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Optimal Periodic Control of an
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We consider an optimal control problem for a model of a Stirling engine that is actively
controlled through its displacer piston motion. The framework of optimal periodic control
(OPC) is used as the setting for this active control problem. We use the idealized isother-
mal Schmidt model for the system dynamics and formulate the control problem so as to
maximize mechanical power output while trading off a penalty on control (displacer
motion) effort. An iterative first-order algorithm is used to obtain the optimal periodic
motion of the engine and control input. We show that optimal motion is typically nonsinu-
soidal with significant higher harmonic content, and that a significant increase in the
power output of the engine is possible through the optimal scheduling of the displacer
motion. These results indicate that OPC may provide a framework for a large class of
energy conversion and harvesting problems in which active actuation is available.
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1 Introduction

Stirling engines are heat air engines that can operate using any
heat power source such as external combustion, waste heat, or
solar thermal power. They are receiving renewed interest as a
potentially competitive energy conversion technology in several
domains including micro combined heat and power (such as the
WhisperGen units made by WisperTech, Christchurch, New Zea-
land), and solar thermal energy conversion (such as those made
by SunPower, Inc., Athens, OH and Infinia Corp., Ogden, UT).

There has been recent interest in more detailed modeling and
optimization of Stirling engines and coolers [1]. Related recent
work on control-oriented modeling of a Stirling engine was done
in Refs. [2–5], while the concept of an Active Stirling Engine [6]
has been recently proposed. This latter concept is similar to our
current work, where the displacer piston motion is the control
input. Rather than let displacer motion be determined by the
mechanical engine design (whether in kinematically linked
engines or the free-piston variety), this new Stirling engine con-
cept is based on directly actuating the displacer piston. This pro-
vides a large amount of control authority over the engine
dynamics. A natural question then is how to exploit this new con-
trol possibility to optimize the operation of the engine, and
whether significant increases in efficiency and/or power output
can be achieved. In contrast to Ref. [6], where the control objec-
tive is for the displacer to track a predetermined trajectory, we for-
mulate a problem where the periodic piston motions and the
thermodynamic cycle itself are optimally designed.

In this paper, we cast the active control problem of a Stirling
engine as a problem in OPC. This is motivated by the observation
that the ultimate motion of such devices is cyclical, but the opti-
mal limit cycle is not known a priori, but is to be designed through
the optimal control problem. We therefore do not have a tradi-
tional trajectory tracking problem, but rather a problem of optimal
trajectory design with periodic boundary conditions, i.e., optimal
limit cycle design. Since one of the main concerns with Stirling
engines is their relatively low power density, we setup a problem
where the mechanical power output is to be maximized while
trading off the control effort.

This paper is organized as follows: Section 2 describes the
dynamical model used, which is the so-called isothermal Schmidt

model. This is the simplest possible model of a Stirling engine and
is used as a proof-of-concept to illustrate the advantages of optimal
cycle design. The methodology presented is, however, applicable
to higher fidelity engine models as well. Section 3 sets up optimal
cycle design as an OPC problem and presents the iterative numeri-
cal hill climbing algorithm we used. There are special issues
introduced by the periodic boundary conditions which require
careful treatment, and these are discussed in some detail. Finally,
Section 4 presents a case study with numerical results, together
with a comparison to a well-designed kinematically linked,
beta-type Stirling engine. Significant output mechanical power
improvement on the order of 40% was achieved for this example.

2 Dynamic Modeling

A Stirling engine is an air engine in which pressure oscillations
drive a power piston that performs mechanical work on a load.
These pressure oscillations are in turn driven by the mechanical
motion of both power and displacer pistons. We present the sim-
plest possible model for this engine, the so-called isothermal
Schmidt model. The first model in Sec. 2.1 is that of an engine
with an actuated displacer but without kinematic linkages between
power and displacer pistons (Fig. 1(c)). We use this model for
optimal cycle design. The second model in Sec. 2.2 has flywheel
kinematic linkages, resulting in a so-called beta-type engine
(Fig. 1(b)), which we use as a benchmark case for performance
comparisons.

2.1 The Basic Isothermal Model. Figure 1(a) is a diagram
of the basic compartments and pistons of a Stirling engine. The
engine is composed of three sections, the hot and cold chambers
and the regenerator. The hot chamber is in thermal contact with a
heat source, and the cold chamber is in thermal contact with a
heat sink. Gas can move between the two chambers through the
regenerator channel. The power piston performs work on a load,
while the displacer piston’s primary task is to move the working
gas between the hot and cold chambers through the regenerator.
Mechanical motion induces thermodynamic changes as follows:
as the displacer piston oscillates, air is shuttled between the hot
and cold chambers through the regenerator channel. This shuttling
creates oscillations in the average (over all sections) gas tempera-
ture, which in turn cause oscillations in engine pressure. The pres-
sure oscillations drive the power piston, which is how the gas
thermodynamics induce mechanical motion. In a beta-type engine
such as the one shown in Fig. 1(b), the kinematic linkages provide
a feedback path between the power piston motion and displacer
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piston, which shuttles the gas, and thus drives the gas thermody-
namics. When the parameters are properly designed, this feedback
creates self-sustaining oscillations in the engine.

In a Stirling engine, the regenerator is a channel filled with a
porous metal matrix material. Its purpose is to act as a thermal ca-
pacitance, heating the cold air before it enters the hot section and
cooling the hot air before it enters the cold section, thus signifi-
cantly reducing loss of heat that is not converted to mechanical
energy.

Mathematical models of such engines can be complex, but the
isothermal Schmidt model is the simplest one and invokes the fol-
lowing assumptions:

(1) Mass is conserved, the gas obeys the ideal gas law, which
is perfectly mixed in each section, and its kinetic energy is
ignored.

(2) Pressure is uniform throughout the engine.
(3) The temperature profile in the regenerator is linear and

interpolates between the temperatures of the adjacent hot
and cold sections.

(4) The heat exchangers are perfect, so the temperatures of the
hot and cold sections are constant in time (thus the term
“isothermal”) and equal to the temperatures of the heat
source and sink, respectively. This is equivalent to the
assumption that heat transfer between external reservoirs
and the internal gas sections is instantaneous.

The first assumption is considered rather realistic, and subse-
quent ones are listed in increasing order of severity. Assumption 4
is perhaps the most drastic. It is popular since it simplifies

mathematical modeling, at the expense of neglecting heat transfer
dynamics which maybe significant in certain engines.

The above assumptions lead to a dynamical model derived
below. The model derivations below are abbreviated since they
are variations on a more detailed treatment available elsewhere
[7]. If we denote power and displacer piston positions by xp and
xd, respectively (see Fig. 1(c)), and power piston mass by mp, then
the mechanical portion of the dynamics is simply

mp€xp ¼ FPðxp; xdÞ $ Cp _xp

_xd ¼ uðtÞ (1)

where Cp is the coefficient of a damper load through which power
is extracted, and Fp(xp, xd) is the pressure force on power piston to
be discussed shortly. Displacers are typically very light, and there-
fore assumed massless. The control effort in this setting is related
to the power needed to move the displacer back and forth. This is
primarily related to pressure losses (viscous friction) within the
regenerator loop. We will show these to be a function of displacer
velocity, and we therefore choose that velocity (rather than dis-
placer position) as the control input u. Of course, once optimal
displacer velocity is determined, it is a simple matter to obtain
optimal displacer displacement by integration.

2.1.1 Pressure Forces on Power Piston. In the isothermal
model, temperatures in each section are assumed to be constant in
time. Pressure is assumed to be uniform throughout all sections of
the engine, but possibly time varying. Therefore, the volume
oscillations of the hot and cold chambers, which are caused by the
motion of the displacer and power piston, create oscillations in
average gas temperature, which in turn creates pressure oscilla-
tions. This shows that the pressure force on the power piston is a
function Fp(xp, xd) of only those two dynamic variables.

The total gas mass in the engine is mt¼mcþmrþmh, where
mc, mr, and mh are the masses of the gas in the cold, regenerator,
and hot sections, respectively. In each section, the ideal gas law
expresses this mass as m¼PV/RT, where R is the gas constant,
V and T are volume and temperature of the respective section
(pressure P is assumed equal for all sections). We note that since
the temperature in the regenerator is not spatially uniform, the
relation mr¼PVr/RTr needs to be interpreted in the sense of an
“effective regenerator temperature” Tr, an issue which will be
addressed shortly. Therefore, the ideal gas law implies that the
total mass is

mt ¼
P

R

Vc

Tc
þ Vr

Tr
þ Vh

Th

! "
(2)

Note that Vr is constant, while the volumes of the hot and cold
chambers are functions of piston displacements

Vh ¼ Vho þ Adxd

Vc ¼ Vco $ Adxd þ Apxp (3)

where Ad and Ap are the cross-sectional areas of the displacer and
power piston, respectively, and Vho and Vco are the nominal vol-
umes (at xp¼ xd¼ 0) of the hot and cold chambers, respectively.
Equations (2) and (3) can now be solved to obtain pressure as a
function of piston displacements xp and xd. It remains to calculate
the effective regenerator temperature Tr.

The regenerator is assumed to be a linear, one-dimensional ele-
ment with a temperature distribution TðlÞ ¼ Th $ Th $ Tc=Lð Þl
which linearly interpolates the boundary temperatures Th and Tc

over the interval l ! [0, L]. Using the ideal gas law in each infini-
tesimal cross section gives the total regenerator mass as

mr ¼
ðL

0

PðArdlÞ
RTðlÞ

¼
ðL

0

P

R Th $
Th $ Tc

L
l

! "Ardl

Fig. 1 Conceptual diagrams of Stirling engines where (a)
shows the basic compartments and pistons, while (b) shows a
beta-type engine where pistons are kinematically linked
through a flywheel, and (c) shows the new concept of an engine
with active control through direct actuation of the displacer pis-
ton. Linkages and actuators are shown conceptually and their
actual geometry is not reflected in these diagrams.
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where Ar is the cross-sectional area through which fluid can flow
in the regenerator. This integral yields

mr ¼
PVr

RðTh $ TcÞ
ln

Th

Tc

! "
(4)

where Vr is the volume of the regenerator. We now observe that
Eq. (4) is an ideal gas law for the regenerator if its temperature is
taken as

Tr : ¼ Th $ Tc

ln
Th

Tc

! " (5)

Solving Eq. (2) for pressure and substituting for the variables
Vh, Vc, and Tr from Eqs. (3) and (5) gives

P ¼ mtR

Vc

Tc
þ Vr

Tr
þ Vh

Th

! "

P ¼ mtR

Vco

Tc
þ Vho

Th
þ

Vrln
Th

Tc

! "

Th $ Tc
$ Ad

Tc
xd þ

Ap

Tc
xp þ

Ad

Th
xd

0

BB@

1

CCA

(6)

For notational clarity, the following constants are defined:

ap : ¼
Ap

TcVmt
; ad :¼ Ad

Vmt

1

Tc
$ 1

Th

$ %

Vmt : ¼
Vho

Th
þ

Vrln
Th

Tc

! "

Th $ Tc
þ Vco

Tc

and the expression (6) can be more clearly rewritten as a function
of piston displacements

P ¼ mtR

Vmt

1

1þ apxp $ adxd

! "
(7)

The above expression for the pressure finally gives the pressure
force term Fp(xp, xd) in Eq. (1), and the engine dynamics can now
be rewritten as

mp€xp ¼ ApPm
1

1þ apxp $ adxd
$ 1

$ %
$ Cp _xp

_xd ¼ uðtÞ (8)

where Pm:¼mtR/Vmt is the nominal pressure (at xp¼ xd¼ 0),
which is also assumed to be equal to the pressure on the external
side of the power piston.1

2.1.2 Pressure Losses in Regenerator and Control Power.
Although in the derivation, pressure was assumed uniform

throughout the engine, there is in reality a small pressure drop due
to viscous friction when fluid flows across the regenerator matrix
material. In an actively controlled Stirling engine (Fig. 1(c)), the
actuator primarily works against that small pressure drop, which
we need to characterize in order to quantify control effort. We
point out that this pressure drop is typically much smaller than the
pressure oscillations in the engine, which is the reason it can be
neglected when calculating the force on the power piston in the

previous section. This fact is recognized in traditional Stirling
engines. It is also true in our controlled engine with optimally
designed cycle as a consequence of the optimization objective
(18). Maximization of this objective has the consequence of insur-
ing that viscous losses (which are related to control power) are
kept at a minimum compared with pressure oscillations (which
determine the output power of the engine).

A standard model [7] for viscous pressure loses assumes them
to be in the same direction as the average flow velocity vr, but
proportional in magnitude to its square

DP ¼ qrfL

rh
vrð Þ26 (9)

where we have used the following notation for the “signed square”
function að Þ26:¼ ajaj. The constants in the above expression are
the fluid density qr, f is the Fanning friction factor, L the length of
the regenerator, and rh is the hydraulic radius.

By conservation of mass, the average flow velocity vr can be
related to the cold and hot sections’ mass flow rates by

qrvrAr ¼
1

2
_mc $ _mhð Þ ¼ 1

2

d

dt
qcVc $ qhVhð Þ (10)

where qc and qh are the fluid densities in the cold and hot sections,
respectively. Using the ideal gas law with the assumption that
pressure is uniform throughout, the densities can be expressed as

qr ¼
P

RTr
; qh ¼

P

RTh
; qc ¼

P

RTc
(11)

The relative amplitudes of density oscillations are typically very
small and therefore taken as constant. This simplifies the time
derivative in Eq. (10) and yields the following expression for
regenerator flow velocity as a function of the pistons’ velocities:

vr ¼
Tr

2Ar

Ap

Tc
_xp $

AdðTc þ ThÞ
TcTh

_xd

! "
(12)

This last expression for vr and the expression (9) for the pres-
sure loss now give an expression for the control power required in
terms of the state variables and input. If the displacer piston is
assumed to be nearly massless, then the force Fd needed to drive
the displacer is equal and opposite to the force due to pressure dif-
ference across the displacer, which is just the pressure loss in the
regenerator. The instantaneous control power is therefore the
product of that force with displacer velocity yielding

Instantaneous control power ¼ Fd _xd ¼ $AdDPð Þ _xd

¼ AdqrfLT2
r

4rhA2
r

AdðTc þ ThÞ
TcTh

_xd $
Ap

Tc
_xp

! "2

6

_xd (13)

2.2 Model of a Beta-Type Engine. This traditional type of
Stirling engine has kinematic linkages and no active control. We
use it as a benchmark design for performance comparison with
our engine with optimally designed cycle. A typical beta Stirling
engine design is shown in Fig. 1(b). Any parameters in common
between the beta engine and the actively controlled one (Fig. 1(c))
were set equal. The main difference between the two is that kine-
matic linkages enforce constraints between the power and dis-
placer piston motions. The dynamics for the beta engine can be
written down using the model (8) and the geometrical relations
from Fig. 1(b) as follows:

mp€xp ¼ ApPm
1

1þ apxp $ adxd
$ 1

$ %
$ Cp _xp $ Fp (14)

I €h ¼ FpRpsinðh$ /Þ $ AdRdDPsinðhÞ (15)

1In other words, the origins of the xp and xd axes are chosen such that at
xp¼ xd¼ 0, internal engine pressure is equal to the external atmospheric pressure.
This makes the zero state an equilibrium of the dynamics.
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xd ¼ $Rd cosðhÞ (16)

xp ¼ $Rp cosðh$ /Þ (17)

where I and h are the moment of inertia and angular position of
the flywheel, respectively, Fp is the reaction force between the
power piston and the flywheel, / is the phase difference between
the two pistons, Rp and Rd are the radial attachment locations of
the pistons on the flywheel, and DP is the pressure difference
across the displacer caused by forcing the working fluid to flow
through the regenerator (Eq. (9)). These equations were derived
assuming that the displacer and the arms connecting the pistons to
the flywheel are massless. The latter are assumed to be sufficiently
long so that the forces they exert on the flywheel and pistons are
essentially horizontal.

3 Optimal Cycle Design

The goal is to find the cyclical displacer motion which will
maximize the average net power produced by the Stirling engine
over one period. We formulate this problem as an OPC problem,
which is a standard optimal control problem, but with periodic
boundary conditions. We then outline a first-order numerical
method referred to as “hill climbing” to maximize the objective.
The issue of enforcing periodic boundary conditions on both the
state and co-state equations requires some special care which is
expounded on in Sec. 3.3.

OPC has been an area of active research in the past, and it
would be difficult to give a complete background here. Some of
the more notable work [8–12] was partially motivated by energy
efficiency problems starting in the 1970s. That work was domi-
nated by the question of when cycling is more efficient than
steady operation. However, here we have a slightly different set-
ting in that the engines we deal with naturally (i.e., without con-
trol) would cycle. The availability of a control input then gives
the additional design freedom of finding non-natural limit cycles
that are energetically more favorable. The basic theoretical frame-
work of OPC is, however, common to our present work and the
earlier literature.

3.1 Optimal Control Problem Formulation. Power is
extracted from the engine via a damper attached to the power pis-
ton, and some power is used up by the displacer actuator to work
against viscous pressure losses across the regenerator. The aver-
age net power over one cycle is the difference between the two
and is given by

J ¼ 1

T

ðT

0

/ðx; uÞdt ¼ 1

T

ðT

0

Cp _x2
p $ Fdu

& '
dt (18)

The dynamics are given by Eq. (8) and the control power Fdu is

Fdu ¼ a adu$ ap _xp

( )2

6u (19)

where the constants a, ad, and ap are given by Eq. (13). The period
T is fixed in this formulation, and a search of a set of periods is
done as an outer loop in the algorithm. All states and the control
are required to satisfy periodic boundary conditions

xpð0Þ ¼ xpðTÞ; _xpð0Þ ¼ _xpðTÞ; xdð0Þ ¼ xdðTÞ;
uð0Þ ¼ uðTÞ (20)

A final constraint we require is that of no collision between the
pistons and the collision barrier or the engine walls. These can be
expressed using the inequality constraints

Ld & xdðtÞ& "Ld

Lp & xpðtÞ
(21)

where Ld; Lp, and "Ld are the lower and upper limits on the dis-
placer and power pistons’ positions, respectively. Hard limit con-
straints such as these are typically difficult to enforce in numerical
optimal control problems, so a “soft constraints” approach is used
by augmenting the objective with suitably designed penalty func-
tions Pd and Pp that grow unboundedly as the states approach the
constraints

J ¼ 1

T

ðT

0

Cp _x2
p $ Fdu$ PdðxdÞ $ PpðxpÞ

& '
dt (22)

In summary, our optimal control problem has the dynamics

_x1 ¼ x2

_x2 ¼
ApPm

mp

1

1þ apx1 $ adx3
$ 1

$ %
$ Cp

mp
x2

_x3 ¼ u

(23)

where x1:¼ xp, x2 :¼ _xp, and x3:¼ xd. The boundary conditions
(20) are T-periodic. The objective is to maximize the performance

J ¼ 1

T

ðT

0

Cpx2
2 $ a adu$ apx2

( )2

6u$ Pdðx3Þ $ Ppðx1Þ
& '

dt (24)

3.1.1 First-Order Variations. In deriving first-order necessary
conditions for optimality as well as first-order numerical algo-
rithms, it is useful to calculate variations using a costate as a
Lagrange multiplier. These calculations are standard in any opti-
mal control textbook [13–15], so we only recap what we need
here to highlight the role of periodic boundary conditions. Con-
sider an optimal control problem with the dynamical constraint

_x ¼ f ðx; uÞ; xð0Þ ¼ xðTÞ (25)

and the performance objective J ¼ 1=Tð Þ
Ð T

0 /ðx; uÞdt: A Lagran-
gian objective J is defined using a Lagrange multiplier function
k(t), t ! [0, T] termed the costate by

J :¼ 1

T

ðT

0

/ðx; uÞ $ kT _x$ f ðx; uÞð Þ
( )

dt (26)

The standard calculus of variations argument including an integra-
tion by parts yields the following expression for the variations
in J :

dJ ¼ 1

T

ðT

0

@/
@x
þ _kT þ kT @f

@x

$ %
dx dt$ ½kTðTÞ $ kTð0Þ(dxð0Þ

!

þ
ðT

0

@/
@u
þ kT @f

@u

$ %
du dt

"
ð27Þ

where the state equation _x ¼ f ðx; uÞ and its periodic boundary
conditions x(0)¼ x(T)) dx(0)¼ dx(T) have been used. If in addi-
tion, the costate is forced to satisfy the following adjoint equation
with periodic boundary conditions:

_k ¼ $ @f

@x

! "T

k$ @/
@x

! "T

; kð0Þ ¼ kðTÞ (28)

then variations in J can finally be expressed as

dJ ¼ 1

T

ðT

0

@/
@u
ðx; uÞ þ kT @f

@u
ðx; uÞ

$ %
du dt (29)

where u, x, and k satisfy Eqs. (25) and (28). When deriving first-
order necessary conditions for optimality, the term in square
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brackets in Eq. (29) is set to zero. Alternatively, this expression
for dJ is used to propose updates to control inputs in an iterative
numerical algorithm, which is presented in the next section.

3.2 Hill Climbing. Expression (29) can be used to build an
iterative algorithm for maximizing the objective (thus the term
“hill climbing”). The initialization step consists of applying some
periodic input u0 to the system and obtaining the corresponding
periodic state trajectory x0. For each subsequent step, let (un, xn)
be the functions obtained at the nth step of the algorithm, then the
next iteration is chosen according to

_kn ¼ $
@f

@x
ðxn; unÞ

! "T

kn $
@/
@x
ðxn; unÞ

! "T

knðTÞ ¼ knð0Þ (30)

unþ1 ¼ un þ e
@/
@u
ðxn; unÞ þ kT

n

@f

@u
ðxn; unÞ

! "
(31)

_xnþ1 ¼ f ðxnþ1; unþ1Þ; xnþ1ðTÞ ¼ xnþ1ð0Þ (32)

Several remarks can be made about this algorithm

• Since (un, xn, kn) simultaneously satisfy the sate and costate
equations, the expression (29) for the variation guarantees
that if (du)n:¼ unþ 1$ un is chosen according to Eq. (31),
then

dJ ¼ 1

T

ðT

0

@/
@u
ðx; uÞ þ kT @f

@u
ðx; uÞ

$ %2

dt ) 0

and thus there exists a sufficiently small step size e such that
the value of the objective at step nþ 1 is improved over that
at step n.

• Both Eqs. (32) and (30) require finding T-periodic solutions
to the corresponding differential equations. These issues are
carefully addressed in Sec. 3.3.

The method just described is a standard one in numerical opti-
mal control and was first used for periodic optimal control prob-
lems by Horn and Lin [16]. Similar methods have also been used
by Kowler and Kadlec [17] and van Noorden et al. [18]. There are
two main distinctions between their algorithms and ours. The first
is that the existence of periodic solutions to the costate equation
(28) was implicitly assumed and not addressed in Refs. [16–18].
These equations do not always admit periodic solutions, and we
analyze conditions that guarantee existence in the sequel. The sec-
ond distinction is in how the periodic state and costate trajectories
are determined. A Newton–Raphson iteration is used in Refs. [16]
and [17] to find the periodic state trajectories, and then the costate
trajectories are found by a decomposition into homogeneous and
particular solutions. A more sophisticated Newton–Picard itera-
tive algorithm is used in Ref. [18] to solve for both the state and
costate trajectories. In the present work, the state trajectories were
found by simply simulating the state equations for sufficiently
long times to reach periodic steady-state conditions. For problems
with slow dynamics, it is preferable to use an iterative method to
find the periodic state trajectories associated with a given input.
However, the dynamics associated with our problem converged
relatively quickly, so the added complexity associated with an
iterative routine was not deemed necessary. To find the periodic
costate trajectories, we developed an algorithm described in
Sec. 3.3, which uses the variation of constants formula to find the
periodic boundary conditions directly.

3.3 Enforcing Periodicity. We begin with enforcing the peri-
odicity of the state equation (32) as it is the simpler case. Since
the input enters the dynamics through an integrator (the equation
for _x3 in Eq. (23)), a necessary condition for x3 to be periodic is

for u to have zero average in time. Therefore, the zero-average
constraint on controls needs to be added to our OPC problem. It is
not difficult to show2 that this amounts to simply removing any
DC component of unþ 1 in Eq. (31) at every step of the iteration.
While this is a necessary but not sufficient condition for the
periodicity of the state trajectory, it was found through extensive
numerical experiments that this condition alone resulted in a T-
periodic steady-state trajectory (after simulation over several
cycles) of Eq. (32) when the input is T-periodic and has zero
mean. This is likely due to the physical nature of this particular
model.

As for the costate equation (28), note that it is a linear, periodi-
cally time-varying system (for k) where the function @/=@xð ÞT is
an input. It is thus of the form

_kðtÞ ¼ AðtÞkðtÞ þ BðtÞ; kð0Þ ¼ kðTÞ (33)

where both A(.) and B(.) are periodic functions with period T. The
periodic boundary condition k(0)¼ k(T) amounts to requiring this
equation to have a T-periodic solution. However, it is not always
true that a linear T-periodically time-varying system with a T-
periodic input must have a T-periodic trajectory, more complex
behavior can occur [19]. Here, we give conditions for the required
periodic solution to exist, and then show how the additional flexi-
bility available through selecting penalty functions can be used to
insure this condition is satisfied.

First, we show how all initial conditions leading to T-periodic
solutions can be characterized. Using the variations-of-constants
formula on (33) gives

kðTÞ ¼ UðT; 0Þkð0Þ þ
ðT

0

UðT; tÞBðtÞdt (34)

where U is the state transition matrix of the system. Now the exis-
tence of an initial condition leading to a periodic solution
"k ¼ kð0Þ ¼ kðTÞ is equivalent to the existence of a vector "k that
solves the following matrix–vector equation:

I $ UðT; 0Þð Þ"k ¼
ðT

0

UðT; tÞBðtÞdt (35)

We note that if such initial conditions exist, their calculation is a
linear algebra problem. The vector

Ð T
0 UðT; tÞBðtÞdt is calculated

from a simulation of a linear system with zero initial conditions,
while the matrix U(T, 0) can be calculated in the standard manner
from a number of linear initial value problems. After these calcu-
lations, the linear system of equations (35) can be solved for "k.

It now remains to provide conditions as to when the system
(35) has solutions "k, or equivalently as to when the linear, T-
periodic system (33) has T-periodic solutions. This question has
previously been addressed in the literature [19]. We rephrase the
main result here in a form that is directly applicable to the present
problem.

THEOREM 1. The following three statements are equivalent:

• The linear T-periodic system

_kðtÞ ¼ AðtÞkðtÞ þ BðtÞ (36)

has a T-periodic solution, i.e., such that k(0)¼ k(T).
• The following matrix–vector equation has a solution "k:

I $ UðT; 0Þð Þ"k ¼
ðT

0

UðT; tÞBðtÞdt (37)

2This follows from the observation that unþ 1$ nn needs to be in the direction du
that maximizes (29) subject to the constraint of zero average. This direction is
simply the projection of the square bracketed term onto the subspace of zero-average
signals, i.e., removing the DC term.
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where U is the state transition matrix of A.
• For any T-periodic solution z of the homogenous adjoint sys-

tem _zðtÞ ¼ $A*ðtÞzðtÞ; the following orthogonality condition
holds: ðT

0

zTðtÞBðtÞdt ¼ 0 (38)

Furthermore, each T-periodic solution of Eq. (36) is such that
kð0Þ ¼ "k, where "k is a solution to Eq. (37), and vice versa, i.e.,
there is a one-to-one correspondence between T-periodic solu-
tions of Eq. (36) and vector solutions of Eq. (37).

This theorem is a reformulation of a result in Ref. [19], Sec.
2.10, Lemma I. For completeness, we provide a brief, self-
contained proof in the Appendix. Condition (38) can be used to
check whether a given system has T-periodic solutions, then solu-
tions of the matrix–vector equation (37) are used to find the corre-
sponding initial conditions, and thus the T-periodic solutions.

To see the consequences of condition (38) to the present prob-
lem, Eq. (30) is written out explicitly after reference to the dynam-
ics (23) and performance objective (24)

_k1

_k2

_k3

2

664

3

775 ¼

0
apðApPm=mpÞ

ð1þ apx1 $ adx3Þ2
0

$1
Cp

mp
0

0
$adðApPm=mpÞ
ð1þ apx1 $ adx3Þ2

0

2

666666664

3

777777775

k1

k2

k3

2

64

3

75$

P0pðx1Þ

@/
@x2

P0dðx3Þ

2

6664

3

7775

(39)

where P0 stands for the derivative of the corresponding single-
variable function P, and the exact form of @/=@x2 is irrelevant in
the sequel. To apply Theorem 1, we note that A :¼ $ @f=@xð ÞT
above has the following left null vector:

vn ¼ ad 0 ap½ (

for any state trajectory. This implies that zn :¼ vT
n is always a right

null vector for the adjoint system _z ¼ $ATðtÞz, and thus gives con-
stant (and therefore T-periodic) solutions. Condition (38) applied
to this solution zTðtÞ ¼ ad 0 ap½ ( gives the requirement

ðT

0

adP0p x1ðtÞð Þ þ apP0d x3ðtÞð Þ
& '

dt ¼ 0 (40)

Extensive numerical investigations were carried out, and no other
periodic solutions of the homogenous system adjoint to Eq. (39)
were found. We thus proceed with the assumption that condition
(40) is the only one that needs to be checked.

In our routines, the constraint (40) is enforced on each term in
the integral separately. Consider the displacer position penalty
first. A sketch of a typical Pd is shown in Fig. 2, where it is termed
the “fixed penalty.” This penalty has even symmetry about the
midpoint of ½Ld; "Ld(, and therefore P0d has corresponding odd sym-
metry.3 If the trajectory of xd is symmetric in time about the mid-
point, then clearly the integral of P0dðxdðtÞÞ over one periodic will
be zero. However, as is typical in the initial steps of the algorithm,
xd may not have that temporal symmetry. We therefore augment
Pd with an additional function (termed “variable penalty” in
Fig. 2), which has variable parameters Sd and "Sd. These parame-
ters essentially bias the even symmetry of the augmented Pd (and
consequently the odd symmetry of P0d). Therefore even when the
trajectory xd does not have temporal symmetry about the mid-
point, parameters Sd and "Sd can be found such that the integral of
the augmented P0dðxdðtÞÞ is zero over one period. This augmented
penalty function retains the barrier penalty features at Ld and "Ld

of the original one and has the additional property of satisfying
the integral constraint. A similar technique is used for the power
piston penalty function as illustrated in the bottom part of Fig. 2.
Those details are omitted for brevity. Finally, we note that at each
step of the iteration, the parameters Sd; "Sd, and Sp required to
enforce Eq. (40) are found using a zero finding routine such as
“fzero” in MATLAB.

3.3.1 The Case of Multiple Solutions. Much of the above dis-
cussion was aimed at insuring the existence of a solution to the
costate equation (30). It is possible that this equation may have
multiple solutions as well (though this case was not encountered
in the present work). In such cases, the multiplicity of solutions
can help the objective improvements at each step. The set of solu-
tions of Eq. (30) is a linear affine space completely characterized
by solutions of the vector equation (37). The “steepest direction”
du to take in Eq. (29) is the one that corresponds to the k amongst
all solutions of Eq. (30) that maximizes the L2 norm of the square
bracketed term in Eq. (29). This is a convex, finite-dimensional,
quadratic optimization problem where the number of variables is

Fig. 2 A schematic of the fixed and variable penalties on the
displacer (top) and power (bottom) pistons’ positions. The vari-
able penalties’ shifts Sp, Sd, and "Sd are parameters determined
at each iteration step of the algorithm to enforce condition (40).

Fig. 3 A plot showing the effect of three parameters of a beta
engine on power output. The parameters are the phase differ-
ence, displacer, and piston amplitude. Small blue spheres rep-
resent small objective values while large dark red spheres
represent large objective values. The small dots represent
points that either does not produce limit cycles or results in col-
lisions. The optimal phase is around 90 deg, power piston am-
plitude has relatively little effect on performance, while larger
displacer amplitudes produce more power.

3In our particular implementation, all penalty functions (fixed and variable) are
sums of reflections and shifts of a one-sided penalty function used as a basic building
block.
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precisely the number of linearly independent solutions of
Eq. (30).

3.4 Summary of the Algorithm. The hill climbing method
with periodicity enforcement is now summarized. The following
procedure is done for each fixed periodic T. The procedure is
initialized by choosing a suitable starting control input u0 (e.g., a
sinusoid), simulating the open-loop dynamics over several cycles
until a steady-state periodic solution is reached. This provides the
initializing trajectories (u0, x0) for Eq. (30).

Steps 1 and 2 below are repeated iteratively within two loops.
The innermost loop repeats the steps until no significant improve-
ment in the performance objective is observed. The outermost
loop then “tightens” the penalty functions, i.e., increases the
steepness of the penalty functions (c.f., Fig. 2) so that these soft
constraints effectively enforce the hard limits (21).

(1) Given (un, xn), solve Eq. (30) for kn. This requires the fol-
lowing steps.

(2) Using a zero finding routine, determine parameters Sd; "Sd,
and Sp to ensure condition (40) for the augmented penalty

functions is satisfied. This guarantees the existence of a per-
iodic solution to the costate equations.

(3) Solve the costate equation (30). This is done by solving
Eq. (35) for the initial condition "k that will yield a periodic
solution. The state transition matrix and input in Eq. (35)
refer to the system (39).

(4) Calculate unþ 1 using Eq. (31), and then xnþ 1 is found by
simulating Eq. (32) until a periodic steady-state is reached.
The step size e is chosen small enough to insure improve-
ment in the objective function and to avoid collisions.

4 Case Studies

The optimization framework discussed in the pervious section
was applied to a Stirling engine model where the displacer piston
motion is the control input, and a performance comparison with a
standard kinematically linked Stirling engine was performed. We
chose a so-called beta-type engine as a benchmark case for com-
parison. Such an engine has several design parameters that need
to be chosen for satisfactory performance. An important
consideration is that a fair comparison should be done to a “well-
designed” benchmark case. Since there are currently no univer-
sally agreed-upon standardized Stirling engine designs, we have
chosen to parametrically optimize a beta-type engine to serve as
our benchmark reference. Other basic parameters of the engines
that are not to be optimized (such as reservoir temperatures,
cylinder areas, and nominal pressure) are taken from Ref. [7].

4.1 Benchmark: Parametrically Optimized Beta Engine.
The benchmark engine used is the beta model described in

Sec. 2.2. This engine has several design parameters including the
flywheel and its kinematic linkages /, Rp, Rd, and I. A standard
nonlinear programming method of optimization was applied to
obtain the parameter values producing the maximum average
power over one engine cycle. The objective function used was Eq.
(18), with the term accounting for power loss from displacer
actuation removed. It was found that changing I served mainly to
change the time needed for the engine to reach steady-state, but
had little effect on the resulting power produced at steady-state.
Therefore, I was chosen as constant and not a parameter in the
optimization routine. The constraints were that the radii must be
positive, while being small enough to prevent collisions with the

Fig. 4 The maximum average net power produced by the actu-
ated Stirling engine as a function of displacer frequency. The
peak in power production occurs at around 17 Hz.

Fig. 5 The optimal motions and the pressure and velocity curves are displayed here for the
actuated displacer model. The optimal displacer motion resembles that of a square wave. This
maximizes the time spend at both pressure extremes.
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engine wall and the collision barrier. The fmincon routine in
MATLAB was used to find the optimal radii and the phase differ-
ence. The function called by fmincon simulated the beta engine
given the radii and phase differences. Once the engine reached
steady-state, the function returned the rate of power extraction to
fmincon.

Figure 3 shows the engine’s net mechanical power output as a
function of the three design variables. This figure illustrates that
power output is relatively insensitive to power piston amplitude,
while optimal phase is close to 90 deg, and that larger displacer

piston motions (limited by constraints that avoid collisions)
produce higher power.

4.2 Performance With Optimal Cycle Design. The periodic
optimal control algorithm was used to optimize the operating cycle
of a displacer-actuated version of the parametrically optimized beta
engine. For a range of operating frequencies, the algorithm was
executed and Fig. 4 shows the resulting maximum average net
power as a function of frequency. The maximum average net power
produced was just under 1800 W at approximately 17 Hz.

Fig. 6 The optimal motions and the pressure and velocity curves are displayed here for the
beta Stirling model. The optimal piston motions resemble that of a sine wave. This is a result
of the rotational inertia causing the flywheel to spin at near constant speed.

Fig. 7 A PV diagram showing the optimally actuated cycle and the optimal beta cycle. The
curves proceed clockwise and the area enclosed by the either curve is the mechanical energy
output (per cycle) of the engine.
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At the frequency corresponding to maximum net power, opti-
mal displacer and power piston trajectories are shown in Fig. 5.
Note that displacer motion is closer to a square wave than a pure
sinusoid; this maximizes the time spent at the two pressure
extremes (c.f., Fig. 5), and thus impulses applied to the power pis-
ton will be maximized and minimized in the appropriate direc-
tions. This intuitively shows how maximum power is transferred
to the power piston. The two piston trajectories appear to be
approximately 90 deg out of phase, though it is a little difficult to
unambiguously measure phase shifts for nonsinusoidal signals.
We note, however, that this phase shift is an outcome of the opti-
mization rather than being enforced with kinematic linkages as is
the case in traditional Stirling engines.

For comparison, the optimal displacer and power piston trajec-
tories for the beta model are shown in Fig. 6. Note how these
motions resemble those of a pure sinusoid; this is primarily a
result of the rotational inertia of the flywheel causing it to spin at
near constant speed.

Finally, the pressure/volume (PV) diagrams for both the beta
and optimally actuated models are shown in Fig. 7. The areas
enclosed by the two models are very similar in size, so they pro-
duce roughly the same energy per cycle. However, the operating
frequency of the actuated model is faster than that of the beta
model (as can be seen when comparing Figs. 5 and 6), so it com-
pletes more cycles in a given amount of time. The end result is
that the optimally actuated model produces 42% more power than
the optimally designed beta model.

A natural question is what the performance of the beta engine
would be if operated at the faster frequency that is optimal for the
actuated engine? However, in order to insure a valid comparison
between the two engines, the only changes which can be made to
the beta engine design are those used in the construction of the fly-
wheel; thus, this is the only way the operating frequency can be
adjusted. Since the flywheel parameters were already optimized
for maximum average net power, any alteration to their values
would result in decreased performance.

5 Conclusions

We have shown how the framework of OPC can be used to
design optimal cycles for displacer-actuated Stirling engines. The
performance objective is the net power harvested by the engine
from the heat reservoirs’ temperature difference. Both the optimal
engine’s cycling frequency as well as the optimal piston motion
waveforms are obtained as a result of the optimization. The opti-
mal waveforms show significant higher harmonic content, and dis-
placer piston motions in particular are closer to square waves than
they are to pure sinusoids. The operating frequencies are also dif-
ferent from those that result from optimized kinematic linkages. A
case study was presented where an optimally actuated engine pro-
duced 42% more mechanical power than a comparable, best-case-
design kinematically linked engine.

This work is a starting point for the use of OPC for actuated
Stirling engine optimization. One of the major drawbacks of the
isothermal Schmidt model is the assumption of instantaneous heat
transfer from the external reservoirs to the working gas. Current
work includes the application of the OPC framework presented
here to higher fidelity models of the Stirling engine which incor-
porate finite-rate heat transfer, as well as more detailed models of
regenerator dynamics. We expect that OPC would be even more
critical and beneficial in these more complex models.

On a more general note, it is likely that OPC is the proper
framework for a large class of energy conversion and harvesting
problems. Cyclic operation is natural in such problems, and when
active actuation is introduced, the role of OPC is to find more en-
ergetically favorable limit cycles than the ones that would occur
naturally without active actuation. We have demonstrated this
idea for a simple Stirling engine model in the present work, but
we believe this basic framework to be applicable to several other
energy conversion problems as well.
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Appendix

Existence of Periodic Solutions to Periodically
Time-Varying Systems

The equivalence of the first and second clause of Theorem 1 is
a simple argument that was outlined in the text leading to
Eq. (35). It remains to show the equivalence of the second and
third clauses.

Considering the matrix–vector equation (37) and recall two fun-
damental facts from linear algebra. A matrix–vector equation of
the form

M"k ¼ w

has a solution "k if and only if (iff) the vector w is in the range (col-
umn span) of the matrix M, i.e., w 2 RðMÞ. The second fact is
that for any matrix, its range and the null space of its adjoint are
orthogonal and complementary, i.e.,

RðMÞ ? N ðMTÞ

This means that w 2 RðMÞ iff it is perpendicular to every element
of the null space of MT, i.e.,

w 2 RðMÞ , 8"zs:t:MT"z ¼ 0; "zTw ¼ 0 (A1)

Now applying this to the matrix–vector equation (37), we see that
the condition MT"z ¼ 0 amounts to I $ UTðT; 0Þ

( )
"z ¼ 0. The latter

statement is equivalent to

"z ¼ UTðT; 0Þ"z , UTð0;TÞ"z ¼ "z

since UTðT; 0Þ
( )$1¼ UTð0;TÞ. It is well known that

Ua(T, 0)¼UT(0, T) is the state transition matrix of the adjoint
system

_zðtÞ ¼ $ATðtÞzðtÞ (A2)

and therefore the statement UTð0;TÞ"z ¼ "z is equivalent to the
existence of a T-periodic solution of the system (A2) with
zð0Þ ¼ zðTÞ ¼ "z. Finally, we rewrite the dot product term "zTw in
Eq. (A1) as applied to Eq. (37)

"zT

ðT

0

UðT; tÞBðtÞdt ¼
ðT

0

UTðT; tÞ"z
( )T

BðtÞdt

and observe that the function UTðT; :Þ"z ¼ Uað:;TÞ"z is simply the
solution of Eq. (A2) with the final boundary condition zðTÞ ¼ "z,
therefore a T-periodic solution.

In summary, applying the fundamental linear algebra result
(A1) to the system (37) gives the following: for all "z such that
UTð0;TÞ"z ¼ "z (i.e., for all periodic solutions z(.) of Eq. (A2)), we
must have:

ðT

0

zTðtÞBðtÞdt ¼ 0

which is the second clause of the theorem.
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