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Abstract

We develop a model for second order statistics of tur-
bulent channel flow using an associated linear stochas-
tically forced input-output system. The correlation op-
erator of the velocity fields is computed by solving the
appropriate Lyapunov equations of a Galerkin approx-
imation of the original system. We use a variety of ex-
citation force correlations and show the dependence of
the velocity fields statistics on them. By using certain
excitation correlations, we are able to closely match
flow statistics computed from Direct Numerical Simu-
lation (DNS) of channel flow. The implications of these
result for the proper weight selection in optimal control
problems for channel flow are discussed.

1 Introduction

There has been much recent interest in the problem
of turbulence suppression in channel flow using ac-
tive feedback control of boundary conditions. This
problem is viewed as a benchmark problem for tur-
bulence control in a variety of geometries, including
boundary layers. There has also been mounting evi-
dence [1, 2, 3, 4, 5, 6, 7] that the linearized Navier-
Stokes (LNS) equations provide an accurate model of
the dynamics of transition, and of the dynamics of the
near wall layer in fully turbulent boundary layers. The
key observation is that in shear flows, one must include
either signal or model uncertainty in the LNS equations
since they are extremely sensitive to perturbations.

These facts have motivated several researchers [8, 9] to
use the LNS equations for model based controller design
for channel flows. Furthermore, the above mentioned
results imply that the proper turbulence suppression
controller design paradigm is that of disturbance at-
tenuation or robust stabilization rather than pole place-
ment. Successful schemes based on LQG (H?) and H>®
have been used to design linear controllers for nonlinear
channel flow dynamics in DNS simulations [10, 11]. One
of the important open questions remaining is the type
of disturbance models to include in the problem set-up.
This is of course equivalent to the question of weight se-
lection for the corresponding optimal or robust control
design problem. As is well known, proper weight selec-
tion can dramatically alter control performance when
the controller is in feedback with the actual nonlinear
system. It is therefore anticipated that proper weight
selection can lead to successful turbulence suppression
with linear controllers at higher Reynolds numbers than
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currently possible.

In this paper, we address the problem of modeling dis-
turbances in the LNS equations by testing the valid-
ity of a stochastically excited version of this model.
The LNS equations are considered with stochastic body
forcing as an input, and we investigate the correlation
operator of the various velocity fields for a variety of
input correlation models. We compare the results of
this analysis with correlation data from DNS of the
full Navier-Stokes equations in turbulent channel flow.
Our basic computational tool is a matrix approxima-
tion of the operator Lyapunov equation for the velocity
field covariance. This approximation is obtained using
a Galerkin scheme.

The paper is organized as follow: In Section 2, we give
a detailed description of the LNS equations with body
force inputs and present them as an evolution equa-
tion for an infinite dimensional system. In Sections 3
and 4, we give a brief summary of the theory of lin-
ear infinite dimensional systems with stochastic inputs,
and show how the covariance operator can be used to
compute various flow statistics such as the Reynolds
stresses. Our numerical results are summarized in Sec-
tion 5, where we show how DNS correlations can be
matched by the present model with an appropriate se-
lection of input forcing covariance. We end in section 6
with some conclusions regarding the validity of the LNS
equations with input as a control-oriented model for
turbulent channel flow.

2 Navier-Stokes Equations

The flow of an incompressible viscous Newtonian fluid
can be described by the nonlinear NS equations and the
continuity equation

atll
0

—Vau — 1Vp + vAu,
p
V- u,

(1a)
(1b)
where u is the velocity vector, p is pressure, p is fluid
density, and v is kinematic viscosity. V is the gradient,

A := V? is the Laplacian, and the operator V,, is given
by Vuy:=u- V.

We shall proceed by linearizing (la) around a chosen
steady state nominal flow condition (u,p). If we de-
compose the instantaneous fields into the sum of the
nominal profiles and the deviations from them, i.e.
u:=1a-+Qq,p:=p+p, then we can rewrite (la) as
o — Vau — Vau — EVﬁ + vAu

1 (2)
+ {uAﬁ — Val — ;v]a} — Vai.



The linearized Navier-Stokes equations are obtained by
neglecting the second order term Vau. If the lineariza-
tion of (la) is done around a laminar flow condition
the expression between the curly brackets on the right-
hand side of (2) is zero. We will however, consider the
more general situation when 1 is not laminar.

In [7] externally forced incompressible NS equations lin-
earized around laminar flow profile have been consid-
ered. In this paper we analyze a more general setting
in which nominal flow condition is allowed to be non-
laminar

oru
0

—Vau — Vgu — lv;ﬁ + vAu + d,
p
V-u,

where d can account for flow disturbances, surface irreg-
ularities, neglected nonlinearities or the non-laminarity
of u.

Let us assume that the only nonzero component of the
steady state velocity field is velocity in the streamwise
direction, u := [ U V W |"=[U(y) 0 0]
and that the nominal pressure depends only on the
streamwise coordinate, p = p(z). Then, vAu — Vga —
1Vp becomes equal to [ vdy,U — 20:p 0 0 " and
one can rewrite the forced linearized NS equations as

O + Udgu + U'v —% D+ VAU + dy,

Ov + Udzv = —% P + VAU + dy, (3)
Oyw + U0zw = —%azp—FVAw—l—dw.
where 0 = [ U vow ]*, d = [ dy dy du r,

and U’ := 9,U. An appropriate definition of d can
be used to recover linearized version of (2) from (3).
This fact would often be exploited in the remainder of
our paper.

Since the fluctuation velocity field has to satisfy the
continuity equation it follows that the entire state of
system (3) can be parameterized using only two fields.
A particularly well-suited parameterization is given in
terms of the wall normal velocity and vorticity fields as

follows
o v _ 0 I 0 Y
1”'—{%]—[320—3,5} Y (4)

Evolution form model of the linearized NS equations
subject to external forces was derived in [7] and has
the following form:

v L 0 v
I e A [ R
= Ay + Bd,
where
L = AT (-U8A+U"9,+vA?),
S = -Ud,+vA, (6)
C -U'o.,
and
At oo -0z, 02, +02. -0,
N I e A T
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By exploiting spatial invariance in the streamwise and
spanwise directions, (5) can be parametrized by the
spatial frequencies k; and k. and rewritten as a one-
dimensional PDE in the wall normal direction

R Av + Bd, (8)
where the operators A and B represent Fourier trans-
forms of their counterparts on the right-hand side of (5).
Further, it can be shown that the original streamwise
and spanwise velocity perturbations can be extracted

as functions of v, w,, k, and k.

1

m (klay’{} — kzc&y) )

U
R @ X R (9)
We stress that the evolution model has the same form
regardless of whether the linearization is performed
around laminar or any other steady state flow condi-
tion, as longasu = [ U(y) 0 0 ]* and p = p(z),
because 02,{vd;,U — %81;5} = 0. This fact is often
used in our analysis.

We endow the state space with an inner product of the
form

<¢171ﬁ2>e = <¢17Q¢2>7 (10)

where Q is a block diagonal linear operator given by

o]

The inner product on the right hand side of equation
(10) is the standard inner product on L?*[—1, 1] defined
by (12). This inner product is chosen as it has a phys-
ical significance. Namely, it yields a norm on the state
space which measures kinetic energy density of a har-
monic perturbation, which is defined for any given pairs
of spatial frequencies in the streamwise and spanwise
directions and at any given time as

1 27 kg 2w [k
/ / / (u? 4 v° +w?) dz dx dy.
—1Jo 0

E can be expressed as a quadratic form of ¢ and @,
using integration by parts and (9)

1
8(k3 + k2)

-A 0
0 I

Q = (11)

E = koks
1672

3 Stochastically Excited LNS Equations

In this section a brief summary of the theory of linear
infinite dimensional systems with stochastic inputs is
given. Interested reader is referred to [6] and references
contained therein for more details.

A system (8) subject to stochastic external excita-
tion with know second-order statistics is considered.
If d is a temporally stationary white process with
zero mean, then its covariance operator is given by
R(tl,tz) = g{d(tl)d*(tz)} = R&(tl — tz), where R is
the ‘spatial’ correlation operator. By further assum-
ing that the generator of the dynamics A is stable,
the steady-state limit of the correlation operator of 1



(V= limy—oo V(1) 1= limy—oo E{b(t) ©*(t)}), can be
determined as a solution of the operator algebraic Lya-
punov equation

AV + VA = - M, (13)
where M = B R B*. Note that the operators A* and
B* represent adjoint operators of A and B, respectively.
The adjoint of an operator H on a Hilbert space with

an inner product (-,-)_, is defined by

(14)

(i), = (i),

which must hold for all 1&1, ?Z)Q in the Hilbert space. A*
can be determined using (14), while the adjoint of the

operator B is given by
(), = (575.)

where the inner product on the right hand side of (15)
is assumed to be the standard L*[—1, 1] inner product.

(15)

Since the generator Ais a 2 x 2 lower block triangular
operator, we can equivalently rewrite (13) as the set of
conveniently coupled equations of the form [6]

_M11,
—(M21 +CVn1),
_(MZQ + éﬁgl + %1@*). (16C

éf/n + Vi L
31}21 + fjmﬁ*
SVao + V2 §*

(16a)
(16Db)

)

In the important special case of 3D streamwise con-
stant perturbations, the Orr-Sommerfeld and Squire

operators become self-adjoint [6], (£* = £ = vATIAZ?,
§* =8 = vA = v(02, — k1)), and the adjoint of
the coupling operator is given by ¢ = —ikAzAflU'.

Furthermore,
expressed as

the elements of the operator M can be

Mii = BiaRaBily + BisR3sBi, +
Bi2Ra3Bis + BizRaslBis, (17a)

Mo = BaRiaBis + BaRisBis, (17b)

Moo = Bzﬂiuégy (17¢)

System of equations (16) is used in Section 5 for nu-
merical computations of the steady-state statistics of
3D streamwise constant velocity perturbations.

4 Steady State Statistics of the Velocity Field

In this section we show how the steady state correla-
tion operator V can be used to compute the Reynolds
stresses, T, := —p& {u ©"}, for the case when the flow
is driven by external excitation with known statistics
and is assumed to satisfy the linearized NS equations.
It is important to notice that, for every pair of spatial
frequencies k, and k., % represents an operator from
L?[-1,1] to L*[—1,1]. This means that for any given
f, g € L*[-1,1], § ]A)(kl,kz)f is to be computed
as

+1

g(kﬂﬁylzkz) :/ Y}(kw,yhy%kz)f(kw:y%kZ) dy27

—1
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where ]A/(kz,yl,yg,kz) is the kernel representation of
the operator V. It can be shown that the kernel rep-
resentation of the 3D operator V, whose action is de-
scribed by?

g(x1,y1,21)

fj—ll fR .fR V(z1

is related to the kernel of ¥ by a Fourier transform

— T2, Y1, Y2, 21 — 22) f(T2, Y2, 22)dzadxadys

V(kz,yhyz, //V T, Y1, Y2, 2 e Wwhet2ka) go iy
Therefore
V(,y1,y2,2) =: lim E{P(7, 41,2, 1) V(T4 2,y2,Z + 2, 1)}
- //f}(kz7yl?yQakz)ei(zkm+2kZ)dedk27
R JR
where

f}(kmaylayQ’kZ) = tlivnolog {Qz)(kz7ylakzat) ﬁ*(kz7y27kzvt)} .

Let us now express the wall normal velocity and vortic-
ity fields in terms of particular ¢ and @, basis functions

¢n(y) and P (y)

oo

( L:y7kz7t :Z

( Zay7kz7t Z kz7k‘zat w’ﬂ( ) (19)

(kay k=, )P (y), (18)

These are to be chosen so that the boundary condi-
tions on ¥ and @, are satisfied (see [7] for details). In
equations (18,19), an(ks,k-,t) and by (ks, k-, t) repre-
sent so-called spectral coefficients. With a slight abuse
of notation, we refer to them as a,(¢) and b, (t), bearing
in mind that they are functions of time parametrized
by spatial frequencies k, and k.. By applying the
Galerkin procedure to equation (8) we obtain an in-
finite dimensional ODE for the spectral coefficients a,
and b,,, parametrized by spatial frequencies k, and k..
If we solve the operator algebraic Lyapunov equation
for thus obtained system we will get a representation
of the operator V’s kernel in the chosen basis. This op-
erator is an infinite matrix for any given pair (ky, k)
and it will be denoted by Vy(ks, k). We also rewrite o
and @, as

0= S au®enly) = @' Walt), (20)
Oy = S baay) = vybW),  (21)

n

0

where ¢(y) and ¥ (y) (a(t) and b(t)) represent column
vectors with an infinite number of elements for any
given y (any given triple (kg,k.,t)). Taking this into
account, the state of (8) takes the following form

el 0 el RC PR IR A

1Spatial invariance in the z and z directions has been
exploited in the definition of operator V.



where 0 represents an infinite column vector with all el-
ements equal to zero (0" is an infinite zero row vector).
We are now able to write the definition of the operator
f)b(kz, k.) in terms of a and b

Vo(ks, k:) = lim € { { 28

Based on (9), the operator that maps W into 1 is given
by

X ikaly  —ika
2 2 2 n -
ik. 0y ik I

Combining (22) and (23) yields

A (ikedyd®))  (—ikep™)(w) { }
i= o | (2 +k2)e")(v) 0 b
B ko6 ) (k) ()

(24)
Thus, the kernel representation of the velocity fluctua-
tions correlation operator in the frequency domain can
be expressed as

P(kasy1,y2, k=) -

33?05{6( o1y Koy t) W (ko yo, ks, 1) }
33?05{ R } N

a* M@* { ¢((Z)J2 }}

S w0<y>] Vol ) V(gQ) wgm}

Therefore, the steady state value of Reynolds stress is
related to P(kz,y1,y2, k=) in the following manner

thm TT‘(xayhyQ?Z)

(Y2, 2, )}
_p//ﬁ(k-’“ylay%IfZ)ei@km_‘—ZkZ)dkzdkn
RJR

which represents a 3 X 3 symmetric matrix for any given
quadruple (z,y1,y2, 2).

—p lim &{a(z,y1,z2,t)
t—o0

(25)

Considerations contained in this section represent a
theoretical foundation that is used for numerical com-
putation of the steady-state velocity field statistics.

5 Numerical Results

This section contains an analysis of the results obtained
by computing the steady-state statistics of the velocity
field which is assumed to satisfy NS equations linearized
around a turbulent mean velocity profile. This velocity
profile is shown in Figure 1, and it was obtained by
DNS of the channel flow at R, = 180 [12, 13].

A numerical scheme for employing finite dimensional
representations of the operators in (8) is described in
detail in [7]. This scheme is developed in Matlab®, and
it exploits the spatial invariance of the equations in the
z and z directions. The PDE in the remaining wall-
normal direction was approximated numerically using
the Galerkin method.
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Figure 1: Turbulent mean velocity profile at R = 180.

All simulations are done at k, = 0, which means that
the one point correlations in the streamwise direction
have been computed. The spanwise direction is ‘cov-
ered’ by 256 grid points, and ¢ and @, are approxi-
mated by a linear combination of 50 basis functions.
The mean velocity profile shown in Figure 1 is approx-
imated by a polynomial. Then, the matrix representa-
tions of the underlying operators in the evolution model
(obtained by linearization around this polynomial) are
determined using a numerical scheme that we devel-
oped.

Selected steady-state statistics of the 3D velocity field
perturbations for the case of a spatially uncorrelated
external excitation, R = I, at R- 180 are shown
in Figure 2. These plots illustrate one point correla-
tions in the three spatial directions. In other words,
selected Reynolds stress components are computed in
terms of the operator V evaluated at x = z = 0 and
y1 =y2 =: y, i.e. V(0,y,v,0). The solid line represents
results obtained by solving (16), while the dashed line
represents results obtained by DNS of the fully devel-
oped turbulent channel flow [12, 13]. All statistics are
scaled such that their maximal value is equal to one.
Clearly, there are almost no similarities between our
results and those obtained in [12, 13]. In the remainder
of this section, we try to explain why such a large dis-
crepancy occurs. We also illustrate that considerably
better results can be achieved by considering the entire
problem from a more general point of view.

0.5

<o

Figure 2: Selected scaled steady-state statistics of the tur-
bulent channel flow (dashed) and the linearized
NS equations (solid) for R =1 at R = 180.

Recent work [14] has indicated that turbulence statis-
tics can be better matched with a stochastically forced
linear system model if one uses finite rather infinite
time correlations. Finite time correlations are com-



puted by accumulating the variance over times no
longer than a ‘coherence time’ T,.. This has been
accomplished by simply setting the velocity field to
zero for all time instants larger than 7.. We point
out that an intuitively equivalent model is derived by
introducing an ‘exponential discounting’ in the state
of the linearized model, ¥1(t) := e **(t), a > 0.
These exponentially discounted correlations are derived
from the solution of the following Lyapunov equation:
(A—al)V + V (A-al)* - BR B

According to our numerical investigations, in the sim-
plest possible scenario of a spatially uncorrelated ex-
ternal excitation, neither of these techniques leads to a
significant improvement compared to the infinite tem-
poral correlations.

A question of interest is whether one can model statis-
tics of the external excitation such that the results ob-
tained by solving system (16) represent a good enough
approximation of those reported in [12, 13]. In order
to address this important issue, observe that our re-
sults fail to match the DNS-based ones in the vicinity
of the walls. We can argue that it is hardly plausible
from a physical perspective to expect the same forc-
ing intensity near the walls and in the middle of the
channel. This might be a reasonable explanation of the
mismatch between solid and dashed curves in Figure 2.

Let us consider equation (16a) and try to adjust the
operator Mll in order to obtain 1}11 with desired prop-
erties. It can be shown that both v,,,s and wrms at
ke = 0 can be determined based on only 911. Our
objective is to accomplish a close correspondence be-
tween vyms and its DNS  counterpart, if p0551ble Based
n (17a), notice that M1 depends on ”Rgg, R23, and
7@337 which illustrates that choosing the forcing statis-
tics is a nontrivial problem. Because of that, we as-
sume 7@23 = 7@33 = (0 and channel our efforts on
choosing 7%22 Once we adjust 7%22, we can com-
pute M1, and then (16a) can be used for obtaining
expressions for Ras and Rass. We propose operator
7§22 to be a stationary white process in ¢, x and z,
RQQ = g{dvd:} = Rgzyé(tl — tg)é(xl — 1’2)5(21 — Zg),
with 7@223, defined as a sum of rank-one operators

N
D ) fa(y2)-

n=1

Rozy = Rozy(y1,2)

Functions f,, are to be chosen such that they have a
large value near one wall, a small value in the vicinity of
the other wall, and belong to some intermediate range
in between. Note that N determines the rank of the
operator ﬁggy. In particular, for N = 2 with

0.5 < |yl <1,
ly] <0.5.

_ [ o),
faly) = { Zn(Z) +1.6(0.1 — 0.4y,

where g, (y) := e ,n =12, ﬁzzy is a
band limited operator, as illustrated in Figure 3.

—3.1(y+(—1)"0.9)?

For the above defined operator Ra,, (16a) is solved for
V11 and the solution value is used for computation of
Vrms and Wrms. Figure 4 shows a comparison between
scaled DNS results and results obtained using our pro-
cedure. Clearly, the chosen statistics of external exci-
tation provide very good agreement between solid and
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Figure 3: 7%223/ as a function of y; and ya.

dashed curves in the regions close to the walls. Fur-
thermore, one can notice an almost perfect match be-
tween the v, s that we computed and the one obtained
from DNS. Deviations in w;,s can be explained by the
fact that we have not even attempted to choose forcing
statistics that would decrease them. Our objective was
to illustrate that by changing statistics of the excita-
tion, we can considerably influence the shape of veloc-
ity field statistics, a point proven by our computations.
Certainly, there is significant room for improvement of
the obtained results and investigations along these lines
are a topic of ongoing research.

Figure 4: Selected scaled steady-state statistics of the tur-
bulent channel flow (dashed) and the linearized

NS equations (solid) for 7@2214 shown in Figure 3
at R, 180.

The values of —wv and ;s can be computed using
the solutions of equations (16b) and (16c), respectively.
Note that these solutions do not influence v,ms and
Wrms because of the one-way coupling in system (16).
A question that we face again is how to determine
statistics of forcing that yields satisfactory correlations.
Namely, at this stage we have to specify operators May
and ./\/l22 in order to compute V21 and V22 If we as-
sume Rlz = R13 = 0 and R11 = I, a considerable
mismatch will still be present. For that reason, we
set operators Ma; and Ma2 equal to zero and resort
to some kind of ‘exponential discounting’ in the pro-
cess of solving (16b,16¢) by replacing operator S by
S — al. Tt is important to stress that even though we
originally thought of using this transformation based
on a finite time correlations approach [14], what we
are doing cannot be interpreted as ‘discounting’, since,
as can be readily shown, it is not possible to obtain
a time invariant Lyapunov equation without introduc-
ing ‘discounting’ in both states. However, it turns out
that for a = 1, results obtained using this procedure
match their DNS counterparts surprisingly well, as il-
lustrated in Figure 5. More importantly, an interest-
ing interpretation of the operators M21 and ./\/l22 can
now be made. In particular, they can be computed
in terms of solutions of ‘discounted’ system (16b,16c¢)

as M21 = —Otf/zl and MQQ = —QOAA/QQ. Furtherrnore,



the corresponding elements of the operator R can be
determined using the above expressions for le and
Mgz, the definition of the operator B, and equations
(17b,17c). It is important to notice that these elements
(7@12, Ris and 7@11) are no longer stationary in the
spanwise direction, which is an important, hitherto un-
known feature. It is interesting that the nonzero values
of the cross-correlation operators (Ri2 & Ri3) of the
external excitations play a prominent role.

Figure 5: Selected scaled steady-state statistics of the tur-
bulent channel flow (dashed) and the linearized
NS equations (solid) obtained as a solution of
(16b,16¢) for S — & — al at R, = 180.

The results of this section have shown that we have
been able to specify elements of the operator R that
provide a close correspondence between our results and
those that are considered to be a benchmark. Our
current efforts are directed towards development of
a precise methodology which would determine exter-
nal excitation statistics that would guarantee matching
DNS-based data in some optimal (e.g. least-squared)
sense [15].

6 Concluding Remarks

This paper has dealt with the input-output analysis
of the externally excited linearized NS equations when
the input is assumed to be a stochastic field with given
second order statistics. The statistics of the resulting
random velocity field are related to the input statistics
through the system dynamics, and can be computed by
solving Lyapunov equations.

We have shown that when the input excitation is as-
sumed to be spatially and temporally white, the re-
sulting velocity field statistics are significantly different
from DNS data. There are many possibilities for ad-
justing the input excitation statistics, so that the result-
ing velocity field statistics in the LNS equations match
those from DNS data. We presented one such set of in-
put correlations. These input correlations with the LNS
equations are therefore an accurate statistical model for
real turbulent channel flow (i.e. DNS results). It is nat-
ural to propose the use of these input correlations as
a disturbance model in an LQG control problem for
channel flow. It is expected that an LQG controller
thus designed would have superior performance than
a controller designed without an accurate disturbance
model.
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