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Distributed Control of Spatially Invariant Systems

Bassam BamietMember, IEEEFernando Paganinviember, IEEEand Munther A. Dahleh~ellow, IEEE

Abstract—We consider distributed parameter systems where approximations always produce systems with large scale inputs
the underlying dynamics are spatially invariant, and where and outputs. With few exceptions, such problems have not been

the controls and measurements are spatially distributed. These y,,.,,ghly studied due to the perception of their technological
systems arise in many applications such as the control of vehicular infeasibility

platoons, flow control, microelectromechanical systems (MEMS), ) ) o
smart structures, and systems described by partial differential Recently, however, technological progress is bringing
equations with constant coefficients and distributed controls and dramatic changes to this picture. In particular, advances in
measurements. For fully actuated distributed control problems mjcroelectromechanical systems (MEMS) make feasible the

involving quadratic criteria such as linear quadratic regulator ; : : : : : :
(LOR), H, and Mo, optimal controllers can be obtained by idea of microscopic devices with actuating, sensing, computing,

solving a parameterized family of standard finite-dimensional and telecommunications capabilities. Distributing a large array
problems. We show that optimal controllers have an inherent de- Of such devices in a spatial configuration gives unprecedented
gree of decentralization, and this provides a practical distributed capabilities for control; some recent examples are distributed
controller architecture. We also prove a general result that applies  flow control [5]-[8] for drag reduction, and “smart” mechanical

to partially distributed control and a variety of performance cri- g, res [9]-[11]. At a larger scale, the control of networks of
teria, stating that optimal controllers inherit the spatial invariance

structure of the plant. Connections of this work to that on systems 2UONOMOUS units is gaining attention, e.g., in infinite strings of
over rings, and systems with dynamical symmetries are discussed. Vehicles (recently known as Platoons) [12]-{14], and in cross

. e . directional (CD) control [15]-[17] in the chemical process

Index Terms—Distributed control, infinite-dimensional systems, . d h licati h | iabl |
optimal control, robust control, spatially invariant systems. industry. For these applications the control variables are also
distributed in space, in addition to the internal states. While,

of course, practical systems will involve a finite number of
. INTRODUCTION sensors and actuators, the correct abstraction in the limit for a

HE VAST majority of automatic control implementationdarge array is that of a spatio-temporal system [18], where all
to this day are spatially “lumped,” in the sense that theariables are indexed in space and time. Important questions
controller interfaces with the physical system at a fixed and réhat arise are i) how to design controllers for these systems
atively small number of actuators and sensors. Therefore W{ih regard to global objectives; and ii) how can these control
spatially distributed aspect of the dynamics is only internal f§9orithms be implemented in a distributed array.
the system, usually modeled as an infinite-dimensitale In this paper, we study these questions for an important class
the theory oflistributed parameter systersee [1]-[4]) has fo- Of problems. The key property which we exploit spatial
cused on method€},-semigroups, operator equations, etc.) fgpvariance which means that there is a notion of translation
the precise mathematical treatment of these internal dynamisSome spatial coordinates, with respect to which the plant
which is significantly more difficult than the finite-dimensionaldynamics are invariant. The systems we consider and the
theory. The constructive aspects of these theories typically degfimal controllers we design in this paper are typicailjnite
with insuring that finite-dimensional approximation scheme@mensional However, for the spatially invariant class, we
converge. Problems with spatially distributed sensing and &#ow that quadratically optimal controllers can be designed by
tuation pose an additional challenge, in that finite dimensiong®lving parameterized families of finite-dimensional problems
(via parameterized families of matrix Riccati equations). This is
, . . an exact solution of the infinite dimensional problem. We also
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The notion of spatial invariance should be viewed as the counver spatial frequency. In particular, optimal control design with
terpart to time invariance for spatio-temporal systems. Anothesspect to quadratic performance criteria (LGR,, H.) can
main result in this paper is that for spatially invariant plants, ori decoupled into a family of standard finite dimensional prob-
can restrict attention to spatially invariant controllers withodems over spatial frequency, as shown in Section IV.
any loss in performance. This fact provides a significant sim- In Section V, we analyze the structure of these optimal con-
plification of controller implementation and design, and furthearollers, with particular attention to their localization or decen-
generalizes our results on quadratic problems. We prove thistralization in space. This is a key issue for the implementation of
variance property for a large class of systems and induced-ndairese optimal strategies in a distributed array. In this regard, we
robust control measures. show in Section V-A that a natural distributed architecture can

Our work is related to several earlier results in the literaturbe provided, where local controllers observe the local state and
and we briefly mention here some connections. The earliest uggnmunicate with neighboring actuators and sensors. In Sec-
of a spatial-invariance concept for control design is the work tibn V-B, we study the spatial decay rates of the related con-
[12] for infinite strings of systems, with application to vehiclevolution kernels, which directly affects the communication re-
arrays. This work and subsequent extensions in [13], [19] @uirements for the array. By analytically extending solutions of
ready include the use of transform methods a&édor control parameterized Riccati equations, we prove that the decay rates
optimization. The work on discretized partial differential equaare spatially exponential.
tions [20] can be viewed as similar to our results for the group In Section VI, we move to the general situation where spa-
Z,,. This case has also appeared elsewhere in the literature inttaly invariant coordinates exist but do not fully parameterize
context of block-circulant transfer function matrices [16], and ihe plant dynamics; in this case diagonalization can still be per-
related to the “lifting” technique falV-periodic systems [21]. In formed, but to yield a finite-dimensional problem it must be
our work we generalize these notions to spatial coordinates ogembined with some form of lumped approximation in the re-
arbitrary groups, including continuous domains. For the casemgining coordinates. In these cases our techniques still provide
infinite domains, we study the inherently localized structure @ computational reduction in controller design, as well as an im-
optimal controllers which to our knowledge has not been prpertant insight into the architecture of distributed controllers.
viously addressed in the theory. Interestingly however, this fagte end the paper with a general result which shows that under
seems to have been observed in special examples earlier. In pwariety of (not necessarily quadratic) performance criteria, the
suing the question of sensor location [22], [23], it was observegtimal controller can always be taken to have the same invari-
that optimal feedback kernels (referred to as “functional gainsdhces as the underlying system, i.e., in the terminology of [28],
are inherently localized. one can achieve optimality without symmetry breaking. Con-

The notion of spatio-temporal systems has also received sochgsions are given in Section VII.
attention in the early 1980s in the literature on systems over
rings [18], [24]-[26], where conditions for stability and stabi-
lizability were obtained in terms of a parameterized families of
finite dimensional conditions. Again, our work here generalizes In this section, we introduce a formalism to study the question
these notions and we furthermore show that these technigoéspatial invariancen spatially distributed dynamical systems.
can also effectively solve optimal control problems. In full generality, spatial invariance can be defined whenever a

Another line of related research is the work on symmetriggoupof symmetries acts on the spatial coordinates, and the dy-
of linear dynamical systems [27], [28], where among other raamics commute with this group. In this paper, we will restrict
sults, it was shown that plants with certain dynamical symmeurselves to the special case when some spatial variables them-
tries can be stabilized by controllers with the same symmetglves form a group, and the symmetries considered are transla-
(i.e., without “symmetry breaking” in the terminology of [28]).tions in this group.

In this paper we consider systems with similar spatial symme-
tries and show that one can also achieve optimal performange Groups, Translations and Invariance
without breaking symmetry.

More recently and in parallel to our work, distributed sensi
and actuation problems have also been addressed using Iu%
matrix inequality (LMI) techniques [29], [30], where the dis- 1) G = R;
tributed nature of inputs and outputs and limited communica- 2) G = 9D (unit circle);
tion requirements are incorporated in the theory. 3) G = Z (integers);

Our presentation is organized as follows. In Section II, we in- 4) G = Z., (finite group of integers modula).
troduce the formalism of systems over spatial groups to stutty addition, one can consider direct products of such spaces,
such invariances, and collect some facts from generalized cafn:= G, x - - - x Gy, €.9.,R¢, 7¢, or the cylindeD x R. Such
mutative Fourier analysis. The simplest case (which we laletamples cover all the cases of interest in this paper, but still the
fully actuated is when all spatial coordinates are of this naabstract formulation is convenient to treat all cases at once. In
ture, and the actuation/sensing is fully distributed across thethis paper, the grouf® will represent a number of spatial coor-
As discussed in Section lll, these systems can be studied bglimates, each varying in one of the above groups. There may also
Fourier transform over the spatial domain, whhidbck-diago- be additional coordinates in the problem; in other words, signals
nalizeshe dynamics into a family of finite dimensional systemsvill have the formu(z, £, t), wherex = (z1,...,z4) variesin

Il. MATHEMATICAL PRELIMINARIES

In the sequeli will denote a locally compact, abelian (LCA)
Qpp see [31]. Special cases of this include
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agroupG := Gy x --- x Gy, £ contains additional spatial co- TABLE |

ordinates varying in somset andt is (discrete or continuous) COMMUTATIVE GROUPS ANDTHEIR DUALS

time. , , , G|R| oD Z | Z,
The group operation (denoted By, in the case obD this GIR| z oDz,

corresponds to addition of arcs) introduces a translation map
z — z + z, on G, and a translation operator for functions
on G in the natural way(7,, f)(x) := f(z — x,). Thereis  The Fourier transforn¥ associates a functiofif(z)} on G
a naturalmeasureon G which is invariant under translations,with a function{ f(A)} on G (for a general definition see [31]).
and positive over open sets; this is called the Haar measure &ntg¢w properties are

is unigue up to normalization. (e.g., Lebesgue measuRean 1) Fis linear;

aD, counting measure ohor Z,,). We denote it bylz. We will 2) F transforms convolutions into products;
be mainly concerned with complex functions &nwhich are 3) with appropriate normalizations in the measu/esand
square integrable with respect to the Haar measure d\, F is anisometricisomorphism froffy (G) to £2(G);

in particular the Plancherel theorem states that

£3(6) :={f:G—>C"|IIf||2 - |f<x>|2dx<oo}. @) A A
’ ’ /G 17112 = /G | @)[2de = /A FOORAA=IF13. (@)

An operator A : D(A)—L3(G) with domain o _ _
D(A) C L3(G) is said to betranslation invariant if The last property above implies that one can identify the
T, : D(A)—D(A) and AT, = T, A for every translatiorf,,. SPacesL:(G) and L2(G); in particular, every operatorl
Two important examples are as follows. on a dense domain if£»(G) is identified with an operator

A = FAF~! on a dense domain i6;(G). The main advan-
tage of this identification in that translation invariant operators
are associated witmultiplication operators in the transformed

* ForG = R, the differentiation operator

of

A f(z) e 9z @) domain. ) )
The domain of this operator is the set of function€ #{R) de?r?gglttl)?/n 1. A multiplication operatorD(A) C £5(6) is

with derivative in£»(R); it is clear thatA is translation
invariant. Note thatd is unbounded, but it is a closed op- [Af](A) := AN FN)

erator with dense domain (see, e.g., [2]); due to their im- X R

portance in partial differential equation models, the theoglmost everywhere, whefgi()} : G — C™*" is a measur-

of distributed parameter systems is usually developed fable matrix-valued function.

this larger class, see [3]. More generally, a PDE operator The matrix-valued functio{ A(A)} is called thesymbolof
whose spatial domain is a group, and has constant coeffie operatord. With a slight abuse of notation, we use the same

cients is translation invariant. letter A to denote both the operator and its symbol. We will also
« A spatial convolution: leff,. be a family of operators in- denote such symbols by eithei(\) or Ay to make formulas
dexed over: € G, and define more readable. It is easily seen thatlifis a multiplication op-
erator, the corresponding on £,(@) is translation invariant;
H:f+— / H,_f(¢)d¢ (3) inwhat follows, we restrict the attention to translation invariant
G operators with this property.

where the integral corresponds to the Haar measure. Undefssumption 1:We will consider translation invariantpper-
appropriate assumptions, this operator is well defined aftPrS 4 : P(A)—L5*(G) such that the corresponding :
spatially invariant. D(A)—Ly(6), D(A) C L3(G) is a multiplication operator,
and the functiomrd(\) is continuous.

B. Fourier Analysis on Groups This assumption is general enough to include spatial convo-

. - . lutions with kernels i G well he differentiation op-
One of the main advantages of the spatial invariance pro&%so s with kemels inZ, (6), as well as the differentiation op

erty over a group, is that Fourier transforms can be introduce{ftorS which appear in constant coefficient PDE models. As is
ty group, well known [32], the induced norm of multiplication operators

FO dlggonal.lzethe rglevgnt operators, in the same way as tIrngngiven by theL . norm of the defining function, in other words
invariance is exploited in standard system theory. This sectio

contains a brief overview of Fourier analysis over groups; for a 4] = |All = sup omax (A()\))
full account see [31]. PV

General Fourier analysis (also known as commutativedth finit f the right-hand side i d suf
harmonic analysis) consists on mapping functions@rto and the initeness ot tne right-hand side 1S a necessary and sut-

functions on adual group G; in full generality, & can be ficient condition for the boundedness of the operator

identified with the set of homomorphisms frofto oD (the

so-called characters); for our purposes it suffices to consider
Table I, where the entries correspond to the Fourier transform,
Fourier seriesZ-transform, and discrete Fourier transform, This paper is concerned with spatio—temporal systems where
respectively. the relevant signals are indexed by a spatial coordinate in addi-

I1l. SPATIAL INVARIANCE WITH FULL ACTUATION:
STATE-SPACE MODELS
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tion to time. In this section, we focus on a special class of contra, w; are the control and disturbance inputs intodevehicle.
problems, where the following are true. In such a problem, it is typically desired to regulate errors down
1) Allthe spatial coordinates, denoted collectivelyyary to zero, and this can be captured by quadratic performance ob-
in a groupG. Modulo this coordinate, the dynamics ardective such as
finite dimensional. -
2) The system actuators and sensors are fully distributed 7 — Z/ (up?(t) + aov?(t) + azul(t)) dt.
over this coordinate. 0
3) The dynamics are spatially invariant with respect to trans-
lations in this coordinate. Note that in the above model, th& operator is obviously
. . . . T
To be more precise, we adopt a state-space description $8@tially invariant. TheB operator is actually0 [ —T7_,]",
this class of systems. The first two assumptions imply that‘itherel”, is the operator of translation byl. And as usual,
¥, 1/ and denote the state, input, and output spaces resp¥€ can define a regulated output whasenorm is the quadratic
tively, dim{®/G}, dim{l//G}, dim{Y/G}, are all finite. In Objective defined above. All the system operators thus defined
other words they can be expressed as vector-valued functid¥{$ be spatially invariant. One can then pose distributedand

¢(x, 1), u(z, t) andy(z, t). A general linear model is, thus, of Hoo Problems for such systems. We finally note here that the
the form (in continuous time) stability of the distributed system implies the so-called “string

stability” of the vehicular platoon.

tCZ

J _ Other examples, were the spatial variables are of a mixed dis-
&w(x’ t) =[Ay](z, 1) + [Bul(z,1) ®) crete and continuous nature can be accommodated in our frame-
y(z,t) =[C¥)(z,t) + [Du](z,1). (6) work.

Definition 2: The system (5) and (6) is callexpatially in- B, Block-Diagonalization
variantif the operatorsd, B, C, D are translation invariant and
satisfy Assumption 1.

The entire treatment will be in terms df, signal spaces: in
(5) and (6), at a fixed instant of time the signals« andy
are assumed to be elementsigf(G) (respectivelyL5(G) and d - o .

L5(6)) for some finite vector dimensions, p, r. 4, B, C, D ZVOAH) =ANDA ) + B 1) 7

are translation invariant operators between sp&gé&) of ap- GO0 ) —C(A)T/)(A 9 +D(A)a()\ ) ®)

The main observation we will exploit in the next few sections
is that by taking a Fourier transform, the system (5) and (6) is
diagonalizednto the decoupled form

propriate dimensions, and are static (no dependencg dime
third assumption above means that these operators are transla- _ » - A - S .
tion invariant, in the sense defined in Section Il. For example, whereA()\), B(), C(A), D(X) are multiplication operators in

B, C. D could be matrices whose elements are PDE Operatg%cordance with assumption 1. Now, the transformed system (7)

(in z) with constant coefficients, spatial shift operators, spatigpd (8) Is in effect a decoupled family of standard finite-dimen-

. : oo shonal linear time-invariant (LTI) systems over the frequency pa-
convolution operators, or a linear combination of several su<r:

ameterA.
operators. . Stability: The decoupling achieved by Fourier transforma-
In general, some of the operators will be unbounded, so the . - . .
. . . . ion allows for standard techniques from finite dimensional
notion of a solution to (5) requires some care, and involves the : o
séystem theory to be applied to these distributed problems.

Eg]eory ofCy semigroups of operators; for a full discussion, s onsider first the question of stability of the autonomous
' equation

A. Examples

Y ©
A standard example of a spatially invariant system is the heat at” =Y

equation with fully distributed control over either an infinite do- _ . . .
main(G = R) or with periodic boundary conditior& = oD). with ¢ € L,(G). Definitions of stability, asymptotic stability

An example where the spatial domain is discrete is lond exponential stability have been studied for such systems
gitudinal control and string stability of vehicular plat00n§See [2]), which extend, with some complications, the finite di-

(G = 7). Such problems have been considered using transfofgnsional theory. In the translation invariant case, this question

techniques where the property of spatial invariance was utiliz&8" P€ studied by means of the diagonalized systéfir )y =

[12], [13]. If each vehicle in an infinite string is modeled as & _
moving mass with second-order dynamics (with normalized VW& Will assume that the operatdrgenerates a strongly con-

coefficients), we obtain tinuous (C°) semigroup[2] onL»(G), which we refer to as
| ().
Di 0 1| |p 0 0 Definition 3: The system (9) iexponentially stablé
|:UZ:| = |:() ():| |:vz:| |:ui—ui_1:| |:wi—wi_1:|

[T < Me™*,  £>0
for all ¢ € Z, and where;, v; are the relative position and ve-
locity errors between théth and (¢ — 1) vehicle, respectively. for someM, a > 0.
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Note that the corresponding semigrafift) := FI'(t)F~* It turns out that checking stabilizability can be done by a
on £L»(G) is a semigroup of multiplication operators withpointwise solution to a parameterized family of finite dimen-
symbolet4(N) | Thus, the stability condition can be recast as sional Riccati equations.

Theorem 2: Let A be the generator of @ semigroup, and
SUP Cmax (etﬁ(k)) < Me™°, (10) B be bounded. Then, the system in (12) is exponentially stabi-
AcG lizable if and only if the following two conditions hold:
1) forall X € G, the pair(Ay, B)) is stabilizable;

This implies that checking exponential stabilityaisnostequiv- 2) the solution of the family of matrix Riccati equations

alent to checking “pointwise” the stability of the decoupled sys-

tems. The precise statement is in the following theorer_n. ASPy+ PaxAy— PAB\BIP\+1=0 (13)
Theorem 1:If A is the generator of a strongly continuous _ _

semigroup, then the following two statements about the system IS bounded, i.esup,c¢ [|PAll < oc.

(9) are equivalent: Proof: We first note that condition 1) implies that for all
1) the system is exponentially stable; A there exists a positive definite stabilizing solution to the alge-
2) for eachA € G, A, is stable, and the solution of thePraic Riccati equation (ARE) (13), and we require condition 2)
family of matrix Lyapunov equations to insure that this results in a bounded operato£g(G).
Sufficiency: This is clear sinc€ () := (P, ) is a Lya-
APy + PAy = —1 (11) punov function for the closed loop system with feedback
—B*P.
is bounded, i.esup, ¢ || Pal] < oc. Necessity: This is essentially in [3, Th. 4.1.8], which con-
Proof: The main point is thatup, ¢ [|PAl| < oo is cludes that there must exist a unique bounded Hermitian
equivalent to the boundedness of the multiplication operator on  solution to a weak operator version of (13). In this case,
£2(6) defined by the symbof Py }. that solution gives the value functidi(y') = (P, ¢) to
2 = 1: This follows [33, Th. 5.1.3]. The solutiof is a the related LQR problem. The value function is clearly spa-

bounded Hermitian operator that satisfies the weak version tially invariant, and therefore the corresponding Hermitian

of the operator Lyapunov equation, and thuigg) :=< operatorP is spatially invariant. Thus, the operator ARE
Pi, 1 > is a Lyapunov function for the system [33, Th. collapses to (13), together with the boundedness condition.

5.1.3]. - =
1 = 2: Since the semigroupp'(¢) is made up of multipli- We remark here that the above two theorems imply that

cation operators, the boundedness condition (10) is checking stability or stabilizability of spatially invariant
systems can be done by checking the same condition for the
SUP Amax (etA)\ ot ) < M2e2, f)i\nitegimensional decoupled systems for every frequency
€ G.
Remark: There are examples where it is necessary to check
Therefore, if we defing’ to be the solution of (11) for eachy the boundedness conditions in Theorems 1 and 2. However,
we can bound these appear to be mathematical constructions rather than phys-
- ical examples. At large spatial frequencies (i.e.\as oo) the
| Px ]| :/ Mo (CtA: CtAA) dt dominant mechanism in physical systems is dissipation. In other
words, for large\, physical systems are stable and thus stabiliz-
able, and the conditions are automatically satisfied in the limit
A — oo.
The boundedness condition is certainly not needed when the
independently oA. B group( is compact (i.e., for the case of spatially discrete sys-
The aforementioned theorem then implies that checking ggmsc — Z,7,), since it follows from the continuity of so-
ponential stability can be handled by finite dimensional too|gtions. The above results are then very similar to results on

ACG

S/ M?e7 29t < 00
0

plus a search ove. so-called spatio-temporal systems from the theory of systems
Stabilizability: Similar statements can be made about thger rings [18], [25], [26]. We summarize this in the following
question of stabilizability of the system corollary.
Corollary 3: If the groupG is compact, then
0 . . . . .
az/) = Ay + Bu (12) 1) the system in (9) is exponentially stable if and only if for

every\ € G, the matrixA, is stable;
whereB is a bounded operator af»(G). The following state- 2) the systemin (12) is exponentially stabilizable if and only
ments can be generalized to the case whizigunbounded, but if for every A € G, the matrix paif Ay, B,) is stabiliz-
we state the bounded case here for simplicity. able.

Definition 4: The system (12) igxponentially stabilizable We note here that in the compact case, no technical assumptions
if there exists an operatdr : £-(G) — L»(6) such that on the operatorsl, B are necessary other than the continuity of
A — BF generates an exponentially staldlé semigroup on the matrix-valued functionSAA}, {BA}, which then imply that
L5(G). A, B are bounded operators @dh(G).



1096 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 7, JULY 2002

IV. OPTIMAL CONTROL WITH QUADRATIC MEASURES A. At a fixed , it amounts to no more than a classical finite-di-
rmensional LQR problem. Therefore, the unique solution to this
pLoblem is achieved by the translation invariant state feedback
= —R~!'B* Pz, whereP is a translation invariant operator
hose Fourier symbaP()\) is the positive—definite solution to

e parameter-dependent matrix ARE

We now discuss briefly the possible settings for optimal al
robust control problems for such systems. There are two p
sible lines of investigation. The first would be to combine th&
spatial Fourier transform with a Laplace transform over tim
to obtain a multidimensional system transfer function. To illué—
trate, assume that (9) is exponentially stable, ttsdn- A) has S A P A
a bounded inverse fde(s) > 0, and we can dgfai;ie ) A DAL+ —PBRC BB+ @ =0 (17)

Hy(s) = C\(sI — A\)*By+ D 14y forallx € 6.
v : VB g (1) The main observation here is that whénB, @, It are trans-

which is ap x r matrix-valued function orc x {Re(s) > lationinvariant operators, then the solution to the operator ARE

0}, continuous in\ and analytic ins. Then analysis and syn-in the LQR problem is also a translation invariant operator. The

thesis problems for such systems become equivalent probleg¥#gct conditions under which this yields a stabilizing controller

for a certain class of multidimensional systems. In this settingf€:

causality (or stability) for both plants and controllers is only rel- Theorem 4: Consider the LQR problem (15), (5), wherse

evant with respect to the variabigand not the spatial transform B, @, It are translation invariant operators, wih> 0, @ > 0.

variable). This is a crucial difference between these problentb (4, B) and(A4*, Q'/?) are exponentially stabilizable, then

and other multidimensional systems problems. 1) the solution to the family of matrix ARE’s in (17) is uni-
In this paper, we will take another approach which is more  formly bounded, i.esup, ¢ () < 00;

expedient for quadratic problems. We transform only the spa-2) the translation invariant feedback operatéf =

tial variables, as was done in (7) and (8). The main observation —R~!B*P is exponentially stabilizing.

is that sinceC» norms are preserved by the Fourier transform,  Proof: As in the proof of Theorem 2, this follows from [3,

any optimal control problem on (5) and (6) involvingadratic  Cor. 4.17 and Th. 4.18] after noting that the solution of the op-

signal norms (e.g., LQR¥> or H., problems, see below) will erator ARE must be a spatially invariant operator. This follows

be equivalent to an analogous problem for (7) and (8). Thiygem the spatial invariance of the value function of the LQR

the original distributed problem is converted to a parameterizggbblem. This last fact is clear: it, B, Q, R are spatially in-

family of finite dimensional state space problems. variant operators, then for any initial statg, we have from the
LQR problem definition that/(+,) = J(T,), whereT,, is

We begin by studying the distributed LQR problem. There is We should note here that the above is a generalization of the
an abundant amount of literature (see [3], [34]) on this problergtion of solving certain LQR problems by so-called modal de-
characterizing the optimum in terms of a solution to an operat@®@mposition. The important difference is that in this paper we
Riccati equation, in an analogous fashion to the finite dimefo not advocate the standard “modal truncation” as the method
sional theory. Such equations are difficult to solve in generd® implement a finite-dimensional approximation of the optimal
but for the class of spatially invariant systems, the problem di¥finite-dimensional controller. Rather, we will proceed further
agonalizes exactly into a parameterized family of finite dimemnd analyze the properties of the resulting feedback operators.
sional LQR problems. This is now explained; for simplicity onlyr his will yield a more natural approximation scheme that we

the infinite horizon problem is discussed. refer to as “spatial truncation.” These issues will be studied in
Consider the problem of minimizing the functional Section V-B.
J:/ Q) + (Ru, w)dt (15) B. H, and’H., Control
0

In this section, we briefly describe how the preceding

subject to the dynamics (5), agidz, 0) = vo(z) € L2(G). Our methodology applies also to two disturbance rejection prob-
main assumption is that, B, @, andR are translation invariant lems of the standard form given in Fig. 1. The generalized
operators (further assumptions are listed in Theorem 4).  plant G is a linear, space/time invariant distributed system,
Taking spatial transforms, utilizing the facts that translatiofthich admits a state-space representation as in (5) and (6). The
invariant operators transform to multiplication operators, arfedbacki’, which is also distributed, must internally (expo-

that inner products are preserved, the problem can then Ngtially) stabilize the system and minimize a certain norm of
rewritten as the minimization of the closed loop maf..,. As will be shown in more generality

in Section VI, no performance loss occurs by restricting the

J = / /Oo (z/}*)\(t)Q)ﬂ/})\(t) + aj(t)}?m)\(t)) dtd\ design to controllers which are themselves space/time invariant.
&Jo (16) Under these circumstances, the closed lébp:= 7., is a

subject to (7) and?()\,o) _ 1/30()\), and wherd) and 1 are the space/time mvanant system, which can be represented by either
: . the convolution
Fourier symbols of the operato€g and 2, respectively. Now

it is clear from (16) and (7) that the problem decouples dyer B b
that is, it is “block-diagonal” with the blocks parameterized by #(x,t) = /G/O ¢, Tyw(z = ¢ = 7)dCdr (18)
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—] f—— * ||T%w]|2 IS minimized. ({2 control);
G * || T2wlloo < 1 (Hoo control).
y u These problems have been addressed in the literature for gen-
% eral classes of distributed parameter systems [3], [34]). The so-
lutions generally available are in terms of the solvability of two

operatorAREs. As we now indicate, spatial invariance allows
us to solve these operator AREs as a parameterized family of

] . ) ] matrix AREs. This can be observed by looking at the Fourier
(in the continuous time case) or the transfer function represgpsnsformed version of (22)—(24)

Fig. 1. The standard problem.

tation
2\, s) = H(A, s)i(], s). (19) 2 0A) =ANA(E) + BLada(t) + Baata(t) - (27)

The stabilizing property of( is required to guarantee (18) (1) :leﬂ\z/f/\(t) - 1312:/\72/\“) (28)
and (19) are meaningful under suitable signal classes. For our Gx(t) =C2 APA(t) + D21 awa(t). (29)
purposes, we will require th& (A, s) be bounded, and analytic
in the second variable ovér x {Re(s) > 0}. The system is thus reduced to a parameterized family of finite

This in particular, implies thaH is a well-defined operator dimensional LTI systems over € G. Now for both the?,
on £3(G x R), with induced norm andX., problems, the optimization can be decoupled over fre-

. quency since quadratic performance measures are preserved by
Hlco—zo, = |H|low := sup T(H(, jw)) (20)  Fourier transformation
AEG,wER

 from (21), the distributed{, problem amounts to solving
which we call theH., norm of the system; note, however, that @ family of standard, problems oveA, then integrating
the Hardy space (analytic) structure refers only to the second for the overall cost;
variable; from the point of view of the spatial frequency this is * theH. feasibility questior|7 ., |l < 1 can be imposed
only an£.. norm. Thus, thé{.., control problem in this context as afamily of standar#f ., conditions|| 7%, (X, -)||oc < 1.
is to find a stabilizingk” which minimizes the previous quantity. This means that the standard finite dimensional theory can
Another system specification which translates naturally to tt&@ply at everyA, and the optimal controllers can be found by
frequency domain is th#&(, criterion, given by applying the standard finite dimensional Riccati equations as in
- [35] at each\. The only additional technical requirement is to
|H|? = i/ / tr (g*)\(jw)g)\(jw)) d\dw. (21) showhboundedness ovenfthe resulting solutions; for this pur-
21 J& J oo pose some regularity conditions must be imposed, which spe-

ialize those of [34] to the spatially invariant case. For the sake

As in the finite dimensional case, this norm can be used to mé: . ) ; ] )
sure the response of the system to stochastic disturbances. evity we omit the detailed statements; the interested reader
gaferred to [36].

again, we remark that the Hardy space structure is with res B .
g Y Sp P s a consequence of the above, we find that the optifal

to the temporal-frequency variables alone. . )
‘andH controllers for spatial invariant plants are themselves

The distributedH, andH.. control design problems are de oo ) - . : .
fined in terms of the following state-space description of th%oatlallymvanant; a generalization of this fact will be discussed

plant@G in Fig. 1: In Section V1.
d V. THE STRUCTURE OF QUADRATICALLY OPTIMAL
— (., t) =Ay(.,t) + Biw(.,t) + Bou(.,t 22 :
atr‘/j( ; ) r‘/)( ; ) + 1w( ; ) + 2“’( ; ) ( ) CONTROLLERS
2(.,t) =Cry (., t)+ D Lt 23
2 8) =Cip (8 4 Dzl 1) (23) The optimal controllers obtained in Section IV have the fol-
y(,8) =Cot(, ) + Dnw(., 1) (24) lowing attractive properties:
hereA, By, Bs, C1, Ca, Da1, D15 are translation invariant op- ~ * they pr_ovideglobalperformanc_e guarantees. In particular,
erators, and it is assumed that, B,) and(A*, C;) are expo- they will ensure overall stability;

nentially stabilizable. Note that these conditions can be tested * they can be effectively computed by a family of low di-
by a parameterized family of finite dimensional stabilizability =~ Mensional problems across spatial frequency.

checks as in Theorem 2. However, we have not considered the issuéngilementa-
The control design problems consist of finding controllers dfon of the control algorithm. In this regard, rather than a highly
the form complexcentralizedcontroller with information from all the
9 distributed array, it would be desirable to have distributed intel-
az/;K(., t) =Argvk (., t) + Bry(., t) (25) Iigence, where eaqh actuator runs a Iocal_algorij[hm with infor-
w(oot) =Crtore(t) + Drcy(..t) (26) mation from the neighboring sensors. In this section, we analyze

the optimal schemes from this perspective. Relevant questions
where the state is a real separable Hilbert spaceanis the are as follows.
generator of &, semigroup, such as the the closed-loop system ¢ (Section V-A) Does the control law lend itself to a dis-
be exponentially stable, and either of tributed architecture?
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» (Section V-B) To what degree is information from fadution kernels decay exponentially in space; thus the optimal
away sensors required? Notice that this pertains to appra@ontrol laws have an inherent degree of decentralization. From
imate diagonalization in theriginal spatial variables. a practical perspective, the convolution kernels can be spa-

tially truncated to form “local” convolution kernels that have
A. Local Controller Architecture performance close to the optimal, and preserve the appealing

We now illustrate the surprisingly intuitive and appealing architecture described earlier.
chitecture of quadratically optimal controllers (by this we mean . L
the LQR, M and the centraH.. controller). B. The Degree of Spatial Localization

First note that since the ARE solutions for all three problems We will study the localization issue for systems with un-
are translation-invariant operators, then their controllers are spaunded spatial domains; for these we can ask the question of
tially invariant systems; in particular, the same algorithm mubbw the controller gains decay as we move away in space. For
be run at each actuator location, the influence of each sensordaacreteness, we focus on the céise- R (andG = R), anal-
pending on its position relative to the actuator. ogous ideas apply to the discrete cése- 7. We first consider

To understand the structure of this algorithm, let us examitige simplest example of LQR optimization to illustrate the spa-
more closely the optimdit{» controller; it has the following re- tial localization properties.
alization: Example: Consider the heat equation on an infinite bar with
9 distributed heat injection
az/)K(a:, t) =Av i (x,t) + Bou(z, 1) )

o o
+ Lx (Cotp(z, t) — Cotpc(z,8))  (30) 5P (@0 = e 5@, 1) +ula, b). (32)

uw,t) =F (@, t) (31) Here the grous is the real line. The standard Fourier transform

where the state feedback and estimator “gains” a¥eflds the transformed system

F = —-B3P, and L := BCj3, whereP, and P are the d - ) X

solutions to the operator Riccati equations, themselves spatially P = —eAT(A, ) + (A 2). (33)
invariant. Thus in the original spatial coordinatésand L are ) _ ) )
spatial convolutions, which is previously emphasized bysthe TaKing, for example? = qI (multiple of the identity) and

otation. R = I'inthe LQR cost (15), the corresponding (scalar) param-
The above implies the following structure of the optimal corfterized Riccati equation is
troller. —2eA? H(A) — p2(N) + ¢ =0 (34)

a) A distributed estimatowhose local state ik (z,t).
Note that to propagate this state [(30)], one needs to kngyhich has the positive solution
the outputs of neighboring estimators, and convolve the
prediction errors with the kernel of (the size of this PN = —cA? + /2 +q. (35)
neighborhood is determined by the spreadigf We
note that at a givem, € G, the local controller state In the transform domain, the optimal control will be of the form
Vi (z,,t) has a physical interpretation; it is the estimaté(X,t) = k(M) (A1), with k(A) = —p(}). Note that even
of the system’s local statg(z,, ). though the system and the cost are rationah,rthe optimal
b) The feedback at position is given byw(z,t) which is control is irrational. This in particular implies that it cannot be
computed by convolving neighboring state estimates witfiPlemented by a “completely localized” PDE inandt. In-
the kernel OfF (the Size Of th|s neighborhood iS deter_deed the COI’ltI’0| IaW takes the Spatia| COﬂVOlution fOI’m
mined by the spread df).
Thus the optimal laws are directly amenable to a distributed u(z,t) = / k(z — O(Qd¢
implementation, with localized actuation and information R
passing. What determines the degree of localization, and ttwisere the convolution kerné{z) = —p(x), andp(z) is the in-
the communication burden for the array, is the spread of therse Fourier transform g A). In this particular case, noticing
convolution operatoré and F'. Note that the open loop systemthat
operatorsd, B> andCs are typically PDE operators, therefore q
localized . PN =— ——— € L1(R)
However, in general the Riccati solutiofs and P, will not CA*+ VA + g
be differential operatorsH;(A) and F»(A) are not rational in e see thap(z) is a continuous function of. The degree of
general, see the example in Section V-B), and their convolutigRatia| decentralization is characterized by the “spreagh.of
kernels will have a spread, reflecting the need of informatiogk a function of. We now show that this kernel has some degree
passing within the array. _ _ of inherent “localization.”
In Section V-B, we will provide means of evaluating the |f\ye measure this spread in terms of the exponential decay of
spread off, and P»; in particular we will see that these convo-,(;) then we can bring in Laplace transform tools to relate this

1For open-loop operators of the form (3), their convolution kernels would aIQJecay tothe e)_('Stence Of analyf['c continuatiorof the Fourier
contribute to the controller spread. transformp(\) into a vertical strip of the complex plane.
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Im(o) The generalization of (bilateral) Laplace transforms works as

follows 2 For a given distributiorf € D'(R), define the set

F={neR:e™feS(R)}

The Laplace transfor'(«) on the vertical strip'+jR = {0 €
C : Re(o) € I'} is defined by

Fn+jA) = Flem™ F1GA). (36)

Fig. 2. Analytic continuation region fgi(A\) = —cA? + /cZAT £ ¢.
With this definition in place, we now state the following result
from [37, Th. 7.4.2].

Theorem 5:Let ' be an open interval iR, andF'(¢) be an
analytic function on the strip+jR, such that for every compact
setl’y C I, there exisCC, N > 0 such that

In particular,p(\) can be extended to the function

Pe(0) = co® + /2ot + ¢

, |E(o) < O+ o)™ @7
of o € C, and such thap(A) = p.(j\). We note thap. is
analytic in a region of the complex plane which avoids the fowolds forRe(s) € I'g. Then there exists a distributiofi €
branch cuts shown by the diagonal lines in Fig. 2. Thus, tlw(R) such thae=* f € S'(R) for everyy € I, and satisfying
Fourier transform of can be analytically extended to the strip(36).
If we specialize this result tb' = (-7, 3) we see that an-
alytic functionsF(c) on the strip{c € C : |Re(o)| < £}
V2 g4 which satisfy the growth bound (37), have inverse Fourier trans-
7 € C:[Re(o)] < - (6_2) : forms f such that—"* f is of “tempered” growth ir, for every
|n] < 3. For instance iff itself is a continuous function (as in
Now, a consequence of Theorem 5 is that) must decay ex- (1€ €xample above), thefi{x) must decay to zero 4s| — o,
ponentially, more precisely faster than any exponentiaf 17!zl this is the decay result we
are looking for.

To generalize this kind of result to a class of optimal control
problems, we must guarantee that the Riccati solutiBas)
have an analytic continuatioR.(o) to a vertical strip of this
kind, and that they satisfy a growth bound of the form (37). This

Since {k(z)} decays exponentially withHz|, it can be Wwill now be pursued, focusing on the LQR Riccati (17), and for
truncated to form a “localized” feedback convolution operatgimplicity setting? = I. We narrow the set of problems with
whose closed loop performance is close to the optimal. the following assumptions.

Remark: We note that in this particular problem, an inter- Assumption 2:
esting tradeoff seems to be in place: in the limit of “cheap” i) The functionsifl()\), B(\), Q()) have analytic exten-

|z|— o0 2 1/4
p(a)|e*1—5 0, for 0 < 5 < g (%) .
C

control (i.e.,¢q — o) the analyticity region grows and the
controller becomes more decentralized (approximates a purely
local feedback). It seems thus possible that there is an inherent
tradeoff between actuator authority and controller centraliza-
tion, in the sense that low authority actuators need feedback
from more distant sensors to achieve optimality.

sions A.(0), B.(0), Q.(0) to the stripS = {0 €

C : |Re(s)| < o}, which arerational functions. Note
that this class includes differential operators which are
common in “open loop” PDE models. We use the nota-
tion A~ () = AT(—c), where denotes transpose.

ii)y Foreverys € S, (fle(o—), Be(o—)f};(a)) is stabilizable.

In the remainder of this section we generalize these ideas;jjy) For every o € &, if for some vectorsy,» € C*

beyond this specific example. We begin by precisely stating
the relationship between analytic continuation and exponential
decay of the inverse transform. We draw from the theory of
Fourier-Laplace transforms as described in [37, Ch. 7]. Here the
theory is set up in the Schwartz space of distributiBHeR),

2T B.(0)B(0)y = 0, then eitherz B (o) = 0, or
BT(—a)y = 0 (or both). In other words, the range space
of BX(o) does not contain vectors orthogonal to those
in the range space &7 (—o).

This last assumption is satisfied for examples whBré-)
is either a scalar or a vector. We remark here that these assump-
tions are perhaps not the most general under which the following
results can be obtained. Under these assumptions, we will show

and a key role is played by the subspacdemhperedlistribu-
tions &'(R), which have a well-defined Fourier transforf
For our purposes it suffices to note that a tempduedtionon
R is a locally integrable functiofi(z) that grows no faster than
polynomially as|z| — oc, and tempered distributions are ob-
tained by finite generalized derivatives of such functions; thus,

- .. . . This material is from [37, Sec. 7.4]: here Fourier transforms are defined on
Fhey may have S'ngUIa”t'EfS (Dirats, etc.) buttheir growth rate e axis and analytic continuations are donénarizontalstrips, so minor
is no more than polynomial.

changes are needed to adapt to our current notation.
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that the ARE solutionf’()\) admits an analytic continuation to 1) Analytic Continuation: The first step will be to prove the
a stripI” 4+ jR around the imaginary axis (possibly smaller thaexistence of an analytic continuation to the Riccati equation so-
S) which satisfies the hypothesis of Theorem 5. This will medation. We note that in this section, we drop the subscrignd
that the “hats” from all extension functions for simplicity of nota-
tion. To perform the extension, define the following generalized
K(\) =-B"(\)P()) Hamiltonian matrix

also satisfies these conditions, and therefore corresponds to a H(o) = Alo) _B(Z)NBN(U)
convolution kernelK () such thatil (x)e"” is a tempered dis- —Qlo)  —47(0)

tribution forn € I'. This means, in a distribution sense, that W&/ () is analytic ono € S; restricted to thejA axis it is the
have exponential decay of the controller “spread.” We will alsqamiitonian matrix which corresponds to the ARE (17). Hence
study means of computing the strip and decay bound. (see [38)), its stabilizing solutiof(j)) is associated with the
Remark: The importance of _thls_ exponential decay is Seedtable invariant subspace &f(;j\); to extendP(j)) analyti-
more clearly when comparing it with the decay of the Fourigry|ly amounts to extending this subspace. We note that fér
transform, which is algebraic i. Thus, we see that at least; \ e still use the notatiod (o) € dom (Ric) to mean that it
in a qualitative sense, the spatial domain is more appropriateygs no purely imaginary eigenvalues and a stable eigensubspace
perform truncations than the Fourier domain. This is an IMP&&omplementary to the range [ I]T_ In such cases we de-
tant comment, because a commonly used me“th_od for controligie the unique stabilizing (not necessarily Hermitian) solution
design in distributed parameter systems is to “pick a numberw Ric (H(o)) (see Appendix A). The precise statement of an-
modes,” i.e., truncate in the Fourier domain. This “modal truniiytic extension follows.
cation” ignores the localization of the controller in the spatial Theorem 6: Given the previous assumptions aff as in

coordinates. _ (39), with H(jA) € dom(Ric)V A € R
As an illustration, let(r be the spatially truncated convolu- 1 if for somes > 0, B < «, condition

tion operator defined by truncating the convolution kernel of the

(39)

optimal feedback Vw €R, |Re(0)| < B det(jwl — H(s)) #£0  (40)
K (x):{K(‘T)v lx| T holds, we can conclude that in the stripr €
g 0, x| > T. C : |Re(s)] < f), H(s) € dom(Ric), and
, L o P(s) = Ric(H(s)) is an analytic extension of
Assume that{ — Kt is a function (i.e., any distribution com- P(jN);

ponents of” are supported ifi-7', T, this is the typical case); 2y there exists # > 0 such that the condition (40) is satis-
under this assumption, exponential decay can be expressed as fjoq.

|K(z) — Kr(z)| < Me™"! for |z| > T and thus

Proof:
1K — K|l cyz, = sup |f(()\) _ f(T(A)I Part 1) The condition (40) guarantees that no eigenvalue
AeG of H(o) crosses the imaginary axis avaries in the strip
oo M {z € C : |Re(s)| < B}. SinceH(s) € dom(Ric) for
S/ |K(x) — Kr(2)|dz < TG_"T- o = jA, we conclude that for any in the strip,H (o) has

exactlyn stable and: antistable eigenvalues. We note here
This means that if we establish exponential decay of the kernel, that H(c) no longer has the standard Hamiltonian struc-
we can make the operator norm of the truncation effor K ture foro # jA, however, our assumptions guarantee that
exponentially small a& becomes large. By standard small-gain it has a stabilizing solution (no longer necessarily Hermi-
arguments, this approximation property guarantees thatthe trun- tian) with the property thaP(c) = P*(—o) (we refer the
cated feedback is stabilizing and approximates the optimal per- reader to Appendix A for the details of this argument). An
formance. As an illustration, we demonstrate the small-gain sta- additional argument in Appendix B implies that the func-

bility argument. Write théruncatedclosed loopls /dt = (A+ tion (o) is differentiable. _ _ _
BKy)y as the interconnection of the two systems It remains to show that the solutioR(«s) is analytic
in the strip. To see this, note th& o) is the stabilizing
% —(A+ BK)) +, solution of the ARE
v =B(Kt — K). (38) 0=A"(0)P(0)+ P(o)A(o)

. : . . . —P(0)B(0)B™(0)P(0) + Q(0)
The mapping; — + in (38) is bounded oif, sinceX is expo-

nentially stabilizing (see [33, Th. 5.1.5]);# is abounded oper- Differentiating this equation with respectadqthe complex
ator, the feedback mapping — v has arbitrarily small norm. conjugate ofr), we obtain (suppressing the argumeint
gh:tsmall—gam theorem now implies stability of the closed—loo(;)_ DA™ pa- a_P . a_PA . p% a_PBB~p
y ' - 05 o5 = 05 o5 05
3This is not the most general situation under which a small-gain argument is 0B aB™ dP 9Q

possible. We assume the boundednesB diere for simplicity.

—P$B P_PB—85 P - PBB %—F%'
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Using analyticity ofA, B, 2, this equation reduces to [ |
OP opP We can now derive the desired bound for algebraic functions.
(A~ — PBB”)aT + a—7(A —BB~”P)=0 Proposition 8: Let p(s) be an analytic function in the strip
a a

I'+4R, wherel C Ris open. Also assume thafo) is algebraic
which is a Sylvester equation. Sin¢d — BB~ P) and as defined above. Then for every compBgtc I, there exist
(A~ — PBB"™) are both stable ifo € C : |[Re(o)| < ¢, N > 0 such that for every € I'g + jR

3}, then we have thatP/95 = 0 in that strip, i.e.,P is

analytic there. lp(a)| < C(1+ |o])™.
Part 2. Let us writes =: ¢ + jA. The rationality of H
implies that (40) can be rewritten as Proof: By hypothesisg(o, p(o)) = 0 whereg(o, 2) is as

. . in (42). Sincey, (o) is a nonzero polynomial, the sgt € Ty :
Vee(=f,8),\weR, det(jwl — H(e+jA)) #0 lvn ()| < 1} is compact; sincg(c) is continuous, by choosing
T C appropriately we can ensure that the bound holds over this set.
Vee(—3,8), A weR, qlw,\e) #0 (41) It remains to consider the behavior pfo) for o’s where

|72 (c)| > 1. For each of thesey o) is a root of the polynomial
wheregq is some polynomial in the real variables A, e.
L) (o)

The hypotheses imply that (41) is true-at 0. We want to R

show that this is also true faere (—3, 3) for somes > 0. Yn (o) Yn (o)
To do this, we appeal to the Tarski—Seidenberg quantifier ] ]
elimination procedure [39], [40], where we can obtain th&® the previous lemma gives
following equivalence:

n—1 n—1
7i(o)
AR oA 205 50> 00 W@ITT (140 25 < TLa+ ki)
=0 Y =0
for somen single-variable polynomialg$g; }. Clearly, if <C(14+ oV
this last condition is satisfied at = 0, it is satisfied in
some nonzero intervdl-3, 3). m for NV equal to the sum of the degrees of thés), and an ap-
2) A Growth Bound: In order to apply Theorem 5 to the con-Propriately chosei. u

tinuation (), we must show that its entries satisfy a polyno- The previous results can be immediately applied to the scalar
mial growth bound of the form (37); for this, we exploit the facflgebraic Riccati equation
that the function isalgebraic

We begin with the scalar case; a functipfr) of the com- —p*W(0)b(~0) + [a(~o) + a(o)lp + ¢(0) = 0
plex variables is algebraic if it satisfies the polynomial identity ) ) )
g(o,p(c)) = 0, where under Assumption 2 . The functigiic) obtained from Theorem

6 is analytic on a strip, and also algebraic. Therefore, it can be
a(0,2) = y,(0)2" + -+ 71(0)2 + Yo (o) (42) bounded as required for Theorem 5.
In the matrix case, the previous results will apply provided

is a two-variable polynomial, i.e., eaeh(o) is a polynomial e can go from the matrix ARE to a scalar algebraic equation
of complex coefficients; we assume tlgas nontrivial inz, i.e.,  ¢or each entry ofP(o); for details see Appendix B.

n > 0andy, (o) # 0. The objective is to derive a growth bound - 3) computational Test for the Decay Ratéfe have seen

for p(o). We first state the following. - that the exponential decay rate is dictated by the witithi the
Lemma 7: Given a monic polynomiay(z) = 2" + -+ spip in which we have analytic continuation, and that condition

Mz + 70, then all roots satisfy (40) provides a (possibly conservative) estimate? ofVe now

n—1 show that this determinant condition can be efficiently tested.
|z| < H(l + n|v)- Assuming agair (o) is a rational function, we can write the
i=0 “descriptor realization”
. n—1
Proqf. Take|z| > [[:—, (1 +n|y|). Then|z| > 1 and so H(0) = Dy + C(oE — Ay)"*By (43)
foreachi = 0,...,n — 1 we have

n—i well defined overS, and reduce condition (40) to
2" = || = 14 |yl > nlyl. (40)

This leads to oF — Ag By
1 1 1 det | 720 S D | #0 (44)
< i—n < i—n S 1
Z’W < Z [vi2' 7" < Z n 1 forall w € R, |[Re(o)| < 3. This procedure casts the Hamil-
=0 =0 =0 tonian condition fog3 as a well-posedness condition, of an anal-
and therefore ogous nature to the structured singular value theory [41]. With

) this inspiration, we can “close the other loop” and define
#0

n—1
g(z) = 2" <1 + Z N

=0

M(jw) := Ag + Bg(jwl — D)~ 'Cx
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which leads to the equivalent condition W
_ LB
det(cE — M(jw)) #0, weR, |[Re(o)] < 5. (45) Steady Flovek
Note that conditions (43) and (45) are equivalent to (44) via % i
Schur complements. So we conclude thaatisfies (40) if and TlTlTlHTlTlTU“l
only if o
in& |Releig(E, M(jw))]| > 8. (46) Fig.3. 2-D Poiseuille flow with active boundary control.
wC

This last condition involves only a generalized eigenvalue COM- flow of a fluid in a two-dimensional (2-D) channel is being

putation plus a one d|men§|onal search over the param_etar controlled by blowing/suction actuators (indicated by arrows to-
general, we can plot the eigenvalue condition over a grid of frée-

quencies, and from there estimate a suitable valige oivoking ward the channel), and an array of flow shear sensors are used as

: L ._measurement outputs (indicated by arrows away from channel).
the preceding th_eory,/asatlsfy!ng (46) bounds the exponentia he control objective in this problem is to stabilize the nom-
decay of the optimal convolution kern&l(x).

inal laminar flow. This set up is a prototype for the important
problem of skin-friction drag reduction by microactuators and
sensors [7], [8].

The system model for this problem can be taken to be the lin-

The main assumption in our work thus far has been that tbarized Navier—Stokes equations about the nominal flow. If we
system is fully actuated, i.e., that the controls and states are diside the system into an array of “cells” as shown. The cells
fined over the same index sét More precisely, we assumedconsist of vertical segments (each to include one pair of sen-
thatdim{¥/G}, dim{i//G}, dim{Y/G}, are all finite. In this  sors and actuators as the basic cell). The statef each cell
section, we first show how for systems in whidim{® /i/}  would then represent the flow field in each vertical segment. The
is infinite, our techniques still provide some reduction in thepatial invariance of the system with respect to a discrete index
complexity of the control design problem. We then prove a gepi-c 7 representing horizontal shifts from one cell to the next
eral result valid for nonquadratic performance measures, tlaih be established (assuming the underlying PDE to have coeffi-
optimal controllers are spatially invariant if the system is.  cients constant in the horizontal direction, which happens in this

VI. PARTIALLY ACTUATED SYSTEMS. EXTENSIONS AND
LIMITATIONS

We first consider state models of the form case). In fact the spatial invariance of this problem can almost be
9 ascertained from basic physical symmetry arguments, without
0@ & 1) =AY(z, &,8) + Bu(z, 1) (47)  the need to write down the underlying PDEs. This model is spa-
y(z,t) =Cip(z,€,t) + Du(z,t) (48) t@all?/ invariant in the horizontal dimension, but not in the ver-
tical one.

with z € G, a group, and € S a set of indices with no a The realization that this problem is spatially invariant
priori defined structure. The operatais B, C, D are assumed in the horizontal dimension significantly reduces the com-
to commute only with translatiorig,, for x € G. plexity of the control design. To approximate the linearized
A more general and abstract model would be to simply regaiavier-Stokes equations in both directions at large Reynolds
the state as taking values in an infinite-dimensional space faumbers is prohibitively expensive computationally, and would
everyz € G (this amounts to “suppressing” the varialjleWe yield controllers of very large orders. The horizontal spatial

can then write the model as previously invariance of this problem implies thaf) one only needs to
P approximate in the vertical dimension, the horizontal dimension
Ew(x’t) =Ap(x,t) + Bu(z,t) should be Fourier transformed, abjloptimal controllers have

the structure of horizontal spatial convolutions that are spatially
ylw,t) =C(w.1) + Du(w.t) localized (see Section V). We note here that the firstdetas
where now for every: € G the system is infinite-dimensional ©PSeérved in [7] by looking at the modal decomposition, and the
with finite-dimensional inputs and outputs. second fact was recently utilized [42].
The techniques we have presented for fully actuated systems
can now be applied to yield parameterized families of contrB. A General Result on the Spatial Invariance of Optimal
problems involvingnfinite-dimensional systems. To solve eaci¢ontrollers
such problem, one must resort to some approximation techqn this section we divert from out, set up and consider
nique. However, our development implies tbae needs to ap- problems for general,, induced norms. We have seen that
proximate only in the dimensions in which the problem is nguadratically optimal controllers for spatially invariant systems
spatially invariant are themselves spatially invariant. We will ask a similar question
We now briefly present an example to illustrate this point. for more generaL,, induced norms: given a spatially-invariant
generalized plant, can the optimal controller be taken to be spa-
tially invariant? Fortunately, the answer is yes, and this implies
This is a problem that has attracted much recent attention [d]significant reduction in the complexity of the control design
[8]. An example of this problem is depicted in Fig. 3, wher@roblem.

A. Stabilization of Fluid Flow in a Channel
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The question above is reminiscent of questions related towe first consider the case where the grdas finite. LetQ
time-varying versus time-invariant compensation [43]-[46]possibly LSV) achieve a given performance leyet || H; —
where it was shown that for linear time invariant plants anH#,Q H;||. Define the averaged system

induced norm performance objectives, time-varying controllers 1 _
offer no advantage over time-invariant ones. We will now prove Qa = 16| Z 1-.Q1,
a similar result. The essence of our technique is similar to that oct

of [45], [46], in which averaging over the time index was usedvhere the “shift” operatof, acts by(T,¢)(z) := ¢(x — ).
We will show here that the averaging argument only needdN@W it is clear that(?, is spatially invariant, since the group
group structure, and thus one can average over any groupPiApPerty guarantees for anye G
particular our spatial index sets. B B

To state the result precisely, consider a set up in terms of the T—=Qa1% =15 <Z T—UQT0> T, = Z 1_,Q1,
“standard problem” of robust control [38], [47], [48]. This is oCG oCG
shown in Fig. 1. All signalsv, z, u, y are vector-valued signals (i-€., the sum is re-shuffled). Now we prove tigat achieves at
indexed over the same gro@ The objective in this problem least the same performance@sThis is standard since
is to find a stabilizing controller that minimizes tig,(G)-in-
duced norm from fromw to z. For reference we note here that [[H1 — H2Q.H3s|| =
the £,(G) norm is defined as

mmwz(AQAW%waM§UP:(AJwM)M1 -

1 _
Hy — (i, > T_,QT,)Hs

oCG

1 _
Gl > T, (Hi— HyQH3) T,

oCG
We note that taking such norms on the regulated variablds Si Z HTﬂ, (Hy — H2QH3) TUH
lows us to penalizglobal objectives, i.e., to design the con- 6] =
troller so that some macro-objective of the overall array system =||H, — H.QH3||,
is optimized.

Ivtx{here we have used the spatial invariance of{tHg}'s and of
the norm.

In the case of infinités, we follow the argument of [46] with
a slight modification. We take a sequence of subsets

Inthe usual notation, we will refer to the closed loop system
Fig. 1 by F(G, K). For any giverp € (0, co|, the input-output
sensitivity of the system is given by th, induced norm

|F(G, K lpi = sup 1Dl My C My C - with | M, = 6,
wCLp l|wl|, -
If the controller is a stabilizing controller the above worst casghere eachV/,, has finite Haar measuré/,,| (see [31]), and
gain will be finite. define
Let LSlandLSVbe the classes of Linear Spatially Invariant 1 -
and Linear Spatially Varying (not necessarily stable) systems Qn = M 1_,QT5do.
respectively. let us define the following two problems: M
Yoi = i-rll-f- )‘ |7 (G K |p—s, Th|§ sequen_ce{Qn} the_n converges weak+o a spatially-in-
stabilizing variant(, with the required norm bound [46]. L.
You 1= inf || F(G K)|pi, Thg aboye result can be. seen as a sequel to that in [27], [28]
stobilizing showing existence of stabilizing controllers with the same in-

which are the best achievable performances wghandLSV variance property as the plant. We have extended this here to

controllers respectively. optimal cor.1trollers. L
Theorem 9: If the generalized plan® is spatially invariant ~ Remark: Although the examples we consider in this paper

and has at least one spatially-invariant stabilizing controllgt’® ©ver commutative groups, the proof of the above theorem

then the best achievable performance can be approached WRRS NOt require this assumption, and the statement holds for
a spatially-invariant controller. More precisely. noncommutative groups as well. For example, a MIMO transfer

function matrix where the entries are invariant with respect to a
Ysi = Vsv- permutation subgroup of the input and output indices will have

Proof: We use the existence of one stabilizing controllgtn OPtimal controller with the same invariance property.
to obtain a stable coprime factorization of the plant [4, chap. 8]. 1h€ Practical implication of this result is that if the plant is
Since the controller is spatially invariant, then so are the statsBatially invariant (which is often obvious from physical sym-

factors. With the YJBK parameterization, our problem then pnetries), the controllers can be taken to be spatial convolutions.
’ We note that this also applies to systems witliaaverdistribu-

comes tion of sensors and actuators. In such systems, if there is a large
vsi = _nf ||H1 — HaQHj3l| number of sensors and actuators, they are typically distributed in
QeLsI a regular lattice structure. Since any regular lattice can be gen-

Yo = inf [[H1 — H2QH| erated by shifts of a fundamental cell (see [36] for an illustra-

Qersy tive example), such a lattice exhibits a translational invariance

where the stable systery#/; } are LSI. with respect to those shifts. Our results then specify what shift



1104 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 7, JULY 2002

invariance optimal controllers can have. Such a structure maiere H_(o) and HX (—o) are stable matrices. Note that the
be useful even when implementing controllers designed usimgtricesX;(¢) andX;(—o) are not necessarily related, but we
other methods (e.g., networks of PID controllers). now derive some relations. Proceeding as in [52, Th. 12.1] and
using the stability off_ (o) and HX (—o), we conclude that
VII. CONCLUSION
. . o XT(=0)Xs(0) = X3 (—0)Xa(0) (50)

In this paper we have studied control problems with dis-
tributed sensing and actuation over spatial coordinates. Which also implies thatX;(s) is invertible if and only if
have identified the spatial invariance property as a fundamen® (—o) is invertible. To see that, assunié, (o) is invert-
tool in reducing the complexity of optimal control design withible and X{'(—¢) is not. This meanslz € C" such that
regard to global objectives. In the special case of quadrat€ X{'(—o) = 0, so (50) implies that? X] (—o)X; (o) = 0.
performance measures (LQR;, H..), we provided exact so- SinceX; (o) is invertible, this means? X] (o) = 0, contra-
lutions to infinite dimensional control design problems in termgicting the fact thaf X} (—o) X{(—o)] forms a basis.
of parametrized families of finite dimensional ones. We have These facts imply that whek; (o) is invertible
also discovered that these optimal controllers are inherently
distributed and spatially localized. Finally, we proved a general ~ P(o) := Xa(0) X[ (o) = (Xg(—o—)Xfl(—a))T
principle that any spatial invariance of the plant is inherited by _
an optimal controller under a variety of performance criteria. IS Well defined and has the propedy” (o) = P(0).

The spatial invariance assumption involves a certain ideal-It remains to show thak’, (o) is invertible. Suppose it is not,
ization with respect to practical control problems which haJ@en we first have _ o
bounded spatial domains. Also, the consideration of distributedClaim: Either ker(Xy(0)) is H_(o) invariant, or
actuation over a continuous spatial variable will in practice geer(X1(—0)) is H_(—o) invariant.
implemented with some level of discretization. These idealiza;, §r°0f: Suppose ”Ot!T thzgrﬂ w7 € C" such that
tions are, however, completely analogous to those usually pér-Xi (=o) = 0 & 2" H_(-0)X{(-0) # 0, and
formed over the time domain: a long but finite time horizon i&1(¢)y = 0 & Xi(0)H (o)y # 0. Now, the first com-
typically treated by infinite horizon techniques, and fast tenfonent of (49) is
Eg\r:lg;zften;]pslfed systems are often approximated by continuous A(0)X1(0) — B(o)B™(0)Xa(0) = X1(o)H (o)  (51)

In terms of spatial localization, the results of Section V-B oynich then gives
exponential decay rates of the optimal convolution kernel pro-
vide a qualitative assessment. Although these results are for un- A XT (=o)X 1(0)H_(0)y
bounded (_Jlo_mams, examples_lnvolvmg bounded domains appear — T XQT(_U)B(J)BT(_U)XQ(U)y
to have this inherent localization property as well [14], [50]. The T T
next question would be to attempt to influence the degree of lo- =z Xy (-0)Xa(0)H_(0)y =0
calization in the design. One possible line of attack would be th&,i- by our assumptions imply that eithéf X7 (— o) B(o) =

use of spatio-temporal weighting functions (e.g.Haor Ho. g or BT(~0)X»(c)y = 0 (or both). This last statement, to-
optimal control); this remains open for further research. AnOtr’\'/ﬁEther with (51) and its “dual” imply

recently explored strategy [51] involves relaxations to the L
versions of these problems. BT(_O—)XQ(O—)y =0= X, (0)H_(o)y=0
X3 (—=0)B(o) =0 = 2" HY (—0)X] (—0) = 0.
APPENDIX A
COMPLETING THE PROOF OFTHEOREM 6 Since at least one of the above is true, we have a contradiction,

The difficulty in establishing the existence of a solutiBv) and the _claim s proved._ . -
for o # j\ is that the corresponding ARE is not standard, in that Y& Will assume the first clause of the claim and show that
the coefficients—B(o)B™(), Q(<) are not Hermitian. How- the stabilizability assumption is then violated, a symmetrical

ever the Hamiltonian approach to this problem, as describeddfgument can be made if the second clause is true.
[52, Ths. 12.1 and 12.2], can be mimicked under our assump->inceker(Xi(o)) is H-(o) invariant,3 v & ker(X:(o))
tions, to show existence of a solution satisfylty (o) = P(s). SUCh that_(o)v = Av, with Re() < 0. Multiplying (49)
We now sketch this argument, focusing for brevity on the stef¥ v» We obtain

which are not straightforward, where our assumptions must be —B(0)B~(0) 0

invoked. We first find bases for the stable eigenspacds (@f) [ — AT (o) } Xy(o)v = [)\X2(a)v}

and H™~ (o) such that
o) | O < | 2O (o ~BO)B(0) | ¢y
H( ) |:X2(o'):| |:X2(O'):| H_( ) |:_AT(_O) _ )\I:| AQ(U)U =0

[XT(—0) XJ(—0)]H'(—0)=HI(-0) which violates the stabilizability assumption (ats) since

x [X{(=0)X3(=0)]  X,(o)v is a nonzero vector (becausé, X, form a basis),
(49) andRe(—X) > 0.
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We have thus established the existence of a solution witthered > 0, v4(o) # 0, satisfyingh(z,(¢),0) = 0.
the property that”?~ (o) = P(o). This solution gives a stable Remark: We chosez,,, for concreteness, but an analogous
A(c)— B(o)B~(o)P(c) by a standard argument as in [52, Thargument can be used for the other variables.

12.1]. Proof: Let V' C C™*! be the variety defined by the
(52). Invoking [53, Th. 9, p. 462], we find that all points
APPENDIX B (#1(o),...,%n(0), o) are nonsingular and belong to a unique
MATRIX ARES AND ALGEBRAIC FUNCTIONS irreducible component of of dimension one. Let’® be this

feducible component (which must be the same for all points
y continuity), andl® the corresponding prime ideal.

Now, we consider the elimination ideal?,_, =

N Clzm,o]; since V° has dimension one, we see [53,
Cor 4, p. 449] that/?,_, must be nontrivial, and thus we
Q d a nontrivial A(z,,, ) that is zero onV?; this implies
%ém(o*),o—) = 0. This polynomial must depend explicitly on
Zm, Otherwise, we would have derived a constraintomwhich

In applying the results of Theorem 5 to exponential decayg
optimal Riccati operators, we invoked thkgebraicproperty of
the solutionp(o) in the scalar case. We want to extend this t?o
the matrix case; here the ARE is in effect a systermof n?
coupled equations in the? entries of P and the variabler;
under Assumption 2 we can eliminate denominators and wr
the equivalent polynomial equations

k(21,0 oy Zm,0) =0, L=1...m (52) Wwe assumed is free to vary in an open set. [ ]
We can now apply this result to the = n? polynomial
wherezy, ..., 2z, are the entrieg;; of P. equations obtained from the ARE (41)
Letz (o),...,%n (o) be the entries of the stabilizing solution

of the ARE; we claim that each of these is a scalar algebrai® =F (o, P)
function ofo to which we can apply Proposition 8. We outline a .—(5) (A~ (o) P + PA(0) — PB(c)B™(c)P + Q(0)
proof based on some tools fraatgebraic geometrytaken from
[53]. Here¢(o) is the common denominator of(c), B(o), Q(s);
« The sef’ c C™*! of solutions to equations such as (52y10te that by Assumption 2 (i}(o) is nonzero onS = {s €
is called araffine variety Algebraic geometry studies suchC : |[Re(o)| < a}.
sets by means of their interplay wittealsin the ring ~ We know from Appendix A that for eaclr € &,

).

of polynomialsClzi, ..., zm, o]. An ideal generated by there is a solution P(c) which is stabilizing, i.e.,

polynomialsgy, . .., g, is the set (A(0) — B(o)B™(0)P(0)) is a stable matrix. By symmetry of
the region the same happens Witk (¢) — P(c)B(c) B~ (7)).

I'={higi+---+hsgs, hi €Clar,...,2m,0]} We must show the Jacobian of these equations is nonzero on

. . . . P
the Hilbert basis theorem states all ideals are of this forrirp].
If we consider polynomialg; defining a varietyV’, then
V = V() denotes the fact thaf is the common set of
roots of polynomials irf. All varieties have an associated J0F - - -
ideal. Also, a variety can be decomposed into the union Opi; = ¢(o) (A~ = PBB™)Eij + Eij(A - BB™P))
of a finite number of “irreducible” varieties, which have a . _ _ _ _ _
well-defineddimensionat all but a set of singular points,whereEij is the canonical matrix basis. If the Jacobian matrix
this coincides with the dimension of the tangent subspad@ Singular at(o, (7)), we can find scalars:;;, not all zero,

. The intersection of an ideall with the ring Such that

(o); we can in fact express the partial derivatives /9p;;
matrix form (in vector form they would correspond to one
column of the Jacobian), as

Clzk41, .- -, 2m, o] is called the elimination idealy; it OF 5

contains equations that can be algebraically derived from Zmii%(a’ P)=0

those inI and which eliminate the firsk variables. If “d

we now look at the set’ (/) of roots(zx11,...,2m,2)  in matrix form, this combination takes the form

to the polynomials in the elimination ideal this must 3 3
contain the projectionr, (V') of V' onto the coordinates ¢(a) (A~ = PBB™)M + M(A— BB~P)) =0

Zkt1s - - -5 Zm, 0, iNdeedV (I},) is the “closure” of this set ) ] -
in an algebraic sense. whereM is the matrix of themn;;; but now the stability of the

We now state the following result. matrice§ A— BB~ P) and(A~ — PBB™) implies thatM = 0

Proposition 10: Consider the polynomial (52). Suppose thdhvoking Sylvester’s theorem. So, we have a contradiction and

for o in an open se§ C C, we have a continuous family of the Jacobian is nonsingular. _ _
Now, Proposition 10 implies that eagly; is algebraic, and

solutionsz; (o), .. ., (o), such that the Jacobian matrix ) i
we can then obtain a growth bound by applying the scalar result
dg in Proposition 8.
0z Remark: The nonsingularity of the Jacobian has an addi-
is nonsingular at every poit, (s), . . ., #m(c), o). Then there tional implication; invoking the implicit function theorem, we

see that the stabilizing solutidf() will be differentiable as a
function of the real and imaginary partsa@fthis fact is used in
Wz,0) =va(0)z" + - +m(o)z+(0)  (53) the proof of Theorem 6.

exists a polynomial
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