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Energy amplification in channel flows with stochastic excitation
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~Received 23 May 2001; accepted 9 July 2001!

We investigate energy amplification in parallel channel flows, where background noise is modeled
as stochastic excitation of the linearized Navier–Stokes equations. We show analytically that the
energy of three-dimensional streamwise-constant disturbances achievesO(R3) amplification. Our
basic technical tools are explicit analytical calculations of the traces of solutions of operator
Lyapunov equations, which yield the covariance operators of the forced random velocity fields. The
dependence of these quantities on both the Reynolds number and the spanwise wave number are
explicitly computed. We show how the amplification mechanism is due to a coupling between
wall-normal velocity and vorticity disturbances, which in turn is due to nonzero mean shear and
disturbance spanwise variation. This mechanism is viewed as a consequence of the non-normality
of the dynamical operator, and not necessarily due to the existence of near resonances or modes with
algebraic growth. ©2001 American Institute of Physics.@DOI: 10.1063/1.1398044#
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I. INTRODUCTION

In the past several years, there has been an inten
investigation of disturbance energy growth in subcritic
channel and boundary layer flows. It has been observed
otherwise linearly stable flows can exhibit very large thre
dimensional~3-D! disturbance energy growth. This has be
proposed as a possible mechanism for ‘‘bypass’’ or natu
transition to turbulence in shear flows.1–4 This mechanism is
primarily due to linear amplification of disturbances en
gized by the background mean shear. It occurs in the abs
of nonlinear effects, and bypasses the primary/secondar
stabilities scenarios.5–7

One approach to this problem is to consider the ene
growth of ‘‘worst case’’ initial flow disturbances. This is th
point of view adopted in Refs. 2–4, where it is shown th
transient energy growth can achieve maxima ofO(R2) for
certain favorably configured initial states. These maxima
cur at times which areO(R). A transition scenario can the
be proposed where such large transient growth causes an
from the basin of attraction of the linearly stable lamin
flow. It has been found that such a scenario requires dis
bances with energies two orders of magnitude lower t
those of Tollmein–Schlichting waves.8 Though large energy
growth is demonstrated, one is left with the question of h
does nature conspire to set up such worst case initial co
tions.

A second approach partially answers this difficult qu
tion. In this approach, one considers the excitation of
linearized Navier–Stokes equations by a stochastic ran
field which enters as a forcing term.9,10 This random excita-
tion can model background noise which exists in natura
transitioning flows. A Karhunen–Loeve analysis of the
sulting second-order statistics brings out dominant structu
which have the structure of streamwise vortices and strea9

a!Electronic mail: bamieh@engineering.ucsb.edu
3251070-6631/2001/13(11)/3258/12/$18.00
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In this latter work, it was also observed that variance~en-
ergy! growth for streamwise constant vortices isO(R3),
while it is O(R3/2) for disturbances with streamwise varia
tions. These observations were made through numerical
proximations of the underlying PDEs, and solutions of c
responding Lyapunov equations for the covariance matric

We point out that in this stochastic excitation mod
which we consider in this paper, it is more appropriate
speak ofenergy amplificationrather than energy growth. Th
dynamical equations can be thought of as representing a
tem where background noise is regarded as an ‘‘input,’’ a
the resulting forced random velocity field as the ‘‘output
The ratio of the output energy~variance! to that of the input
is defined as the energy amplification of the system. Syst
with very large amplification~as is the case with high shea
flow! are very sensitive to noise inputs. Such noise will th
determine the dominant structure of the observed output
der ‘‘naturally noisy’’ conditions. Numerical experiments i
channel flow11 indicate that even small amounts of bac
ground noise due to round-off error can alter the mod
present in transition. We also mention that versions of t
input–output point of view were essentially adopted in so
of the recent turbulence control for drag reducti
studies.12–14

In this paper we will analyze stochastically excited cha
nel flow and analytically demonstrate the energy amplifi
tion can beO(R3) for 3-D disturbances. This is done fo
three-dimensional streamwise-constant disturbances
~the so-called two-dimensional, three component mode15!.
This particular choice is motivated by the observatio
through numerical approximations9 that streamwise constan
disturbances have the most energetic growth.

By investigating properties of the solutions of the und
lying operator Lyapunov equations we obtain additional
sight into the energy amplification process. We show t
O(R3) amplification is an inherent property of streamwi
constant disturbances in any general three-dimensional
8 © 2001 American Institute of Physics
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3259Phys. Fluids, Vol. 13, No. 11, November 2001 Energy amplification in channel flows
allel channel flow. This amplification property is independe
of the particular mean flow, and is a consequence of a c
pling between the perturbed wall-normal velocity and vort
ity. This coupling is proportional to the background lamin
flow shear and the spanwise variation of the disturban
This growth is also independent of whether there are n
resonances or modes with algebraic growth. The last ob
vation has also been made in Ref. 1 by analogy with a tw
dimensional non-normal model, but we show it here for
full linearized PDE of channel flow disturbances.

For the specific case of Couette flow we carry ou
detailed analysis of the dependence of variance amplifica
on the spanwise wave number. The peak of this ‘‘freque
response’’ represents flow structures that are dominant
flow field excited by a broad-band, stochastic forcing fie
This peak corresponds to flow structures that are stream
vortices and streaks.

The calculation of these energy frequency respons
performed by solving certain infinite dimensional Lyapun
equations, and computing the trace of the resulting opera
We show how these traces can be calculated analytic
This is made possible by a careful analysis of the underly
two point boundary value problems arising from the line
ized Navier–Stokes equations.

To summarize our results, we obtain an explicit expr
sion for energy amplification in stochastically excited line
ized channel flows in the following form:

E5 f 1~kz!R1 f 2~kz!R
3,

wherekz is the spanwise wave number andR is the Reynolds
number. We obtain the functionf 1 explicitly, and the func-
tion f 2 in terms of a rapidly convergent series. This expr
sion is valid for disturbances with streamwise wave num
kx50, and reflects th disturbance energy averaged both t
porally and in the wall-normal direction.
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Our presentation is organized as follows: We first su
marize the analysis of stochastically excited lineariz
Navier–Stokes equations. We illustrate how the random fl
field covariance operator can be obtained from the solu
of an operator Lyapunov equation. We then analyze the bl
decomposition of the Lyapunov equation, and show by
scaling argument that streamwise constant disturbances
O(R3) energy amplification for all spanwise wave numbe
We then devote the remainder of the paper to the anal
evaluation of the dependence on the spanwise wave num
which involves computing the traces of Lyapunov equat
solutions. We close by summarizing our conclusions, co
menting on the input–output view of transition in she
flows.

II. LINEARIZED NAVIER–STOKES EQUATIONS AND
ENERGY AMPLIFICATION

We begin by considering the nondimensionalized line
ized incompressible Navier–Stokes equations which desc
the dynamics of flow fieldperturbationsnear a laminar~or
mean! flow profile Um(x,y,z)5U(y), 21<y<1 ~flow be-
tween two parallel infinite plates, see Fig. 1 for the geo
etry!. After eliminating the pressure field and rewriting th
equations in terms of wall-normal velocityv and wall-
normal vorticity v:5]u/]z2]w/]x perturbations, we
obtain16

FIG. 1. Three-dimensional channel flow.
]

]t F v
v G5F S 2D21U
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]x
D1D21U9

]
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S 2U8
]

]zD S 2U
]

]x
1

1

R
D D G F v

v G5:FL 0

C SG F v
v G5:AF v

v G , ~1!
n-

a-

ra-
u-
whereD:5]2/]x21]2/]y21]2/]z2 is the Laplacian,U8 is
the derivative ofU with respect toy, andR is the Reynolds
number based on the maximum velocity of the laminar fl
profile. ~The notation ‘‘5:’’ means that the right-hand side i
defined as the left-hand side. Therefore Eq.~1! also serves to
define the operatorsL, S, andC.! By the notationT1

21T2 ,
whereT1 and T2 are PDE operators, we mean the opera
T1

21T2:g° f , wheref is the solution the inhomogeneous d
ferential equationT1f 5T2g. Such an operator is well de
fined if and only if there exists a unique solution to t
differential equation for everyg in the domain of the opera
tor.

The velocity and vorticity perturbation fields are initial
r

allowed to vary temporally and in all three spatial dime
sions, and are thus functions of (x,y,z,t). In a later section,
we will make some restrictions on the allowable perturb
tions. The boundary conditions on these fields are

v~x,61,z,t !5
]

]y
~x,61,z,t !50,

~2!

v~x,61,z,t !50, ;x,z,tPR.

L andS are termed the Orr–Sommerfeld and Squire ope
tors, respectively.C is an operator that represents the co
pling from wall-normal velocity to wall-normal vorticity
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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and, as we show later, is responsible for theO(R3) amplifi-
cation of disturbance energy.

This particular representation of the equations is m
useful since these two fields are not subject to any additio
constraints other than the boundary conditions. In sys
theoretic language, the true state space of the linear
Navier–Stokes equations is the space of all unconstra
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wall-normal velocity and vorticity fields. The above
mentioned form of the equations is sometimes referred to
the evolution form.

An examination of the above-mentioned model indica
that the generatorA is invariant to translations in thex andz
directions. The appropriate analysis is then performed us
a Fourier transformation in those variables which yields
]

]t F v̂
v̂ G5F S 2 ikxD

21UD1 ikxD
21U91

1

R
D21D2D 0

~2 ikzU8! S 2 ikxU1
1

R
D D G F v̂

v̂ G , ~3!
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wherekx ,kz are the spatial frequencies~wave numbers! in
the x,z directions, respectively, andv̂,v̂ are the transformed
wall-normal velocity and vorticity fields, e.g.,

v̂~kx ,y,kzt !:5E
2`

` E
2`

`

v~x,y,z,t !e2 i ~xkx1zkz!dx dz.

With a slight abuse of notation, we will refer to the tran
formed generator in~3! by A, the same symbol used for th
generator in~1!. We also use the same symbols for all t
constituent operators, e.g., the Laplacian is nowD
5(]2/]y22kx

22kz
2). Note that the above-mentioned tran

formed evolution equation is now a one-dimensional P
parametrized by the two parameterskx ,kz .

Remark: In the literature, evolution equation~3!, to-
gether with the assumption that temporal growth is expon
tial, leads to the so-called normal modes, and stability
considered equivalent to the nonexistence of growing nor
modes. we note here and that the above-mentioned Fo
transformation is also appropriate for the more general
ergy growth/amplification analysis we carry out in this pap
It can be shown17 that the original 3-D system~1! is expo-
nentially stable if and only if the transformed system~3!
~which is a one-dimensional PDE! is exponentially stable for
all kx ,kz ~with an additional technical condition!. However,
in this paper we are interested in energy amplification pr
erties rather than modal stability. It turns out that since
Fourier transformation preserves quadratic forms, the tra
formed model~3! captures all the energy growth and amp
fication properties of the original model~1!. We refer the
reader to Ref. 17 for the details.

For any givenkx ,kz , we can define thekinetic energy
densityof a harmonic perturbation at a given time by

E:5
kxkz

16p2E
21

1 E
0

2p/kxE
0

2p/kz
~u21v21w2!dz dx dy,

which is a mean square integral averaged over a ‘‘box’’
one wavelength side. Using an integration by parts and
definitions of the Fourier transform, this expression can
evaluated in terms ofv̂ and ŵ by
n-
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r.

-
e
s-

f
e
e

E5
1

8E21

1 F v̂
v̂ G* F I 2

1

kx
21kz

2

]2

]y2 0

0
1

kx
2kz

2 I
G F v̂

v̂ Gdy

5:^c,Qc&, ~4!

where we renamed the state asc, and the energy form is
given by the linear operatorQ, i.e.,

c:5F v̂
v̂ G , Q:5

1

8~kx
21kz

2!
F2D 0

0 I G .
This energy form defines an inner product on the st

space such that the kinetic energy density is a norm on
space. Due to its importance, we denote this inner produc

^c1 ,c2&e :5^c1 ,Qc2&,

where the inner product on the right-hand side is the stand
L2@21,1# inner product given by~4!. We also recall the
important concept of the adjoint of an operator with resp
to a given inner product. Given an operatorH on a Hilbert
space with an inner product^•••&e , its adjoint operator, de-
noted byH* is defined by the relation

^c1 ,Hc2&e5^H* c1 ,c2&e ,

which must hold for allc1 ,c2 in the Hilbert space.~A Hil-
bert space is a linear function space with an inner prod
and a completeness property, this latter property does
play an important role in this paper and will not be discuss
further.! The adjoint is a generalization of the complex co
jugate transpose of a matrix and has similar properties. Us
the adjoint, one defines thesingular valuesof an operatorH
as the square root of the eigenvalues ofHH* ~or equiva-
lently H* H!. Similarly the left~respectively, right! singular
vectors ofH are defined as the eigenvectors ofHH* ~re-
spectively,H* H). When an operator is normal~i.e., when
HH* 5H* H, or equivalently, when its eigenvectors are o
thogonal!, its singular values and eigenvalues are equal~up
to change of sign!. When an operator is non-normal, th
singular and eigenvalues can be quite different, and in g
eral bear no relationship to each other. In fact, much of
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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energy growth properties of shear flows that have been s
ied in the past decade are due to the fact that the eigenva
of the propagatoretA are quite different from the eigenvalue
of etAetA* . The former is the subject of classical linear h
drodynamic stability theory using modes, and the latter is
appropriate measure of energy growth.

We will not recap the energy growth results in the liter
ture, referring the reader instead to some of the origi
work,2,4 and a review article.1 In that work, the model~3! is
considered, and favorably configured initial conditions a
found that yield the maximum energy growth in a given tim
period. We will instead consider the same model, but w
external forcing and zero initial conditions, and analyze
effects of persistent random forcing disturbances on the fl
field. This was originally done in Ref. 9 with a Galerk
approximation of the PDE. We will consider the same mo
and derive analytical expressions for the energy amplifi
tion. We will also clarify the amplification mechanism i
terms of some simple properties of the underlying operat

We will consider the transformed linearized Navie
Stokes equations~3!, with an additional forcing term on the
right-hand side

]

]t
c5Ac1d, d:5F dv

dv
G ,

whered is a forcing term with two components, the wa
normal velocitydv and vorticity dv forcing terms, respec
tively. These terms account for external body forces impo
on the flow such as free stream disturbances. We will ass
d to be a spatiotemporal random process~i.e., a random field!
with a unit covariance as measured by the energy form. T
setup reflects the simplest possible model of external
chastic excitation. More refined models may include m
specifications on the statistics ofd. For example, a simple
model of distributed wall roughness can be obtained by
sumingd to be a random field whose intensity peaks near
walls. This would model the effect of distributed rando
surface texture on the flow field near the wall.

With such forcing, the velocity field becomes a rando
field whose statistics are determined by the dynamics of
system. It is a standard fact from the theory of linear syste
forced with second-order stochastic processes that the
tionary ~i.e., steady state! covariance operator ofc is given
by

V5E
0

`

etAetA* dt.

In order to evaluate this covariance operator, it is not nec
sary to perform the above-mentioned integration. It can
shown that it is the unique solution of the following opera
Lyapunov equation:

AV1VA* 52I . ~5!

For reference, the above facts from the theory of linear s
tems driven by stochastic noise are elaborated on in App
dix A.
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Note that the covariance operatorV in ~5! is a function
of the wave numberskx ,kz . More precisely, let the distur
banced be given by

d~x,y,z,t !5d̄~y,t !R~ei ~xkx1zkz!!,

where$d̄(y,t)% is a white, unit variance, temporally station
ary, second-order random field. Such disturbances are
chastic in the wall-normal and temporal directions and p
harmonic in the streamwise and spanwise direction, but
will simply refer to them as harmonic disturbances. The
sulting random velocity field will also be temporally statio
ary and pure harmonic in thex,zdirections, and its variance
is given by trace@V(kx ,kx)#. Thus trace@V(kx ,kz)# pro-
vides the variance~energy! amplification of harmonic distur-
bances. This quantity is referred to as theensemble average
energy densityof a harmonic disturbance at a givenkx andkz

by Ref. 9.

III. DEPENDENCE OF VARIANCE AMPLIFICATION ON
THE REYNOLDS NUMBER

We now consider a general channel flow~described by
its corresponding laminar flow profileU!, and show that for
3-D streamwise constant perturbations, energy amplifica
is O(R3). The dynamics of streamwise constant perturb
tions ar given by Eq.~3! at kx50, which becomes

]

]t F v̂
v̂ G5F S 1

R
D21D2D 0

~2 ikzU8! S 1

R
D D G F v̂

v̂ G ,

D5S ]2

]y22kz
2I D . ~6!

For different channel flow, the corresponding models dif
only in the U8 term. We will now demonstrate thatO(R3)
energy amplification is achieved for any channel flow w
nonzero shear (U8Þ0), and a disturbance with nonzer
spanwise variation (kzÞ0).

We view the generator in~6! as a ‘‘lower triangular’’
232 block operator, and we investigate the solution of t
Lyapunov equation~5! ‘‘block by block.’’ Specifically, we
re-write ~5! as

FA11 0

A21 A22
GFV11 V0*

V0 V22
G1FV11 V0*

V0 V22
GFA11* A21*

0 A22*
G

5F2I 0

0 2I G .

This equation can equivalently be written as the followi
set of coupled equations:

A11V111V11A11* 52I , ~7!

A22V01V0A11* 52A21V11, ~8!

A22V221V22A22* 52~ I 1A21V0* 1V0A21* !. ~9!

The block lower triangular structure of the generator impl
that the above-mentioned equations are coupled in a co
nient manner; Eq.~7! is a Lyapunov equation which can b
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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solved forV11, then the Sylvester equation~8! can be solved
for V0, and finally the results can be used to solve
Lyapunov equation~9! for V22.

In the next section we will illustrate methods to expli
itly solve a subset of the above-mentioned equations,
compute the trace of the solution of the remaining equat
These commutations will be done for the case of Cou
flow. However, theO(R3) amplification can be seen as
general property of nonzero shear channel flows from
following general argument. Let us denote the genera
blocks as follows:

F 1

R
L 0

C 1

R
S
G :5FA11 0

A21 A22
G ,

where we have denoted theR-indepenent, normalized Orr–
Sommerfeld and Squire operators byL andS, respectively.
In this notation, the coupled equations~7!–~9! become

LV111V11L* 52IR, ~10!

SV01V0L* 52CV11R, ~11!

SV221V22S* 52~ I 1CV0* 1V0C* !R. ~12!

Let us denote the solutions of Eqs.~10!–~12! at R51 by
P11, P0, andP22, respectively. To analyze the last equatio
we expressP225P221

1P222
, and we write the equations fo

the R-independentP operators

LP111P11L* 52I , ~13!

SP01P0L* 52CP11, ~14!

SP222
1P222

S* 52~CP0* 1P0C* !, ~15!

SP221
1P221

S* 52I . ~16!

Due to the linearity of the equations, we see that~10! implies
that V115P11R. Substituting this in~11!, we observe that
V05P0R2, and finally~12! implies thatV221

5P221
R, while

V222
5P222

R3.
We can now write the energy amplification as

tr~V!5tr~V11!1tr~V22!5@ tr~P11!1tr~P221
!#R1tr~P222

!R3.
~17!

The O(R3) energy amplification now appears due to t
operatorP222

. We note that this operator is zero whenev
C:5 ikzU8 is zero, which happens either in the absence
shear~i.e.,U850!, or when there is no spanwise variation
the perturbation~i.e., kz50!.

Formula~17! illustrates nicely the dependence of ener
amplification on bothR and kz . The dependence onkz is
expressed through the traces of theP operators, which are
independent ofR. We summarize the above-mentioned d
velopment in the following statement.

Theorem 1: For any parallel channel flow, the energ
amplification of streamwise constant disturbances is given
Downloaded 24 Jan 2002 to 128.111.70.62. Redistribution subject to A
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tr~V~kz!!5@ tr~P11~kz!!1tr~P221
~kz!!#R

1tr~P222
~kz!!R3

5: f 1~kz!R1 f 2~kz!R
3. ~18!

The dependence onkz is captured by the two function
f 1 , f 2. It is easy to see from~18!, ~16!, and ~13! that f 1

depends only onL andS, and thus is the same for all chan
nel flows. Only f 2 depends on the form of the laminar flo
~or mean shear! through its dependence onU8. We note that
for high Reynolds numbers, the dependence onkz is essen-
tially dominated by thef 2 term as the contribution of the
linear ~in R! term becomes negligible.

The O(R3) term’s coefficient is trace(P222
), which

comes from the solutions of~13!–~15!. From these equation
it can be shown that trace~P222

) is nonzero whenever both
U8 and kz are nonzero. Note that no assumptions on
existence of any resonances between the eigenvaluesS
andL were invoked. This illustrates thatO(R3) energy am-
plification can occur even in the absence of near-reson
modes or so-called algebraic growth.16

The previous development is applicable to any chan
flow problem. We have thus established thatO(R3) amplifi-
cation is inherent in 3-D streamwise constant perturbatio
In Sec. IV we proceed to compute analytically the functi
f 1(kz) ~which is the same for all channel flows! and the
function f 2(kz) for Couette flow.

IV. TRACE COMPUTATIONS

Although in general it is quite difficult to solve operato
Lyapunov equations without resorting to finite dimension
approximations of the operators, we will show in this secti
that tracesof the solutions can be computed exactly. We no
here that there are two methods by which these traces ca
computed. The first involves the spectral decompositions
the Orr–Sommerfeld and Squire~L andS! operators, both of
which are well known.18 By writing the operator’s matrix
representations using the eigenfunctions ofL andS as bases
for v and c, respectively, bothL andS will have diagonal
representations. Equations~13!–~16! can then in principle be
solved for the matrix representations of theP operators. This
method is tractable when the operators involved have sim
spectral decompositions. The present difficulty is that
eigenvalues of the operatorL are not known explicitly, but
only as zeros of certain transcendental functions.18

The second method and the one which we develop
this paper is based on certain properties of the operator tr
and the use of so-called state-space realizations comm
used in control theory.19 These techniques circumvent th
detailed spectral analysis of the operatorL. In Sec. IV A, we
investigate the properties of some special Lyapunov eq
tions, and show that Eqs.~13! and~16! are easily solvable for
P11 and P221

. While we will not be able to solve forP222

explicitly, we will be able to express its trace as an eas
computable series. In Sec. IV B we turn to the explicit eva
ation of the traces ofP11 andP221

. We show how they can be
computed without knowledge of the corresponding spec
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



rly
he

b

s

g

or

f.

nn
s
to

n
ne
n

er
e

ing

e-

of

hat

a-

Q
he

nen-

,

o
e-

f

he
e

3263Phys. Fluids, Vol. 13, No. 11, November 2001 Energy amplification in channel flows
by considering ‘‘state space’’ representations of the unde
ing two point boundary value problems. In Sec. IV C, t
series expressing the trace ofP222

will be evaluated by again
considering the underlying two point boundary value pro
lems.

Before we begin, we will define theS, L, andC opera-
tors more precisely. The Squire operatorS has homogeneou
Dirichlet boundary conditions and domainD ~S! given by

S:5S ]2

]y22kz
2D ,

D~S!:5$gPL2@21,1#;g~2!PL2@21,1#,g~61!50%.

It is well known that it is self-adjoint, and has the followin
set of orthonormal eigenfunctions$fn% with corresponding
eigenvalues$gn%,

fn~y!:5sinS np

2
~y11! D , gn52S n2p2

4
1kz

2D ,

n>1. ~19!

The description of the Orr–Sommerfeld operator is m
delicate since its eigenfunctions actually depend onkz . We
first begin by carefully defining the operator following Re
4. The underlying spaceHOS is the space of functiong with
second derivative inL2@21,1#, and g(61)50. The inner
product inHOS is given by

^g1 ,g2&OS:5^g18 ,g28&21kz
2^g1 ,g2&25^g1 ,~2D!g2&2 ,

where for emphasis we have denoted the standard i
product inL2 by ^•••&2. Note that this inner product give
precisely the contribution of the wall-normal velocity field
the energy density. The energy form in~4! can now be writ-
ten

^c1 ,c2&e5 K F v̂1

v̂1
G ,F v̂1

v̂1
G L

e

5^v̂1 ,v̂2&OS1^v̂1 ,v̂2&2 .

The domain ofL is inside ofHOS, namely

D~L!:5$gPHOS; g8~61!50, g~4!PL2@21,1#%,

and L is defined a the operator that mapsg° f for f ,g
PD(L) by

S ]2

]y22kz
2D f 5S ]4

]y422kz
2 ]2

]y2 1kz
4Dg.

It is not difficult to verify thatL is self-adjoint with a dis-
crete spectrum, and is negative definite~with respect to the
inner product ofHOS!, and thus has only negative real eige
values and generates a stable evolution. The self-adjoint
of L implies that it can be diagonalized by using its eige
functions as an orthonormal basis ofHOS. This eigenvalue
problem was studied in Ref. 18, to which we refer the int
ested reader for details. In this paper we circumvent the n
for the detailed spectral analysis ofL. We will only need to
know that it is self-adjoint, trace class~an operator is trace
class if it has finite trace!, and has a discrete spectrum.

The coupling operatorC: HOS→L2@21,1# is given by
v5Cv,
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v~y!52 ikzU8~y!v~y!,

and is a bounded operator as is evidenced by the follow
bound:

uuvuu2<uuvuuOS S max
yP@21,1#

uuU8~y!uu D ,
which can be easily derived from the definitions. In the s
quel, we will need the adjoint ofC which we now evaluate.
The adjointC* :L2@21,1#→HOS satisfies

^v,Cv&25^C* v,v&OS52^C* v,Dv&252^DC* v,v&2 ,

which implies that it must be given by

v5C* v⇔v~y!52 ikzD
21U8~y!w~y!.

A. Special Lyapunov equations

Our analysis is based on the following properties
some special Lyapunov equations.

Lemma 2: Let A be a possibly unbounded operator t
generates an exponentially stable semigroup$etA&, then

~1! The unique solution of the operator Lyapunov equ
tion AP1PA52I , is P52 1

2A
21.

~2! Given a self-adjoint operator Q, such that both
and $etA% are trace class, then the unique solution of t
operator Lyapunov equation AP1PA52Q satisfies

trace~P!52 1
2trace~A21Q!.

We apply the first part of this lemma to Eqs.~13! and
~16!. As is well known~see the following!, bothL andS ar
self adjoint operators that generate trace class and expo
tially stable semigroups, thusL* 5L, S* 5S, and both
equations@~13! and ~16!# can then be solved to yield

P1152 1
2L21, P221

52 1
2S21.

On the other hand, solving~15! is significantly more delicate
and requires solving~14! first, which we write formally as

P05E
0

`

etSCP11 etL dt52
1

2E0

`

etS CetL dt L21,

sinceL21 commutes withetL. It does not seem possible t
explicitly solve~15!, but using the second part of the abov
given lemma, we can write

trace~P222
!52 1

2trace~S21~CP0* 1P0C* !! ~20!

5
1

4
traceS S21S CL21E

0

`

etLC* etS dt

1E
0

`

etSCetL dt L21C* D D ~21!

5
1

2
traceS S21CL21E

0

`

etLC* etS dtD , ~22!

where Eq.~22! is arrived at by using the commutativity o
L21 with etL, and the fact that trace (AB)5trace(BA) for
any two trace class operatorsA,B.

The inherent difficulty is that one cannot compute t
integral in ~22! explicitly. However as we now show, th
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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trace can still be computed at the expense of doing a spe
decomposition of eitherL or S. We of course choose th
spectral decomposition ofS since it is by far simpler.

Lemma 3: Let$gn%, $fn% be the eigenvalues and eige
functions of the operatorS, then for any trace class operato
Q

traceS QE
0

`

etLC* etS dtD
52 (

n51

`

^fn ,Q~L1gnI !21C* fn&.

Proof: Let the spectral decompositions ofS andL be

S5(
n

gnEn
S , L5(

m
lmEm

L ,

whereEn
S and En

L are the spectral projections ofS and L,
respectively, e.g.,En

Sf :5^fnf &fn . We can then compute

E
0

`

etLC* etS dt5E
0

`S (
m

elmtEm
L D C* S (

n
elntEn

SDdt

5(
n

(
m

S E
0

`

e~lm1gn!tdtDEm
LC* En

S

52(
n

(
m

1

~lm1gn!
Em

L C* En
S

52(
n

~L1gnI !21C* En
S ,

where in the last equation we made a choice to recomb
the spectral decomposition ofL. Now, the trace of any op
eratorA can be calculated using any orthonormal basis
$f i% by trace(A)5( i^f i ,Af i&. Therefore

traceS QE
0

`

etLC* etS dtD
52traceS Q(

n
~L1gnI !21C* En

SD
52(

i
K f i ,Q(

n
~L1gnI !21C* En

Sf i L
52(

i
^f i ,Q~L1g i I !21C* f i&.

We now summarize the remaining required trace comp
tions:

trace~P11!52 1
2trace~L21!, ~23!

trace~P221
!52 1

2trace~S21!, ~24!

trace~P222
!52

1

2 (
n51

`

^fn ,S21CL21~L1gnI !21C* fn&.

~25!
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B. Computing the traces of SÀ1 and LÀ1

There is a particularly simple method to compute t
trace of an operator given by a two point boundary va
problem. This method is based on the use of certain s
space realizations~first-order differential equation form!, and
works particularly well for the operatorsS21 andL21. This
method is applicable to any operator specified by a two po
boundary value problem,20 and we only present here its ap
plication to the problem at hand.

First, we introduce the so-called state space realizati
of the S21 and L21 operators. Recall the definition of th
operatorsS andL,

S:g1° f 1⇔ f 15S ]2

]y22kz
2Dg1 , g1~61!50,

L:g2° f 2⇔S ]2

]y22kz
2D f 25S ]4

]y422kz
2 ]2

]y2 1kz
4Dg2 ,

g2~61!5g28~61!50,

their inverse are simply given byS21: f 1°g1 and
L21: f 2°g2 as in the above-mentioned equations a
boundary conditions. A set of state space realizations for
inverse can be given as follows:

S21: z85F0 kz
2

1 0
Gz1F10G f 1 ,

where

Fz1

z2
G :5Fg18

g1
G , z2~61!50,

g15@0 1#z,

L21: x85F 0 0 0 2kz
4

1 0 0 0 0

0 1 0 2kz
2

0 0 1 0

G x1F 2kz
2

0
1
0
G f 2 , ~26!

F x1

x2

x3

x4

G :5F g2-22kz
2g282 f 28

g2922kz
2g22 f 2

g28

g2

G ,

g25@0 0 0 1# x, Fx3~61!

x4~61!G5F00G .
Note that in both cases the realizations are such that
second half of the state variables is constrained to be zer
the boundary pointsy561, while the first half is free. These
realizations are in the so-called ‘‘observable canoni
form.’’ 19

Now we apply the results of Ref. 20 on computing t
trace given a state space realization to the above-mentio
systems. Note that since the corresponding realizations
pend onkz , the traces will also be functions ofkz . For both
of these realizations, the formula in Ref. 20 was evalua
with the aid of theMAPLE/MATLAB symbolic computation
package to yield the following:
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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trace~P221
!52

1

2
trace~S21!5

2kz coth~2kz!21

kz
2 , ~27!

trace~P11!52 1
2trace~L21!

52
1

2

4kz
21sinh~4kz!kz1~12cosh~4kz!!

kz
2~8kz

21~12cosh~4kz!!!
.

~28!

In Fig. 2, we show plots of those two functions. It is inte
esting to note that both functions can be regarded as ratio
multinomials in the two variableskz ande2kz. Note the char-
acteristic dissipation spectrum for the trace ofS21. The spec-
trum of L21 has a dissipation-like character for high wa
numbers, but is somewhat different at low wave numbe
The difference between the two spectra can probably be
tributed to the different boundary conditions on the Or
Sommerfeld operator.

C. Computing the trace of P222
for Couette flow

We now turn to the evaluation of trace (P222
), which we

remind the reader is given by the following series:

trace~P222
!52

1

2 (
n51

`

^fn ,S21CL21~L1gnI !21C* fn&,

where$fn ,gn% are the eigenfunctions and eigenvalues of
Squire operator given by~19!. This series can be simplifie
due to the relations between the operatorsS, L, andC. These
relations are somewhat simpler for Couette flow than th
are for Poiseuille flow, and we only consider Couette flow
this section, though in principle our methods are also ap
cable to the latter case.

First we make use of the fact thatfn is an eigenfunction
of S, and thus the actions ofS21 andC* on it are particularly

simple
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trace~P222
!

52
1

2 (
n51

`

^Fn ,S21CL21~L1gnI !21C* fn&2

52
1

2 (
n51

`

^L21C* S21fn , ~L1gnI !21C* fn&os

52
1

2 (
n51

` KL21S 2 ikz

gn
2 Dfn ,~L1gnI !21S 2 ikz

gn
DfnL

os

52
1

2 (
n51

` kz
2

gn
3 ^L21fn ,~L1gnI !21fn&os. ~29!

The second equality is due to the self-adjointness ofS21 and
L21 with respect to the appropriate inner products. The th
equality follows fromfn being an eigenfunction of the op
eratorsS215D21 with eigenvalue 1/gn, and that for Cou-
ette flowC* 52 ikzD

21.
We now evaluate the individual terms in the series~29!.

This task is significantly simplified by utilizing the relation
betweenL21 and (L1gnI )21, and by the fact thatfn is an
eigenfunction of a ‘‘part’’ of the operatorL5D21D2. We
summarize this in the following lemma.

Lemma 4: Let g and f be functions over the interv
@21,1# which are the solution to the following two TPBVP

D2f 5gnfn , f ~61!5 f 8~61!50,

~D21gnD!g5gnfn , g~61!5g8~61!50.

Then

~1! ^L21fn ,(L1gnI )21fn&os5^fn ,g&22^fn , f &2 .

~2! The inner products can be determined from the TPBV
by
FIG. 2. Trace(P22) ~left! and
trace(P11) ~right! as a function ofkz .
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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^fn , f &22^fn ,g&255
1

2gn
1

np

2gn
2 F ~ f 9~1!2 f 9~21!!2

1

2
~g9~1!2g9~21!!G n even

1

2gn
2

np

2gn
2 F ~ f 9~1!2 f 9~21!!2

1

2
~g9~1!1g9~21!!G n odd

.

The expressions in lemma 4, part~2! can be evaluated by solving the two TPBVPs. Since these are constant coef
ordinary differential equations~ODEs!, their solutions are elementary and are given by trigonometric and hyperbolic func
Once the solutions are found, their second derivatives aty561 give the series terms as in the previous lemma.

The difficulty is that the ODE coefficients are functions ofkz andn. After some fairly laborious algebraic manipulation
and the aid of theMAPLE symbolic computations package, we were able to obtain concise expressions as follows:

~21!nf 9~1!2 f 9~21!5H 2np

gn

kz~cosh~2kz!21!

~sinh~2kz!22kz!
n even

2
2np

gn

kz~cosh~2kz!11!

~sinh~2kz!12kz!
n odd

,

~21!ng9~1!2g9~21!5H np

2~ancoth~an!2kzcoth~kz!!
n even

np

2~antanh~an!2kztanh~kz!!
n odd

,

wherean :5A2kz
21n2p2/4. Putting together all the above-mentioned relevant expressions, we finally obtain the se

express the coupling term as a function ofkz in terms of a series overn:

f 2~kz!5trace~P222
!52

1

2 (
n51

` kz
2

gn
4H S 1

2
1

n2p2

2gn
F 2kz~cosh~2kz!21!

gn~sinh~2kz!22kz!
2

1

4~an coth~an!2kzcoth~kz!!G D n even

S 1

2
1

n2p2

2gn
F kz~cosh~2kz!11!

gn~sinh~2kz!12kz!
1

1

4~an tanh~an!2kztanh~kz!!G D n odd

.

FIG. 3. A regular~left! and logarith-
mic ~right! plot of the coupling term
f 2(kz).
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This function, which is essentially a frequency~kz) response,
is plotted in Fig. 3 as a regular and as a ‘‘bode’’ plot which
common in the frequency analysis of systems. We note
his plot matches plots generated through Galerkin appr
mations of the original PDE, and is in agreement with tho
reported in Refs. 9 and 10. The plots show the character
peak atkz;1.5, which is the wave number for the mo
energetic response to stochastic excitation.

V. DISCUSSION

The presence of background noise such as free str
disturbances and wall roughness has long been recogniz
Downloaded 24 Jan 2002 to 128.111.70.62. Redistribution subject to A
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an important aspect of transition in boundary layer and ch
nel flows. By modeling such noise as stochastic excitation
linearized channel flow, we have shown thatO(R3) energy
amplification is possible for 3-D disturbances. The ampl
cation mechanism is due to coupling between the dis
bance’s wall-normal velocity and vorticity. This coupling
provided by the mean flow shear and the disturbance’s sp
wise variation.

We now comment on the role of non-normality in th
energy amplification mechanism. There are two reasons
the non-normality of the generatorA in ~3!. The first being
the non-normality of the Orr–Sommerfeld and Squire ope
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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tors whenkxÞ0. Second, the ‘‘off-diagonal’’ termC intro-
duces a non-normality easily seen in the two-by-two blo
representation ofA. The latter is much more significant tha
the former. To see this, we note that in two-dimensio
channel flows~i.e., spanwise constant perturbations!, the
generator of the evolution equation for the stream functio
precisely the non-normalL, but in that case onlyO(R) am-
plification is possible. On the other hand, in the case
streamwise constant perturbations that we consider in
paper,kx50, L andS become self-adjoint, yetO(R3) am-
plification is possible via the coupling due to theC term.

Spanwise variations are recognized as leading to th
dimensional structures in transition. Our analysis shows
spanwise varying but streamwise constant perturbations
much more important for transition than spanwise cons
and streamwise varying perturbations such as TS waves
deed, it has been demonstrated11 that spanwise modes hav
substantial growth when even a small amount of backgro
noise~caused by round-off error! is present.

Since the original work on energy growth revealed th
streamwise vortices and streaks are the dominant featu
the linearized models rather than TS waves, the ques
arises as to the relation between these structures and
ubiquitous wall-layer streamwise vortices and streaks in
bulent boundary layers. The streak spacing predicted in
present theory is independent of the Reynolds number, b
dependent on the profileU. The turbulent mean flow profile
in channel flow are different from the corresponding lamin
profiles, and are Reynolds number dependent as are the
served coherent structures. The above-mentioned facts
gest the possibility that wall-layer streaky structures could
the result of similar linear amplification processes. Howev
the quantitative comparison with experimental results ne
to be carried out. Further investigations are required to rev
the relevance of this type of analysis to fully turbule
boundary layer flows.

There is a significant conceptual difference between p
posing energy growth versus energy amplification as tra
tion mechanisms. Energy growth requires favorably con
ured initial velocity fields to achieve large transient grow
while energy amplification requires the presence of exte
forcing to produce perturbed flow fields. Mathematically, it
essentially the same mechanism that causes amplificatio
growth. Given the extreme sensitivity to shear flows to fr
stream disturbances and wall roughness, it seems m
physically appropriate to think in terms of amplificatio
rather than growth. This is essentially an input–output vi
where the issue is to quantify the effect of external forc
inputs on flow perturbations viewed as an output.

APPENDIX A: LINEAR SYSTEMS DRIVEN BY
STOCHASTIC INPUTS

We summarize the main results of the theory of line
systems with stochastic inputs. With a careful choice of
tation, the statements we make are valid for both finite a
infinite dimensional systems. Further details can be foun
Refs. 21 and 19.
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Consider the forced linear system given by

d

dt
c5Ac1Bd, ~A1!

where the statecPRn in the finite dimensional case, and i
some Hilbert space in the infinite dimensional case. The P
~3! can be viewed as an evolution equation of the abo
mentioned form with the state evolving in the Hilbert spa
Hos% L2 ~sincev̂PHos and v̂PL2!.

Whend is a stochastic process, the notion of a soluti
to the differential equation~A1! is a little delicate. It is sim-
pler instead to work with the solution in terms of the conv
lution

c~ t !5etAc~0!1E
0

t

e~ t2t!AB d~t!dt.

A second-order stochastic process is given by its correla
statistics. Assumingd is zero mean, its covariance matr
~operator, in the infinite dimensional case! is defined by

R~ t1 ;t2!:5E$d~ t1!d* ~ t2!%.

The process is termed wide sense stationary ifR is a function
of only t12t2. If d is a vector valued process, thend* is to
be interpreted as the complex conjugate transpose of the
tor d. In the infinite dimensional case, we can define t
above-mentioned product as the tensor produce ofd with
itself, i.e.,

dd* :5d^ d,

where for any two elementsf,g of a Hilbert space, the tenso
product is defined as the rank one operatorf ^ g that acts as
follows:

~ f ^ g!~x!:5 f ^g,x&.

Note how the Hilbert space inner produce determines
tensor product. The notion of a tensor product is a gener
zation of the column/row vector product for vectors whe
the underlying inner produce is the usual Euclidean one.
need to use this slightly more general definition here si
the energy form~4! used in this paper is not the standardL2

inner product. For simplicity, we will use the notationdd*
with the understanding that it stands for the tensor prod
whend belongs to a Hilbert space.

If d is a stochastic process in~A1!, then c becomes a
process whose second-order statistics are determined b
linear system’s dynamics. Assume thatd is a temporally sta-
tionary, white process, i.e.,

E$d~ t1!d* ~ t2!%5Rd~ t12t2!, ~A2!

whereR is the ‘‘spatial’’ correlation operator. Assuming zer
initial conditions, the correlation operator ofc can be com-
puted by
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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V~ t1 ,t2!:5E$c~ t1!c* ~ t2!%

5EH S E
0

t1
e~ t12t!ABd~t!dt D

3S E
0

t2
d* ~s!B* e~ t22s!A* dsD J

5E
0

min~ t1 ,t2!

e~ t12t!ABRB* e~ t22t!A* dt, ~A3!

which follows by using the statistics ofd ~A2!. In the steady
state limit whent15t2→`, we obtain

V5E
0

`

etABRB* etA* dt. ~A4!

We note here that this correlation operator contains all
second-order steady state statistics of the flow field. Th
can be interpreted as being precisely the Reynolds stress
the flow is assumed to satisfy the linearized Navier–Sto
equations, and is driven by external forcing with known s
tistics.

An important fact used in this paper is that the corre
tion operator can be found without evaluating the integra
~A4!. We can show that the steady stateV satisfies a so-
called Lyapunov equation. Consider expression~A3! at t1

5t25t, which we will denote byV(t). We can derive an
operator differential equation forV(t) by simply differenti-
ating ~A3! to obtain

d

dt
V~ t !5AV~ t !1V~ t !A* 1BRB* ,

the so-called differential Lyapunov equation. If the system
stable, then the steady state limit exists a
limt→`(d/dt)V(t)50, which then yields the algebrai
Lyapunov equation

AV1VA* 1BRB* 50.

In this paper, we have assumed the external input statistic
be given byR5I ~i.e., a spatially uncorrelated process!, and
since the forcing enters directly into the state equationB
5I , which then yields Eq.~5!.

We note that in the controls and systems theory lite
ture, one often encounters Lyapunov equations. They are
ear equations in terms of the unknown matrix~or operator!
V. In the case of finite dimensional systems, there exist e
cient algorithms for solving the resulting linear system
equations. For infinite dimensional systems the entries
operators, and except in simple cases, it is not possibl
explicitly solve the equations without resorting to finite d
mensional approximations. In our study, we are able to
cumvent the approximations since we require only the op
tor trace of the solution rather than the full operator.

Finally, we comment that the variance amplification ca
tured by tr~V! is precisely what is referred to in the contro
literature as theH2 norm of the system fromd to c. This
norm can be related to the transient response by~here we
assumeB5R5I )
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tr~V!5trS E
0

`

etAetA* dtD 5E
0

`

tr~etAetA* !dt.

The numerical investigations of energy growth2,4 revealed
O(R2) peak values forlmax(e

tAetA*), with the peak occurring
at timeO(R). Since the energy amplification is the integra
one can intuitively expect tr(V) to beO(R3). This, however,
may not always be the case, since for any operatorT, tr~T!
can in general be quite different fromlmax(T).

APPENDIX B: PROOF OF LEMMA 4

Proof: Part 1. The first part follows from the propertie
of L. Let us define

f :5L21fn⇒Lf 5fn⇒D2f 5Dfn5gnfn ,

g:5~L1gnI !21fn⇒Lg1gng5fn⇒D2g

52gnDg1Dfn⇒~D21gnD!g5gnfn
.

Note that the boundary conditions of f and g follow from t
definition of the operatorL. The inner product then become

^L21fn ,~L1gnI !21fn&os

5^ f ,g&os52^ f ,Dg&2

52 K f ,
21

gn
D2g1fnL

2

5
1

gn
^D2f ,g&22^ f ,fn&2

5
1

gn
^Dfn ,g&22^ f ,fn&2

5^f,g&22^ f ,fn&2 .

Note that we made use of the identity^ f ,D2g&25(D2f ,g&2

which is valid because of the boundary conditions on f and.
Part 2. The key here is the following general property

the D2 operator:

^D2h1 ,h2&25^h1 ,D2h2&21~~h1-h22h19h281h18h29

2h1h2-!22kz
2~h18h22h1h28!!u21

1 ,

which can be verified through integration by parts. Recalli
that fn(y)5sin((np/2)(y11)) is an eigenfunction ofD2,
we compute

^fn , f &25
1

gn
2 ^D2fn , f &2

5
1

gn
2 @^fn ,D2f &21~fn8 f 9!u21

1 #

5
1

gn
2 F ^fn ,gnfn&21

np

2
~cos~np! f 9~1!

2cos~0! f 9~21!)]

5F 1

gn
1

np

2gn
2 ~~21!nf 9~1!2 f 9~21!!G .
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The evaluation of the second inner product proceeds al
similar lines using the TPBVP defining g. Omitting the d
tails, we obtain the final result

^fn ,g&25F 1

2gn
1

np

4gn
2 ~~21!ng9~1!2g9~21!!G ,

which, when combined with the previous expression, pro
part 2.
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