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Abstract— We investigate the total resistive losses incurred
in returning a power network of identical generators to a
synchronous state following a transient stability event or in
maintaining this state in the presence of persistent stochastic
disturbances. We formulate this cost as the input-output H

2

norm of a linear dynamical system with distributed distur-
bances. We derive an expression for the total resistive losses
that scales with the size of the network as well as properties
of the generators and power lines, but is independent of the
network topology. This topologically invariant scaling of what
we term the price of synchrony is in contrast to typical power
system stability notions like rate of convergence or the region
of attraction for rotor-angle stability. Our result indicates that
highly connected power networks, whilst desirable for higher
phase synchrony, do not offer an advantage in terms of the
total resistive power losses needed to achieve this synchrony.
Furthermore, if power flow is the mechanism used to achieve
synchrony in highly-distributed-generation networks, the cost
increases unboundedly with the number of generators.

I. INTRODUCTION

Changes to the electric power grid are being driven by
many factors such as increased demand, renewable energy
mandates [1] and further deregulation of the industry [2],
[3]. The new grid will have to deal with higher levels
of uncertainty from renewable energy sources, changing
load patterns and increasingly distributed energy generation.
These changes are likely to make it more prone to stability is-
sues. In particular, they have the potential to create problems
associated with rotor-angle stability, which is the ability of
the power grid to recover synchrony after a disturbance [4].
Synchrony refers to the condition when both the frequency
and phase of all generators within a particular power network
are aligned. Loss of synchrony can lead to load shedding.

A special case of rotor-angle stability is the so-called
transient stability problem, which is associated with large
angle disturbances due to events such as generator, power
line or other component failures. Such abrupt changes can
also be caused by the intermittent behavior of renewable
energy sources. There is a large body of transient stability
literature, see e.g. [5], [6]. Most of this work focuses on the
existence of Lyapunov like energy functions [7], [8] and their
use in determining a region of attraction type criteria for a
particular synchronous state or set of states, e.g. [9], [10].
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A recent research trend has been to draw connections
between problems in distributed system control and power
network stability. This literature is vast, but we note in
particular a series of works that use a set of coupled Ku-
ramoto oscillators to represent the power network [11], [12].
This non-uniform Kuramoto oscillator modeling framework
uses a first order approximation of the network reduced
classical power system model to provide network parameter
dependent analytical conditions for frequency and phase
synchronization [12]. Similar first order models have been
employed to investigate how power flow scheduling and
adding more power lines (i.e., increasing graph connectivity)
affects the rate of convergence in a power network [13].

In the present paper, we examine the connections between
distributed control systems and power network stability in a
different context. We do not study stability, but rather assume
that the network will return to a synchronized state after
disturbances. Instead we focus on the cost of keeping the
network in synchrony, i.e. how much real power is required
to drive the system to a stable, synchronous operating con-
dition. Lack of synchrony leads to circulating currents [14]
passing between generators whose angles are out of phase.
This flow of current leads to resistive power losses over the
power lines due to their non-zero line resistances. This loss is
generally considered relatively small compared to the total
real power flow in a typical power network. It is however
unclear whether these losses will be small in power grids
of the future, which are expected to have highly distributed
generation, and consequently many more (though typically
smaller power capacity) generators than today’s grid.

The problem that is analyzed is that of a large network
of many identical generators. We consider several scenar-
ios such as the power network encountering disturbance
(transient stability) events, or being subjected to persistent
stochastic disturbances where the system is continuously
correcting for these disturbances. In both of these scenar-
ios, we quantify the total power lost due to non-zero line
resistances. Our main result, in equation (13), shows that
this power loss scales with the product of the network size

and the ratio of line resistances to their reactances (which
is assumed to be the same for all links). The latter quantity
is normally assumed to be rather small [15]. However,
this result shows that even though that ratio is small, the
proportionality with the number of generators indicates that
resistive losses may become significant in large networks.
Furthermore, and perhaps more surprisingly, these losses are
independent of the network topology, i.e. highly connected
or loosely connected networks incur the same resistive power
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losses in recovering synchrony.

Our results indicate that the cost of maintaining synchrony
(using power flows) is essentially a function of the number
of generators in the network and not of its topology. We
should point out that this conclusion is not inconsistent with
other results on power system stability and performance
measures. For example, interaction strength and network
topology play important roles in determining whether a
system can synchronize [7], [11], [12], [16] and the rate of
convergence or damping of a power system is directly related
to the network connectivity [13]. The numerical examples
we present in this paper confirm that while losses are
independent of the network connectivity, a highly connected
network will stabilize more quickly and with less oscillatory
behavior. One measure that quantifies the lack of synchrony
between network elements is that of “coherence” [16], which
in the current context would be a measure of the variance of
the deviation of network phases (averaged over the network)
from what they ought to be in the absence of disturbances.

As expected, highly connected networks are more coherent
than loosely connected ones, where connectivity here is a
more subtle concept than node degree, but is rather related
to the so-called spectral dimension of a network. We refer the
reader to [16] for asymptotic scalings of lattice-type networks
and to [17] for fractal networks, and note that these scalings
are different than those that quantify network damping.
One intuitive explanation for the cost of synchrony being
independent of network topology is as follows. Comparing a
highly connected network with a loosely connected one, we
expect the former to have much more phase coherence than
the latter. Consequently the power flows per link in a highly
connected network are relatively small, but there are many
more links than in the loosely connected network. Thus in
the aggregate, the total power losses of the two networks
are the same. One should keep in mind however, that a less
coherent network is more likely to have transient stability
problems, exit the region of attraction, etc. The issues of
stability and the cost of synchrony are two different issues.

The remainder of this paper is organized as follows.
Section II introduces the classical power system model and
defines the notation. In Section III we quantify the total
resistive line losses as an input-output H2 norm of a linear
dynamical system. This framework is then used to derive an
algebraic expression for the resistive line losses in terms of
the parameters of the admittance matrix, generator damping
and the size of the network. Various interpretations of the
H2 norm are then presented together with the corresponding
operating scenarios for a power network. The results of
the analysis are demonstrated for two different network
topologies in Section IV. Section V concludes the paper.

II. PROBLEM FORMULATION

Consider a network of N buses (nodes) and E edges. At
each node i = 1, . . . , N there is a generator Gi, with inertia
constant Mi, damping βi, voltage magnitude Vi and angle
θi. Using the classic machine model the dynamics of the ith
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Fig. 1: A linear network of n generator nodes.

generator is given by [18]

Miθ̈i + βiθ̇i = Pm,i − Pe,i ∀ i = 1, 2...n. (1)

Here, Pe,i is the electrical power output of the ith generator,
and Pm,i is the mechanical power input from the turbine.

Define the admittance over edge Eij connecting nodes i
and j as yij = gij − jbij , where gij and bij are respectively
the conductance and susceptance of the line defined by the
edge Eij . Then, the electrical power injection at node i is

Pe,i = gii|Vi|
2 +

∑

k∼i

gik|Vi| |Vk| cos(θi − θk)

+
∑

k∼i

bik|Vi| |Vk| sin(θi − θk), (2)

where k ∼ i denotes an edge Eik and gii is the self
admittance of the ith generator. In what follows, we use
a simplified model where we assume gii = ḡ for all i =
1, . . . , n. Finally, applying the standard linear power flow
assumptions used in transient stability analysis (conductances
are negligible, angle differences are small and voltages are
constant with unit magnitude) to (2) yields

Pe,i ≈
∑

k∈N

bik [θi − θk] . (3)

Substituting this into (1) leads to

Miθ̈i + βiθ̇i ≈ −
∑

k∈N

bik [θi − θk] + Pm,i. (4)

In order to simplify the notation we define the entries of
the admittance matrix Y ∈ Cn×n as

Yij :=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ḡ +
∑

j∼i

yij , if i = j,

−yij , if i ̸= j and j ∼ i, (i.e., Eij ∈ E),

0 otherwise.

Then, we partition this admittance matrix into the real
(resistive) and imaginary (reactive) parts and define

Y = Re{Y } + j Im{Y } =: (LG + ḡI) + j LB .

By this construction, LG and LB retain the symmetry of Y ,
and they have as a common eigenvector the vector 1 with
components all equal to 1, i.e.

LB1 = LG1 = 0.

It is a well-known result that if the graphs underlying the
system represented by LB and LG, which are analogous
to weighted graph Laplacians, are connected (i.e. any two
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nodes are connected by a path of edges), then the remaining
eigenvalues of LB and LG are all positive.

An assumption we will invoke later is that all the eigen-
vectors of LB and LG are shared (u is an eigenvector of LB

iff it is an eigenvector of LB). An important consequence of
this assumption is that the two Laplacians are simultaneously
diagonalizable by the same orthogonal transformation U , i.e.

U∗LBU = ΛB , U∗LGU = ΛG, (5)

where ΛB and ΛG are diagonal matrices with the respective
eigenvalues of LB and LG as diagonal entries. One setting
in which this assumption holds is when the ratios of each
connection’s conductance to susceptance (equivalently the
ratios of resistances to reactances) are all equal, i.e.

gik
bik

=
rik
xik

= α,

which is independent of the link indices (i, k). It follows that

LG = αLB , (6)

which implies that LG and LB have the same eigenvectors.
Finally, we rewrite equation (4) in state space form

d

dt

[

θ(t)
ω(t)

]

=

[

0 I
−LB −βI

] [

θ(t)
ω(t)

]

+

[

0
I

]

w, (7)

=: Aψ + Bw,

where we have assumed that Mi = 1 for all i and that Pm,i

is constant and can be lumped into the input w.
Remark 1: Alternatively, the absence of Pm,i in (7) can

be justified as follows. For a system with no loads the
equilibrium point of the system is at Pe,i = Pm,i. If
(1) defines a linear system (as assumed here) a coordinate
transform can be applied to obtain a new system with shifted
angles θs corresponding to the transformed system with the
equilibrium point Pm,i = 0. By abuse of notation we can
denote the shifted coordinates as θ in (7).

Remark 2: The network model (7) represents a system
of internal generator buses with loads approximated as
impedances absorbed into the admittance matrix. The model
could easily be extended to include static loads through a
system of differential algebraic equations as in [13], [19].

III. SYSTEM PERFORMANCE

Several performance metrics can be used to quantify
the relative stability for the system (7). For example, the
ability to synchronize, the degree of synchronization that
is achievable, the time to synchronize, or the control effort
required to obtain a desired system state. In the distributed
systems setting it is also common to evaluate these metrics
with respect to various control strategies. For example, in
evaluating the performance of a distributed system with local
versus global control strategies. In this section we focus
on the control actuation required to drive a system to the
synchronous state. This control effort is measured through
the real (resistive) power loss over each line. These losses
are associated with circulating currents that arise from the
angle differences between generators, i.e. disturbances [14].

The power flow over an edge Eij is

Pij + Pji = Vi (Vi − Vj)
∗
yij + Vj (Vj − Vi)

∗
yji,

where ∗ denotes the complex conjugate. The resistive power
loss over Eij can therefore be defined as

P loss
ik := gik |Vi − Vk|

2
. (8)

Using a small angle approximation and standard trigonomet-
ric identities this can be approximated as

P̃ loss
ik = gik |θi − θk|

2
. (9)

We are interested in the sum total of the resistive losses over
all links in the network, which is given by

P̃loss =
∑

i∼k

gik |θi − θk|
2
, (10)

which can be expressed in vector form as P̃loss = y∗y. Here,
the vector signal y is an output of (7)

y = Cψ =:
[

C1 0
]

[

θ
ω

]

, with C∗
1C1 := LG. (11)

Since LG is positive semi-definite we can take C1 = L
1

2

G,
which is what we assume from now on.

We now calculate the H2 norm from disturbance w to
the performance output y of the system (7) and (11). The
square of the H2 norm has several standard interpretations
including (a) The variance of the output y when the input
w is a unit variance white stochastic process, (b) The total
time integral of the variance of y when the initial condition
is a random variable with correlation matrix BB∗, and (c)

The total sum of time integrals of output response powers
given an impulse as a disturbance input at each generator.

We first perform the H2 norm calculation and derive a
formula in terms of the system’s parameters, and then inves-
tigate the implications of the three different interpretations
for this particular system of swing equations.

H2 Norm Calculation

For ease of reference we rewrite equations (7) and (11)

d
dt

[

θ
ω

]

=

[

0 I
−LB −βI

] [

θ
ω

]

+

[

0
I

]

w

y =
[

L
1

2

G 0
]

[

θ
ω

] . (12)

We will denote the input-output mapping of this system by
H . All eigenvalues of this system strictly in the left half of
the complex plane with the exception of one zero eigenvalue
of LB . It is, however easy to show that this unstable mode
is unobservable from the output y due to the fact that
LG = C∗

1C1 shares this eigenvalue and its corresponding
eigenvector (see Appendix for the full argument). It then
follows that the input-output transfer function from w to y
is indeed stable and has finite H2 norm.

The H2 norm of the (12) can be computed using a spectral
decomposition of LB . Consider the state transformation

[

θ
ω

]

=:

[

U 0
0 U

] [

θ̂
ω̂

]

,
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where U is the matrix in (5) diagonalizing LB and LG. Since
multiplying by orthogonal matrices does not change the H2

norm, we can also define ŵ = U∗w and ŷ = U∗y to obtain
an equivalent system (that has the same H2 norm)

d
dt

[

θ̂
ω̂

]

=

[

0 I
−ΛB −βI

] [

θ̂
ω̂

]

+

[

0
I

]

ŵ

ŷ =
[

Λ
1

2

G 0
]

[

θ̂
ω̂

] .

We will denote the input-output mapping of this system
by Ĥ . Since ΛB and ΛG are diagonal, this represents N
decoupled systems

d
dt

[

θ̂n
ω̂n

]

=

[

0 1
−λBn −β

] [

θ̂n
ω̂n

]

+

[

0
1

]

ŵn

ŷn =
[√

λGn 0
]

[

θ̂n
ω̂n

] ,

where n = 1, . . . , N are the indices of eigenvalues λBn and
λGn , which correspond to LB and LG respectively. Denote
the input-output mapping of each decoupled subsystem by

Ĥn. We can then write Ĥ = diag
(

Ĥ1, . . . , ĤN

)

.

The square of the H2 norm of (12) is the sum of the
squares of the H2 norms of all the decoupled subsystems

∥H∥2
2

= ∥Ĥ∥22 =
N
∑

n=1

∥Ĥn∥
2
2.

The H2 norm of each of the individual subsystems can now
be easily calculated as follows. For n = 1, the corresponding
eigenvalues are λB1 = λG1 = 0, and we have a completely
unobservable system, thus ∥Ĥ1∥2 = 0. For n ̸= 1, we solve
the Lyapunov equation for the observability Grammians X̂n

[

0 −λBn
1 −β

] [

X̂11 X̂0

X̂∗
0 X̂22

]

+

[

X̂11 X̂0

X̂∗
0 X̂22

] [

0 1
−λBn −β

]

= −

[

λGn 0
0 0

]

,

where for simplicity of notation we omit the subscript n from
the components of X̂n. This matrix equation corresponds to
three equations, of which only the following two are relevant

−λBn X̂
∗
0 − X̂0λ

B
n =− λGn ⇒Re(X̂0) =

1

2

λGn
λBn

X̂0 + X̂∗
0 − 2βX̂22 =0 ⇒X̂22 =

1

β
Re(X̂0).

Finally, since the B matrix of each subsystem is [0 1]T , the
H2 norm (squared) of each subsystem is just X̂22, thus

∥Ĥn∥
2
2 =

1

2β

λGn
λBn

.

Thus the total H2 norm (squared) of the system (12) is

∥H∥22 =
1

2β

N
∑

n=2

λGn
λBn

=
1

2β

N
∑

n=2

αλBn
λBn

=
α

2β
(N − 1).

In summary, we conclude that the total resistive losses are

∥H∥22 =
1

2β

r

x
(N − 1), (13)

where β is a generator’s self damping, r
x

is the ratio of
a line’s resistance to its reactance (assumed equal for all
lines), and N is the number of generators in the network. In
practice, power grids are designed to minimize real power
losses, so r

x
is small and r is often neglected in power

flow calculations [15] as in (3). The result (13) shows
that increasing the number of generators will increase these
losses, regardless of the network topology a fact that will
become increasingly important as generation becomes more
distributed.

H2 Norm Interpretations for Swing Dynamics

In the previous subsection we calculated the H2 norm of
the linearized swing dynamics (7), together with the output
equation (11) based on a disturbance input (forcing) w. In
our formulation the square of the Euclidean norm y∗y of the
output vector was defined to be equal to the total real power
dissipated due to resistive losses in the network connections
as the system synchronized. This synchronized state (the
equilibrium) is maintained by circulating currents leading to
power flowing back and forth between generator nodes.

It is well known that the H2 norm has at least three
different interpretations, which we recall here to provide
different physical scenarios in which equation (13) quantifies
the resistive losses due to the synchrony requirement. Denote
by H the following Linear Time Invariant (LTI) system

ψ̇(t) = Aψ(t) + Bw(t)

y(t) = Cψ(t),

The H2 norm of the system can be interpreted as follows.

(a) Response to a white stochastic input. When the input
w is a white second order process with unit covariance
(i.e. E {w(t)w∗(t)} = I), the H2 norm (squared) of the
system is the steady-state total variance of all the output
components, i.e.

∥H∥22 = lim
t→∞

E {y∗(t)y(t)} .

For the swing dynamics (12) the disturbance vector can
be thought of as persistent stochastic forcing at each gen-
erator. These disturbances, which are uncorrelated across
generators, can be due to uncertainties in local generator
conditions, sudden changes in load, or fault events. The
variance of the output is exactly the expectation of the
total power loss due to line resistances.

(b) Response to a random initial condition. With zero input
and an initial condition that is a random variable xo with
correlation E {xox

∗
o} = BB∗, then the H2 norm is the

time integral

∥H∥22 =

∫ ∞

0

E {y∗(t)y(t)} dt

of the resulting response y.
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Fig. 2: (a),(b) Simulation of a 5 bus system of identical oscillators random velocity and zero phase initial conditions. (c),(d)
Simulation of a system with 20 identical oscillators under the same conditions as in (a),(b). Figures (a),(c) are for linearly
connected networks (with line graphs as in Figure 1), while Figures (b),(d) are for fully connected networks (complete
graphs). The linear networks are less coherent than complete networks (Figures (a),(c) versus (b),(d) respectively).

The interpretation for (12) is as follows. Since BB∗ =
[

0 0
0 I

]

, the corresponding initial condition corresponds

to each generator having a random initial velocity per-
turbation that is uncorrelated across generators and zero
initial phase perturbation. Then ∥H∥22 quantifies the total
(over all time) expected resistive power losses due to the
system returning to a synchronized state.

(c) Sum of responses to impulses at all inputs. Let ei refer to
the vector with all components zero expect for 1 in the
ith component. Consider N experiments where in each,
the system is fed an impulse at the ith input channel,
i.e. wi(t) = eiδ(t). Denote the corresponding output
by yi. The H2 norm (squared) is then the sum total of
the L2 norms of these outputs, i.e.

∥H∥22 =
N
∑

i=1

∫ ∞

0

y∗i (t)yi(t) dt.

A stochastic version of this scenario corresponds to
a system where the inputs wi can occur with equal
probability. Under this assumption the ∥H∥22 becomes
the expected total power loss given these inputs.

The corresponding interpretation for (12) is when each
generator is subject to impulse force disturbances (since
w enters into the momentum equation of each generator),
and ∥H∥22 is then the total power loss over all time.

IV. NUMERICAL EXAMPLES

Consider two networks of identical generators, one whose
underlying graph is a line, as in Figure 1, and one with a fully
connected graph. In this section, we compare the behavior of
two such systems as the network size varies. All simulations
use the following parameter values [20]: M = 20

2πf
, β =

10

2πf
with a frequency f = 60 Hz. The admittance between

connected generators is set to yij = 0.2+j1.5 and we assume
gii =: ḡ = 0 for all i = 1, . . . , n.

Figures 2a and 2b respectively show the state trajecto-
ries of a 5 node system with a line graph and one with
a fully connected graph given identical initial conditions.
The initial conditions for each ωi(0) were drawn from a
uniform distribution [−1, 1], and θ(0) was set to zero. This
corresponds to the H2 norm interpretation (b) described
in the previous section. For both the line graph and the
fully connected network the total losses are the same, with
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Ploss = 1.2885, as predicted by the main result in (13).
However, the transient behavior shows that the system with
the fully connected graph has more “coherent” phases (i.e.
they stay closer together). This is most clearly visible in
the top panels of the plots that depict the state θ. Here, the
small oscillations for the line graph system continue through
the 10 second interval shown in Figure 2a but have almost
completely died out for the fully connected of Figure 2b.

In order to evaluate the effect of increasing the network
size we ran a similar test with two 20 bus systems with the
same topological structure and initial conditions (ωi(0) ∈
[−1, 1] drawn from a uniform distribution for each i and
θ(0) = 0). In this case, the losses increased to Ploss =
5.9256 but remained equal in both networks. The faster
convergence to the synchronized state in fully connected
system (compared to the line graph) is much more evident
in the larger network, as shown in figures 2c and 2d.

The simulation results indicate that a fully connected
graph is much more coherent than a line graph. The resem-
blance of this result to those about coherence in vehicular
formations (platoons) and similar consensus-like network
algorithms [16] is striking. With coherence as a performance
measure, the line graph is the worst such topology (amongst
connected graphs), while the fully connected topology is the
best. However this additional coherence, while desirable for
other reasons, will not result in lower resistive losses.

V. CONCLUSIONS

We have considered a power network model with dis-
tributed disturbances, and quantified the total resistive power
losses incurred due to the current flows needed to maintain
phase synchrony. We have shown that these losses are in-
dependent of the network’s topology, but scale unboundedly
with the number of generators. There are interesting impli-
cations for the design of future highly-distributed-generation
networks, which have potentially orders of magnitude more
generator nodes that today’s networks. While a highly phase
coherent (and therefore highly connected) network is desir-
able for many reasons, the cost of maintaining this coherence
depends only on the number of generators and not the
network’s connectivity. Since this cost grows unboundedly
with the number of generator nodes, then the current scheme
of using power flows as the synchronization mechanism may
not be scalable to future networks. This is perhaps a further
argument for the use of other control mechanisms, such as
communication links, for phase synchronization.

APPENDIX

Proof that (12) is input-output stable

It is well known that for any pair (C,A), the observability
of (C,A) and (C∗C,A) are equivalent. The only unstable
mode of the A-matrix in (12) is at zero with corresponding
eigenvector [1, 0]T . This mode is unobservable from the

output y since by the PBH test

[

−A
C∗C

] [

1

0

]

=

⎡

⎢

⎢

⎣

[

0 −I
LB βI

]

[

LG 0
0 0

]

⎤

⎥

⎥

⎦

[

1

0

]

=

[

0
0

]

.

Note that this is a consequence of LG and LB having the
common eigenvector 1 with eigenvalue 0. The unobservabil-
ity of the only unstable mode implies then that the system
(12) is input-output stable.

REFERENCES

[1] U.S. Energy Information Administration, “Annual energy outlooks
2010 with projections to 2035,” U.S. Dept. of Energy, Tech. Rep.
DOE/EIA-0383, 2010.

[2] J. Carrasco et al., “Power-electronic systems for the grid integration
of renewable energy sources: A survey,” IEEE Trans. on Industrial
Electronics, vol. 53, no. 4, pp. 1002–1016, 2006.

[3] V.S. Budhraja et al., “California’s electricity generation and trans-
mission interconnection needs under alternative scenarios,” California
Energy Commission, Tech. Rep., 2004.

[4] P. Kundur et al., “Definition and classification of power system stabil-
ity IEEE/CIGRE joint task force on stability terms and definitions,”
IEEE Trans. on Power Sys., vol. 19, no. 3, pp. 1387 – 1401, Aug.
2004.

[5] P. Varaiya, F. Wu, and R.-L. Chen, “Direct methods for transient
stability analysis of power systems: Recent results,” Proc. of the IEEE,
vol. 73, no. 12, pp. 1703 – 1715, Dec. 1985.

[6] L. F. C. Alberto, F. H. J. R. Silva, and N. G. Bretas, “Direct methods
for transient stability analysis in power systems: state of art and future
perspectives,” in IEEE Power Tech Proc., vol. 2, Porto, Portugal, 2001.

[7] L. Pecora and T. Carroll, “On the existence of energy function for
power systems with transmission losses,” Phys. Rev. Letters, vol. 80,
no. 10, pp. 2109–2112, 1998.

[8] N. Narasimhamurthi, “On the existence of energy function for power
systems with transmission losses,” IEEE Trans. on Circuits and Sys.,
vol. 31, no. 2, pp. 199 – 203, Feb. 1984.

[9] H.-D. Chiang, F. Wu, and P. Varaiya, “Foundations of the potential
energy boundary surface method for power system transient stability
analysis,” IEEE Trans. on Circuits and Sys., vol. 35, no. 6, pp. 712
–728, June 1988.

[10] F. H. J. R. Silva, L. F. C. Alberto, J. B. A. London Jr., and N. G.
Bretas, “Smooth perturbation on a classical energy function for lossy
power system stability analysis,” IEEE Trans. on Circuits and Sys. I,
vol. 52, no. 1, pp. 222 – 229, Jan. 2005.

[11] F. Dörfler and F. Bullo, “Synchronization and transient stability in
power networks and non-uniform Kuramoto oscillators,” in Proc. of
the American Control Conf., Baltimore, MD, 2010, pp. 930 –937.

[12] ——, “Topological equivalence of a structure-preserving power net-
work model and a non-uniform Kuramoto model of coupled oscilla-
tors,” in Proc. of IEEE Conf. on Decision and Control, Orlando, FL,
2011, pp. 7099 –7104.

[13] E. Mallada and A. Tang, “Improving damping of power networks:
Power scheduling and impedance adaptation,” in Proc. of the IEEE
Conf. on Decision and Control, Orlando, FL, 2011, pp. 7729 – 7734.

[14] A. von Meier, Electric Power Systems: A Conceptual Introduction,
E. Desurvire, Ed. Hoboken, NJ: John Wiley and Sons Inc., 2006.

[15] K. Purchala et al., “Usefulness of DC power flow for active power flow
analysis,” in Proc. of IEEE PES Gen. Meeting, 2005, pp. 2457–2462.

[16] B. Bamieh, M. R. Jovanovic, P. Mitra, and S. Patterson, “Coherence
in large-scale networks: Dimension-dependent limitations of local
feedback,” IEEE Trans. on Automatic Control, vol. 57, no. 9, pp. 2235
–2249, Sept. 2012.

[17] S. Patterson and B. Bamieh, “Network coherence in fractal graphs,” in
Proc. of the IEEE Conf. on Decision and Control, Orlando, FL, 2011,
pp. 6445–6450.

[18] M. A. Pai, Power System Stability by Lyapunov’s Method. New York,
NY: N.Holland Publishing Co., 1981.

[19] D. Hill and G. Chen, “Power systems as dynamic networks,” in Proc.
of the IEEE Int’l Symposium on Circuits and Sys., 2006, pp. 722–725.

[20] P. Sauer and M. A. Pai, Eds., Power System Dynamics and Stability.
Upper Saddle River, NJ: Prentice Hall, 1999.

5820


