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Energy amplification in channel flows with stochastic excitation
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We investigate energy amplification in parallel channel flows, where background noise is modeled
as stochastic excitation of the linearized Navier—Stokes equations. We show analytically that the
energy of three-dimensional streamwise-constant disturbances achi¢Rés amplification. Our

basic technical tools are explicit analytical calculations of the traces of solutions of operator
Lyapunov equations, which yield the covariance operators of the forced random velocity fields. The
dependence of these quantities on both the Reynolds number and the spanwise wave number are
explicitly computed. We show how the amplification mechanism is due to a coupling between
wall-normal velocity and vorticity disturbances, which in turn is due to nonzero mean shear and
disturbance spanwise variation. This mechanism is viewed as a consequence of the non-normality
of the dynamical operator, and not necessarily due to the existence of near resonances or modes with
algebraic growth. ©2001 American Institute of Physic§DOI: 10.1063/1.1398044

I. INTRODUCTION In this latter work, it was also observed that variarjea-
ergy) growth for streamwise constant vortices @&(R°),

In the past several years, there has been an intensiwghile it is O(R%?) for disturbances with streamwise varia-
investigation of disturbance energy growth in subcriticaltions. These observations were made through numerical ap-
channel and boundary layer flows. It has been observed thgtoximations of the underlying PDEs, and solutions of cor-
otherwise linearly stable flows can exhibit very large threeresponding Lyapunov equations for the covariance matrices.
dimensional3-D) disturbance energy growth. This has been  We point out that in this stochastic excitation model
proposed as a possible mechanism for “bypass” or naturajyhich we consider in this paper, it is more appropriate to
transition to turbulence in shear flows! This mechanism is speak ofenergy amplificatiomather than energy growth. The
primarily due to linear amplification of disturbances ener-dynamica| equations can be thought of as representing a sys-
gized by the background mean shear. It occurs in the absenggm where background noise is regarded as an “input,” and
of nonlinear effects, and bypasses the primary/secondary inhe resulting forced random velocity field as the “output.”
stabilities scenarios.” The ratio of the output energyariance to that of the input

One approach to this problem is to consider the energys defined as the energy amplification of the system. Systems
growth of “worst case” initial flow disturbances. This is the with very large amplificatior(as is the case with high shear
point of view adopted in Refs. 2—4, where it is shown thatflow) are very sensitive to noise inputs. Such noise will then
transient energy growth can achieve maximaQgR?) for  determine the dominant structure of the observed output un-
certain favorably configured initial states. These maxima ocder “naturally noisy” conditions. Numerical experiments in
cur at times which ar@(R) A transition scenario can then channel f|0\ﬁ1 indicate that even small amounts of back-
be proposed where such large transient growth causes an e§itound noise due to round-off error can alter the modes
from the basin of attraction of the linearly stable laminarpresent in transition. We also mention that versions of this
flow. It has been found that such a scenario requires distuinput—output point of view were essentially adopted in some
bances with energies two orders of magnitude lower thamf the recent turbulence control for drag reduction
those of Tollmein—Schlichting wavésThough large energy studiest?—14
grOWth iS demonstrated, one iS |eft W|th the question Of hOW In thlS paper we W|” ana|yze Stochastica”y excited Chan_
does nature conspire to set up such worst case initial condhe| flow and analytically demonstrate the energy amplifica-
tions. tion can beO(R®) for 3-D disturbances. This is done for

A second approach partially answers this difficult ques+nree-dimensional streamwise-constant disturbances only
tion. In this approach, one considers the excitation of th?the so-called two-dimensional, three component mSgel
linearized Navier—Stokes equations by a stochastic randorfpg particular choice is motivated by the observations
field which enters as a forcing terft? This random excita- through numerical approximatiohthat streamwise constant
tion can model background noise which exists in naturallyyisturbances have the most energetic growth.
transitioning flows. A Karhunen—Loeve analysis of the re- By investigating properties of the solutions of the under-
sulting second-order statistics brings out dominant structuresying operator Lyapunov equations we obtain additional in-
which have the structure of streamwise vortices and str%akssight into the energy amplification process. We show that
O(R®) amplification is an inherent property of streamwise
dElectronic mail: bamieh@engineering.ucsh.edu constant disturbances in any general three-dimensional par-
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allel channel flow. This amplification property is independent
of the particular mean flow, and is a consequence of a cou-
pling between the perturbed wall-normal velocity and vortic-
ity. This coupling is proportional to the background laminar
flow shear and the spanwise variation of the disturbance.
This growth is also independent of whether there are near
resonances or modes with algebraic growth. The last obser
vation has also been made in Ref. 1 by analogy with a two-
dimensional non-normal model, but we show it here for the

full linearized PDE of channel flow disturbances. Our presentation is organized as follows: We first sum-
For the specific case of Couette flow we carry out amarize the analysis of stochastically excited linearized
detailed analysis of the dependence of variance amplificatioNavier—Stokes equations. We illustrate how the random flow
on the spanwise wave number. The peak of this “frequencyield covariance operator can be obtained from the solution
response” represents flow structures that are dominant in &f an operator Lyapunov equation. We then analyze the block
flow field excited by a broad-band, stochastic forcing field.decomposition of the Lyapunov equation, and show by a
This peak corresponds to flow structures that are streamwisgaling argument that streamwise constant disturbances have
vortices and streaks. O(R®) energy amplification for all spanwise wave numbers.
The calculation of these energy frequency response igve then devote the remainder of the paper to the analytic
performed by solving certain infinite dimensional Lyapunov evaluation of the dependence on the spanwise wave number,
equations, and computing the trace of the resulting operatorghich involves computing the traces of Lyapunov equation
We show how these traces can be calculated analyticallgolutions. We close by summarizing our conclusions, com-

This is made possible by a careful analysis of the underlyingnenting on the input—output view of transition in shear
two point boundary value problems arising from the linear-flows.

ized Navier—Stokes equations.
To summarize our results, we obtain an explicit expres!!- LINEARIZED NAVIER-STOKES EQUATIONS AND
sion for energy amplification in stochastically excited linear-ENERGY AMPLIFICATION
ized channel flows in the following form: We begin by considering the nondimensionalized linear-
E—f,(k,) R+ f,(k,)R® ized incompressible Na}vier—Stokeg equations whiph describe
12 2\ the dynamics of flow fielgoerturbationsnear a laminafor
wherek, is the spanwise wave number aRds the Reynolds mean flow profile U ,(x,y,z)=U(y), —1<y=<1 (flow be-
number. We obtain the functiofy explicitly, and the func- tween two parallel infinite plates, see Fig. 1 for the geom-
tion f, in terms of a rapidly convergent series. This expres-etry). After eliminating the pressure field and rewriting the
sion is valid for disturbances with streamwise wave numbeequations in terms of wall-normal velocity and wall-
k,=0, and reflects th disturbance energy averaged both termormal vorticity w:=dJu/dz—dw/dx perturbations, we

e —_— v
U

|

FIG. 1. Three-dimensional channel flow.

porally and in the wall-normal direction. obtain'®
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whereA: = 5%/ 9x?+ 3%/ dy>+ 9%/ 9z% is the LaplacianlJ’ is  allowed to vary temporally and in all three spatial dimen-

the derivative ofU with respect toy, andR is the Reynolds sions, and are thus functions of,¢,z,t). In a later section,

number based on the maximum velocity of the laminar flowwe will make some restrictions on the allowable perturba-

profile. (The notation “=:” means that the right-hand side is tions. The boundary conditions on these fields are

defined as the left-hand side. Therefore Hg.also serves to

define the operatorg, S, andC.) By the notationTl‘sz,

whereT,; and T, are PDE operators, we mean the operator

T, 'T,:g—f, wheref is the solution the inhomogeneous dif- (2)

ferential equationT,f=T,g. Such an operator is well de- w(X,=1z,t)=0, Vx,zteR.

fined if and only if there exists a unique solution to the

differential equation for everyg in the domain of the opera- £ andS are termed the Orr—Sommerfeld and Squire opera-

tor. tors, respectivelyC is an operator that represents the cou-
The velocity and vorticity perturbation fields are initially pling from wall-normal velocity to wall-normal vorticity

J
v(x,=1z1t)= W(X' +1z1)=0,
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and, as we show later, is responsible for @R®) amplifi-  wall-normal velocity and vorticity fields. The above-

cation of disturbance energy. mentioned form of the equations is sometimes referred to as
This particular representation of the equations is mosthe evolution form.

useful since these two fields are not subject to any additional An examination of the above-mentioned model indicates

constraints other than the boundary conditions. In systerthat the generatad is invariant to translations in theandz

theoretic language, the true state space of the linearizedirections. The appropriate analysis is then performed using

Navier—Stokes equations is the space of all unconstrained Fourier transformation in those variables which yields

1
. (—ikxA1UA+ikxA1U”+—A1A2) 0 .
Jdlv| R v
E | . 1 !’ ()]
(—ikU") —ik U+ =A
R
|
wherek, ,k, are the spatial frequencig¢szave numbersin 1 92
the x,z directions, respectively, ang, ® are the transformed - |l =555 A
. .. . 1 1 1)) kx+kz ay U
wall-normal velocity and vorticity fields, e.qg., E== . ~|dy
8)_qlw 1 w
8(anyykzt)::f f v(x,y,z,t)e 't zkdx dz Xz
e =4, Q9), 4

With a slight abuse of notation, we will refer to the trans- where we renamed the state ésand the energy form is
formed generator iii3) by .4, the same symbol used for the given by the linear operatd®, i.e.,
generator in(1). We also use the same symbols for all the - _
. . . v 1 A O
constituent operators, e.g., the Laplacian is naw b=\ - - -
2 2 k2 12 - ) 8(k>+k%)| 0 |
=(ddy“—k;—k3). Note that the above-mentioned trans- xRz
formed evolution equation is now a one-dimensional PDE  Thjs energy form defines an inner product on the state

parametrized by the two parametésk, . space such that the kinetic energy density is a norm on this

Remark: In the literature, evolution equatiof8), to-  gpace. Due to its importance, we denote this inner product by
gether with the assumption that temporal growth is exponen-

tial, leads to the so-called normal modes, and stability is  (¥1.¥2)e:=(¥1,Qu),

considered equivalent to the nonexistence of growing normajnere the inner product on the right-hand side is the standard
modes. we note here and that the above-mentioned Fourigrr —1 1] inner product given by4). We also recall the
transformation is also appropriate for the more general eMmportant concept of the adjoint of an operator with respect
ergy growth/amplification angl_y5|s we carry out in this paperyg 5 given inner product. Given an operatgron a Hilbert

It can be showtt that the original 3-D systerttl) is expo- space with an inner produg¢t--),, its adjoint operator, de-

nentially stable if and only if the transformed systdB) noted by*is defined by the relation
(which is a one-dimensional PDs exponentially stable for

all k,,k, (with an additional technical conditionHowever, (1, Hip)e= (H* 1, 2)e,
in this paper we are interested in energy amplification propyhich must hold for allysy , o, in the Hilbert space(A Hil-
erties rather than modal stability. It turns out that since the,q ¢ space is a linear function space with an inner product
Fourier transformation preserves quadratic forms, the tra_nsand a completeness property, this latter property does not
formed model(3) captures all the energy growth and ampli- pjay an important role in this paper and will not be discussed
fication properties of the original modél). We refer the  rther) The adjoint is a generalization of the complex con-
reader to Ref. 17 for the details. o jugate transpose of a matrix and has similar properties. Using
For any givenk,,k;, we can define th&inetic energy e adjoint, one defines theingular valuesof an operatof
densityof a harmonic perturbation at a given time by as the square root of the eigenvaluestef* (or equiva-
lently H* H). Similarly the left(respectively, rightsingular
£ KKz J’l fz”’kaz”’kz(uer 24 w2 vectors of H are defined as the eigenvectors7gf* (re-
: > ve+w)dz dx dy ) : .
167 J-1Jo 0 spectively, H* H). When an operator is norméi.e., when
‘HH* =H*H, or equivalently, when its eigenvectors are or-
which is a mean square integral averaged over a “box” ofthogonal, its singular values and eigenvalues are edupl
one wavelength side. Using an integration by parts and théo change of sigh When an operator is non-normal, the
definitions of the Fourier transform, this expression can besingular and eigenvalues can be quite different, and in gen-
evaluated in terms of andw by eral bear no relationship to each other. In fact, much of the

,
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energy growth properties of shear flows that have been stud- Note that the covariance operatdrin (5) is a function
ied in the past decade are due to the fact that the eigenvalue$ the wave numberg, ,k,. More precisely, let the distur-
of the propagatoe' are quite different from the eigenvalues banced be given by
of e“‘et““*.. The former is the subject of classical linear hy- d(x.y.2,t) = d(y )R (e! Kt k)
drodynamic stability theory using modes, and the latter is the il
appropriate measure of energy growth. where{d(y,t)} is a white, unit variance, temporally station-

We will not recap the energy growth results in the litera-ary, second-order random field. Such disturbances are sto-
ture, referring the reader instead to some of the originathastic in the wall-normal and temporal directions and pure
work.>* and a review articlé.In that work, the mode{3) is  harmonic in the streamwise and spanwise direction, but we
considered, and favorably configured initial conditions arewill simply refer to them as harmonic disturbances. The re-
found that yield the maximum energy growth in a given timesulting random velocity field will also be temporally station-
period. We will instead consider the same model, but withary and pure harmonic in thezdirections, and its variance
external forcing and zero initial conditions, and analyze thes given by trace[V(k,,k,)]. Thus trace[V(k,,k,)] pro-
effects of persistent random forcing disturbances on the flowides the variancéenergy amplification of harmonic distur-
field. This was originally done in Ref. 9 with a Galerkin bances. This quantity is referred to as #resemble average
approximation of the PDE. We will consider the same modeknergy densitpf a harmonic disturbance at a giviepandk,
and derive analytical expressions for the energy amplificaby Ref. 9.
tion. We will also clarify the amplification mechanism in
terms of some simple properties of the underlying operator Il. DEPENDENCE OF VARIANCE AMPLIFICATION ON

. . . : . HE REYNOLDS NUMBER
We will consider the transformed linearized Navier—

Stokes equation€3), with an additional forcing term on the ~ We now consider a general channel flédescribed by
right-hand side its corresponding laminar flow profild), and show that for
3-D streamwise constant perturbations, energy amplification
9 d, is O(R®). The dynamics of streamwise constant perturba-
S ¥=Ay+d, d::[d(j’ tions ar given by Eq(3) atk,=0, which becomes
1
whered is a forcing term with two components, the wall- P (ﬁAlAZ 0 -
normal velocityd, and vorticity d,, forcing terms, respec- _[‘f}: lf '
tively. These terms account for external body forces imposed gtlw (—ik,U") ( 1 A) w
on the flow such as free stream disturbances. We will assume z R
d to be a spatiotemporal random procéss., a random field 2
with a unit covariance as measured by the energy form. This A= ’9_2_ K2| ) (6)
setup reflects the simplest possible model of external sto- ay ‘

chastic excitation. More refined models may include morerqr different channel flow, the corresponding models differ

specifications on the statistics df For example, a simple only in the U’ term. We will now demonstrate th@(R?)

model of distributed wall roughness can be obtained by asanergy amplification is achieved for any channel flow with

sumingd to be a random field whose intensity peaks near thg,gnzero shear ' #0), and a disturbance with nonzero

walls. This would model the effect of distributed random gpanwise variationk,#0).

surfac_e texture on.the flow f|eld_ne§1r the wall. We view the generator ii6) as a “lower triangular”
With such forcing, the velocity field becomes a randompx 2 plock operator, and we investigate the solution of the

field whose statistics are determined by the dynamics of theyapunov equatior(5) “block by block.” Specifically, we
system. Itis a standard fact from the theory of linear systemge.\yrite (5) as

forced with second-order stochastic processes that the sta-

tionary (i.e., steady stajecovariance operator af is given  |A1r O } Vii Vo| [V Vo || AL Azl}
by Azi Azl Vo Voo [Vo V| 0 A7

-1 0
0o -l

: : L This equation can equivalently be written as the following
In order to evaluate this covariance operator, it is not neces- o

. ; . set of coupled equations:
sary to perform the above-mentioned integration. It can be

V= fxe”‘e“‘* dt.
0

shown that it is the unique solution of the following operator ~ A;;Vq,+ V. A5,=—1, W)
Lyapunov equation: .
AVt VoA = — AxViy, (8
V+VA*=—1.
AVEVA O Aot Vil — (1 ApaVE + Vo sy, ©

For reference, the above facts from the theory of linear sysThe block lower triangular structure of the generator implies
tems driven by stochastic noise are elaborated on in Apperthat the above-mentioned equations are coupled in a conve-
dix A. nient manner; Eq(7) is a Lyapunov equation which can be
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solved forV,;, then the Sylvester equati@8) can be solved tr(V(k,)) =[tr(P1(k,)) +tr(P,, (k,)) IR
for Vo, and finally the results can be used to solve the !

Lyapunov equatior{9) for V,,. +r(Poy,(k,))R®
In the next section we will illustrate methods to explic-
itly solve a subset of the above-mentioned equations, and =:f,(k,)R+fo(k,) R (18)

compute the trace of the solution of the remaining equation. ) )
These commutations will be done for the case of Couettd "€ dependence ok, is captured by the two functions
flow. However, theO(R®) amplification can be seen as a 1Tz It is €asy to see froni18), (16), and (13) that f,
general property of nonzero shear channel flows from thdepends only o andS, and thus is the same for all chan-

following general argument. Let us denote the generatoP€! flows. Onlyf; depends on the form of the laminar flow
blocks as follows: (or mean sheauthrough its dependence @'. We note that

for high Reynolds numbers, the dependencekpis essen-

1 tially dominated by thef, term as the contribution of the
ﬁﬁ 0 Ay O linear (in R) term becomes negligible.

1 .:[A A } The O(R®) term’s coefficient is tracé(zzz), which
C ﬁs o e comes from the solutions ¢13)—(15). From these equations

it can be shown that tradézzz) is nonzero whenever both

where we have denoted tliReindepenent, normalized Orr— U’ and k, are nonzero. Note that no assumptions on the
Sommerfeld and Squire operators Byand S, respectively.  existence of any resonances between the eigenvalués of

In this notation, the coupled equatio®—(9) become and £ were invoked. This illustrates th@(R®) energy am-
. plification can occur even in the absence of near-resonant
LVt VL =-1R, (100 modes or so-called algebraic growh.
SVo+Vol* = —CVyR, (11) The previous development is applicable to any channel

flow problem. We have thus established taqR®) amplifi-
Vgt VpuS* = — (1 4+CVE +VoC)R. (12) cation is inherent in 3-D streamwise constant perturbations.
In Sec. IV we proceed to compute analytically the function
Let us denote the solutions of Eqe0)—(12) at R=1 by  f;(k,) (which is the same for all channel flowsnd the
P11, Po, andP,,, respectively. To analyze the last equation, function f,(k,) for Couette flow.
we express =Py, + Py, and we write the equations for

the R-independenP operators IV. TRACE COMPUTATIONS
LP+ P LF=—1, (13 Although in general it is quite difficult to solve operator
Lyapunov equations without resorting to finite dimensional
SPo+PoL* = —CPy, (14 approximations of the operators, we will show in this section

thattracesof the solutions can be computed exactly. We note

SP222+ P2225* =~ (CPg +PoC*), (19 here that there are two methods by which these traces can be
B computed. The first involves the spectral decompositions of
SPag + P221S* =-1I (16) the Orr—Sommerfeld and Squit€ andS) operators, both of

which are well knowrt® By writing the operator’s matrix
representations using the eigenfunctionandS as bases
for v and ¢, respectively, bothZ and S will have diagonal

Due to the linearity of the equations, we see i@ implies
that V;,=P;R. Substituting this in(11), we observe that

— 2 ; imnli — i
Vo=PoR’, a3nd finally (12) implies thatVz; = P2, R, while representations. Equatiofis3)—(16) can then in principle be
Va2, = P2, R solved for the matrix representations of tR@perators. This

We can now write the energy amplification as method is tractable when the operators involved have simple

_ _ 3 spectral decompositions. The present difficulty is that the
tr(V)=tr(Vyg) +tr(Vap) =[tr(Pyg) +tr(Pyg ) JR+1r(Pyp )R eigenvalues of the operatdr are not known explicitly, but
17 only as zeros of certain transcendental functithns.

The O(R®) energy amplification now appears due to the  The second method and the one which we develop in
operatorP,, . We note that this operator is zero wheneverthis paper is based on certain properties of the operator trace,
C:=ik, U’ is zero, which happens either in the absence oftnd the use of so-called state-spacg reallzgtlons commonly
shear(i.e.,U’ =0), or when there is no spanwise variation in used_ in control theor}ﬁ_These techniques circumvent the
the perturbatior(i.e., k,=0). _detalle_d spectral analys_|s of the operaet‘onr_1 Sec. IVA, we

Formula(17) illustrates nicely the dependence of energynvestigate the properties of some special Lyapunov equa-
amplification on bothR and k,. The dependence ok, is tions, and show that Eqél?_,) and(16) are easily solvable for
expressed through the traces of feoperators, which are P11 @nd P2, While we will not be able to solve foPy,
independent oR. We summarize the above-mentioned de-explicitly, we will be able to express its trace as an easily
velopment in the following statement. computable series. In Sec. IV B we turn to the explicit evalu-

Theorem 1: For any parallel channel flow, the energy ation of the traces dP; andPy, . We show how they can be
amplification of streamwise constant disturbances is given bgomputed without knowledge of the corresponding spectra
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by considering “state space” representations of the underly-  (y)=—ik,U’(y)v(y),
ing two point boundary value problems. In Sec. IVC, the

series expressing the tracelbjzz will be evaluated by again and is a bounded operator as is evidenced by the following

considering the underlying two point boundary value prob—bound:
lems. loll2<l[lvllos [ max [[U"(NI]|,
Before we begin, we will define th§, £, andC opera- yel-11
tors more precisely. The Squire operafbhas homogeneous \yhich can be easily derived from the definitions. In the se-
Dirichlet boundary conditions and domain (5) given by quel, we will need the adjoint af which we now evaluate.
o ( P kz) The adjointC* :L?[ — 1,1] — g satisfies
“lay? 2 (0,C0)2=(C* 0,0)0s= —(C* 0,Av) = —(AC* ®,0)5,
D(S):={geLy-1,1];9?cLy—1,1],g(+1)=0!. which implies that it must be given by

It is well known that it is self-adjoint, and has the following v =C*@=v(y)=—ikA U’ (y)w(y).
set of orthonormal eigenfunctiorsp,,} with corresponding

eigenvalueq y,}, A. Special Lyapunov equations
nm n2 ;2 Our analysis is based on the following properties of
dn(y): =sin(7(y+ |, v= —( ) +KZ |, some special Lyapunov equations.
Lemma 2: Let A be a possibly unbounded operator that
n=1. (19 generates an exponentially stable semigréaid'), then

(1) The unique solution of the operator Lyapunov equa-
AP+PA=—1,isP=—3A"1

(2) Given a self-adjoint operator Q, such that both Q
and {e"} are trace class, then the unique solution of the
operator Lyapunov equation APPA= —Q satisfies

The description of the Orr—Sommerfeld operator is morg;qo
delicate since its eigenfunctions actually dependkonWe
first begin by carefully defining the operator following Ref.
4. The underlying spacHqs is the space of functiog with
second derivative in.?[—1,1], andg(=1)=0. The inner
product inHyg is given by tracd P) = — stracd A" 1Q).

(91,92)05:=(91,92)2+ Kx(91,92)2=(91,(— A)92)., We apply the first part of this lemma to Eq4.3) and
_ ~ (16). As is well known(see the following, both £ andS ar

where for ezmphaS|s we have denoted the standard inn@glf adjoint operators that generate trace class and exponen-
product inL= by (---),. Note that this inner product gives tially stable semigroups, thu€*=,, S*=3S, and both

precisely the contribution of the wall-normal velocity field to equationg(13) and(16)] can then be solved to yield
the energy density. The energy form(# can now be writ-

ten Pii=— %ﬁil' P221: - %Sil-
0, [0 o o On the other hand, solvind.5) is significantly more delicate,
(Y1, 2)e= ' @, =(01,V2)0s(@1,02)>. and requires solvingl4) first, which we write formally as
e
The domain ofL is inside ofHos, namely Po= fwetSCPll el di=— %fmets cettdt st
0 0

D(L):={gelps; g'(*1)=0, g¥elL?—1,1]},
_ _ s since £~ ! commutes withe'“. It does not seem possible to
and £ is defined a the operator that mags>f for f,g  expiicitly solve(15), but using the second part of the above-

e D(L) by given lemma, we can write

(5_2_ z)f_(‘9_4_2k2‘9_2+k4 . tracd P,,,) = — jtracd S L(CP§ +PoC*)) (20)

J 2 z | F 4 Z9 2 z '
y y Yy 1 )

It is not difficult to verify that£ is self-adjoint with a dis- =Ztracs( S‘1<C£‘1f el“cr el dt
crete spectrum, and is negative defiritgth respect to the 0
inner product ofog), and thus has only negative real eigen- %
values and generates a stable evolution. The self-adjointness + J e'cett dt £ 1c* ) ) (21)
of £ implies that it can be diagonalized by using its eigen- 0
functions as an orthonormal basis lBfs. This eigenvalue 1 %
problem was studied in Ref. 18, to which we refer the inter- =§trace< SflC’EflJO e'“c* etsdt), (22

ested reader for details. In this paper we circumvent the need
for the detailed spectral analysis 6f We will only need to  where Eq.(22) is arrived at by using the commutativity of
know that it is self-adjoint, trace clagan operator is trace £~ ! with e'*, and the fact that traceAB) =trace@A) for

class if it has finite trage and has a discrete spectrum. any two trace class operatofsB.
The coupling operato€: Hos—L?[ —1,1] is given by The inherent difficulty is that one cannot compute the
w=_Cv, integral in (22) explicitly. However as we now show, the

Downloaded 24 Jan 2002 to 128.111.70.62. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



3264 Phys. Fluids, Vol. 13, No. 11, November 2001

trace can still be computed at the expense of doing a spectrBl Computing the traces of

decomposition of eithel or S. We of course choose the

spectral decomposition & since it is by far simpler.
Lemma 3: Lefvy,}, {#,} be the eigenvalues and eigen-

functions of the operata$, then for any trace class operator

Q

tracs{ Q f etfcrelddt
0

= 2 (0, QUL+ yol)TIC* )

Proof. Let the spectral decompositions Sfand £ be
SZE ')’nEﬁ! ‘C:E )\mEﬁ’
n m

where E;f and Ef are the spectral projections ¢ and £,
respectively, e.g.E5f:=($,f)¢,. We can then compute

f etﬁc*etsdtzf ( exmtEﬁ)C* > e”n‘Eﬁ)dt
0 0 m n

=> > U e“m”n)‘dt)Eﬁ]c*Eﬁ
n m 0

1
(Am+t vn)

3%

N
ELC*E]

== (L+y) ' ES,
n

B. Bamieh and M. Dahleh

Stand £71

There is a particularly simple method to compute the
trace of an operator given by a two point boundary value
problem. This method is based on the use of certain state
space realizationdirst-order differential equation formmand
works particularly well for the operato$™* and £~ . This
method is applicable to any operator specified by a two point
boundary value problef,and we only present here its ap-
plication to the problem at hand.

First, we introduce the so-called state space realizations
of the S™! and £~ ! operators. Recall the definition of the
operatorsS and £,

2

J 2
——k7]0;, 01(x1)=0,

Sglﬁfl{:}fl:(ay

(92 4 2
ﬁ:gziﬁfzﬁ(ﬁ— kg) f2: (ﬁ_)/“_Zkng_l— k;1 Jo,

g2(+1)=g5(*x1)=0,

their inverse are simply given byS ':f;—~g, and

£ l:f,~g, as in the above-mentioned equations and
boundary conditions. A set of state space realizations for the
inverse can be given as follows:

where in the last equation we made a choice to recombine 9:=[0 1]z,

the spectral decomposition @f. Now, the trace of any op-

eratorA can be calculated using any orthonormal basis set

{¢i} by trace@)==(¢;,A¢p;). Therefore

trace( Q f etfcr el dt
0

—tracs( QY (L+vy,) e+ Eﬁ)

—2<@Q;<uwm*ﬁﬁ¢>

—Z<¢QU%%D*W@%

0 k2 1
—1. r_ z
St 7= 1 0 z+ 0 fqi,
where
Z; 91 +
= , +1)=0,
Z; [91 Z(=1)
0 0 0 —ki 2
Z
- 100 0 O 0 | e
X' = + ,
=g 1 0 a2 |¥T| 1 [T @O
001 0O 0
X, g5 —2kZg;—f;
X2|. _ g§_2k392_f2
X3 9z '
X4 s}
X3(£1)| |0
6:=[0 0 0 1 x | 7)|=|o)

Note that in both cases the realizations are such that the
second half of the state variables is constrained to be zero at

We now summarize the remaining required trace computathe boundary pointg= + 1, while the first half is free. These

tions:
tracé P,,) = — itracd £1), (23
trace Py, ) = — stracd S~ ), (24)

trace Py, ) = —% ;::l (¢, STICLTHLA yul)TIC* by).
(25

realizations are in the so-called “observable canonical
form.” 1

Now we apply the results of Ref. 20 on computing the
trace given a state space realization to the above-mentioned
systems. Note that since the corresponding realizations de-
pend onk,, the traces will also be functions &f. For both
of these realizations, the formula in Ref. 20 was evaluated
with the aid of theMAPLE/MATLAB symbolic computation

package to yield the following:
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2k, coth(2k,) -1

1 trace P
trace P,y )= — Etrace( S hH= 2 , &P22,)
z

(27)
1 o0
== 5 2 (0,8 CLTHLH 7o) I )

tracd P,;)=— itracd £~ 1)

1 o0
— _ -1 —1 — 1%
1 4K2+ sinh(4k,)k,+ (1— cost{4k,)) =5 2 (LTS M, (L) IO Bnos

2 kZ(8ks+(1—cosh4k,))) - :
1 4 — ik, _4[ —ikg
(28) ==5 2 (L7 =7 dn. (Lt vl ¢n
n=1 Yn Yn o0s
) . . * K2
In Fig. 2, we show plots of those two functions. It is inter- == 2y L4y )1 29
esting to note that both functions can be regarded as ratios of 2 nzl yﬁ< o (LE7D) " Pudos. @9

multinomials in the two variablels, ande®*z. Note the char-
acteristic dissipation spectrum for the traceSof'. The spec-

trum of £7* has a dissipation-like character for high wave 11,4 second equality is due to the self-adjointnesS df and

numbers, but is somewhat different at low wave numbers,—1 i respect to the appropriate inner products. The third
T_he difference bt_atween the two spectra_c_an probably be aIe'quality follows from¢,, being an eigenfunction of the op-
tributed to the different boundary conditions on the Orr—g oiorco-1- A1 with eigenvalue 14,, and that for Cou-

n»

Sommerfeld operator. ette flowC* = —ik,A L.

We now evaluate the individual terms in the sel(29).
This task is significantly simplified by utilizing the relations

We now turn to the evaluation of trac®4 ), which we between. ™t and (£+ y,) %, and by the fact tha, is an

. : s m g _A-1A2
remind the reader is given by the following series: elgenfuqctlon_of_ a “part of_the operatoL=A""A% We
summarize this in the following lemma.

Lemma 4: Let g and f be functions over the interval
[ —1,1] which are the solution to the following two TPBVPs:

C. Computing the trace of P22, for Couette flow

1 o
racdPo,) = = 5 2 (fn, S "CLTHLS yol)TIC" ),

Af=y b, f(x1)=f'(£1)=0,

where{ ¢, ,y,} are the eigenfunctions and eigenvalues of the
Squire operator given b§19). This series can be simplified
due to the relations between the operat§rg, andC. These (A%+y,A)g=7yp¢,, 09(+=1)=g’'(=1)=0.
relations are somewhat simpler for Couette flow than they
are for Poiseuille flow, and we only consider Couette flow in
this section, though in principle our methods are also appliTpep,
cable to the latter case. 1 1 _
First we make use of the fact thé, is an eigenfunction (D) (L7 b0, (L4 70l) " ¢n)os=(¢n:G)2—(¢n. )2
of S, and thus the actions & 1 andC* on it are particularly  (2) The inner products can be determined from the TPBVPs
simple by

FIG. 2. TraceP,,) (left) and
traceP,,) (right) as a function ok, .
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Y
a - 1072 —

FIG. 3. A regular(left) and logarith-
mic (right) plot of the coupling term

fz(kz)-

1k g 107° |

o 1077
Kz

nwT 1
27n+Zyz[(f"(l)—f"(—l))—5(9"(1)—9"(—1)) n even
<¢nvf>2_<¢nvg>2: 1 na 1 ’
2%—W[(f”(l)—f”(—l))—5(9"(1>+g"<—1>> n odd

The expressions in lemma 4, p&®) can be evaluated by solving the two TPBVPs. Since these are constant coefficient
ordinary differential equation®DES), their solutions are elementary and are given by trigonometric and hyperbolic functions.
Once the solutions are found, their second derivatives=at-1 give the series terms as in the previous lemma.

The difficulty is that the ODE coefficients are functionskgfandn. After some fairly laborious algebraic manipulations
and the aid of thenapLE symbolic computations package, we were able to obtain concise expressions as follows:

2n7 k,(cosh2k,)—1)

o v (simh2k)—2k) O
(CDTD=TD=) o ko (coshizk,) +1) '
T (s raky 0%
n
2(ancothlay) —kcothky)) ool
(~1)g"(1)~g"(~1)= i ,

n odd

2(aptani a,) — k,tanhk,))

where a,: = \/2k{+n?m?/4. Putting together all the above-mentioned relevant expressions, we finally obtain the series to
express the coupling term as a functionkgfin terms of a series over.

(1 n?#2[ 2k,(cosh2k,) —1) 1 D

. . } - n even

£,(k,) =tracd P )__E E ﬁ 2 29, [ ya(sinh(2k,) = 2k,)  4(a;,coth(a,) —k,coth(k,))

2ko) = 2 248 (1+n2772 k,(cosh2k,)+1) . 1 D . odd'
2 2y, | ya(sinh(2k,) +2k,)  4(a,tani a,) — Kk tanh(k,))

This function, which is essentially a frequeniy) response, an important aspect of transition in boundary layer and chan-
is plotted in Fig. 3 as a regular and as a “bode” plot which is nel flows. By modeling such noise as stochastic excitation of
common in the frequency analysis of systems. We note thdinearized channel flow, we have shown ti&¢R®) energy

his plot matches plots generated through Galerkin approxiamplification is possible for 3-D disturbances. The amplifi-
mations of the original PDE, and is in agreement with thoseation mechanism is due to coupling between the distur-
reported in Refs. 9 and 10. The plots show the characteristigance’s wall-normal velocity and vorticity. This coupling is
peak atk,~1.5, which is the wave number for the most provided by the mean flow shear and the disturbance’s span-

energetic response to stochastic excitation. wise variation.
We now comment on the role of non-normality in the
V. DISCUSSION energy amplification mechanism. There are two reasons for

The presence of background noise such as free streathe non-normality of the generatot in (3). The first being
disturbances and wall roughness has long been recognized ti® non-normality of the Orr—Sommerfeld and Squire opera-
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tors whenk,# 0. Second, the “off-diagonal” tern€ intro- Consider the forced linear system given by

duces a non-normality easily seen in the two-by-two block

representation ofd. The latter is much more significant than d

the former. To see this, we note that in two-dimensional — g; #=A¥+Bd, (A1)

channel flows(i.e., spanwise constant perturbatigpnghe

generator of the evolution equation for the stream function isvhere the statey < R" in the finite dimensional case, and in

precisely the non-normat, but in that case onl{D(R) am-  some Hilbert space in the infinite dimensional case. The PDE

plification is possible. On the other hand, in the case 0f3) can be viewed as an evolution equation of the above-

streamwise constant perturbations that we consider in thimentioned form with the state evolving in the Hilbert space

paper,k,=0, £ and S become self-adjoint, yeD(R®) am- @ L? (sinces e s and & e L?).

plification is possible via the coupling due to tGgerm. Whend is a stochastic process, the notion of a solution
Spanwise variations are recognized as leading to threde the differential equatioAl) is a little delicate. It is sim-

dimensional structures in transition. Our analysis shows thapler instead to work with the solution in terms of the convo-

spanwise varying but streamwise constant perturbations atation

much more important for transition than spanwise constant

and streamwise varying perturbations such as TS waves. In- t

deed, it has been demonstrdtethat spanwise modes have ¢(t)=etA¢(0)+f e 7AB d(7)dr.

substantial growth when even a small amount of background 0

nmse_(caused by_ r_ound-off errpis present. A second-order stochastic process is given by its correlation
S'”C‘? the or_lglnal work on energy growth_revealed thatstatistics. Assumingl is zero mean, its covariance matrix

strea_mmsg vortices and streaks are the dominant featur(_a r]%perator, in the infinite dimensional cass defined by

the linearized models rather than TS waves, the questio

arises as to the relation between these structures and the

ubiquitous wall-layer streamwise vortices and streaks in tur-  R(t1it2):=&d(t)d* (t)}.

bulent boundary layers. The streak spacing predicted in th . . : . .

present theory is independent of the Reynolds number, but Ehe process is termed wide sense stationaRjisf a function

dependent on the profild. The turbulent mean flow profiles Of only t, —t,. If d is a vector valued process, thdh is to
: : . .~ _ be interpreted as the complex conjugate transpose of the vec-
in channel flow are different from the corresponding laminar

profiles, and are Reynolds number dependent as are the oté)-r d. In the infinite dimensional case, we can define the

served coherent structures. The above-mentioned facts Su@ts_agl\f/ei—rgennoned product as the tensor producel efith
gest the possibility that wall-layer streaky structures could be™ """ ™"
the result of similar linear amplification processes. However,

the quantitative comparison with experimental results needs dd*:=d&d,

to be carried out. Further investigations are required to reveal here f | ¢ ib h
the relevance of this type of analysis to fully turbulentWNere forany wo elementsy of a Hilbert space, the tensor
boundary layer flows. product is defined as the rank one operdterg that acts as

There is a significant conceptual difference between profollows:

posing energy growth versus energy amplification as transi-

tion mechanisms. Energy growth requires favorably config- (f®g)(x):=f(g,x).

ured initial velocity fields to achieve large transient growth, ) ) )

while energy amplification requires the presence of externdNote how the Hilbert space inner produce determines the
forcing to produce perturbed flow fields. Mathematically, it is t€nsor product. The notion of a tensor product is a generali-
essentially the same mechanism that causes amplification dation of the column/row vector product for vectors where
growth. Given the extreme sensitivity to shear flows to freeth® underlying inner produce is the usual Euclidean one. We
stream disturbances and wall roughness, it seems mofeed to use this sllghtly more genergl definition here since
physically appropriate to think in terms of amplification the energy form4) used in this paper is not the stapddu%j
rather than growth. This is essentially an input—output viewinner product. For simplicity, we will use the notatictu*
where the issue is to quantify the effect of external forcingW'th the understanding that it stands for the tensor product

inputs on flow perturbations viewed as an output. whend belongs to a Hilbert space.
If dis a stochastic process i#1), then ¢ becomes a

process whose second-order statistics are determined by the
linear system’s dynamics. Assume tltkis a temporally sta-

APPENDIX A: LINEAR SYSTEMS DRIVEN BY . . .
tionary, white process, i.e.,

STOCHASTIC INPUTS

We summarize the main results of the theory of linear  g{d(t;)d* (t,)}=Rs(t;—t,), (A2)
systems with stochastic inputs. With a careful choice of no-
tation, the statements we make are valid for both finite andvhereR is the “spatial” correlation operator. Assuming zero
infinite dimensional systems. Further details can be found irnitial conditions, the correlation operator ¢fcan be com-
Refs. 21 and 19. puted by
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P * ] o0
V(ty,to):=Eg(ty) ¥* (t2)} tr(V)=tr( f SAGHAY dt) :f tr(e' e )dt.
! ty-nA 0 0
_S[(L € Bd(T)dT) The numerical investigations of energy grotvthrevealed
: O(R?) peak values fok,(ee”"), with the peak occurring
% f Zd*(s)B* e(tzs>A*ds)} at time O(R). Since the energy amplification is the integral,
0 one can intuitively expect tx) to beO(R?). This, however,

may not always be the case, since for any operajdr(T)

min(ty,ty) % . . .
:f B eltim"ABRB*e2"7A" dr, (A3)  can in general be quite different froRy,,(T).
0

which follows by using the statistics of (A2). In the steady APPENDIX B: PROOF OF LEMMA 4
state limit whent;=t,—~, we obtain '

. Proof: Part 1. The first part follows from the properties
V:f eABRB* etA* df. (Ad) of L. Let us define

0 f::£71¢n:>£f:¢n:>A2f:A¢n:7n¢na
We note here that this correlation operator contains all the . —-1 2
. . =(L+y,l + = A
second-order steady state statistics of the flow field. These 9: = (LA yal) "n= LG+ g = Pn= 470
can be interpreted as being precisely the Reynolds stresses if  =—y,Ag+A¢,=(A%+ y,A)g= Yng, -

the flow is assumed to satisfy the linearized Navier—Stokes .
equations, and is driven by external forcing with known sta-NOte that the boundary conditions of f and g follow from the
tistics. definition of the operatog. The inner product then becomes

An important fact used in this paper is that the correla-(£~ ¢ ,(L+ y,l) 1o

n>os
tion operator can be found without evaluating the integral in

(A4). We can show that the steady stafesatisfies a so- =(f,9)os= —(f,AQ)

called Lyapunov equation. Consider expressié3) at t; -1

=t,=t, which we will denote byV(t). We can derive an :—<f,y_A2g+ ¢n>
n 2

operator differential equation for(t) by simply differenti-
ating (A3) to obtain

1
g =%<A2f,9>z—<f,¢n>z
Gt V(O=AV(D) + V() A* +BRB*,

1
=—(A ¢ 9)2— f i ¢
the so-called differential Lyapunov equation. If the system is 7n< )z~ (b2

stable, then the steady state Ilimit exists and — —(f
. _ . . . <¢!g>2 < a¢n>2'
lim,_.(d/dt)V(t)=0, which then vyields the algebraic
Lyapunov equation NOte that we made use Of the ident{"yAzg>2:(A2f,g>2
which is valid because of the boundary conditions on f and g
AV+VA* +BRB* =0. Part 2. The key here is the following general property of

. _ .. the A? operator.
In this paper, we have assumed the external input statistics to

be given byR=1 (i.e., a spatially uncorrelated procgsand (A%hy,h,),=(hy,A%h,),+ ((h]'h,—h}h,+hih}
since the forcing enters directly into the state equat®n, ” , ,
—1, which then yields Eq(5). —hih3) = 2k;(hih,—hsh)))[ 2y,

We note that in the controls and systems theory literawhich can be verified through integration by parts. Recalling
ture, one often encounters Lyapunov equations. They are lirthat ¢,(y) =sin((hw/2)(y+1)) is an eigenfunction of\?,
ear equations in terms of the unknown matfix operatoy  we compute
V. In the case of finite dimensional systems, there exist effi- 1
cient algorithms for solving the resulting linear system of (¢, ,f),=—(A%¢,,f),
equations. For infinite dimensional systems the entries are Yn
operators, and except in simple cases, it is not possible to 1
explicitly solve the equations without resorting to finite di- =—[( b, A%F) o+ (pnf")]L 4]
mensional approximations. In our study, we are able to cir- n

cumvent the approximations since we require only the opera- 1 nm

tor trace of the solution rather than the full operator. =7 (@n:Yndn)2t+ —-(cognm)f"(1)
Finally, we comment that the variance amplification cap- "

tured by t(V) is precisely what is referred to in the controls —cog0)f"(—1))]

literature as the?> norm of the system frona to . This
norm can be related to the transient responsehgye we

assumeB=R=1) n

_ i_i_ nw _1)nf// 1)_1:// _1))
=5 Eﬁ(( ( ( :
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