). Note that
the first inequality is a consequence of Jensen’s inequality.

Note that in contrast to the L∞ and L1 cases, the above bound is not tight. The L2-
induced norm is the supremum of the singular values of A, which are difficult to compute
directly from the function A(., .) in general. This is in complete analogy with the matrix
case where the singular values can not be seen immediately from the entries of the matrix.

In the case that Ω is not compact, we can rework the last step before inequality (6.24)
as follows

∥v∥2 ≤ ∥u∥2
∫

Ω

(
sup
ξ∈Ω
|A(x, ξ)|2

)
dx.
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Thus the integral on the right can be used as a bound in the non-compact Ω case. This is
however not a good bound. To see that, assume the kernel A(., .) is Toeplitz, then

sup
ξ∈Ω
|A(x, ξ)|2 = sup

ξ∈Ω
|a(x− ξ)|2 = ∥a∥2∞ ,

and the integral of that constant over the non-compact set Ω will be divergent. Thus this
bound is infinite for any Toeplitz operator over a non-compact set Ω, while there are many
cases of such Toeplitz operators that have a finite L2(Ω)-induced norms.
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Chapter 7

Matrix/Operator Partitions

A vector space can be constructed as the direct sum of several vector spaces, each of which
can then be viewed as subspace of the overall vector space. The structure of a vector space
can be analyzed by decomposing it as the direct sum of several of its subspaces. Similarly, a
linear operator can usually be understood in detail by examining how it acts on each of the
individual subspaces. Various canonical decompositions of matrices and operators, such as
the eigenvalue decomposition, the singular value decomposition and others can be described
using the language of decomposition over certain subspaces. Other constructions, such as
the Schur complement, can also be easily understood in this setting.

This geometric view is nicely complemented using the algebraic notion of matrix and
operator partitions. These are conformable partitions of a matrix into “blocks” of matrices,
each corresponding to the action of a matrix on a subspace. Thus, conformable partitioning
of matrices and operators is a useful tool for synthesizing algebraic and geometric intuition
in linear algebra. In certain instances, rather compact arguments can be provided using this
technique.

Introduction: Matrix Partitions Notation

An example of conformably partitioned matrices is the following. Let H and G be matrices
with dimensions such that the product HG makes sense. Suppose H is partitioned in 2× 2
blocks and G in 2× 1 blocks as

HG =

[
H11 H12

H21 H22

] [
G1

G2

]
=

[
H11G1 +H12G2

H21G1 +H22G2

]
.

For this to make sense, the relative partitions of H and G have to be so that all the products
make sense, i.e. they should be conformable partitions (e.g. the number of rows of G1 is
equal to the number of columns of H11 and H21). The utility of this is that we can multiply
H and G as if they were a 2× 2 and 2× 1 matrices respectively. Care must be taken with
the order of multiplication though since the elements of the block partitioned matrices do
not commute (since they are matrices themselves).

Matrix-Vector Products

A matrix-vector product has at least two interpretations which can be arrived at by con-
sidering either column or row partitioning of the matrix. Begin with the product x = Tz

185
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with T partitioned columnwise to observe

[
x

]
=

[
T1 · · · Tn

]

z1
...
zn


 =

[
T1

]
z1 + · · · +

[
Tn

]
zn, (7.1)

which can be interpreted as writing the vector x as a linear combination of the vectors
T1, · · · , Tn, each being multiplied by the scalar coefficients z1, · · · , zn. This observation
has two uses

• If each zi ranges over all possible scalars, then the above simply states that all possible
resulting vectors x are in span {T1, · · · , Tn}. This is another way of seeing that the
image space of T is its column span.

• If T is square and non-singular, i.e. {T1, · · · , Tn} is a full linearly independent set of
vectors, then the product x = Tz can be regarded as expanding the vector x in the basis
made up of the columns of T . The corresponding zi’s are then the expansions coefficients,
which can be obtained directly from z = T−1x.

An example of the change of basis interpretation is for a linear differential equation ẋ(t) =
Ax(t). With the state transformation x(t) =: Tz(t), the differential equation becomes
ż(t) =

(
T−1AT

)
z(t). The new state variables zi(t) should be interpreted as the time-

varying coefficients of the expansion of x(t) in the basis {T1, · · · , Tn}
[
x(t)

]
=

[
T1

]
z1(t) + · · · +

[
Tn

]
zn(t),

The second interpretation of matrix-vector products arises from row partitioning of the
matrix in a product like w = Mv as follows



w1
...

wn


 =




M∗
1
...

M∗
n



[
v

]
=



M∗

1 v
...

M∗
nv


 ,

where we have denoted the rows of M by M∗
i (equivalently Mi are the columns of M∗).

Each entry of the vector w is then wi = M∗
i v, namely the inner product of v with each of

the columns of M∗.

Matrix Products as Inner and Outer Vector Products

In a similar manner to matrix-vector products, matrix-matrix products can be given mul-
tiple interpretations. Given any two matrices H and G with compatible dimensions, the
product matrix HG can be thought of in at least two ways. The standard definition of
matrix multiplication involves partitioning H into rows and G into columns, and defining
the product as

HG =




H∗
1
...

H∗
n



[
G1 · · · Gq

]
=



H∗

1G1 · · · H∗
1Gq

...
...

H∗
nG1 · · · H∗

nGq


 ,

i.e. the ij’th scalar element of HG is the inner product of the i’th column of H∗ with the
j’th column of G.
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A second interpretation arises from partitioning H into columns and G into rows

HG =

[
H1 · · · Hm

]


G∗
1
...

G∗
m


 =

[
H1

]
[ G∗

1 ] + · · ·+
[
Hm

]
[ G∗

m ]. (7.2)

Viewed this way, HG is expressed as the sum of m outer products of corresponding columns
of H and G∗. Each of those outer products is a rank-1 matrix. Such rank-1 matrices are
simple objects whose properties can be completely characterized and understood1. This
point of view is most useful when a given matrix A is written as the product of several
matrices with special properties. We can then interpret this as a rank-1 decomposition of A.
Several notions such as the diagonalization of a matrix and the Singular Value Decomposition
(SVD) can be understood as various types of rank-1 decompositions. These notions are easily
generalizable to operators on infinite dimensional spaces.

Eigenvalue/vector Decomposition

Partition notation is particularly useful to illustrate the connections between the concepts
of eigenvalues/eigenvectors and that of diagonalization. Assume that an n×n matrix A has
n eigenvalues {λi} with corresponding eigenvectors {vi} that can be chosen to be linearly
independent2. We thus have the following relations

Avi = λivi, i = 1, . . . , n,

with the set {vi} being linearly independent (note that the eigenvalues need not be distinct).
It is an elementary, but powerful observation that these n matrix-vector relations can be
rewritten as the following single matrix equation

[
Av1 · · · Avn

]
=

[
λ1v1 · · · λnvn

]

⇕

 A



[
v1 · · · vn

]
=

[
v1 · · · vn

]

λ1

. . .

λn


 (7.3)

⇕
AV = V Λ, (7.4)

where V is a matrix whose columns are the eigenvectors of A, and Λ is the diagonal matrix
made up of the eigenvalues of A. Equation (5.3) states that V is the similarity transformation
that diagonalizes A

A = V ΛV −1. (7.5)

This actually proves that a matrix is diagonalizable iff it has a full set of eigenvectors3

(regardless of the eigenvalues). The diagonalizing similarity transformation V in (7.5) is the

1A rank-1 matrix can also be interpreted geometrically as a projection on a 1-dimensional subspace. This
provides useful geometric intuition.

2This statement is equivalent to several other well-known characterizations. Amongst them is that (i) the
matrix is diagonalizable, (ii) the Jordan form contains no non-trivial Jordan blocks, or (iii) the geometric
multiplicity of each eigenvalue is equal to its algebraic multiplicity.

3A full set of eigenvectors means a set of linearly independent eigenvectors that span the whole space (in
finite dimensions, this means that we have n linearly independent eigenvectors for an n × n matrix). The
choice of eigenvectors will not be unique of there are eigenvalue multiplicities.

Draft: Notes on Linear Algebra and Functional Analysis © July 19, 2024, Bassam Bamieh



188

non-singular matrix made up of the eigenvectors of A as its columns. Thus diagonalizing a
matrix or an operator is equivalent to finding all of its eigenvalues and eigenvectors.

Equation (7.5) can also be given an interpretation as a rank-1 decomposition of A as
follows. LetW ∗ := V −1 (or equivalentlyW := V −∗), and observe that (7.5) can be rewritten
as

A =

[
v1 · · · vn

]

λ1

. . .

λn






w∗
1
...
w∗

n




= λ1

[
v1

][
w∗

1

]
+ · · ·+ λn

[
vn

][
w∗

n

]
=

n∑

i=1

λi viw
∗
i . (7.6)

This is a rank-1 decomposition of A, namely into n rank-1 matrices made up of outer prod-
ucts of the respective columns of V and V −1 scaled by the respective eigenvalues. A rank-1
matrix has a geometrical interpretation as a projection, and therefore this decomposition
can be geometrically interpreted as decomposing A into n (possibly oblique) projections.

When the eigenvectors {vi} are not mutually orthogonal, there is no direct way to obtain
V −1 from V . However, there are important relationships between the columns of V (the
eigenvectors of A) and the columns W := V −∗ (which are the rows of V −1) :

1. The columns of W are the eigenvectors of A∗: This can be seen from the following
calculation

AV = V Λ ⇔ V ∗A∗ = Λ∗V ∗ ⇔ WV ∗A∗W = WΛ∗V ∗W ⇔ A∗W = WΛ∗,

where the last step follows from W ∗V = VW ∗ = I.

2. The sets {vi} and {wi} form reciprocal bases: Reciprocal bases4 have the property that
⟨vi , wj⟩ = v∗i wj = δi−j . This is easily seen to be true from the following partitioning of
W ∗V = I

W ∗V =




w∗
1
...
w∗

n



[
v1 · · · vn

]
=



w∗

1v1 · · · w∗
1vn

...
...

w∗
nv1 · · · w∗

nvn


 = I.

The reciprocal basis is useful since it allows for writing any vector x in terms of a basis
{vi} by observing

x = VW ∗x =

[
v1 · · · vn

]


w∗
1
...
w∗

n



[
x

]
=

n∑

i=1

vi ⟨wi , x⟩ . (7.7)

Thus the coefficients of expansion of a vector x in a basis {vi} are the inner products
⟨wi , x⟩ of the vector with the respective elements of the reciprocal basis {wi}.
We can obtain yet another interpretation of the action of a diagonalizable matrix on a

vector by comparing (7.7) with what equation (7.6) gives for Ax

Ax =

n∑

i=1

λi vi ⟨wi , x⟩ . (7.8)

Thus A acts on any vector x by scaling its components along each eigenvector vi by the
corresponding eigenvalue λi multiplied by the projection ⟨wi , x⟩.

4Another common term is dual bases.
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Symmetric (Hermitian) Matrices

The above decompositions are considerably simplified when the matrix A is Hermitian (A =
A∗). In this case all its eigenvectors are mutually orthogonal (more precisely, one can choose
a complete mutually orthonormal set from amongst the eigenvector of A). This implies
that V −1 = V ∗, i.e. V is unitary, and consequently, the above decompositions takes the
particularly simple form

A = λ1

[
v1

][
v∗1

]
+ · · ·+ λn

[
vn

][
v∗n

]
.

The action of A on any vector x in (7.8) becomes

Ax =

n∑

i=1

λi vi ⟨vi , x⟩ .

and can be interpreted geometrically as scaling the orthogonal projection of x on vi by the
corresponding eigenvalue λi.

Singular Value Decompositions

Any matrix (i.e. not necessarily diagonalizable or Hermitian) has a Singular Value Decom-
position (SVD) of the form

A = U Σ V ∗, (7.9)

where Σ is a diagonal matrix and both U and V are unitary matrices. In fact, the columns of
U and V are actually the (mutually orthonormal) eigenvectors of AA∗ and A∗A respectively.
This can be seen from the calculation

AA∗ = UΣV ∗V ΣU∗ = UΣ2U∗,

A∗A = V ΣU∗UΣV ∗ = V Σ2V ∗.

These relations provide one way to calculate the SVD, by finding the eigenvectors and
eigenvalues of the two Hermitian matrices AA∗ and A∗A. Note that the singular values of
A are the square roots of the eigenvalues of AA∗ (or A∗A, the non-zero ones are the same).

The SVD can be thought of as a rank-1 decomposition in a similar manner as the previous
decompositions. Partition U and V into columns {ui} and {vi} respectively

A =

[
u1 · · · un

]

σ1

. . .

σn






v∗1
...
v∗n




= σ1

[
u1

][
v∗1

]
+ · · ·+ σn

[
un

][
v∗n

]
=

n∑

i=1

σi uiv
∗
i . (7.10)

Using this, the action of A as a linear transformation on an arbitrary vector x can be
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rewritten as

Ax =

[
u1 · · · un

]

σ1

. . .

σn






v∗1
...
v∗n



[
x

]

=

[
u1 · · · un

]

σ1

. . .

σn






v∗1x
...

v∗nx


 =

[
u1 · · · un

]


σ1 ⟨v1 , x⟩
...

σn ⟨vn , x⟩




=

n∑

i=1

σi ui ⟨vi , x⟩ .

The last equation can be interpreted as follows. The linear transformation A acts on x
by first taking its projections onto each of the orthonormal vectors vi, these numbers are
then multiplied (“amplified”) by σi respectively to produce a linear combination of the
orthonormal vectors ui. This interpretation immediately shows that the image space of A
is the span of the vectors ui corresponding to non-zero singular values, while the null space
of A is the span of the vectors vi corresponding to the zero singular values.

The SVD also clearly shows how a matrix “amplifies” vector lengths. For example, any
vector x aligned with v1 will produce a vector Ax aligned with u1 but with length amplified
by σ1. The vectors vi are called the right singular vectors of A, while ui are called the left
singular vectors of A.

7.1 Block LU, UL, and LDU Decompositions: Schur Com-
plements

Recall that any square matrixM has a Lower-Diagonal-Upper (LDU) factorization (possibly
after column or row permutations) of the form

M = LDU,

where L is a lower-triangular matrix, U an upper-triangular matrix, both with all ones on the
diagonals, and D is a diagonal matrix. Such factorization are done by Gaussian elimination
and are useful in solving linear equations by forwards or backwards substitution.

In this section, we look at “block factorizations” similar to the above, but with block-
triangular and block-diagonal matrices. The so-called Schur complement and related results
are concerned with matrices or operators with a 2× 2 block decomposition and block-LDU
factorizations of the form (see e.g. Equation (7.15))

M =

[
M11 M12

M21 M22

]
=

[
I 0

M21M
−1
11 I

] [
M11 0
0 M22 −M21M

−1
11 M12

] [
I M−1

11 M12

0 I

]
, (7.11)

which is valid under the assumption thatM11 is invertible. Notice the block-lower-triangular,
block-diagonal, and block-upper-triangular structure of this factorization.

We can derive conditions on invertibility and definiteness of M in terms of the matrices
occurring in the factorization above. For example, it is clear that when M11 is invertible,
thenM is invertible iffM22−M21M

−1
11 M12, which is called a Schur complement, is invertible.

Similar statements can be made about definiteness when M is Hermitian.
The key idea is to find transformations (constructed from the submatrices Mij) that

will block-triangularize and block-diagonalize M . The transformations are in general not
similarity transformations, as they may transform the domain of M differently from its
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range. None the less, they are useful because they are simple to construct directly from M
(e.g. no calculations of invariant subspaces are required), but yet yield valuable conditions
on invertibility, definiteness and the like.

The geometric interpretation of the partitioning in (7.11) in general is that if M : V→W
is a linear operator where the vector spaces have decompositions V = V1 ⊕ V2 and W =
W1 ⊕W2 respectively, then Mij : Vj → Wi are the four possible restriction/projections of
M with respect to those decompositions
[
M11 M12

M21 M22

]
=

[
ΠW1

M |V1
ΠW1

M |V2

ΠW2
M |V1

ΠW2
M |V2

]
⇔

[
W1

W2

]
=

[
M11 M12

M21 M22

] [
V1

V2

]
. (7.12)

The equality on the right should be thought of as useful notation to intuitively interpret the
identity on the left.

Block-LU, UL and UDL Decompositions

We will need to assume that either M22 or M11 is invertible. We begin with the former
case, and state two problems whose solutions below can be thought of as types of Gaussian
eliminations on block rows or block columns.

1. Find an invertible transformation R : W1 ⊕W2 → W1 ⊕W2 such that the composition
RM : V→W is block-lower-triangular.

This is easily done as follows. Write (7.12) in terms of vectors v and w, and observe that
if H := RM is to be block-lower-triangular, then we must have

w1 = M11v1 +M12v2

w2 = M21v1 +M22v2
,

y1 = H11v1

y2 = H21v1 +H22v2
.

In order to arrive at an equation for y1 that does not involve v2, it looks like we need to
eliminate v2 from the equations for w as follows

w1 = M11v1 + M12v2
−−− M12M

−1
22 w2 = M12M

−1
22 M21v1 + M12v2

w1 −M12M
−1
22 w2 = −M12M

−1
22 M21v1 + 0

.

Thus it seems like we should define y1 to be w1−M12M
−1
22 w2 in order to have an equation

for y1 that depends only on v1. Since we have no requirements on what y2 depends on,
we leave it as y2 = w2, i.e.

[
y1
y2

]
:=

[
I M12M

−1
22

0 I

] [
w1

w2

]
,

Now we can easily verify that this transformation gives a block-UL decomposition of M

[
I −M12M

−1
22

0 I

] [
M11 M12

M21 M22

]
=

[
M11 −M12M

−1
22 M21 0

M21 M22

]

⇒
[
M11 M12

M21 M22

]
=

[
I M12M

−1
22

0 I

] [
M11 −M12M

−1
22 M21 0

M21 M22

]
, (7.13)

where the last equation follows from the following easily verifiable fact
[
I Z
0 I

]−1

=

[
I -Z
0 I

]
,

[
I 0
Z I

]−1

=

[
I 0
-Z I

]

for any matrix Z of compatible dimensions.

Notice that the transformation above leaves the second block-rows of M unchanged.
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2. Find an invertible transformation T : V1 ⊕ V2 → V1 ⊕ V2 such that the composition
MT : V → V is block-upper-triangular.

We again write (7.12) in terms of vectors v and w, and observe that if G := MT is to
be block-upper-triangular, then we must have

w1 = M11v1 +M12v2

w2 = M21v1 +M22v2
,

w1 = G11x1 +G12x2

w2 = G22x2

.

To discover what G22 should be, we simply manipulate the second v, w equation as

w1 = M11v1 +M12v2

w2 = M22

(
M−1

22 M21v1 + v2
) , w1 = G11x1 +G12x2

w2 = G22x2

.

Thus it seems like we should define x2 to be M−1
22 M21v1 + v2, and leave x1 = v1, i.e.

[
x1

x2

]
:=

[
I 0

M−1
22 M21 I

] [
v1
v2

]
⇔

[
v1
v2

]
=

[
I 0

−M−1
22 M21 I

] [
x1

x2

]
.

Again, it is now easy to see what this transformation converts M into block-upper-
triangular form

[
M11 M12

M21 M22

] [
I 0

−M−1
22 M21 I

]
=

[
M11 −M12M

−1
22 M21 M12

0 M22

]

⇒
[
M11 M12

M21 M22

]
=

[
I 0

M−1
22 M21 I

] [
M11 −M12M

−1
22 M21 M12

0 M22

]
. (7.14)

Notice that this transformation leaves the second block-columns of M unchanged.

If M11 rather M22 is invertible, then similar transformations can be derived as those
above that involve only M−1

11 rather than M−1
22 . See Exercise 7.1.

The two transformations constructed in (7.13) and (7.14) will block-triangularize M by
either post or premultiplying by a simple transformation matrix. (7.13) has the property
that it leaves the 2nd block-row of M unchanged, while (7.14) leaves the 2nd block-column
unchanged. Thus performing the two transformations successively leads to a form of M
that is both block-upper-triangular and block-lower-triangular, i.e block diagonal

[
I −M12M

−1
22

0 I

] [
M11 M12

M21 M22

] [
I 0

−M−1
22 M21 I

]
=

[
M11 −M12M

−1
22 M21 0

0 M22

]
,

which we rewrite as a block-UDL and block-LDU decompositions respectively

[
M11 M12

M21 M22

]
=

[
I M12M

−1
22

0 I

] [
M11 −M12M

−1
22 M21 0

0 M22

] [
I 0

M−1
22 M21 I

]

=

[
I 0

M21M
−1
11 I

] [
M11 0
0 M22 −M21M

−1
11 M12

] [
I M−1

11 M12

0 I

] (7.15)

It should be emphasized that the transformation of M shown here is in general not a
similarity transformation since the two transformation matrices are not inverses of each
other. None the less, several useful conclusions can be drawn from this transformation as
described next.
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7.1.1 Corollaries of Block-Decompositions

The first conclusion we can draw from (7.15) is about the invertibility of a partitioned matrix.
Observe that the two transformation matrices in (7.15) are clearly invertible. Which leads
to the following conclusion.

Lemma 7.1. Consider the partitioned matrix M =

[
M11 M12

M21 M22

]
.

1. If M22 is invertible, and its Schur complement

∆11 := M11 −M12M
−1
22 M21

is invertible, then M is invertible with inverse

[
M11 M12

M21 M22

]−1

=

[
I 0

−M−1
22 M21 I

] [
∆−1

11 0
0 M−1

22

] [
I −M12M

−1
22

0 I

]

=

[
∆−1

11 −∆−1
11 M12M

−1
22

−M−1
22 M21∆

−1
11 M−1

22 +M−1
22 M21∆

−1
11 M12M

−1
22

]
(7.16)

2. If M11 is invertible, and its Schur complement

∆22 := M22 −M21M
−1
11 M12

is invertible, then M is invertible with inverse

[
M11 M12

M21 M22

]−1

=

[
I −M−1

11 M12

0 I

] [
M−1

11 0
0 ∆−1

22

] [
I 0

−M21M
−1
11 I

]

=

[
M−1

11 +M−1
11 M12∆

−1
22 M21M

−1
11 −M−1

11 M−1
12 ∆−1

22

−∆−1
22 M21M

−1
11 ∆−1

22

]
(7.17)

3. Depending on whether M11 or M22 is invertible, we have

det(M) = det(M11) det
(
M22 −M21M

−1
11 M12

)
= det(M22) det

(
M11 −M12M

−1
22 M21

)

The last statement follows from (7.15) by recalling that for any two matrices with com-
patible dimensions det(AB) = det(A) det(B), and for block-upper (or lower) matrices

det

([
A 0
B C

])
= det(A) det(C) ⇒ det

([
I 0
B I

])
= 1.

The lemma above basically says that the inversion of a block-2x2 matrix can be achieved
by the inversion of one of its diagonal blocks and the corresponding Schur complement.
There is another important identity hidden in (7.16) and (7.17). Equating the (1, 1) blocks
in both of these expressions for M−1 gives

∆−1
11 = M -1

11 +M -1
11M12∆

-1
22M21M

-1
11(

M11 −M12M
-1
22M21

)−1
= M -1

11 +M -1
11M12

(
M22 −M21M

-1
11M12

)−1
M21M

-1
11. (7.18)

This last identity can be thought of as an identity involving four matrices Mij with compat-
ible dimensions. This is sometimes done without reference to the 2 × 2 block matrix from
which they can be considered to have arisen. If we simply rename the matrices, this last
identity can be stated as the famous Matrix Inversion Lemma, also sometimes known as the
Sherman-Morrison-Woodbury formula.
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Corollary 7.2. Consider four matrices A,B,C,D of compatible dimensions. If A and D
are invertible, then

D invertible ⇒
[
A B
C D

]
invertible ⇔

(
A−BD-1C

)
invertible

A invertible ⇒
[
A B
C D

]
invertible ⇔

(
D − CA-1B

)
invertible

(7.19)

If both A and D are invertible, and either of the two conditions above hold, then

(
A−BD-1C

)−1
= A-1 +A-1B

(
D − CA-1B

)−1
CA-1. (7.20)

This lemma is usually stated as (7.20) only, which makes no mention of a 2x2-block
matrix. Rather, on the face of it, it appears to be a lemma about sums of products of
matrices. It is however best understood and proved through comparison with Lemma 7.1
as follows. Given four matrices A,B,C,D of compatible dimensions, form the following
matrix5 and apply the transformation (7.15) to it

[
A B
C D

]
=

[
I BD−1

0 I

] [
A−BD−1C 0

0 D

] [
I 0

D−1C I

]

=

[
I 0

CA−1 I

] [
A 0
0 D − CA−1B

] [
I A−1B
0 I

]
.

(7.21)

The first statement in Lemma 7.2 follows immediately; The 2x2-block matrix is invertible
iff A − BD−1C is invertible (from the first equality above), which holds iff D − CA−1B
is invertible (second equality above). The formula (7.20) follows from (7.18), which we
recall follows from simply equating terms in the two different block-diagonalizations (7.16)
and (7.17).

There are many uses of the Matrix Inversion Lemma. Perhaps the most prominent is
for producing a formula for the inverse of a matrix made up of two pieces, the first being a
matrix whose inverse is known, and the second being a “low rank” addition to the matrix.
To emphasize this point, redraw (7.20) to show dimensions in a typical usage

([
A

]
+

[
B

] [
D
] [

C
])-1

=

[
A-1

]
−
[

A-1

][
B

]([
D-1
]
+
[

C
][

A-1

][
B

])-1 [
C
][

A-1

]
,

where D is a much smaller matrix than A. Note that we have replaced −B with B and
D-1 with D in this last formula compared with (7.20). If A-1 is known, then (A+BDC)−1

given by this formula only requires inverting the much smaller matrix D-1 + CA-1B. An
extreme case of this situation is when BDC is of rank one. This is the so-called rank-one
update A+ uv∗ where A is square and u and v are vectors. The rank-1 matrix uv∗ is called
a rank-one update of A. The formula (7.20) applied to this case is sometimes referred to as
the Sherman-Morrison formula

(A+ uv∗)-1 = A-1 − 1

1 + v∗A-1u

(
A-1u

) (
v∗A-1

)
. (7.22)

5Observe that the dimension compatibility condition that allows A−BD-1C to be formed is exactly the
same as that allows the matrix (7.21) to be formed.
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Note that in this case D = 1, and D+CA-1B is a scalar, so its inverse is just the reciprocal
scalar. Note also that (A+uv∗)-1 is itself a rank-one update of A-1 since

(
A-1u

)
is a column

vector and
(
v∗A-1

)
is a row vector.

The rank-one update formula is very useful in deriving recursive algorithms such as Re-
cursive Least Squares. To obtain an estimate from a batch of data, a solution of some linear
system of equations is performed. When new data comes in, one would like to “update” the
solution with this new data without having to solve the entire system from scratch. The
rank-one update provides such recursive algorithms.

Hermitian Matrices

We now examine what the block-UDL decomposition (7.15) implies about the definiteness
of a Hermitian matrix M , for which it reads

[
M11 Mo

M∗
o M22

]
=

[
I MoM

−1
22

0 I

] [
M11 −MoM

−1
22 M∗

o 0
0 M22

] [
I 0

M−1
22 M∗

o I

]
. (7.23)

Note that M Hermitian implies that both M11 and M22 are Hermitian. Furthermore, in
this case the transformation matrices are adjoints of each other

[
I MoM

−1
22

0 I

]∗
=

[
I 0

M−1
22 M∗

o I

]
.

Thus the transformation of M in (7.23) is a congruence transformation, and therefore pre-
serves the definiteness of a matrix. The definiteness of a block-diagonal matrix is simply
determined by the definiteness of its diagonal blocks. We summarize this in the following
statement.

Corollary 7.3. Consider the partitioned Hermitian matrix M =

[
M11 Mo

M∗
o M22

]
. If M22 > 0

(M11 > 0) is positive definite, then the definiteness of M is equivalent to the definiteness of
its Schur complement

M > 0 ⇔ M11 −MoM
−1
22 M∗

o > 0
(
M > 0 ⇔ M22 −M∗

oM
−1
11 Mo > 0

) . (7.24)

The statement (7.24) also holds if > is replaced by ≥.

Note that there is an analogous statement for negative (semi)-definiteness. The reader
should write that one out as an exercise.

Completion of Squares

Corollary 7.3 has an interpretation as a “completion of squares” statement which gives
additional insight into the Schur complement in the Hermitian case. Consider the quadratic
form generated from a partitioned Hermitian matrix M

v∗Mv =

[
v1
v2

]∗ [
M11 Mo

M∗
o M22

] [
v1
v2

]
= v∗1M11v1 + v∗2M22v2 + 2v∗1Mov2. (7.25)

A necessary condition for M > 0 is that M11 > 0 and M22 > 0, thus the first two terms
above are always positive for non-zero v1 and v2. However, the third term is not guaranteed
to be positive, but the Schur complement condition insures that if it becomes negative, the
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first two terms dominate so that the overall sum is positive. This is a consequence of the
following completion of squares argument.

Assuming that M22 is invertible and using the decomposition (7.23), we can rewrite the
quadratic form (7.25) as

[
v1
v2

]∗ [
M11 Mo

M∗
o M22

] [
v1
v2

]

=

[
v1
v2

]∗ [
I MoM

−1
22

0 I

] [
M11 −MoM

−1
22 M∗

o 0
0 M22

] [
I 0

M−1
22 M∗

o I

] [
v1
v2

]

=

[
v1
w

]∗ [
M11 −MoM

−1
22 M∗

o 0
0 M22

] [
v1
w

]
, by defining

[
v1
w

]
:=

[
I 0

M−1
22 M∗

o I

] [
v1
v2

]
.

In other words, if we define the vector

w := v2 +M−1
22 M∗

o v1,

then the quadratic form is rewritten as

v∗1M11v1 + v∗2M22v2 + 2v∗1Mov2 = v∗1
(
M11 −MoM

−1
22 M∗

o

)
v1 + w∗M22w. (7.26)

Note that the invertibility of the mapping (v1, v2) 7→ (v1, w) implies that (v1, v2) = 0 ⇔
(v1, w) = 0. Therefore if M22 is invertible, then the positivity M11 −MoM

−1
22 M∗

o ≥ 0 (or
strict positivity M11 −MoM

−1
22 M∗

o > 0) of the Schur complement along with M11 ≥ 0 (or
M11 > 0) insures the positivity (or strict positivity) of the quadratic form (7.25).

The equality (7.26) is sometimes referred to as a matrix version of the classical completion
of squares argument since it can be viewed as

v∗1M11v1 + v∗2M22v2 + 2v∗1Mov2

= v∗1
(
M11 −MoM

−1
22 M∗

o

)
v1 +

(
v2 +M−1

22 M∗
o v1
)∗

M22

(
v2 +M−1

22 M∗
o v1
)

= v∗1
(
M11 −MoM

−1
22 M∗

o

)
v1 + v∗2M22v2 + 2v∗1Mov2 + v∗1MoM

−1
22 M∗

o v1.

In other words, but adding and subtracting the term v∗1MoM
−1
22 M∗

o v1, the quadratic form
can be turned into a perfect square.

Eigenvalues and Eigenvectors “Updates”

The matrix inversion Lemma 7.2 can be put to use for characterizing eigenvalues/vectors
for matrices of the form A+UV , where it is assumed that the eigenvalues/vectors of A are
known, and UV is a low-rank matrix.

If λ is not an eigenvalue of A, then Corollary 7.2 states

(
λI − (A+ UV )

)

invertible
⇔

(
(λI −A)− UV

)

invertible
⇔

(
I − V (λI −A)

-1
U
)

invertible
.

In the case when UV has finite rank, the last statement gives a test for characterizing the
eigenvalues of A+ UV as the zeros of a function.

Lemma 7.4. Consider an operator update A+UV where U and V have finite-dimensional
domain and range respectively (i.e. UV is finite rank). Any number λ ∈ C which is not an
eigenvalue of A is an eigenvalue of A+ UV iff it is the root of the characteristic function

f(λ) := det
(
I − V (λI −A)

−1
U
)
.
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This test can be applied in the cases where the computation of the characteristic function
is feasible such as in the next example.

Example 7.5. Consider the following matrix M which arises in a (2nd order) finite-difference
discretization of the 2nd derivative operator with Homogenous Neumann boundary conditions.
It can be written as the sum of a circulant matrix A and a rank one matrix as follows

M =


-1 1
1 -2 1

. . .
. . .

. . .

1 -2 1
1 -1

 =


-2 1 1
1 -2 1

. . .
. . .

. . .

1 -2 1
1 1 -2

+



1

-1



[
1 -1

]
=: Ca+vv∗,

where Ca is the circulant matrix formed from the vector a := {-2, 1, 0, . . . , 0, 1}. The eigenvalues
of M that are not eigenvalues of Ca are the zeros of the characteristic function

f(λ) := 1− v∗ (λI − Ca)
-1
v

Since Ca is circulant, its eigenvalues/vectors are well known, and are precisely the values of the
Discrete Fourier Transform (DFT) of the vector a (see Chapter ??). The inverse of λI −Ca, as

well as the inner product v∗ (λI − Ca)
-1
v are easiest to compute with the DFT as follows.

Denote the DFTs of a and v above by â and v̂ respectively, i.e. v̂ = Fv, where F is the
matrix representation of the DFT6 which has the property FF ∗ = nI. Now transform the inner
product as follows (using the fact v = F−1 v̂ = (1/n)F ∗ v̂)

v∗ (λI − Ca)
-1
v =

(
F -1v̂

)∗
(λI − Ca)

-1 (
F -1v̂

)
= v̂∗ (λFF ∗ − FCaF

∗)-1 v̂

= v̂∗
(
nλI − n diag(â)

)-1
v̂ =

1

n

n-1∑

l=0

|v̂l|2
λ− âl

. (7.27)

Now â and v̂ are easy to compute as

âl = − 2 + e−j 2π
n l + ej

2π
n l = − 2 + 2 cos

(
2π
n l
)
, l ∈ Zn

v̂l = 1− ej
2π
n l = 1− cos

(
2π
n l
)
− j sin

(
2π
n l
)
⇒ |v̂l|2 = 2− 2 cos

(
2π
n l
) (7.28)

The expression (7.27) becomes

f(λ) := 1− v∗ (λI − Ca)
-1
v = 1− 1

n

n-1∑

l=0

2− 2 cos
(
2π
n l
)

λ+ 2− 2 cos
(
2π
n l
) (7.29)

A plot of this function is shown in Figure 7.1 for an example with n = 10. The figure clearly
shows that the zeros of f capture all the eigenvalues of M that are not shared with Ca.

The matrix inversion Lemma 7.2 can also be used to characterize eigenvectors as well.
An eigenvector of a 2×2-block matrix with an eigenvalue λ is characterized by the null-space
condition

[
λI-A -B
-C λI-D

] [
v1
v2

]
=

[
0
0

]
(7.30)

6The (non-unitary) DFT of a vector v of length n is defined by v̂l :=
∑

k∈Zn
vke

−j 2π
n

kl. We can write

this as v̂ = Fv, where F has the property F -1 = (1/n)F ∗. A circulant matrix is diagonalized by F so that

FCaF -1 = (1/n)FCaF ∗ = diag(â) , where â is the DFT of the vector a.
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Figure 7.1: The characteristic function (7.29) f(λ) of Example 7.5 for the matrix update M = Ca + vv∗

(with matrix sizes of 10). The zeros of f are the eigenvalues of M that are not eigenvalues of Ca. As shown,
the zeros of f capture all the eigenvalues of M that are not shared with Ca.

If λ is not an eigenvalue of either A or D, then we can use this relation to obtain v1 from
v2 and vice versa

(λI −A) v1 −Bv2 = 0 ⇒ v1 = (λI −A)
-1
Bv2, (7.31)

−Cv1 + (λI −D) v2 = 0 ⇒ v2 = (λI −D)
-1
Cv1. (7.32)

We can combine the above four equations in two different ways

0 = (λI-A) v1 −Bv2 =
(
(λI-A)−B (λI-D)

-1
C
)
v1 (using (7.32)) (7.33)

0 = −Cv1 + (λI-D) v2 =
(
(λI-D)− C (λI-A)

-1
B
)
v2 (using (7.31)) (7.34)

These relations can be used as follows. Suppose for a given λ (not an eigenvalue of either
A or D) we find a a vector v2 that satisfies (7.34), then (7.31) can be used to construct a
vector v1 that satisfies (7.33) since

(
(λI-A)−B (λI-D)

-1
C
)
v1 =

(
(λI-A)−B (λI-D)

-1
C
)
(λI −A)

-1
Bv2

=
(
B −B (λI-D)

-1
C (λI −A)

-1
B
)
v2

= B (λI-D)
-1
(
(λI-D)−C (λI −A)

-1
B
)
v2 = 0.

We can now use the above development to device a method for finding eigenvector updates
similar to that for eigenvalue updates of Lemma 7.4

Lemma 7.6. Consider an operator update A+UV where U and V have finite-dimensional
domain and range respectively (i.e. UV is finite rank). For any eigenvalue λ of A + UV
that is not an eigenvalue of A, any corresponding eigenvector v is given by

v = (λI −A)
-1
U w, where

(
I − V (λI −A)

-1
U
)
w = 0.

Proof. In the formulas (7.33)-(7.34), define D := (λ − 1)I, thus λI − D = I. Now define
B := U and C := V , and the statement follows.

This lemma is most useful when compositions like V (λ−A)
-1
U can be calculated and

their eigenvectors computed. The case of circulant matrices, or more generally, Toeplitz
operators are possible applications.
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Figure 7.2: Eigenvectors of the matrix M = Ca + vv∗ of Examples 7.5-7.7 for the case n = 11. Only five
eigenvalues of M are distinct from those of Ca, and Lemma 7.6 is applied to those. The solid blue circles
depict the eigenvectors computed with the formula (7.35), while the hollow circles are the eigenvectors com-
puted directly for M . Since eigenvectors are only determined up to scalar multiples, the two computations
differ only up to a scalar multiple as can be seen above.

Example 7.7. We now revisit Example 7.5 to calculate some of the eigenvectors of the update
using the above lemma. For the subset of eigenvalues of M that are not eigenvalues of Ca (see
Figure 7.1), the eigenvectors v are calculated from the lemma by

v = (λI − Ca)
-1
v α, where

(
1− v∗ (λI − Ca)

-1
v
)
α = 0. (7.35)

Note that in this case α is any scalar, and therefore the eigenvectors are any scalar multiple of
(λI − Ca)

-1
v (where λ is the eigenvalue of M that is not an eigenvalue of Ca). This circulant-

matrix times vector product can be calculated using the DFT formulas (7.28), or directly with
numerical computations. Figure 7.2 illustrates the computation of the eigenvectors with the
formula (7.35) and with direct numerical computations using eigenvalue/vector routines.

7.2 Block Similarity Transformations: Sylvester and Riccati
Equations

The block LU, UL and UDL decompositions described in the previous section can be thought
of as block triangularization (for the LU and UL decompositions), and block diagonalization
(in the UDL case). However, the transformations required are not similarity transformations
as can be seen for example from the statements in Lemma 7.1. Those transformations are
however useful in studying the invertibility of block-decomposed matrices. In the Hermitian
case, the required transformations (7.23) are actually congruence transformations, which
preserve the sign definiteness of Hermitian matrices, and this makes them useful in studying
the definiteness of block-partitioned matrices. On the other hand, if one is interested in
studying the spectra and invariant subspaces of block-partitioned matrices, it is useful to
try to block-triangularize or block-diagnonalize using similarity transformations. These
question will lead naturally to matrix Riccati and Sylvester equations as we now illustrate.

Observe that all transformations used in the previous section (e.g. (7.16) or (7.17)) are
of the forms

UX :=

[
I X
0 I

]
, LX :=

[
I 0
X I

]
.
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Such transformations are convenient to work with since their inverses are easily established

U−1
X :=

[
I −X
0 I

]
, L−1

X :=

[
I 0
−X I

]
.

Now we investigate whether we can use such transformations to block-diagonalize or block-
triangularize a 2× 2 partitioned matrix. Consider first a block upper-triangular matrix and
a similarity transformation of the form UX

[
I −X
0 I

] [
A11 A12

0 A22

] [
I X
0 I

]
=

[
A11 A11X −XA22 +A12

0 A22

]
.

Thus if we can find a matrix X such that the (1,2) block is zero, then we have found
a similarity transformation that renders the given upper triangular matrix into a block-
diagonal form. Finding such a matrix is equivalent to solving a matrix Sylvester equation

A11X−XA22 = −A12 ⇒
[
I −X
0 I

] [
A11 A12

0 A22

] [
I X
0 I

]
=

[
A11 0
0 A22

]
. (7.36)

The solvability of this equation is governed by the properties of the matrix-valued operator
S(X) := AX +BX. Note that in this case this operator is “square” since X and A12 have
the same size. Recall that the eigenvalues of a Sylvester operator are given by

S(X) := AX +XB ⇒ eigs(S) = eigs(A) + eigs(B) ,

where + stands for all possible sums of elements of the two sets. Thus S(X) := A11X−XA22

is invertible iff no eigenvalue of A11 is equal to an eigenvalue of A22 (for otherwise the
difference of those two eigenvalues would be zero). We can now conclude that there exists a
block-triangularizing transformation of the form (7.36) if7 there are no common eigenvalues
between A11 and A22.

Now consider a 2 × 2 block-partitioned matrix and a similarity transformation of the
form

[
I 0
−X I

] [
A11 A12

A21 A22

] [
I 0
X I

]
. =

[
A11 +A12X A12

−XA11 −XA12X +A21 +A22X −XA12 +A22

]

Thus if the matrix X solves the following matrix Algebraic Riccati Equation (ARE), then
the similarity transformation above converts A to block upper-triangular form

A22X −XA11 −XA12X +A21 = 0 (7.37)

⇒
[

I 0
−X I

] [
A11 A12

A21 A22

] [
I 0
X I

]
=

[
A11 +A12X A12

0 A22 −XA12

]
. (7.38)

Unlike a Sylvester equation, the Riccati equation (7.37) always has multiple solutions. The
fact that the transformation (7.38) is a similarity transformation aids greatly in understand-
ing the set of solutions. For example, we know that

eigs(A) = eigs

([
A11 A12

A21 A22

])
= eigs

([
A11 +A12X A12

0 A22 −XA12

])

= eigs(A11 +A12X) ∪ eigs(A22 −XA12) .

7Note that for any given matrix, this condition is sufficient but may not be necessary. There could be
cases where S is not invertible, but A12 is in its image space, and then there is an infinite number of solutions
of the Sylvester equation.
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The fact that the set eigs(A) is independent of X means that any solution of the ARE is
such that the eigenvalues of A are “divided up” between the eigenvalues of A11+A12X and
A22 −XA12.

We can go further by examining the eigenvectors after rearranging (7.38) into

[
A11 A12

A21 A22

] [
I 0
X I

]
=

[
I 0
X I

] [
A11 +A12X A12

0 A22 −XA12

]

⇒
[
A11 A12

A21 A22

] [
I
X

]
=

[
I
X

]
(A11 +A12X) .

This implies that span

[
I
X

]
is an invariant subspace for A, and the eigenvalues of A11+A12X

are the eigenvalues of A restricted to that subspace. Under some conditions, we can actually
go in reverse, that is, by finding invariant subspaces of A, we can construct solutions to the
ARE as described next.

Suppose we are given an ARE of the following form

BX +XA−XMX +Q = 0,

where no assumptions are made on the matrices other than compatibility of dimensions.
Let X be n×m. Compatibility of dimensions implies that A must have m columns, B has
n rows, M is m × n and Q is n ×m. This also implies that A and B are square. We can
therefore arrange the four coefficient matrices A,B,M,Q into a 2× 2 partitioned matrix as
follows

H :=

[
−A M
Q B

]
.

Now we look for invariant subspaces of H that can be represented as span

[
I
X

]
for some

matrix n×m matrix X, which must be of dimension m. Any subspace of dimension m can

be parameterized as the image space of an (n+m)×m matrix

[
X1

X2

]
, where the partitioning

is such that X1 is an m×m square matrix. If X1 is invertible, then

Im

[
X1

X2

]
= Im

([
I

X2X
−1
1

]
X1

)
= Im

[
I
X

]
, X := X2X

−1
1 .

The condition that X1 is invertible is equivalent to the condition that

[
X1 0
X2 I

]
is invertible,

which can also expressed as the subspaces Im

[
X1

X2

]
and Im

[
0
I

]
being complementary in

Rn+m. The conclusions above are summarized next.

Lemma 7.8. Consider the following matrix Algebraic Riccati Equation (ARE)

BX +XA−XMX +Q = 0,

where X is n×m, and all other matrices are of compatible dimensions. Consider also the
2× 2 block partitioned matrix

H :=

[
−A M
Q B

]
.
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202 7.2. Block Similarity Transformations: Sylvester and Riccati Equations

1. Every solution X of the ARE is such that Im

[
I
X

]
is an m-dimensional invariant

subspace of H, and eigs(−A+MX) are the m eigenvalues of H restricted to that
invariant subspace.

2. Every m-dimensional invariant subspace Im

[
X1

X2

]
of H that is complementary to Im

[
0
I

]

corresponds to a solution X = X2X
−1
1 of the ARE. Furthermore, eigs(−A+MX) are

the eigenvalues of H restricted to that subspace.

The lemma above gives a computational procedure for finding ARE solutions. First look
for m-dimensional invariant subspaces of H that satisfy the complementarity condition, and
then form X from a matrix that spans that subspace. In the simplest case that H has

distinct eigenvalues, there are at most

(
n
m

)
such subspaces. Another way to think about

this algorithm is as follows. Since any solution of the ARE corresponds to a selection of a size
m subset of the eigenvalues of H, first decide on which subset should be the eigenvalues of
−A+MX. Second, check if that invariant subspace satisfies the complementarity condition,
and if it does, construct X = X2X

−1
1 as above.

Exercises

Exercise 7.1

If M11 rather than M22 is invertible, then show using similar arguments to those leading
to (7.13), (7.14) and (7.15) that the following holds

[
M11 M12

M21 M22

]
=

[
I 0

M21M
−1
11 I

] [
M11 M12

0 M22 −M21M
−1
11 M12

]
(7.39)

=

[
M11 0
M21 M22 −M21M

−1
11 M12

] [
I M−1

11 M12

0 I

]
(7.40)

=

[
I 0

M21M
−1
11 I

] [
M11 0
0 M22 −M21M

−1
11 M12

] [
I M−1

11 M12

0 I

]
(7.41)

Note that it is easy to simply verify the above equations by direct calculations. However, it
is a useful exercise to imitate the arguments leading to (7.13) and (7.14) for the following
reason. What if the above equations were not given to you? What if you only knew that
M11 is invertible, and you needed to discover those transformations?
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